CHALMERS ‘) GOTEBORGS UNIVERSITET

DATX02 - BACHELOR’S THESIS IN COMPUTER SCIENCE AND ENGINEERING

PROJECT GROUP 69

BURY THE NEEDLE

A RACING GAME IN OPEN TERRAIN

Matz JOHANSSON BERGSTROM matzjb@yahoo.se
Tommi KEROLA kerola@student.chalmers.se
Andrej LAMOV andrej.lamov@gmail.com
Ola PALHOLMEN ola@palholmen.se
Hugo P1LA mr_sueko@hotmail.com
Bahareh SADEGHTI baharehs@student.chalmers.se

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
Goteborg, Sweden 2011

Abstract

This bachelor’s thesis describes the implementation of a 3D racing game for the Win-
dows platform using the XNA framework. Presented are results and discussions concerning
fundamental aspects of implementing a modern computer game: 3D modeling, computer
graphics, physics, particle systems, audio, networking and artificial intelligence.

This thesis shows that developing a computer game using an iterative, incremental
approach is a feasible task. We demonstrate possible solutions for solving tasks common
to modern game development.

CONTENTS CONTENTS
Contents 4.8 Fire . ..o 33
481 Results. 34
1 Introduction 5 4.8.2 Discussion and conclusion 34
1.1 Purpose i) 4.9 Vegetation 35
1.2 Limitations 6 491 Results. 36
1.3 Report outline 6 4.9.2 Discussion and conclusion 38
4.10 Particle Systems 39
2 The Game 8 4101 Particle 39
2.1 Background story 8 4.10.2 ParticleSystem 39
2.2 Theme S 8 4.10.3 ParticleSystemSettings . 39
2.3 Class Hierarchy 8 4104 Results 40
3 Modeling 10 4.10.5 Discussion and conclusion 41
3.1 Model Creation 10 Physics 41
3.11 R.esults. """"" o 11 5.1 Physics Engines 42
3.1.2 Discussion and conclusion 14 511 Results . . 49
3.2 MAXScript 15 5.1.2 Discussion and conclusion 43
3.2.1 Results. 1559 Collision Detection 43
3.2.2 Discussion and conclusion 17 591 Results A4
4 Real-Time Graphics 18 5.2.2 Dl'scusswn and conclusion 46
5.3 Car Physics 47
41 HLSL 18
. 5.3.1 Results. 47
4.2 Terrain 19 . . .
5.3.2 Discussion and conclusion 47
421 Results. 19 . :
)) . 5.4 Deformation of vehicles 48
4.2.2 Discussion and conclusion 19
54.1 Results. 48
4.3 Splat Maps 20) . i
5.4.2 Discussion and conclusion 49
431 Results. 20
. : . 5.5 Camera System 50
4.3.2 Discussion and conclusion 21 ;
L 5.5.1 Camera spring system 50
4.4 Lighting 23 : :
) 5.5.2 Euler’s method of inte-
4.4.1 Normal mapping 25 _
449 S . gration 51
4. pecular mapping 25
55.3 Results. 51
443 Results. 26 554 Di . 1 lusi 53
4.4.4 Discussion and conclusion 27 o ISCUSSION and conciusion
45 Sunhght MOdel 27 Level Editor 54
45.1 R?SURS. """"" o 27 6.1 Results. 55
4.5.2 Discussion and conclusion 28 6.2 Discussion and conclusion 56
46 Fog 29
461 Results 30 Optimizations 56
4.6.2 Discussion and conclusion 30 7.1 Frustum Culling. 56
4.7 Water 30 7.2 Occlusion Culling o7
4.7.1 Refraction Map 30 73 DLoD 57
4.7.2 Reflection Map 31 731 Results. 57
4.7.3 Bump Mapping 31 7.3.2 Discussion and conclusion 58
4.7.4 The Fresnel Term 31
4.7.5 Specularity 32
476 Results. 32
4.7.7 Discussion and conclusion 33

LIST OF FIGURES

LIST OF FIGURES

8 Audio
81 Results.
8.1.1 Sounds bound to movable
objects
8.1.2 Sounds bound to static
objects

8.1.3 Collision sounds
8.2 Discussion and conclusion

9 Networking
91 Results.
9.2 Discussion and conclusion

10 Artificial Intelligence

10.1 Path following

10.2 Collision avoidance

10.3 Adaptive driving

104 Results
10.4.1 Path following
10.4.2 Stuck situation behaviour
10.4.3 Collision avoidance . . .
10.4.4 Collision seek
10.4.5 Adaptive driving

10.5 Discussion and conclusion

11 Conclusion
11.1 Results
11.2 Discussion

Glossary

References

List of Figures

Class hierarchy
3DS Max GUT
Modeling a tire.
UV mapping.
Texturing.
FBX Exporter script
HLSL Pipeline.
Rendered terrain
Splat map and height map com-
parison
Terrain from splat map

© 00 1O UL Wi =

—_
e}

59
61

61

62
62
62

63
63
63

64
65
67
68
68
69
69
70
70
70
71

71
71
72

74

75

11

12

13
14
15
16
17
18

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

41
42
43
44
45
46
47
48
49
90
51
52

Rendered terrain with underly-
ing splat map shown
Visible pattern on seamless tex-
ture oo oL
Possible splat map extension.
Possible splat map tree extension.
Lighting on a triangle
Shading technique comparison .
Specular Lighting
Normal and specular mapping
comparison.
Sunlight scattering
Sunlight model terrain rendering
Sunlight model plot
Fogged landscape
Reflection map camera.
The Fresnel term.
Rendered water
Fireeffect
Grass representation
Collection of grass objects
Grass LoD
Grass animation
Rendered grass
Rain particle system
Smoke particle system
Collision detection in 2D.. . . .
Bounding volumes on teapot.
Coordinate systems
KDtree in vehicle deformation. .
Vertex dislocation of chassis . .
Camera spring system.
Euler’s method using different
time steps.
Camera comparision.
Level editor screenshot.
View frustum.
A bucket in three LoDs.

LoD scheme
Screenshot of WavePad. :
XACT tool screenshot.
Network communication cycle. .
Al chasing target.
Al path correction.
Al direction vectors.
AT Wrong facing situation

23
24
25
26

28

23
54
25
56
57
o8
60
61
64
65
66
66
67

LIST OF FIGURES LIST OF FIGURES

53 Al Collision avoidance 67
54 Al structure 69

1 INTRODUCTION

1 Introduction

With the mass market for computer games growing even bigger than the
movie industry [1], computer games constitute an interesting software
development challenge. Games are made up of complex parts, which
require a broad variety of different knowledge: programming, graphical
design, sound, physics, story telling and game play. The creation of a
game is a challenging task and has therefore become a field of its own.

The problem examined is the process of creating a 3D-rendered vehicle
racing game within a specific time limit. This includes research, design
and implementation of advanced technology, handling different aspects
of game development, and finding out suitable solutions to game related
problems.

The ability to create large and complex software, with a satisfying
result, is always a very demanding task. This problem is interesting
for developers, but also for people working with the economic aspects
of promoting and selling game software, and for people that are just
interested in computer games as well. However, this report is intended
for bachelor’s level students.

1.1 Purpose

The purpose of this project is the creation of a modern 3D-rendered
vehicle racing game with good-looking graphics and realistic collision de-
tection and response. The target platforms are Windows and, if time
permits, Xbox360. Additionally, the practical programmatic use of the
related aspects of modern computer games are explored. These aspects
include developing and coding with C# using XNA, and using HLSL for
the creation of graphical effects. Also, the use of particle systems, physics
for simulating realistic vehicle collision behaviour, managing low latency
network programming and creating a suitably intelligent artificial intelli-
gence system for simulating a challenging game experience is presented.
The process of basic 3D model and texture creation for inhabiting the
rendered 3D world, along with sound effects, is also explored. These as-
pects will ultimately contribute to a total game immersion. Additionally,
the project is subject to much needed optimization techniques for keeping
game performance requirements at a low end.

Nonetheless, the most important goal of this project is that the de-
veloped game will be perceived as both challenging, intriguing and en-
joyable.

The purpose of this report is to answer questions about the imple-
mentation and use of the above mentioned aspects. This report presents
several solutions to such game-related problems, which may be of use for
future students and other interested people who wishes to explore the
process of game creation.

1.2 Limitations 1 INTRODUCTION

1.2 Limitations

The end result of this project, a racing game, is targeted towards running
on Windows and, if time permits, Xbox360. Since Xbox360 is made from
fixed hardware, as opposed to a Windows PC, where a mix of old and
modern hardware could exist, the aim is to make the game for the fixed
hardware platform of Xbox360.

The hardware of the different platforms creates a limit on how many
effects can be added to the game. Also, the mix of hardware and the
flexibility of the PC market makes it important to be able to regulate
the level of quality in the game so it can run smoothly on an older PC
as well as adhere to the demands of a state-of-the-art PC.

For these reasons, it was decided to use an incremental model of de-
velopment; to build a game that was initially small and visually modest,
which would then grow into a complex and graphically impressive game.
Therefore, as the project progressed, additional effects and sophisticated
functionality were added. During the project’s growth, an important
benchmark that had to be met was attaining a frame rate of 60 frames
per second on a Xbox360.

Complicated artificial intelligence, sound and optimization was not
the main focus of this project. The decision of adding artificial intel-
ligence, sound and optimization into this game was based on the mere
necessity of creating an enjoyable game experience. Microsoft charges a
fee for using the XNA network API [2]. Therefore, this project did not
use their API. Instead, the lidgren-network-gen3 library was used. Fur-
thermore, in order to not spend time implementing complicated physics
code, the physics used in the project were handled by using a physics
engine. The only requirement was for the physics engine to be realistic
enough to create a resemblance to a real-world driving and collision ex-
perience. Lastly, less focus was directed at creating a massive amount of
game content, such as levels and models of cars and other environmental
objects. Instead, a sufficient amount of game objects was included to
merely be able to demonstrate the implemented features of the game.

1.3 Report outline

This report is structured into several main sections, each discussing a
separate aspect of this project. The report starts with a description
of the game itself and its internal structure. Thereafter, solutions and
ideas concerning fundamental aspects in modern game development are
presented in the following sections:

e Modeling
e Real-time graphics

e Physics

1.3 Report outline 1 INTRODUCTION

Level editor

Optimizations

Audio

Networking

Artificial intelligence

Each section will introduce its topic, after which results and discus-
sions follow. The report ends with a conclusive discussion of the project
and game programming in general.

2 THE GAME

2 The Game

This section is intended to introduce our game idea and theme to the
reader and also give an explanation of the class hierarchy of our code.

2.1 Background story

While our game does not have an explicit plot, the basic gameplay lay-
out is similar to a classic car racing game, where you compete against
either computer-controlled vehicles or actual players through a network
connection. In addition to concepts familiar to regular players of com-
puter games, the game should feature realistic collisions, deformation and
destruction of other vehicles.

2.2 Theme

The game is set in the rural areas of a post-apocalyptic earth. The reason
for this is that we early on in the discussions wanted the game to be set
in an environment that felt as open as possible and was not constrained
to a road. Additionally, a game in a city environment would require
a lot of modeling, texturing (see Section 3.1.1, Texturing) and design.
This would generate an infeasible workload (with respect to this thesis’
deadline) and would also go against our idea of an “open environment”.

Often, when playing games and racing games in particular, a feeling of
“what is beyond those trees?”; or “I wonder if I can see what is beyond that
fence...” can arise. Racing games such as “Need For Speed 37 (1998) [3]
have been limited in that way since they are constrained to racing on a
road. This constraint is due to the memory limitation of the PCs in the
late nineties. However, today, with games such as “Mafia 2”7 (2010)[4],
we start to see a larger explorable and more detailed environment, which
we found appealing to use in our project.

The world in the game is “post-apocalyptic”, meaning that it is set
after a catastrophe, such as a nuclear or viral attack. Because of this,
the population is effectively zero (apart from people driving the vehicles)
and as a result, the man-built constructions wither away, squeak and fall
apart. Using this theme means that the creation of animations of people
can be avoided, which is also a very time consuming and difficult task.

The inspiration for the theme comes from movies such as “Resident
Evil:Extinction” [5], “Mad Max 2" [6] and “The Book of Eli” [7], and
games such as “Fallout 3” [8] and “Motorstorm: Apocalypse” [9], to men-
tion a few.

2.3 Class Hierarchy

The architectural pattern used is the Model-View-Controller concept.
Model View Controller (MVC) is a software pattern used to divide the
code into logical parts [10]. MVC describes the three logical parts: The

2.3 Class Hierarchy 2 THE GAME

Model which handles logic, View which handles the graphics and Con-
troller which handles input via game pad/keyboard. The main goal of
the method is to separate the concerns of different tasks and thereby
increase code reuse and maintainability [10].

GraphicalObject

i

CollidableObject

VehicleObject

Figure 1: The fundamental line of inheritance for objects in this project.

The data models used are basically extensions of a graphical 3D
model. The line of inheritance, as can be seen in Figure 1, is as fol-
lows: GraphicalObject contains information needed to render the graph-
ical model on the screen such as position and model. CollidableObject is
inherited from GraphicalObject, thus containing all properties of Graph-
icalObject. The main purpose of CollidableObject is to give an object
that it is possible to perform collision detection on. This is done by in-
tegrating this object with our physics engine of choice (see Section 5.1)
and performing updates on each of these object via a separate physics
controller class.

Vehicle inherits from CollidableObject and its parents. This model
is abstract, so it cannot be created without a using subclass because
each vehicle has to define various parameters, which control the vehicle’s
physical steering behaviour (see Section 5.3, Car physics).

Simple data models that are self explanatory, e.g. a sound container
and car type, are excluded from the diagram but are still part of the
system.

As for controllers, we have one for each Vehicle object whose purpose
is to keep track of a specific type of vehicles. In addition to this, there
is a physics controller which keeps track of all objects that need physics
calculations. Since there is a tremendous amount of work developing
a physics engine, the physics controller uses, as previously stated, an
external library called JiglibX to do most of the calculations involving
collision detection and response. For sound and music in the game, we
will have a sound controller whose purpose is to calculate where the sound
is orienting from (for 3D sounds) and distance to the sound in order to
regulate sound volumes levels (see Section 8, Audio). Networking will use

9

3 MODELING

the lidgren-network-gen3 library so there was no need to develop basic
networking ourselves (see Section 9, Networking).

3 Modeling

While the aim of this project is to create a 3D game, we think the core
part of our game is the graphical content. The process of creating 3D
models, which are to be rendered to the screen, is called modeling, which
is the topic of this section.

3.1 Model Creation

In this section, we will discuss modeling. Information about texturing,
along with examples of the processes, will also be provided.

A 3D model consists of normals and triangles, and this piece of infor-
mation defines the shape. The process of creating a 3D model requires
the use of a 3D modeling software. There are several modeling editors
available. There is free software, such as Blender [11], and proprietary
software, such as Autodesk:Maya [12] and Autodesk:3D Studio Max [13]
(3DS Max). The choice was 3DS Max due to prior knowledge.

3DS Max is a complex, yet easy-to-use software with an intuitive
Graphical User Interface (GUI). With 3DS Max, you will have a virtual
world in which you can create models that can be imported into the
game environment in a simple way. The file format used for this is called
FBX [14, 15].

3D models are made up from triangles and textures. A texture is
basically a part of an image that is mapped onto the coordinates of
a triangle face [16]. Creating an object usually require thousands of
triangles to look convincing. Each texture element (texel) is mapped
from 2D image onto a 3D object using different projections, so called UV
maps. The UV is the coordinates (u,v) of the texture. The main task
of the modeler is to create the triangles and to map the 2D image onto
these triangles in a convincing way.

To create textures, photos and image-editing software is used. There
are many different types of imaging software available. As with modeling
software, the choice is between free and proprietary.

Free software sometime lack in features and intuitive, well-organized
GUI design. An example of this can be seen in Blender. By the new offi-
cial release of Blender 2.57, the GUI was fully reworked [17] and according
to some the new version is even better than its professional counterparts.

Software like Gimp (GNU Image Manipulation Program) [18] and
Paint.NET [19] has features such as layering images, a palette of different
brushes and the basic set of tools needed to manipulate and combine
images into textures in an easy fashion.

On the proprietary list of software there are, for instance, Corel
Draw [20] and Photoshop [21]. As with the choice of modeling software,

10

3.1 Model Creation 3 MODELING

prior knowledge of Photoshop made this choice simple.

Figure 2: A screenshot of the Graphical User Interface of 3DS Max.
Note the vast set of tools available for the modeler and the different
views and toolbars.

3.1.1 Results

The process of learning 3DS Max is a complex and advanced task. The
amount of tools available for the modeler makes 3DS Max complex and
the advanced technical expertise needed to solve a modeling task de-
manding. Since one of the members of the group had several years of ex-
perience with both 3DS Max and Photoshop, video tutorials were created
and used to communicate ideas and lay out a workflow of the modeling
and texturing process.

Prior to describing conclusions, explanations of modeling and textur-
ing workflow are presented with a few examples.

Modeling In 3DS Max, an interface allows the creation and modifi-
cation of 3D objects in real time. There is also navigation in a total of
four viewports: three of which are orthographical projections and one is
a perspective view (i.e., the way the object would look in reality). Each
time a 3D object is being modeled, we follow a set of internal rules. These
rules were invented to make the modeling and texturing as efficient as
possible. These are:

1. Keep things simple
2. For repetitive actions, create/use a script (MAXSecript)

3. Keep everything in the right scale

11

3.1 Model Creation 3 MODELING

4. Model as fast as possible

5. Never scale an object! directly.

The first rule is the most important, not only for modeling. Keeping
things simple is not always a simple task, since there was a lot of 'trial and
error’ before we could find a simple modeling procedure. In modeling and
texturing, it means to plan the modeling and to just use the right amount
of detail to accomplish the task at hand. The texturing and modeling
stages come hand in hand. When making a complex 3D object, the
texturing stage will be cumbersome since projecting to a larger number
of triangles has to be handled.

The second rule is about utilizing the 3DS Max’s scripting language
(see Section 3.2).

Third, always keep everything in the right scale, especially in a project
with several members.

Fourth, the practice of modeling as fast as possible is to prevent the
possibillity of modeling to perfection. Perfection is something to strive
for, but that is never reached. Making a wooden box look perfect essen-
tially means nobody will notice the difference, unless they have something
to compare to. Focus should initially be put on just making the objects
work in the environment and then on creating the right atmosphere.

As a fifth rule, never scale an object directly. This is because of the
way 3DS Max is designed [22]. In 3DS Max, each model is represented
in the world using a transformation matrix. A transformation matrix
contains information of an object’s rotation, scale and position [23]. If
an object is rotated, the vertices will be displayed as rotated around a
pivot point. It is not until the object is converted to a mesh that the
matrices will be multiplied with the vertices and stored for each vertex.
Now, if an object is scaled, the display will show the object as scaled, but
in reality the scale is stored in the ’scale matrix’ and not by the vertices
themselves.

There are different (unofficial) disciplines in creating 3D objects. We
will run through two ways of modeling and give the drawbacks of the
techniques along with some examples.

Box modeling: This is the more complicated of the two modeling
techniques. It starts from a simple box and from this box more detail is
added by using modifiers like extrusion and beveling. This technique is
well suited for car modeling since it gives absolute control of the models
and allows keeping the number of vertices down, which is good when
unwrapping. A car is basically in the shape of a box.

Spline shape modeling: This method is mainly used for cylindrical
objects like tires or tin cans. The main modifier used is called "shell”.
Shell makes a one-sided 3D object into a two-sided object and also pro-
vides the UV coordinates for the inside, making this modeling technique

L An object consists of several meshes.

12

3.1 Model Creation 3 MODELING

very fast. Later, we will show how we modeled the tires in the game
using spline shape modeling

Modeling, an example Modeling is best shown with an example. The
modeling of a tire could be done using either of the techniques mentioned
in Section 3. Here we use a lathed spline.

a) b) c)

)

a) Create a tube.

b) Add Editable Poly.

c) Use FFD Box to
modify the shape of
the rim without
destroying texture
mapping.

d) Use Mesh smooth.

e) Add Shell modifier,
creating an inside.

Figure 3: Tire modelling creation steps.

FFD Box modifies the shape of the object but keeps the UV-mapping
intact.

All of the above steps are important for the appearance of the tire. We
introduce UV mapping at step b), before we add shape and more vertices,

since it is easier to modify the projection map with fewer vertices (see
below).

Texturing The texture, or material, of each model is based on 2d
images which are mapped onto the triangles that make up a model (see
Figure 4). Since the texture is mapped from 2D image to a 3D model,
the UV template is inevitably cut, resulting in seams. These seams are
smoothed using different techniques to make the seams less visible. To
enhance the visible appearance of a model, different types of textures are
used such as: specular mapping, normal mapping and diffuse mapping.
The diffuse map provides the basic color of the material, e.g., the blue
color and brown dirt on a blue car hood. For more details, see Section 4.4.

After the modeling is complete, we need to define the UV projection
technique (see Figure 5). More advanced texturing, involving specular
and normal maps, is only used for the terrain. This is because the FBX
format, used by the models, does not support multiple textures. Addi-
tionally, the heavy workload put on the modeling team has prevented
adding these.

13

3.1 Model Creation 3 MODELING

Figure 4: The UV mapping shown on a box, a. In b, the seams are
marked with dashed lines as a result of flattening the box. c illustrates
the box unfolded as a UV template.

)‘
Figure 5: The texturing and mapping of a tire. a shows a colored UV
template for the purpose of clarity. b shows how the projection is mapped
onto the tire. c is the diffuse texture. Specular and normal is painted
in the same manner. d shows the resulting model with normal, specular
and diffuse materials applied. Please note how the indented rim catches

the light (the specular and normal maps are only used by the terrain, see
Section 4.4).

3.1.2 Discussion and conclusion

Modeling and texturing in 3DS Max and Photoshop is time consuming.
Using the scripting language M AXScript saves time and has been useful

14

3.2 MAXScript 3 MODELING

for speeding up repetative modeling steps. Shading effects such as normal
mapping and specular mapping adds a heightened sense of realism and
would be interesting to implement in the future for all the objects in the
world, not only the terrain.

3.2 MAXScript

MAXScript is the scripting language of 3DS Max. The language is sim-
ilar to the programming language BASIC, which also has a very simple
syntax. MAXScript was developed by John Wainwright as an addition
to 3D Studio Max R2 (1997) [24]. The main purpose of MaxScript is to
ease the modeler’s workload and make repetative tasks easy to program
and run as a script.

The work flow of the modelers was carefully analyzed, and as a result,
a script that makes the objects simpler and faster to export to the game
was developed.

The modeler’s workflow consists of the following:

1. Collecting reference data, as an aid in modeling
2. Collecting textures (in our texture library)
3. Planning the modeling, draw a rough version on paper
4. Create the model
5. Unwrap the model
6. Texture using the unwrapped template
7. Create LoDs
8. Create Collision Skins
9. Translate to the origin
10. Rescale
11. Export to FBX

12. Make sure textures are seen by the game

3.2.1 Results

In the project, a script coded in MAXScript was created to make the
modeling more efficient and consistent as the models are imported into
the game. One important result of the script is that the possibility of
naming a bounding volume object (see Section 5.2.1) in the wrong way
is eliminated.

Example code using MAXScript:

15

3.2 MAXScript 3 MODELING

select shapes
for s in selection where
s. modifiers . Count==0 do
if s!=undefined do
delete s

The code above selects all the shapes (splines and lines) and removes
the shapes whose modifier stack is empty. Note that we cannot simply
remove all shapes, since there might be models using splines (for which
they always have at least one modifier).

The first points (in the modeling workflow list) were created contin-
uously during the project and were accessible for all the members of the
project via Dropbox [25]. The last part of the modeling workflow was re-
peated for each object and could therefore be scripted using MAXScript.

The script that was developed for this project makes the last steps of
the modeling more efficient, since this part of the workflow is repetative
and usually needs little new input. To keep the script simple and con-
sistent, when using the script, a series of steps has to be performed in
a specific order. For instance, when we name the bounding volumes, we
know that a group named *_LOD_1 is placed on the origin, which is very
important (this will be further discussed later). The script was written
and given a GUI to enable an easy interaction with the 3d objects (see
Figure 6). An order is enforced by the script by deactivating buttons and
spinners that are not to be used yet.

The grouping of the objects is used to automatically rename each
object in the group with "_LOD”, which is used by the game (see Section
7.3 for more information).

Below is a short list of the main features of the script. Some are used
as a button and some are used internally.

Relocation of texture paths: The script tries to find textures given
a texture path. This is saving a lot of time when using textures from
different places and later relocate them. The alternative would be to
use 3DS Max "Asset Tracker”, which was too slow when changing many
texture paths at once. This script is useful if an object uses many textures
(such as specular, normal and diffuse).

Resizing an object: This is a simple, yet very useful button, which
lets you use 3DS Max’s “ReScale World units”. The ReScale World units
function rescales objects to a given the new scale. Instead of explic-
itly specifying the amount of scaling, the script computes the rescaling
necessary to transform the object into a target size.

Translating to the origin: While this task may sound simple, trans-
lating to the origin is a very important task when using LoD groups. By
using this code for origin translation, we can manage the LoD groups in
a controlled way that is easy for the modeler to handle.

16

3.2 MAXScript 3 MODELING

(S BeN FaX Exporte

[CHECKLIST]]
Create group named 1OD_1'
Step 1 (resize and translate)
C Bounding Volume

g LODs and Exporting
tas

[Export] Print Ch

Figure 6: The resulting GUI using MAXScript and a Visual MAXScript
editor to create buttons and spinners. The target size (1) is specified,
then the model is resized and translated (2). Next, the naming of the
bounding volumes occurs (3). An output window (4) keeps track of the
changes made to the scene.

Naming bounding objects: This is one of the most time consuming
part of the preparation for export. In the project, we provide several ma-
terials for the bounding volumes, since they produce sound and also have
a material property used in collision response. The materials accessed
by the script are printed in a list, along with a spinner for weight and a
way to select through the available primitives. This makes the bounding
volume naming routine simple and efficient.

3.2.2 Discussion and conclusion

Although much time is spent modeling and texturing, scripting is gener-
ally difficult at the modeling and texturing stages, since it involves the
artist in a non-predictive and non-repetitive way. However, the script was
very helpful in minimizing errors and enforcing the internal standard.

Additional features such as stepping through the files to be exported
in a conveyor belt fashion would be nice to have. However, there is a
limit on how much automatic work one script can do. The script would
have become too large and complex if each case was to be implemented
as a button. Care has to be taken when developing an "ultimate script’
since it will easily grow into something large and unmaintainable.

17

4 REAL-TIME GRAPHICS

4 Real-Time Graphics

This section describes the real-time graphics - an immensely important
aspect of any 3D game. We will start this section with an introduction
to HLSL, since this is central to all sections on graphical effects. The
rest of this section assumes a basic understanding of HLSL. After the
HLSL introduction, the graphical effects and features implemented in
this project will be presented.

4.1 HLSL

HLSL stands for High Level Shading Language, meaning it provides func-
tions at a high level from the hardware. This means that we do not have
to produce low-level code to communicate with the hardware, but instead
use HLSL as the communication bridge. The language HLSL was created
by Microsoft and works on Windows and Xbox360.

HLSL is divided into three shaders. These are: vertex, geometry and
pixel shaders. The layout of the graphics card can be seen in Figure
7. The vertex shader is responsible for moving individual vertices, while
the geometry shader is responsible for creating new vertices. This is not
supported by older graphics hardware (prior to Shadermodel 4) [26]. The
last and most important part of the shading is the pixel shader. This
shader manipulates the colors of the pixels on the screen. These three
shaders are used in conjunction, similar to a pipeline, in order to achieve
special effects.

Memory resources

(Buffer, Texture,
Constant Buffer)

Input-Assembler
Stage

Vertex-Shader
Stage

Geometry-Shader
Stage

o | Geometry-Shader >
Stage

y
Rasterizer
Stage

Pixel-Shader
Stage

Output-Merger
Stage

Y

Figure 7: The pipeline of DX10 graphics card. Note the pipeline from
vertex to geometry and pixel shader [27].

18

4.2 Terrain 4 RFEAL-TIME GRAPHICS

4.2 Terrain

One goal of our game was to let the player drive around in an open
landscape. Rather than having explicit roads to travel on, the player
should be able to drive around, without restrictions, in a 3D landscape
of an arbitrary style.

A way of generating an arbitrary 3D terrain from a heightmap is
proposed in [28]. The proposed technique in this sample utilizes the
XNA Content Pipeline [29] to build the whole terrain as a single mesh
by looking at a grayscale heightmap in order to see at which height each
vertex of the terrain should be located. By using this heightmap-terrain
solution, the map designer can easily modify the terrain through the
heightmap texture.

4.2.1 Results

Although we made use of the heightmap-terrain technique, we soon dis-
covered that creating a large terrain directly was not an efficient solution.
Building large terrains required sending hundreds of thousands of vertices
to the GPU. Also, since we used the XNA Reach Profile settings, we were
limited to sending 65535 vertices per mesh [30].

This was solved by modifying the terrain generation code to divide the
generated terrain mesh into a grid of several smaller meshes. By doing
this, each smaller terrain mesh now only consists of blocks of 100x100
pixels on the heightmap.

Figure 8: The resulting rendered terrain by using the heightmap-terrain
technique.

4.2.2 Discussion and conclusion

The choice of utilizing the heightmap-terrain technique gave us a way of
creating a result according to our goals. Although we had to modify the

19

4.3 Splat Maps 4 REAL-TIME GRAPHICS

generated terrain in order to cope with larger terrains, this modification
turned out to be useful later when performing frustum culling on the
terrain (See Section 7.1, Frustum culling).

4.3 Splat Maps

Since our game contains a vast landscape, an easy way of texturing the
terrain was needed. Rather than letting our modelers create specific 3D
models of road parts to place on the terrain, we felt a need to be able to
draw roads and vegetation directly onto the 3D landscape.

As described in [31], a technique called multiple texture mapping can
be used to place arbitrary textures on a 3D landscape. This multitex-
turing technique is referred to by some as ’splat mapping’ [32, 33]. Splat
maps are used for specifying what kind of textures will be present in
certain parts of the terrain ground. The world position of a pixel is
mapped onto the splat map to determine how much of each available
ground texture to use at a specific point. Each color channel (red, green,
blue, alpha) represents one type of texture to place on the terrain. When
specifying colors that are a blend of several of the channels, the textures
are blended accordingly by using multitexturing in the pixel shader.

4.3.1 Results

We found splat mapping to be an efficient way of achieving our goal. With
splat mapping, we could easily look at our height map and thereafter draw
an accompanying splat map that defined where to plot certain textures
onto the ground. The resulting color of each pixel is calculated through
the following formula in the pixel shader.

color = (map.r * redTex) + (map.g * greenTex) +
(map.b * blueTex) + ((l-map.a) * alphaTex)

As seen in the above formula, the red, green, blue and alpha com-
ponents of the (splat) map determine how much of the red, green, blue
and alpha textures should be used when rendering a pixel. When creat-
ing a splat map for a terrain, four different textures can be specified to
correspond to each of the four RGBA channels of the splat map texture.

As an example, the splat map seen in Figure 9, applied to the height
map in Figure 9, will result in the terrain seen in Figure 10.

To illustrate the underlying structure, Figure 11 shows the same scene
as in Figure 10, but with splat map colors shown directly on the ground.

Splat maps turned out to be a very efficient solution to achieve our
goal of easily specifying where on the terrain a certain texture should be
used. Blending the red, green, blue and alpha colors on the splat map
also allowed us to create a smooth transition between textures on the
terrain.

20

4.3 Splat Maps 4 REAL-TIME GRAPHICS

Figure 9: A splat map (left) and height map (right) representing the
game terrain.

Figure 11: Game terrain with splat map colors shown on the ground.

4.3.2 Discussion and conclusion

While splat mapping is a technique which is easy to use and implement,
it still suffers from only supporting four different terrain textures due
to each pixels only having four color channels (red, green, blue, alpha).
Although four ground textures were enough for our terrain to create a
convincing 3D landscape, splat maps can perhaps be altered to support
more textures. This is especially important in our game, where we map
repeated textures on large areas.

One issue is that it is easy to see the repetitive patterns in a seamless
texture if used over a larger area (see Figure 12). One solution to break
the pattern of, say, sand ripples would be to use two versions of the sand
ripples and map a large noise splat map to change between them.

Here is a possible idea of how the mapping would work to extend the

21

4.3 Splat Maps 4 REAL-TIME GRAPHICS

Figure 12: Seamless texture causing a visibly repeated pattern.

splat map to use eight textures, using the same map m:
f(m, r1, r2, gi, g2, bl, b2, al, a2) -> Color

//contributions of the channels from map:

redc = map.r<0.5;

greenc = map.g<0.5;
bluec = map.b<0.5;
alphac = map.a<0.5;

color = (redc*xrl + (1-redc)*r2) + (greencxgl + (l-greenc)*g2) +
(bluec*bl + (1-bluec)*b2) + (alphac*al + (1-alphac)*a2);
//add contributions for green, blue and alpha

% 4
f T T T T T

0 1024
~r1 19 81 g by by ap ay
- r g b a

Figure 13: Mapping of (R, G, B, a) to eight textures.

Each zone in Figure 13 shows the mapping of the color for the current
version (dashed line) and the proposed method (line). The drawback is
that we are mapping the interpolation to half the precision. In HLSL,
float precision is used, but ultimately, the "color” type is used which is
4 bytes, meaning 1024 shades, i.e. 256 shades for each channel. With
the proposed method 128 shades will be used to interpolate between the
textures.

Another idea is to let not each color channel on the splat map repre-
sent a ground texture, but rather a whole new splat map. This second
splat map can then refer to ground textures or yet another splat map.
This technique can be used to specify, in theory, an infinite number of
textures on a terrain. However, the downside may be that an increasing
number of splat maps have to be sent to the GPU.

22

44 Lighting 4 REAL-TIME GRAPHICS

level

A4 A

ggeg gggg geee 88eg

Figure 14: A figure showing the proposed technique for increasing the
number of available ground textures (g) by using a tree structure rela-
tionship between the splat maps (s).

As can be seen in Figure 14, the number of available ground textures
increases quickly for each level of splat-map-referencing splat maps. In
fact, the number of available textures can be expressed through the ex-
pression 4", where n is the depth of the splat map tree. The number
of splat maps sent to the GPU can be expressed as Y ,_ 14’C As this
sum is a geometric sum, this can be stated explicitly as MTl. We can
see that this proposed technique of increasing the number of available
ground textures also requires an approximately extra 33% increase in the
number of textures that are sent to the GPU. This increase is neccessary,
since the pixel shader needs to have access to each used splat map. An-
other downside to this technique is the increased complexity of drawing
the splat maps by hand. If a splat map references another four splat
maps, the map designer has to keep track of the relationship between
each of them. Perhaps this technique could be made easier to use, if a
drawing tool, which is keeping track of the splat map relationships, was

developed.

4.4 Lighting

Light itself is an immensely important phenomenon in our world. In
order to create a racing game with convincing graphics, we consider it
important to implement realistic lighting in our generated 3D landscape.

In the beginning of rendering, scenes were rendered using ray tracing.
In ray tracing, a ray is traced through a screen and hit objects in the
virtual world. Each ray hitting a surface is split and retraced through the
scene until a ray hits a light or some set threshold of bouncing is reached.
This method is simple, and hardware to make this method feasible has
been proposed by [34]. Ray tracing is computationally expensive in real
time rendering, and for games, approximations are still used. In real time
rendering, lighting is defined as a sum of ambient (base lighting), diffuse

23

44 Lighting 4 REAL-TIME GRAPHICS

(matte color) and specular (shininess) components [16].

ltot = Tamb + idiff + ispec (1)

In Equation 1, ¢ stands for intensity, which is the light emitted from
each pixel. In this section, it is assumed that the ambient component of
the light source is constant (for more information about how the ambient
component is calculated, see Section 4.5, Sunlight Model). The diffuse
and specular components of the light interacts with the material’s dif-
fuse and specular properties. These properties are usually? defined by
textures. Computing lighting and subsequently calculating the color of
each pixel is called shading. There are several shading models available,
which use normals to calculate the lighting for each triangle.

To calculate the diffuse lighting, Lambert’s law is used[16]. The law
states that for a surface with a matte material, the reflected light is
determined by the cosine between n and [, the dot product. By adding
the material’s properties, we get:

idify = (N - 1) * Maiss * Saify (2)

where sg;r¢ stands for the diffuse color of the light source. The cal-
culation of the diffuse component, i4¢¢, can be seen in Figure 15.

\I/

Figure 15: Diffuse lighting of a triangle with flat shading using only
one normal per triangle. The normal used at each point of the surface is
the thicker dashed line regardless of position.

A selection of these models include flat shading [16], which calculates
the lighting per triangle using one normal per triangle. Gouraud shading
[36] calculates the shading at each vertex and interpolates the coloring
over the triangles (Figure 15). More advanced techniques, which calculate
lighting at each pixel, include Blinn shading [37] and Phong shading [38].

2For some real time render applications, a BRDF (Bi-Direction Reflection Distri-
bution Function) is used to define a multi dimensional "material function” in which
high dimensional textures could be used [35].

24

4.4 Lighting 4 REAL-TIME GRAPHICS

A comparison between flat, Gouraud and Phong shading can be seen in
Figure 16.

Bishop states that Phong shading is relatively slow [39]. XNA uses
an optimized version of Phong shading called Blinn-Phong [40]. Blinn-
Phong is faster and research comparing the method to physical exper-
iments using isotropic BRDF measurements claim to be more accurate
than Phong lighting [41].

Figure 16: The three different shading techniques: flat, Gouraud and
Phong seen from left to right. Note the highlight of the rightmost sphere
compared to the Gouraud (middle).

4.4.1 Normal mapping

For the terrain in this project, normal maps were used to add extra
detail such as small bumps and sand ripples. By using normal maps, the
normals are changed across the surface to give an impression of greater
geometric detail.

The existing normals, per triangle vertex, are changed according to
the normal map, which is a texture containing the directions of the nor-
mals per pixel. These normals are mapped to the color channels (R,G,B).
By sampling normals per pixel, additional details could be added without
modeling them.

4.4.2 Specular mapping

Specular mapping is a mapping technique used to control the strength
of the light reflection of a surface per pixel. The specular component
is an approximation of a light reflection (see Figure 16). The following
equation calculates the specular component of a lighting equation® [16]:

ispec - (n : h)msm * mspec * Sspec (3>

where myy,; is the constant determining the strength of the shininiess. h
is the half vector (see Figure 17). mygpe. is given from the specular map.
Sepec 18 the specular color of the light source, which is omitted in this
project.

3 Also called Phong lighting model. Not to be confused with Phong shading, which
is about interpolating normals [16].

25

44 Lighting 4 REAL-TIME GRAPHICS

Figure 17: Specular lighting is using the half vector, which is the nor-
malised vector between the normal and view vector v. Specular lighting
is thus view dependent.

The slight coloration of the left render comes from the sunlight model
(see Section 4.5).
4.4.3 Results

For each object in the game, the default XNA shader is used, but since
the ground is larger and less complex, a custom shader was implemented
using the above techniques.

Normal and

specular mapping Diffuse

Figure 18: Normal and specular mapping on the terrain compared to
only diffuse. The slight coloration of the left render comes from the
sunlight model (see Section 4.5).

The specular color i, was created using (n-h)™i, where h = Héi—zl\’

myp; is the shininess of the surface, i.e. how strong and focused we want
the specular reflection. In this case, mg,; = 25 which gave a good result.

Normal mapping depends on the specular material. If there is no
specularity (light), then there are no effects from the normal map. Using
the nVidia Normal map filter [42], a normal map is created. The normal
map is in so called tangent space. This is simply converted to a vector
using n = 2 map—1 where map is the color. This is done for each channel
(R,G,B).

One problem with normal maps is aliasing. Aliasing is the artifact
due to the lack of sampling a signal [43]. To resolve this, a filter is used

26

4.5 Sunlight Model 4 REAL-TIME GRAPHICS

to add more samples. This is done for both diffuse and specular maps
using a linear filter to access the samples from the mipmaps.

However, sampling with a linear sampler is not good enough for nor-
mal mapping. Since a normal map consists of vectors stored as color
data, a linear sampling technique will smooth out the colors in the nor-
mal map, resulting in moving the vectors, giving the impression that the
terrain is moving when the player is moving. By using a anisotropic
filtering, this artifact can be reduced considerably.

4.4.4 Discussion and conclusion

Specular, normal and diffuse materials add finer detail and were relatively
easy to implement. One issue with normal mapping was the filtering; us-
ing anisotropic filtering is more expensive but the improved visual quality;,
as a result of the extra samples, might justify the extra cost.

4.5 Sunlight Model

One of the project’s aims was to create a dynamic living environment.
This was considered important, since a living and breathing environment
is not only more realistic but also more interesting to watch. One of the
effects where a changing environment is used is the daylight cycle.

The lighting from the sun changes throughout the day. This is due
to so called Rayleigh scattering [44]. As the photons enter the earth’s
atmosphere, they are scattered, and when they finally arrive at ground-
level they will be colored in a slight blue tint. At sunset (and sunrise), the
photons are scattered even more, since the light has to travel a longer
distance through the atmosphere, hence giving the light a red/orange
color.

There has been papers written on realistic sky models. Nishita et
al [45] propose a sky light model based on physical measurements of
the sky. Although this method is computationally expensive, a new and
faster method of calculating a realistic sky model has lately been proposed
in [46].

4.5.1 Results

Due to time constraints, it was chosen not to implement a fully lit sky
model, but instead only focus on the ambient lighting contributed by
the same scattering process as above. Additionally, we have not found
any existing realistic model involving rendering of both sky and cloud
coloring; fully developing our method would have required more time to
test and implement. As seen in Figure 19, the sky light depends on the
sun’s angle.

To achieve the smooth color transition, the normal distribution func-

27

4.5 Sunlight Model 4 REAL-TIME GRAPHICS

atmosphere . . - |- .

Figure 19: Lighting on earth depends on the sun’s angle. At grazing
angles, the sunlight is colored red, and at noon the light is tinted bright
white.

Figure 20: Sunrise and daylight using the sunlight model.

tion f(z) is used
f() 1 *(zfzb)Q (4)
€Tr) = € 2c
V2mo?
——

a

where a is height, b translation and c is the width of the normal curve.

The resulting functions are describing the intensity of the colors red,
green and blue, 7(0), g(f) and b(#) where 6 € [0,1], the sun is at angle
0 € 10,360] as seen from earth.

To make the functions periodic and smooth and achieve a sunrise
when the sun is on the horizon, an offset was introduced, effectively wrap-
ping the function at [—10, 350], since the function curvature is smooth at
these places (see Figure 21).

4.5.2 Discussion and conclusion

The sunlight model is used to affect the ambient lighting on the sky and
fog color. The effect created by the sun and sky is an important part of

28

4.6 Fog 4 REAL-TIME GRAPHICS

Sunrise Sunset

Intensity
(=)
ot

0 £
Sky Color mm I
0 350
Sun angle

Figure 21: Sunlight model plot.

the game since it covers a large part of the screen. It is also seen as a
reflection in metal and water (see Section 4.7, Water).

Since the normal distribution function is calculated at each frame,
optimizations could perhaps include rendering the colors to a texture as
a preprocessing step. This texture could then be used as a look-up table
to increase performance.

Another detail worth mentioning is the lighting from the moon and
the stars. While our model ignores the moon as a reflector of light, it is
in reality a strong reflector and accounts for a lot of the illumination at
night. Jensen et al [47] proposes a night rendering model, in which the
moon and the night sky is providing the ambient lighting.

A simplified model of the night time renderer, along with a day time
model of the whole sky, would be interesting to continue to work on, since
the moon is actually lighting the sky itself and creates shadows like the
sun does.

4.6 Fog

A good-looking fog effect can create a heightened sense of realism in the
3D landscape. Apart from creating a soft curtain, which shrouds objects
which are far away, it also gives the game landscape an increased sense
of depth.

As seen in [31], a basic good-looking fog effect can be created by
measuring the depth of a pixel relative to the screen and then applying
a linear fog effect to the pixel by linearly interpolating the color of the
fog on this pixel, depending on the pixel’s z-coordinate.

29

4.7 Water 4 REAL-TIME GRAPHICS

4.6.1 Results

The fog is calculated using a pixel shader which modifies the color of each
pixel in the following way, thus creating the desired fog effect:

float depth = input.Depth;

float fog = (depth - FogStart) / (FogEnd - FogStart);
fog *= FogDensity;

fog = clamp(fog, MinFog, MaxFog);

final = lerp(final, float4(FogColor, 1), fog);

As can be seen, the fog effect is created by linear interpolation (the
function ’lerp’) of the fog color depending on the pixel’s distance to the
camera.

—

Figure 22: The resulting fog effect, as can be seen in the landscape in
the distance.

4.6.2 Discussion and conclusion

The fog produced by this effect looks good and is also fast to render. Sev-
eral improvements upon this simple technique can, however, be thought
of. One way of making the fog seem even more realistic would have been
to let the fog grow thicker when closer to the ground and then gradually
dissolve as it appears higher above ground.

4.7 Water

Water has always been an interesting challenge in game development,
most due to the performance required to render it. We will here present
an implementation for water rendering used in this project.

As proposed by Grootjans [48], a good-looking water effect can be
created using a combination of several render targets and bump mapping.
The creation of the water relies on performing three separate steps of
rendering.

4.7.1 Refraction Map

First, everything in the scene that is below the plane that lies on the
water surface is rendered to a separate render target. This is called the
refraction map. This rendering is done by specifying a clip plane, which

30

4.7 Water 4 REAL-TIME GRAPHICS

lies on the water surface, and then clipping all pixels in the pixel shader
which lie on the wrong side of the plane.

4.7.2 Reflection Map

The next step is to create the reflection map. While the refraction map
may be thought of as a picture containing everything in the world below
the water surface, the reflection map contains everything that is above
the water surface. But, since the reflection map has to function as an
image of what is reflected in the water surface, it cannot be rendered
using the same camera as when rendering the refraction map.

Camera A

Camera B

Figure 23: Cameras used during reflection map rendering. To achieve
the mirrored image seen from camera A, the scene is rendered from cam-
era B.

As seen in Figure 23, the scene reflected in the water as seen by
camera A can be easily generated by rendering the scene from camera
B instead, which is positioned right below camera A and looking toward
the same point of interest.

4.7.3 Bump Mapping

When the refraction and reflection maps have been rendered, it is time to
combine them together with a bump map in order to create the final water
effect. A bump map is a texture which contains irregularities which look
like "bumps”. The bump map is read and the normals generated from the
colors on the texture are then applied to the flat water surface in order
to create a visual wave effect.

4.7.4 The Fresnel Term

When looking at a water surface, the angle between the eye and normal
of the water surface determines how much will be reflected in the water.
As proposed by Grootjans [48], the ratio of refraction and reflection can
be found using the dot product of the inversed eye vector and the normal
vector.

31

4.7 Water 4 REAL-TIME GRAPHICS

@am» Amount of reflection
@m» Amount of refraction

Figure 24: The Fresnel term describes the refraction and reflection
relationship by using a dot product.

fresnelTerm = —eyeVector - normalV ector (5)

As seen in Figure 24, the dot product of the inversed eye vector and
normal vector results in the length of the red bar. This dot product
is called the Fresnel term. By linearly interpolating the refractive and
reflective color using the Fresnel term, we get the final color of the pixel.

float4 combinedColor = lerp(reflectiveColor,
refractiveColor,
fresnelTerm) ;

4.7.5 Specularity

As in specular maps (see Section 4.4.2) water also reflect the sunlight.
The specularity effect is created by measuring the angle at which the sun
rays are hitting the water surface and the angle at which the camera is
looking at the water. If the angles are almost the same, then the sunlight
will contribute to the shininess of the water.

4.7.6 Results

We decided to implement water rendering as described by the above tech-
nique. While this approach to resulted in good-looking rendered water
(see Figure 25), the effect itself was expensive to compute. Basically, all
objects in the 3D landscape were required to be rendered three times
in order to gather enough data for the water effect. First, all objects
were rendered to generate the refraction map. Secondly, a complete re-
rendering of the objects was required since the creation of the reflection
map requires the camera to be positioned below the water surface, thus
creating an image showing objects from a different angle. Lastly, all
objects were rendered normally along with the water.

Luckily, optimizations such as frustum culling (see Section 7.1, Frus-
tum Culling) made sure that the number of objects required to be ren-
dered were kept down.

32

4.8 Fire 4 REAL-TIME GRAPHICS

Figure 25: The resulting water effect with reflections of the car, exhaust
smoke and the distant landscape shown in the water.

4.7.7 Discussion and conclusion

Although the use of a refraction, reflection and bump map results in a
convincing water effect, we found it requires the hardware to be fairly
up to date in order to keep a high framerate. A possible optimization to
this water technique might be to create the reflection and refraction map
at a lower resolution than the rest of the game. This approach might
be justified due to the water reflections and refractions being distorted
by the application of bump mapping, which gives them a less accurate
appearance.

Future work could include implementing actual wave height, instead
of faking it through a bump map. A possible approach might be to let
the vertex shader dislocate the water surface’s vertices, in order to create
visual waves. Another interesting effect would be to let the water be
affected by physical objects. For example, a desirable behaviour could
be to let the water splash when driving a car through it. An interesting
approach concerning this is discussed in [49].

4.8 Fire

Carter [50] shows a technique for creating live fire by using a combination
of multiple render targets and the pixel shader. The approach renders
the resulting texture onto a flat surface.

The effect is created by first rendering the "warm” points from which
the fire originates, called hotspots, to the first render target. Then, we
render the hotspots with an offset to a second render target, which in-
tensifies the hotspots and creates an intensifies color in the pixels sur-

33

4.8 Fire 4 REAL-TIME GRAPHICS

rounding each hot spot. Next, we use the pixel shader to blend each color
together by averaging each pixel by setting its value to the average of it’s
four direct neighbours on the left, top, right and bottom sides. This cre-
ates the effect that pixels closer to the hotspot will have a more intensive
color, while pixels far away will get a more subtle color, since these pix-
els have gotten their current values by following the chain of "averaging”
from each neighbour to the next. In order to kill off the intensifying effect
and thus make the fire "disappear” at the top of the texture, a constant
value is subtracted from each pixel after the intensification.

4.8.1 Results

As a good exercise in learning HLSL, it was decided that this fire effect
was to be implemented. Apart from creating the effect as described
above, the effect was modified to better fit into a 3D landscape.

This need for modification arose as the technique proposed by [50]
merely rendered the flames onto a 2D surface with a black background.
Since we wanted to use this fire effect in the 3D world in conjunction with
other 3D objects, the black background had to be made transparent in
order for objects to be able to be seen through the fire. This was solved by
applying another pixel shader when rendering the texture to a billboard.
This shader decreases the alpha value depending on the amount of black
in the texture. By doing this, a transparency is created which allows the
player to actually see through the fire. If this had not been done, each
fire billboard would have had a visible black background, which would
made it look as if the fire was merely engulfing a black flat surface, which
is not the desired effect.

Lastly, a smoke particle system was placed over the flames to improve
the final look of the fire.

4.8.2 Discussion and conclusion

While the chosen approach did result in an effect which resembles live fire,
the result was not as a convincing effect as we had hoped for. Particularly,
the solution to decrease the alpha in dark areas of the generated fire
texture caused some of the finer details of the fire to disappear. While
it might be possible that this fire effect could be improved by creating
the transparency of the fire billboard in a different way, it was decided
that improving the fire effect beyond the current result was out of scope
of this project.

Although this effect was implemented as a means of learning HLSL,
future work could include improving the fire effect by making the fire
itself a particle system (see Section 4.10), instead of a plain texture.
Also, the effect could perhaps be modified to function as a source of
light. A physically based implementation is discussed in [51], which also
simulates the scattering of light inside the fire medium.

34

4.9 Vegetation 4 REAL-TIME GRAPHICS

Figure 26: The resulting fire effect with a smoke particle system applied
at the top.

4.9 Vegetation

Vegetation can help create a dynamic environment, which resembles the
real world. This section discusses vegetation rendering in our game by
presenting a solution to the problem of rendering grass in a 3D world.

Fernando [52] proposes a realistic way of rendering vegetation. Ideally,
each grass blade should be processed and rendered with its own lighting,
shadow casting and movement with the wind. This is acceptable if there
are just a few plants to render, but modeling each grass blade in a whole
wide meadow is not feasible, as the number of polygons required would
be huge. Displaying a scene with thousands of blades of polygonal grass,
is a task that will put a strain on today’s graphics hardware. That leads
to the first problem to solve:

e Many blades of grass must be represented by few polygons. This
can by solved by grouping several grass blades in one quad (two
triangles), thus faking each grass blade by applying a texture with
several grass blades rendered in one single quad.

This technique will represent grass as a plane, giving it a weird appear-
ance when you look at it from the side (being infinitely small). Therefore:

e Grass must appear dense from different lines of sight. To deal with
this issue, there are two approaches. First, the simplest way would
be billboarding, which means, rotating the grass to always face the
camera. That would work for grass positioned far away, but would
look weird on closer distances. The second approach would be to
cross a set of polygons so that the bush never shows an edge. This

35

4.9 Vegetation 4 REAL-TIME GRAPHICS

technique does, however, require three or four times more polygons
and needs to make the triangles visible from both sides (which
requires disabling of back face culling).

Also, the grass could be rendered as a static polygon without anima-
tion, but to make it look more realistic, it could move slightly with the
breeze.

4.9.1 Results

As areas with greater amounts of vegetation were needed in this project’s
open terrain, it was decided not to represent each plant as a single entity,
but rather to group them to increase the frame rate of the game. In order
to keep the amount of vertices down, it was decided to render quads with
a grass texture applied.

To achieve a good visual result, independent of the current view, we
cross the grass quads according to [52] (see Figure 27). Crossing the
quads to form star shapes gave the best visual result. We also need to
orient the normal vectors of all vertices parallel to the quads’ edges. This
is done in order to achieve correctly illuminated vegetation.

E il l
Figure 27: The blue lines represent normals, which are used to calculate
lighting.

After forming star shapes, we place the grass objects together in a
specific area, as shown in Figure 28. Thereafter, the objects are sorted
back-to-front, which allows correct use of alpha blending. By doing this,
an impression of a naturally and thickly grown meadow is attained.

> 1
I I A
W7 ht
N
:.i

Figure 28: A collection of grass objects.

36

4.9 Vegetation 4 REAL-TIME GRAPHICS

In order to enhance the performance of the game, vegetation far away
from the camera is not rendered as a star of polygons (see Figure 29).
Instead, it is rendered as a billboard, which is a lightweight graphical
object. Since the grass is seen at a distance, the player will not be able to
see the difference between the star-shaped grass object and the billboard
version. Because of this, the faster billboard version may be used, and
consequently, the performance will increase greatly as we render four
times less polygons. Also, when vegetation is rendered as a billboard, it
is not animated. This is because its movement will be insignificant and
not noticeable from a long distance. Many types of vegetation can be
created using this technique. In this project, however, only support for
rendering grass was implemented.

Figure 29: Distant grass is rendered as a billboard while adjacent grass
objects use a more complex model.

Vegetation is animated by stretching the upper vertices of each quad.
This will deform the vegetation image on the texture while still looking
good. Since the movement of the waving grass is very small, the image
will not look odd. To achieve a different animation for each grass bush,
some randomness is applied to the wind direction and strength. These
calculations are made on the vertex shader, relieving the CPU from work,
thus enhancing performance.

Finally, vegetation is applied to the scene using splat mapping (see
Section 4.3, Splat Maps), where each type of vegetation has its own
color. Similar to a splat map, we create a "vegetation map”, as explained
previously. This map will be read by the game, after which (for example)
flowers will be rendered on the positions where red is painted on our
vegetation map. Vegetation density is also applied from the vegetation
map, where darker colors represent denser vegetation zones. For example,
a light red color represents zones with just a few flowers, and a dark red
color represents zones thick with flowers). The end result can be seen in
Figure 31.

37

4.9 Vegetation 4 REAL-TIME GRAPHICS

/]

[l} '14
S
"‘YE’ |

A‘
BTN

Figure 30: Grass animation, where the blue lines represent wind force.

Figure 31: The resulting vegetation.

Combining billboarding with crossing polygons showed an increase in
performance. For some types of vegetation (e.g. single flowers) that are
not symmetric, crossing polygons is not an option, as it will look weird
due to asymmetry. For other objects, such as leaves, neither animation,
billboarding nor crossing polygons was implemented.

4.9.2 Discussion and conclusion

By using this technique, we achieved a nice looking vegetation in the form
of grass bushes. More realistic vegetation can always be implemented,
but due to time constraints, a trade-off between performance and good
visual appearance has been done.

In addition to our work, a larger variety of vegetation could be imple-
mented. As our program is built to support easy addition of new types
of vegetation, multiple types of vegetation could be easily displayed on
the terrain by just assigning it a color on the splat map. An interesting
addition would be automatic generation of vegeation on other objects.
[53] discusses a possible approach to this.

38

4.10 Particle Systems 4 REAL-TIME GRAPHICS

4.10 Particle Systems

A particle system is a way of handling the creation and execution of
certain effects which involve particles. A particle can be a single bill-
board which has velocity, acceleration, age, color and texture. Given
certain starting conditions, set for all particles in the particle system,
these particles then behave independently of each other according to the
set parameters until the particle’s age becomes larger than its set life-
time. When that happens, the particle is marked as dead, and can thus
be reused in the particle system.

This section shows an implementation of a particle system and dis-
cusses its limits and shortcomings.

As proposed by Carter [50], a particle system can be created by dis-
tinguishing between particles and the general rules for all particles in
that system. The idea is structured into the following classes:

4.10.1 Particle

A particle is a textured square with color, velocity, acceleration, age and
a certain lifetime. Each time a particle is updated, its age is increased
and its attributes are modified.

4.10.2 ParticleSystem

The ParticleSystem class describes an actual particle system which is
an abstract class, used as a building block for creating a certain desired
effect. The particle system class handles the actual rendering calls of
the particles. It also handles the particles in an optimized way. It is of
utmost importance that a particle system acts with focus on maximizing
performance. This is due the fact that most effects that use a particle
system consist of thousands of particles. All of these particles have to
be updated 60 times per second, which requires each update and draw
call of the particles to be very efficient. To create this efficiency, the
particle system is created with a maximum capacity of particles. The
exact capacity depends on the desired particle effect. All particles are
then created simultaneously, by allocating memory for each of them and
putting them in an array of fixed size. The particle system is then set up
to detect dead particles and then reset those particles’ states so that they
become alive and can yet again be used in the particle system effect. By
allocating memory for all particles once and then reusing them when they
become marked as dead, we save a lot of processing time which would
have otherwise gone to allocating new memory and freeing memory each
frame.

4.10.3 ParticleSystemSettings

This class is used to setup the initial values for the desired particle effect.
Table 1 shows the available settings, of which all can be used to control

39

4.10 Particle Systems 4 REAL-TIME GRAPHICS

how the particles in the system should behave.

Table 1: Particle system settings

Setting Explanation

Texture Which texture the particle should use.

RotateAmount How much to rotate the particle each frame.

RunOnce Should this particle system run just once or
should dead particles be resurrected?

Capacity The maximum amount of active particles in
this system.

EmitPerSecond How many particles to emit per second.

ExternalForce An external force applied to each particle
each frame. E.g. wind.

EmitPosition The starting position each particle of the par-
ticle system in the system’s local coordinates.

EmitRadius The radius in which the particle will be cre-
ated from the emit position.

EmitRange A range in each axis in which the particle’s

starting position may be set, relative to the
emit position.

MaximumVelocity

MinimumVelocity — /

Each particle will have its starting velocity
set to a random value between these.

tion

MinimumAcceleration
/ MaximumAccelera-

Each particle will have its starting accelera-
tion set to a random value between these.

MaximumULifetime

MinimumlLifetime /

Each particle will have its lifetime set to a
random value between these.

MinimumSize / Maxi-

Each particle will have its size set to a ran-

mumsyize dom value between these.

Colors An array of possible colors the particle can
be displayed in.

DisplayColorsInOrder | If true, the particle will change color dur-

ing its lifetime according to the Colors array.
Otherwise, the particle’s color is set to a ran-
dom one of the available colors in the Colors
array and will keep that color for its whole
lifetime.

By setting these values differently, the overall behavior of each single
particle is controlled effortlessly.

4.10.4 Results

We used the particle system structure described above to create a way of
handling particle systems in an effortless way. Although the implemen-
tation of idea by [50] worked well to quickly achieve a working particle
system, the idea was expanded on to make the particles themselves a bit

40

5 PHYSICS

more intelligent. For example, a modification was made so that each rain
particle will keep track of its current height in the world. When the rain
drop reaches the ground, it will automatically be marked as dead and
then be recreated at the top of the 'rain cloud’. This behaviour could
not have been achieved using the original particle system idea, since that
idea merely specified rules for the particles in the system as a whole.
Our modification gave each particle the freedom to modify the rules to
some extent depending on the particle’s own private variables. Figure 32
and Figure 33 give depictions of a selection of our implemented particle
systems.

Figure 32: A particle system depicting rain during the night.

4.10.5 Discussion and conclusion

While the implemented particle system fulfilled its purpose in creating
effects such as smoke, it could be further developed to improve the visual
looks and behaviour of the particles. One idea is creating snow parti-
cles, which will collide with the terrain. A possible approach to adding
collision detection to particles is discussed in [54]. Another future im-
provement of the particle system implementation could be a technique for
generating realistic-looking dust behind a travelling vehicle, as discussed
in [55].

5 Physics

As the computing power of consoles and computers evolve, so has the
physics in the games, from the simple physics in the game “Pong” to

41

5.1 Physics Engines 5 PHYSICS

Figure 33: A particle system depicting rising smoke.

the impressive physics of “Star Wars: Force Unleashed” [56]. As a con-
sequence of the increased processing power, gamers such as ourselves
expect more realistic physics in today’s games. Since this project covers
the creation of a car racing game, naturally, realistic handling of physics
is something which will enhance the game experience.

5.1 Physics Engines

A physics engine is basically built on collision detection and collision
response, where focus is put on making these calculations realistic and
fast.

Physics in games today are realistically simulated using highly opti-
mized professional physics engines. Examples of these are proprietary
physics engines such as Havok [57] which is used in Half Life 2 [58], and
PhysX [59] (nVidia), used in Mafia 2 [4]. Due high licensing fees, we
chose to use an open source physics engine with a free license. For the
choice of a physics engine, the only really good alternative for C# was
JigLibX, since it was compatible with XNA.

Other engines worth mentioning are Bullet [60]* (used in Grand Theft
Auto IV [61]), Open Dynamics Engine [62] (used in S.T.A.L.K.E.R [63]).

5.1.1 Results

JiglibX was used for detecting collisions and calculating basic collision
responses. JigLibX is integrated with our game engine to achieve seam-

4written in C++

42

5.2 Collision Detection 5 PHYSICS

less physics response without having to deal with complicated physics
coding, which would had required a vast amount of extra work.

5.1.2 Discussion and conclusion

Although using JigLibX worked very well, it placed certain constraints
on the project code, which might have been avoided if a more extensive
documentation on JiglibX was available. For example, when using the
car physics of JiglibX (see Section 5.3) the actual forward acceleration
vector of the car was mapped to a vector that XNA perceived as the
vector pointing to the right. However, despite the lack of a thorough
documentation, the fact that JigLibX is open source made modifications
to the physics engine possible, should this had been desired.

5.2 Collision Detection

Collision detection is one of the most important parts of a physics engine.
It provides a means of interacting with the environment. Some games use
collision detection to immerse a player into a “as close to reality world as
possible” frame of mind, while other games utilize collision detection as
a way of simply guiding the player to the right path (for example, this is
done in World Of Warcraft [64]). One instance of the latter would be a
racing game, where, if driving in the wrong direction, the player would
be gently pushed back towards the road.

As the games becomes more interactive, involving more objects and
larger worlds, the need of a fast collision detection system is essen-
tial. Even though computing hardware is constantly getting better, the
gamers’ expectations are always pushing the limits.

In our game, there are three types of objects: moving collidable ob-
jects, static collidable objects, and collidable objects. Moving collidable
objects are, for instance, vehicles, and they can interact with the terrain,
which is a static collidable object (it will not move). We also have the
collidable object. These are objects that are resting on the terrain and
exist for the player to collide with. To appreciate the work being done
by the collision detection system, we digress for a moment and present a
simple, naive method of a collision detection system.

Calculations involved Assume we have n moving cars and m static
objects (environment); the number of operations to test each object
against every other object is O((3) + mn) € O(n!). What we can see
from this expression is that when the number of moving objects become
large, the number of operations increases very quickly. Additionally, the
system would then test each of these objects’ triangles against every other
triangle in the scene. This is essentially a dot product. > Assume that
each vehicle contain 3000 triangles and there might be 10 cars and 1000

5The distance operation is a dot product and some squared distance calculations.

43

5.2 Collision Detection 5 PHYSICS

stationary objects in the environment. To perform collision detection
for each frame, for each triangle, requires 450 million dot products per
frame. According to [65], the number of dot products that can be calcu-
lated is 16 million per frame. This performance is insufficient for collision
detection.

5.2.1 Results

In this project, we use JigLibX for physics calculation and collision de-
tection. The designers has optimized the collision operation by using
“collision skins” instead of detecting collision between each triangle as we
did in our example.

A Collision Skin (or “Bounding Volume” as we will refer to it later)
is an approximation of an object’s shape. Instead of using the triangles,
we use a simplified version of each object. The collision tests are reduced
to testing collisions between boxes, cylinders and spheres. For example,
a rock has a sphere as a collision skin. To test if a collision between two
spheres has occurred, JiglibX calculates the distance, d,4, between the
centers of the spheres for the current frame. For the next frame, if either
doq or the new distance d,,.,, is shorter than the radii of the spheres, then
a collision has occurred and a collision response will follow.

In 2D, for the purposes of this example, the collision detection of
above example would be as in Figure 34.

Figure 34: To test collision between two circles, JigLibX compares dis-
tances between points between frames (the radii are fixed).

Bounding Volumes In order to get realistic collision detection and
response, we use JiglibX’s CollisionSkin. In order to create the Colli-
sionSkin for each model, a system was developed. This system allows the
modelers to create the bounding volumes directly in the 3D editing soft-
ware and export to the FBX format. After all, the modelers know which

44

5.2 Collision Detection 5 PHYSICS

bounding primitives to use for collision detection, instead of creating an
automated bounding volume code to determine this for us.

To create a bounding volume in 3DS Max, we name the bounding
primitive according to the following scheme:

bounding_<type>_<material>_<mass>_<ID>

<type> ::= box | sphere | cylinder | capsule

<material>::= Wood | Metal| Plastic | Rubber | Concrete |...
<mass>::= <int> (hecto grams)

<ID> ::= <int> (unique number)

Our parser matches each mesh named “bounding” and parses the type,
material and mass for each primitive.

An example of an ASCII FBX file (abbreviated):

Objects: {
Model: "Model::bounding_box_metal_50", "Mesh" {

Properties60: {

Property: "Lcl Translation", "Lcl Translation", "A+",0,1.41348111629486,-0
Property: "Lcl Rotation", "Lcl Rotation", "A+",0,0,0
}

Vertices: -0.319378823041916,-0.0769001841545105,0, ...

NodeAttributeName: "Geometry::bounding_box_metal_50_ncll_1"
}//Model

}//0bjects

For each mesh, the FBX file only contains information about the po-
sition of the vertices in model space and how the model is rotated and
translated in the 3D Modeling software. To extract the information, we
need to create the bounding volumes from the FBX file. First, the ver-
tices are read, and the dimensions are calculated by taking the bounding
volume of the vertices. This creates the CollisionSkin, used by JigLibX.
We then transform the bounding volume by using the Lecl (local) prop-
erties and applying them accordingly.

The bounding volumes are used by the collision detection system, but
they also contain information, such as material and mass. These variables
are used by JigLibX to simulate material properties. A material contains
properties for its static and dynamic friction, as well as elasticity. The

45

5.2 Collision Detection 5 PHYSICS

Figure 35: A teapot with bounding volumes in 3DS Max. Pay attention
to the translation and rotation of the bounding volumes. These bound-
ing volumes are written in the FBX file as “Lcl Translation” and “Lcl
Rotation”.

material properties are also used to get the appropriate sound effect when
collisions occur, see Section 8.

One of the most difficult parts of the project proved to be the collision
skin parser implementation. One of the reasons parsing the FBX file
is difficult is the lack of information from how XNA interpretates the
objects. When an object is exported from 3DS Max in FBX format, the
scaling of the object is written in both a transformation (Lcl Property)
but also as a scaling property at another place in the FBX file. When an
FBX file is imported into XNA, it assumes the units in the vertices are
in centimeters, not in inches as is default in 3DS Max. Another minor
difference is the way XNA’s coordinate system works. XNA uses a left
handed cartesian system, while in 3DS Max, it is oriented in a right
handed system. Another minor annoyance is that XNA uses y as the up
vector and 3DS Max uses z, see Figure 36.

Figure 36: Left handed and right handed coordinate systems.

5.2.2 Discussion and conclusion

The collision system used in the project is based on integrating modeling
with the physics of JiglibX. Connecting the two has proven more diffi-
cult than we first thought. However, apart from the difficulties, the big
advantage is that we can easily add new objects and apply the material
and physical properties to the objects in a simple way.

46

5.3 Car Physics 5 PHYSICS

An interesting part of the collision detection that has not been imple-
mented is the ability to destroy the bounding volume or making parts of
it fall off, as on a real vehicle. These effects are present in games such as
Grand Theft Auto IV [61] and Mafia II [4]. Unfortunately, not enough
time was available to investigate the possibility of implementing features
of this kind.

5.3 Car Physics

Naturally, an important part of any car racing game is car physics. The
car needs to be able to behave in a convincing way and be responsive to
the the player’s steering commands.

Our chosen physics engine, JigLibX, included a class with support for
simple car physics such as forward/backwards driving and handbraking.
This included class had, however, no support for more realistic car driv-
ing behaviour such as drifting [66]. We found a way of extending the
JigLibX car class to improve the car’s driving behaviour by using the
ideas presented by [67].

5.3.1 Results

By taking advantage of the built-in car physics class in JigLibX and ap-
plying the modifications proposed in [67], we were able to easily combine
the car physics with a car model and thereby create a responsive vehicle
with a natural-feeling steering.

Although later, an inherit error in the car physics was discovered.
While driving at high speed, the car would sooner or later start to wobble.
This bug is previously known and a solution has been proposed in [67].
The proposed solution did, however, not eliminate the problem from our
game. Since the aim of this project was not to dig into advanced car
physics, we decided, due to time constraints, to not spend time trying to
correct the car’s behaviour. Rather, we circumvented the bug by lowering
the maximum speed of the vehicle.

5.3.2 Discussion and conclusion

Overall, using the built-in car physics class in JigLibX to achieve a con-
vincing car driving behaviour worked very well. Although modifying the
car class itself requires a deeper knowledge of physics than any of the
group members possessed, the basic structure of the class was under-
standable. While this rendered us able to modify various parameters
of the car such as roll resistance, maximum speed and friction, some
parameters were very hard to understand and seemed to have complex
relationships. Basically, altering one parameter affected another param-
eter, thus making it a complicated task to improve a specific aspect of
the car physics. Perhaps, with a deeper understanding of the underlying
physics, this would have been an easier task to assess.

47

5.4 Deformation of vehicles 5 PHYSICS

5.4 Deformation of vehicles

A point of interest in this project was to investigate the possibility of
implementing realistic deformation of vehicles during collisions. We will
here present our corresponding findings.

Several methods of possible vehicle deformation exist. Lee B. et
al [68] discusses using a space-partitioning data structure called a KD-
tree [69], while Yinghui C. et al [70] proposes a method using linear modal
analysis for performing the deformation. We decided to investigate an
approach using a KD-tree, since implementing a space-partitioning data
structure can be useful in other aspects of a game, such as optimiza-
tions [16].

JigLibX (our chosen physics engine), allows the game engine to sample
the processed physics data, which means the penetration points in a
collision can be found.

A KD-tree is a variant of a binary search tree that divides each level
of nodes into a separate spatial dimension [69] (a 2D representation can
be seen in Figure 37). In our three dimensional case, k = 3, the root
node is sorted in accordance with its X-axis coordinate. The children of
the root are sorted according to their Y-axis coordinates. The next level
of children are sorted by their Z-axis coordinate. Their children are then
again sorted by their X-axis coordinate.

By using a KD tree instead of a brute force search for the nearest
neighbour to a point, we reduce the search time complexity from O(n?)
down to O(log N) [69].

This is a great improvement and a necessary one, since we think
performance is one of a game’s main focus points.

5.4.1 Results

We explored an idea of how a KD—Tree could be used in order to achieve
the goal of vehicle deformation. The idea entails using the found pen-
etration points from a collision. These points can be used to find the
closest vertices in each 3D model. In order to find the closest vertices,
all vertices in the model’s meshes have to be put into a 3D KD-Tree.

Since code correctness was of great importance when implementing
a performance-critical algorithm such as a KD-tree, it was decided to
translate the C4++ implementation by Milev [71] into C# code. Extensive
testing showed that the resulting algorithm generated the same search
results as a brute force search.

Our implementation searches for an arbitrary number of closest ver-
tices and subsequently applies a physical force to them, which causes
them to dislocate themselves by an amount relative to the collision force.
Since the search in the KD-tree returns a selected number of vertices in
the order “closest first”, it was decided to apply a greater force to the
closest vertices, creating a result which resembles a dent.

48

5.4 Deformation of vehicles 5 PHYSICS

> T

Figure 37: A 2-dimensional KD—Tree showing three sets of dividing
planes. The first y-plane (red) divides the data set (the points) into two
smallers sets. Thereafter, the second x-planes (blue) are dividing each
of the two smaller planes into two additional planes, resulting in four
planes. Lastly, the third y-planes (red) divide the remaining three points,
resulting in six new, smaller planes. Note how each plane is dividing a
different axis than the previous.

This dislocation of vertices creates an effect of model deformation,
which allows vehicles to be bent and dented (see Figure 38).

Figure 38: After a collision, vertex dislocation is applied to the un-
harmed vehicle (left), causing a dent, as seen in the striped area on the
collided vehicle (right).

5.4.2 Discussion and conclusion

While the chosen method of vehicle deformation dislocates vertices in a
desired way, in our opinion, the created dents are sometimes hard to see,

49

5.5 Camera System 5 PHYSICS

since the normals of the dislocated vertices are unchanged by the defor-
mation. In order to create deformations that still are applicable to effects
such as shadowing and lighting, this method should perhaps have been
expanded to recalculate the normals of the model after a collision. How-
ever, due to time constraints, this issue was decided not to be expanded
upon.

Another possible approach might have been to perform the deforma-
tion calculations entirely on the GPU side. While our KD-tree approach
works entirely on the CPU side, the linear modal analysis method by
Yinghui C. et al in [70] utilizes the GPU to gain improved performance.

5.5 Camera System

The world in a game is built on points in 3D space, and to be able to
see the world on a 2D screen, we need to project these points from the
virtual world onto the monitor’s flat surface. The projection of points in
3D to 2D is done by a projection matrix.

The camera is defined using 3D vectors describing its position, target,
and up vector. The camera also has a FoV (Field of View). We can get
interesting effects if we change this value. Changing FoV to 180° will
allow seeing from the sides of the camera, the distorsion will be distracting
because we are not used to this. Changing this value down toward 0 will
eliminate the perspective distorsion and introduce a schematic look of the
world. This can be compared to using a telephoto lens, where the angles
and distances are preserved (basically, the sense of depth is ignored).
The latter is used in the game to achieve a telephoto lens effect (see
Section 5.5.3).

To move the camera smoothly, a spring system is used. For all cam-
eras in the game, different approaches to positioning and handling are
used, but they all involve damped springs. In the following text, the
game’s spring system is presented.

5.5.1 Camera spring system

Hooke’s law states that F' = —ky, where k is the spring coefficient, telling
how stiff the spring is. The equation means “force equals the negative
displacement of a spring” [72]. This means that the spring force is always
pointed toward its rest position. Since we do not want to know just the
displacement in one dimension, we use 3D vectors. The law can then
be combined with Newton’s second law F' = ma. We set m = 1 and
effectively eliminate it from subsequent equations. We get

d?y
- 6
T (6)
——
and with Hooke’s law
F=—ky (7)

20

5.5 Camera System 5 PHYSICS

we can now express the equation in terms of the function y(t)
d?y
dt?

For the camera movements, oscillating springs are unwanted, and there-
fore, a dampening force Fj, ox F' is introduced. We get

= —ky (8)

Fb = —dv

where d is the dampening coefficient and v is the velocity of the displace-
ment. We add this to Equation 8 and get

az — YT Yar ©)
By carefully choosing coefficients d and k, we can get a “critically damped
spring”, which is the type of spring used for the cameras. What makes
a critically damped spring work well for camera movements is that the
spring does not oscillate and it reaches its rest position in the shortest
amount of time possible, which is what we want. Springs such as these are
used when smooth but fast recovery of sudden movements are necessary,
for instance, in a vehicle [73]. For example, a shock absorber of a car has
a strong spring with a damper made from a system of pressurized gas or
oil, which is forced through a small hole. This spring system suspends
the wheels from the chassi for each wheel, making the trip less bumpy.
We have in equation z transformed our spring system to an ODE
(Ordinary Differential Equation) which we want to solve for each time
step (60 frames per second).

d%y I dy

5.5.2 Euler’s method of integration

The most simple, and fastest, method of numerically solving ODEs is
called Euler’s method. The method is commonly used because of its
speed and simplicity in games [74]. Therefore, we chose to implement
Euler’s method.

The method interpolates the solution of the ODE by calculating the
solution in small time increments and linearly interpolates the new value
using the previous value. Using Euler’s method on the above equation,
we get with ¢t,,.1 =t+h

Yn4+1 = Yn +h f(tna yn> (10)
~~ ~— —_——
velocity old wvelocity acceleration

5.5.3 Results

Since the method is integrating for each frame a fixed time step h, a
sudden drop in frame rate would offset this time step and introduce
errors in the solution (see Figure 40). The inaccuracies are visible as the

51

5.5 Camera System 5 PHYSICS

Figure 39: The camera spring system with a moving point P. Note that
the angle @' < 6 and d' > d when v # 0. This works when the point is
travelling backward compressing the spring increasing the angle 6.

camera starts to drift away from its intended position. This is clear when
the camera is used on a moving object (see Tail camera below).

One way to reduce the inaccuracies caused by low frame rate (large
time steps) is to calculate the elapsed time since last frame update in
the game and perform the time steps between the frames. In this way,
the integration calculates at small predetermined fixed time steps, which
makes the method very accurate.

Tail camera One of the cameras that use the spring system (see Figure
39) is the tail camera. This camera is the default camera used in the
game, placed behind the car, looking forward. This position, called the
“ideal position”, is positioned so that the camera will never tip over the
vehicle, and always maintain an upright position.

The spring system used by the tail camera interpolates the current
camera position to the ideal position; the spring physics makes the inter-
polation smooth. One issue with the tail camera is that when the car is
spinning or tipping over, the ideal position will also spin. However, the
camera will not rotate, since its up-vector is the world’s up-vector, but
rather move in a circle. To combat this behavior, the tail camera uses
the velocity direction for high speeds, instead of the car’s forward vector
to position the “ideal position”.

Movie camera Another camera, which uses a slightly different spring
system, is the movie camera. The movie camera is used as a replay view,
resembling the way in which a televised car race would have telescope
cameras positioned throughout the track.

52

5.5 Camera System 5 PHYSICS

426 |

424 | new
\/
old

422 |

X
420 | /

418 |

416 |

414 |

412

410 | [| | [[[|
620 610 600 590 580 570 560 550 540

Figure 40: Using the old solution, with a large time step of dt = 0.001
(blue curve), with Euler’s method, results in a poor approximation of the
ODE, while our new method (green curve) renders a better result. This
can be compared with the exact result (thick red curve).

First, the camera has predefined positions on the track. When the
car is close to one of those positions, the camera will move to the new
position, simulating a camera switch.

The camera is static and its “look at” vector (the direction the camera
is looking at) is pointing at the car. However, it still needs to provide
smooth movements. Therefore, the car’s position is used as an ideal
position. To emulate the way a movie camera zooms in on the car, a one
dimensional spring is used to achieve this effect. Instead of a 3D vector,
a scalar is used. This scalar value is a position on the “lookat” vector,
which gives the desired zooming action.

To increase the feeling of a movie camera, the FoV is changed de-
pending on the zooming. This value starts at 42 and goes down to 20
when at maximum zoom.

5.5.4 Discussion and conclusion

As mentioned, the Euler method of integration is inaccurate and should
be avoided at all cost [75]. Our method of fixing the time step problem
effectively eliminates the error introduced by too large time steps, Tests
of the game using the spring system shows that the method is not as
bad as we first thought, if using our modified method (see Figure 41).

23

6 LEVEL EDITOR

old

velocity

|5

10 M M

.3()() 400 500 600 700 80() frames

new (dt=0.0001)

Figure 41: Comparison of the different camera solutions. The y axis is
the distance from the ideal position. As can be seen, the plot for the old
solution, where dt = 0.001, differs a lot from the ideal position, whereas
the new technique stays very close. If dt = 0.0001, the new solution will
tangent the ideal position almost perfectly. However, this requires more
processing power. Note that as the velocity (yellow) of the ideal position
increases, the precision of the old camera solution decreases.

The conclusion is that we found no reason to implement any higher or-
der approximation, for instance RK4 [76] or any higher order numerical
integration method. For our purposes, the Euler method of integration
works well.

One feature that was tested, but ultimately not added to the game,
was collision detection for the camera. This is an issue when the car is
driving up a steep hill, since the tail camera will penetrate the terrain.
One way of solving this was researched, but further analysis is required.
The idea was to use JigLibX’s collision system and wrap the ideal position
with a collision volume.

One issue with this method is the time step compensation system.
The system will linearly interpolate between ideal positions, which will
result in a faulty penetration of the terrain.

6 Level Editor

Since the game takes place in an open world environment, where objects
such as rocks, traffic signs, and houses are placed on a predefined map,
we discovered a need for a way to quickly and easily place these objects

o4

6.1 Results 6 LEVEL EDITOR

into the world.

6.1 Results

To fulfill this need, a level editor was developed (see Figure 42), which
main purpose was to give the operator an easy way to click and drag
objects onto the map.

The level editor saves the data in an easy-to-read XML file which
basically informs the game what object should go where; this enables
the possibility of creating completely different maps without the need
of recompiling the game. Having no hard coded map data within the
game is considered a feat because we can then expand the game with
user generated data.

ool

8 Sreuciver - Newhtop SIS a

it Vindow

¥

Figure 42: The four viewports of the level editor.

The level editor has four screens viewing the map from the axes =z,
y, z and y + heightmap. When we move an object on one screen, its
position is dynamically updated on the others at the same time. When
the operator drags an object on the screen, its position in height (y) is
automatically calculated from the heightmap. In the editor, we can also
adjust scale and rotation of the objects.

At this point, we also discovered another purpose of the level editor:
events. Fvents can be described as objects, but without any graphical
output. An example of events can be starting points and checkpoints.

Thinking further, we came to realize that we could use events to
describe objects that should be dynamic on the map. With this, the
game can now support objects such as birds or trains that should move
on a predefined path. Events in the level editor can also be used to
describe paths for the Al so the developer does not need to make them
static in the game.

95

6.2 Discussion and conclusion 7 OPTIMIZATIONS

6.2 Discussion and conclusion

Further development of the level editor should include a world camera
where the operator can move around in the world and see the creation
without the need of starting the game. This is needed mostly, because
as it is now, it may be hard to discover cracks between the terrain and
objects placed in a slope. These objects need to be rotated so that they
touch the ground’s tangent perfectly.

7 Optimizations

While games are striving towards looking as beautiful as possible, they
still have to be enjoyable to play. A large part of this enjoyable experi-
ence comes from the game feeling smooth and responsive to the player’s
actions. Therefore, in order to cope with utilizing beautiful but demand-
ing graphical effects while still making the game feel responsive, several
optimization techniques have to be implemented. This section presents
a selection of possible optimization techniques for this project, of which
a few have been implemented.

7.1 Frustum Culling

Frustum culling is a relatively simple but efficient technique for speeding
up game engine performance. This is done by checking every renderable
object for intersection with the active camera’s view frustum. By doing
this, we gain information on which objects can actually be seen by the
camera. With this information, we can simply refuse to send the unseen
objects to the graphics card at all, thus creating a major performance
boost, reducing the amount of data sent to the GPU.

Far plane

Near plane

Frustum Volume

Figure 43: A view plane frustum.

As seen in Figure 43, the camera’s field of view can be though of as a
frustum emerging from the camera. With frustum culling, all objects are
first made sure to be inside this view frustum otherwise they are filtered
and not sent to the GPU.

Frustum culling was implemented in this project by using the afore-
mentioned technique.

o6

7.2 Occlusion Culling 7 OPTIMIZATIONS

7.2 Occlusion Culling

Basically, this technique filters objects from being sent to the GPU by
checking if they are occluded by another object in the 3D landscape,
whose Z-coordinate is closer to the camera in the view matrix. I.e. with
the camera looking straight at a mountain and a car being positioned
right behind the mountain, the car is occluded by the mountain and
should therefore not be sent to the GPU for rendering. While this tech-
nique may have had increased game performance, it was decided, due
to time constraints, that occlusion culling was not to be implemented as
part of this project.

7.3 DLoD

DLoD or Discrete Level of Detail is a method used to decrease the com-
plexity of a model as it moves away from the camera, since it covers less
pixels on the screen.

In [77], Clark concludes that varying the geometric detail based on
screen area is an effective optimization.

7.3.1 Results

We decided to create each model in three versions (see Figure 44). For
each version of a model, the number of triangles is reduced by 60-70% de-
pending on the overall shape. In a way, LoD is to models as mipmapping
is to textures.

To accomplish this, we use 3DS Max “ProOptimize”, a modifier which
reduces the number of triangles of a model automatically, without de-
stroying the texture mapping.

Figure 44: A screenshot of 3DS Max with a model of a bucket showing
three LoDs. Pay close attention to the preservation of texture mapping
while using the ProOptimize modifier.

o7

7.3 DLoD 7 OPTIMIZATIONS

The models are named automatically in 3DS Max using the exporter
script (see Section 3.2) by appending “_LOD_n” where n is 1,2 or 3 to
each mesh. For each frame in the game, the mesh is chosen depending
on the distance to the camera according to a simple mapping scheme, see
Figure 45.

Model:

S T
U

| |
Number of ~ LOD.1 LOD.2 LOD.3
triangles: T 0.3*T 0.3*%0.3*T

Figure 45: The LoD scheme used in the project. Observe the increasing
distance between LoD switching.

The original model contains not more than 0.3 4+ 0.3 - 0.3 = 0.39
times more triangles than the original model. In Figure 45, the distance
between the LoDs is increasing.

The way the mesh is selected is by calculating the distance between
the camera and each model that is within the view of the camera (see
frustum culling at Section 7.1), this is done using squared distance, which
is a well known optimization.

7.3.2 Discussion and conclusion

One of the problems with DLoD is that each model has to be created
in three different versions. There are, however, other techniques where
LoDs are created by collapsing the triangles of a model in realtime [78].

To further optimize DLoD and reduce the number of distance cal-
culations a data structure could be used. The method is called HLoD
(Hiearchical Level of Detail). Instead of calculating the distance from
the camera to each mesh, the distance to a group would be performed
and several models would become part of the same LoD [16].

Another issue with DLoD is the switch between LoD levels. This
visual artifact could be reduced by fading between the objects to make
the transition as smooth as possible [79]. Using this method means,
however, that at one point there will exist two versions of an object at
the same time in the scene. Thus, requiring the same performance as
rendering two separate objects, which is getting us back to the original
reason for using LoD.

o8

8 AUDIO

8 Audio

Usage of audio can help creating a heightened sense of realism. This
section discusses audio in game programming, and also presents the audio
implementation used in this project.

There are two approaches toward implementing audio handling in
XNAJ80]. The first requires manually importing and creating sound ob-
jects through the Content Pipeline. This implies that the programmer
builds a sound bank manually, in the code, by adding files and folders.
The Content Pipeline supports .wav, .wma and .mp3.[81]

The difference between these three audio formats is that .wav (wave)
usually contains uncompressed audio, while .mp3 and .wma use compres-
sion. This means that .wav files require more memory than .mp3 and
.wma, but result in better sound quality.

Since XNA is wav-based [80], only imported sounds of .wav format
can be modified through the following parameters:

e Volume

e Pitch - This means changing the frequency of the tone to become
higher or lower[82]

e Panning - This is the 2D position (on the screen), from where the
sound is emitted, e.g. the upper-right corner, which affects the
volume the stereo speakers are operating on. For example, if the
sound is emitted from the right, the right speaker will get a higher
volume than the left one. [83]

These parameters can be changed during run-time.[80] Mp3 and Wma
files can be used for playing music. However, during run-time, only the
volume can be modifed. [84]

The second way of implementing sound is to use XACT (Cross-
platform Audio Creation Tool), which is a graphical tool for author-
ing audio content. Audio imported into the XACT-tool is expected to
be fully developed and processed [85]. XACT is described as a sound
studio that has functionality for creating and combining complex sound
structures [86].

The sound bank created in XACT is loaded into the game, after
which the sounds can be accessed through cues. A cue is composed of
one or more sounds. The cue can be played, paused, resumed or stopped.
While volume and pitch can be changed during run-time, they can also
be randomly set to a value within an interval, specified in XACT, each
time the cue is executed. These properties can be adjusted in XACT and
different sounds can be bound to cues without the programmer needing
to change code or to rename sound files. [87]

The drawback with XACT is that it only supports .wav files. Wave
files are more suitable for short sounds because of the file format being
uncompressed and occupying more memory than compressed formats.

29

8 AUDIO

Mp3 files are more suitable for music that will not be modified during
run-time, but they cannot be managed by XACT. [88]

We chose to manage the entire sound system with XACT to easily test
different sounds without changing or renaming sound files. An advantage
of using XACT is that handling sounds in the project code is easy. The
sounds and their names are only modified in XACT.

The program used for editing sounds before adding them to XACT
was WavePad (see Figure 46). In WavePad, wav-files are processed by
the following effects [89]:

Amplification - This is changing the volume

Normalization - This means making sound files use the same am-
plification

Pitch
Speed

Fade in/fade out - Meaning to change the volume gradually only
at the beginning and at the end of a file

Echo
Reverberation - The persistence of a sound in particular space.

Noise Reduction - The process of eliminating distracting back-
ground noises.

[-"3
Copy

PasteFrom System Ciobosrd
Paste M From Sysiem Cipbosrd...
Seect Al

Seecttane

Seleet To Start

et TaErd
Tre..

M ..

Repeatiacp...
Tom

_ Segkmiwgiod
Splt s o ot this pot

nert Serce....

lngert File... r
E
St 00000899 Sel
« W b Bt R
End 00000839 Fib agsnegen

L, |

Figure 46: WavePad showing a part of a wav-file that will be processed
by an effect.

The processed file is then imported into XACT, where the run-time
variables that should be visible for the programmer are specified. The

60

8.1 Results 8 AUDIO

variables hidden from the programmer could be either set to a fixed value,
or be set to an interval. [80]

+| Engine (Runtime Parameter Control)
Fie Edt View

GaxgeRa | hakaxm BEEO0

View Color Varisble Value Obiest Farameter Value
@ _[[w =l[77 Jsound =] [Vohare =] [0z
&[] [Pch ~| [70.00 [Sond =] [Pach =] [izoo
o W[=] [) =]

; . g sl o

Figure 47: The XACT-tool, showing variables, their interval and how
they change into different values.

Our current raw sounds are from the [90] sound bank that goes under
the Creative Commons License, which says that sound under this license
can be shared, remixed and reused legally.

8.1 Results

Every sound in the game features effects applied through WavePad.
Whether the player should hear a sound or not, depends on the emit-
ter’s distance to the player. The volume of each sound is calculated by
using the distance between the emitter and the player. The minimum
distance (the “field of sound”) between the player and an object, in or-
der to hear the sound, is set individually, for each sound. The volume
and pitch of every sound have default values, and also an interval within
which they can change.

There are three types of sounds in the game, that differ in design.
These will be presented in the following three sections.

8.1.1 Sounds bound to movable objects

A sound bound to a movable object is, for example, the engine sound.
An engine sound is repetitive. Therefore it is necessary to find a part
in the sound file that will sound good while being looped. The issue
with looping parts is of the same kind as with repetitive patterns in
seamless textures (see Section 4.3.2), where the modeler needs to make
the textures’ parts repeat, and fade into each other smoothly. The volume
and pitch variables are set to change during run-time and will use the
speed of the car while being modified. When the speed goes up, the
pitch and volume will also rise, while remaining between the minimum

61

8.2 Discussion and conclusion 8 AUDIO

and maximum range. The panning will also be set by the 3D position
of the car. In every iteration of the game loop, the engine sound will be
updated with new values of the speed, distance to the player car and 3D
position of the car. In order to determine the correct sound to play when
the car is driving on different types of ground (grass, sand and gravel),

the car’s position is compared to the color on the splatmap (see Section
4.3).

8.1.2 Sounds bound to static objects

A static object could be fire, a cave or some emitter that is not moving.
Default volume, pitch and range of sound is set by the programmer and
should depend on the size of the static object. A big fire will have higher
values for volume, and the characteristics of the fire is set by the pitch.
The only thing that needs to be calculated during run-time is the volume
and checking if the player is within the object’s field of sound.

8.1.3 Collision sounds

To generate the correct sound during a collision or an event in the game,
the bounding volumes (see Section, 5.2.1) will have tags that can indi-
cate which sound (and how the volume and pitch parameters) should
be changed. Every point involved in a collision will carry the following
information:

bounding_<type>_<material>_<mass>

<type>::= box | sphere | cylinder | capsule

<material>::= wood | metal | plastic | rubber | woodhollow |...

metalhollow | plastichollow | rubberhollow...
<mass>::= <int> (hecto grams)

By taking the material, mass and velocity of a colliding point, and the
distance between the point and the player car, the appropriate volume,
pitch and 3D position can be calculated. For example, if a car hits a tree,
two sounds will be played: one with a crashing/bumping metal sound and
one depicting crashing/bumping towards wood. The mass and velocity
will set the volume and pitch.

8.2 Discussion and conclusion

Several improvements to the audio implementation could be made. The
volume and hearing range of a sound could be mapped to a texture on the
terrain. The texture can dynamically change during the game. XACT
could be combined with manual insertion of sound to gain benefits from
the mp3 format.

Possible future work could include the addition of dynamic music,
which is not bound to an area on the map, but rather to events. A

62

9 NETWORKING

possible improvement could be intensifying the music when the car is ap-
proaching a situation that could involve an event of action and suspense.
Another highly interesting, but perhaps complicated addition, is creat-
ing sound dynamically during run-time, based on the emitter object’s
motions. [91] discusses an interesting approach to this, where a swinged
sword will automatically create the sound of a sword slash, taking in
account the motion and shape of the sword.

9 Networking

Playing a game by oneself can be a rewarding experience. That is,
however, nothing compared to experiencing a game together with some
friends. Therefore, to further enhance the dynamic experience of the
game, networking support was added. This section presents our chosen
implementation for adding networking capabilities to this project.

9.1 Results

The first problem encountered was poor library support in the XNA
framework. This was due to the XNA network library only working on
PCs where user had the XNA software development kit installed. Since
installing the XNA software development kit on the client side was not an
option, we chose a 3rd-party software library called Lidgren-Network [92]
instead.

The networking support was built upon UDP with the external library
as an interface to the raw data. There exists no message reliance or
sequencing in UDP [93]. However, these were included by default in the
external library, making it easy to force the client and server to validate
the data sent.

As seen in Figure 48, the game sends updates of coordinates each
cycle. This means that each client will send its new position 60 times per
second and the server will send back all coordinates of the opponents at
the same rate. When sending the car position, we also send the rotation
in the z, y and 2z axes of the vehicle.

9.2 Discussion and conclusion

Some collision testing between cars has been performed. The test results
indicate that while the system in its current state works in practice, it is
not perfect. The collision that occurs between a local player and a remote
player is calculated on both computers. However, only the location of
the local player is sent back to the server. If the network is unstable, this
could trigger an effect where only one of the players gets the affected by a
collision. The solution to this problem could be making the server verify
all collisions. However, that was not within the scope of this project.

63

10 ARTIFICIAL INTELLIGENCE

Client Server Client Server
Connect Update
o ::::)’ (Update) T
- ’e’ - Int: MyID
< -~ Welcom Vector3: Position
Matrix: Orientation |
_____________ >| -
(Greetings) -7
String: Player e --—""
- (Update A)
_’,4—*”' Int: ID
<--" (Assign ID) t Vector3: Position
Int: 1 4 Matrix: Orientation

-7 Y

“ (Lobby List)

Int:2

String:Player 1

String: Player 2 R
-7 EGO To Race)

Int: NumOfClients
String: Player
t Int: ID

Vector3: Position
Y

Figure 48: Diagram of network communication, showing what is being
sent each cycle

Collision between an object and a player suffers from the same defect.
This, however, is more noticeable. All object collisions are calculated on
all the client computers, thus making it possible and probable that an
object ends up in two different locations on two different clients.

Further work in the area of networking could be adding support for
events. As of now, the networking is limited to only showing where
the different vehicles are located in the 3D world. An event could be,
for example, a player triggering a traffic light and thereby making some
animations appear.

10 Artificial Intelligence

Game Artificial Intelligence (from now on Al) refers to all techniques
used in computer and video games to produce the illusion of intelligence
in the behavior of non-player characters (NPCs). These NPCs will be
making different decisions based upon the situation, trying to take the
most accurate decision each time. In this section, the Al implemented in
this project will be presented.

ATl can be pretty simple for standard, automated NPCs. For example,
a woodcutter in a game can have a behavior such as: “go and cut where
there is plenty of trees”. But, it gets really complicated when the NPC’s
task is to simulate the behaviour of a real player. It is in this situation
where Al gets an important role in the development of a game. The role
of Al is important in this situation because NPC behavior affects the

64

10.1 Path following 10 ARTIFICIAL INTELLIGENCE

playability and interactiveness of the game, which will help bringing a
joyful experience to the player. This section discusses and presents our
chosen implementation of Al into this project.

AT can be as complicated and close to reality as a programmer wishes
it to be. Al can be simple and easy to implement or very complicated.
Fuzzy Logic or Neural Networks [94] are some examples of advanced Al
structures. Al is a very broad field since there are tons of different Al
types; each one adapted to each game. These can, however, be catego-
rized by the type of game (Shooter, Strategy, Sports, Racing, etc). Each
of those AI have different algorithms and are implemented in their own
way.

While focusing on Al algorithms for racing games, there are some
basic rules. In every racing game there is some vehicle that has to fol-
low a path. Path Following is the main algorithm a racing game Al
has to handle. Reynolds [95] enumerates different steering behaviors for
autonomous characters. Even if those algorithms are useful for very dif-
ferent games, we think path following is especially interesting for racing
games.

10.1 Path following

Instead of making NPCs detect every slope or turn on the track, having
to calculate every deformation on the terrain to deal with it, or having
to calculate directions and shortest paths between points, this algorithm
just makes the NPC chase a target. Then the target is moved along
some predefined path (See Figure 49 for a better understanding of the
algorithm).

A

Figure 49: Algorithm with the NPC (green) chasing the target (white).
Path following is implemented here by performing corrective steering

only when the vehicle (green circle) begins to head off the path radius
(gray region). A prediction of the vehicle’s future position (red dot)

65

10.1 Path following 10 ARTIFICIAL INTELLIGENCE

is made based on its current velocity. This predicted future position
is mapped onto the nearest point (red circle) on the path (black line).
When the distance between these points exceeds the path radius, correc-
tive steering is required. In the diagram presented here, an equivalent
condition is that the red dot moves outside the grey region. Corrective
steering is obtained using a “seek” behavior on a target point (white cir-
cle) further down the path. For a very smooth path, or a straight line,
the red circle could always be used as the seek target, but as Figure 50
shows, we need to make some correction for sharp bends on the path.

Figure 50: A scenario where the NPC is projected to end up outside the
path, and a correction is applied.

As can be seen in Figure 50, the NPC can head off the path if chasing
the red circle. Should the NPC end up outside the path, a correction
is applied as necessary. The “seek” behavior implementation will correct
the car’s steering until its direction matches the desired direction. As
can be seen in Figure 51, this is when dot product of A and B is zero.

>

Figure 51: Representation of Al direction vectors A and B.

The dot product is used for mapping the future position of our car
onto the path, also called the normal point (red circle). This algorithm
ensures robustness against sudden situations where the car drives outside
of the track. In Figure 52 is a presentation of how the car (green) is
facing a completely wrong direction (violet line) while the target (white)

66

10.2 Collision avoidance 10 ARTIFICIAL INTELLIGENCE

is correctly calculated from the close normal (red circle). The blue line
shows the car’s desired direction, or the direction to its target.

@

S

\

Figure 52: A completely wrong-facing situation.

Once a racing game Al takes care about following the track, it is time
to expand it with handling of different scenarios needed to offer a good
gameplay. Those situations are countless and depends mostly on the type
of game implemented (e.g. Shooting algorithms have to be implemented
if the game is intended to have shooting vehicles). Collision is a common
situation in racing games, and to have vehicles act “intelligent” a collision
avoidance algorithm is needed. Once again, collision avoidance can be
implemented in lots of different ways. A possible approach is presented
in the next section.

10.2 Collision avoidance

[]

[mi C

Figure 53: Red area shows collision avoidance area.

Each NPC detects and tries to avoid any object entering their col-
lision area (light red, see Figure 53). This area is calculated from the
future projection of the car (red dot as discussed in the previous sec-
tion). Along the line from the car to this point, any object entering a
certain radius will end up on a collision statement, which means a future
collision is imminent, making the NPC react by correcting their steering.
This correction is made by switching the NPC’s path to an alternative
path, calculating a new normal and new target on this new path. Adding
an alternative path means that we will have two alternative paths present
on our track. The track is created from a list of check points, or nodes.
Each node is connected to the next node by a straight line, which is the
path the Al follows. Linking the last node with the first completes our

67

10.3 Adaptive driving 10 ARTIFICIAL INTELLIGENCE

track, creating a loop. In order to avoid collisions, two of these loop-
ing tracks will be needed so that the Al can choose an alternative path
around a collision.

10.3 Adaptive driving

In order to have a fun and interactive game for all kind of players, no
matter their ability, racing games tend to regulate their speed according
to players position [96]. This means that if the player is not very skilled,
the NPC cars will drive slower, giving the player the opportunity to catch
up. If the player is a good driver the NPCs will increase their speed
to offer the experienced player a challenging situation. This technique
is called Rubber Banding [96] as it is used to keep all cars in the game
together, enhance interactivity, create more collisions and in general make
the game more interesting to play.

10.4 Results

We designed our game to be played both in network mode and solo
mode. Playing in solo mode means that the player competes with other
cars driven by the computer (NPCs). Those NPCs are substituting real
players. Therefore, the NPCs should be able to behave as close as pos-
sible to real players. This makes Al in our game as demanding as we
want. But because of the time limit of this project, and the “simple-
to-complicated” development pattern our group chose to work with, our
game covers merely some basic behaviour which creates an interesting
gameplay experience.

Situations where a NPC car gets stuck trying to drive through a
wall is not an acceptable situation as it would make the game look very
unrealistic. In order to avoid situations like this and to offer an acceptable
gameplay, some of the basic Al behaviors implemented in this project are
as follows:

e Path following - NPCs are clever enough to complete a route or
follow a path.

e Stuck situation behavior - When a NPC gets stuck, it has to be
able to detect this situation and correct it.

e Collision avoidance - When there is some object or another car on
a NPC’s path, it should be able to overtake another cars or avoid
a collision.

e Collision seek - In order to have a more challenging game experi-
ence, some NPC’s will hit each other or the player’s car.

e Adaptive driving - In order to have an always thrilling game ex-
perience, NPCs adapt their speed around the track to match the
player’s speed.

68

10.4 Results 10 ARTIFICIAL INTELLIGENCE

Depending on the different situations that can happen during game-
play, NPCs will have to choose whether to perform one action or another.
Every NPC is independent and therefore has to take care of its own ac-
tions. The project is structured around a central AIController class that
is updated once every game loop and checks each NPC’s situation and
updates its behaviour if needed by passing them a new “brain”, or a new
behavior, to follow. Each NPC has a default “brain” or behavior. The
default behaviour is to complete a lap by following the path. As seen
in Figure 54, depending on the situation, AIController will pass a new
brain to a certain NPC, putting this brain first in line in a brain-priority
list. This causes the NPC to act according to this behavior until finished,
after which it will return to its previous behavior. For example: an NPC
is following the track, trying to complete laps, and another car is block-
ing its path. The AlController detects this situation and gives the NPC
a new behavior: “collision avoidance”. The NPC will then immediately
respond, following this new behavior, and, when completed, return to its
previous behavior; completing laps.

Path blocked = switch to
"avoid collision”

o ' Observer class
observable
Avoid collision ® AI C
ontroller NPC
observable @3} \
Avoiding collision...
NPC then
Completing track... Completing track...
observable observable
NPC NPC
Backing...
then Seeking collision...
Completing track... then o
Completing track... ' Priority list

Figure 54: Graphical explanation of the Al structure.

The following five sections present an overview of the implemented
AT behaviors.
10.4.1 Path following

As in every racing game, the main goal in our game is to reach the goal at
the end of the track. Therefore, we want the NPC cars to drive along this
track. To achieve this, we have implemented a path following algorithm
based on Reynolds’ path following algorithm [95].

10.4.2 Stuck situation behaviour

Should an NPC end up facing a wall or find itself in the middle of a car
melee, it will change its “mind” and try to reverse. After spending some

69

10.4 Results 10 ARTIFICIAL INTELLIGENCE

time reversing, the NPC will try once again to drive forward.

10.4.3 Collision avoidance

In order to enhance the intelligence of the NPCs and thereby achieve a
richer playing experience, NPCs in our game are able to detect other cars
and objects, after which they try to avoid them if they are blocking the
NPC’s path.

As our nodes are connected by straight lines, it might be possible to
think that a NPC will turn very harshly at the corners where the nodes
are. But that is not the case, as our algorithm projects its position in
the future (red dot) and as soon as the target begins to follow the new
path the car will begin to turn, causing NPCs to take smooth curves.

10.4.4 Collision seek

As stated in the beginning of this report, our game was meant to feature
nice collisions, making collisions one of the main features. Because of
that, it was decided that NPCs in this game will have to behave in this
way, seeking collisions when an opportunity presents itself. NPCs in our
game will try to crash into other cars when they discover an opportunity.
An opportunity was defined to be a situation where other cars enter an
NPC’s 180° front field of sight. This field of sight detects targets in a
limited range. For an NPC having another car in his collision seek area,
the probability of taking a collision seek action is given by a random
factor. This factor is then adjusted to increment or decrease the NPC’s
aggression towards other vehicles. When an NPC takes the decision
of trying to hit another car, it will forget about anything it was doing
and instead change its target (white circle in path following explanation)
to this car and begin to chase it. The chasing car will experience a
small speed boost and follow its target for a set amount of time. When
both cars collide or when this time runs out, the NPC will continue
to perform the action it was doing before targeting the opponent car.
However, special care has to be taken at this point. After a chase, the
NPC will not be at the same location as before the chase, and in order to
behave in a human way the NPC will have to recalculate its position and
determine the most intelligent way to return to following the track again.
For example: before a chase, an NPC has a task to go from checkpoint 3
to 4. But after the chase, the NPC has already passed checkpoint 4. In
this situation, a far more suited decision would be to aim for checkpoint
5. Therefore, the NPC recalculates its path and updates its checkpoint
list.

10.4.5 Adaptive driving

Adaptive driving was implemented by checking where on the track the
player’s car is located. Thereafter, by comparing the NPC’s own check-

70

10.5 Discussion and conclusion 11 CONCLUSION

point with the player’s closest checkpoint, the speed of the NPC is incre-
mented or decreased depending on if the NPC’s own checkpoint is behind
or ahead of the player.

10.5 Discussion and conclusion

By implementing Path Following, Collision Avoidance, Collision seek,
Stuck situation behavior and Adaptive driving, we have obtained an, in
our opinion, enjoyable and competitive AI. NPC vehicles in our game
behave in a sufficiently intelligent way, and are able to face most situ-
ations. Hours of testing has been done to ensure the implemented Al
algorithms are solid and trustworthy. NPC vehicles have been forced
into sensitive or complicated situations in order to study the stability
of the algorithms. Although this game’s artificial intelligence algorithms
could have been developed further, there has been a trade-off between
quality and time for this project. More complex approaches could have
been chosen. Our opinion is that implementing artificial intelligence al-
gorithms using Fuzzy Logic or Neural Networks [94] would have most
likely improved gameplay, but more time would have been needed for
that approach to be feasible.

While the implemented Al works, it renders the game in some situ-
ations a bit predictable. Future work can be performed on adding new
behaviors to NPCs and adding complexity to decision-making algorithms.
By adding probabilistic weighting to some actions will easily add an el-
ement of randomness to the game and decrease predictability of the Al
It is also possible to add a basic “learning pattern” to NPCs. While
this might not be implemented in as a complicated manner as Neural
Networks, it will still enhance the game play experience.

11 Conclusion

All good things come to an end, as does this report. This section presents
overall results and discusses the project as a whole.

11.1 Results

Overall, the aims of this project have been satisfied. We have created
a working 3D racing game with basic gameplay that also features sev-
eral graphical effects, such as water, fog and a sunlight cycle (see Sec-
tions 4.7, 4.6, 4.5). In addition to this, collision detection and reponse
has been implemented through JigLibX and bounding volumes (see Sec-
tions 5.1, 5.2.1). The game currently runs successfully on a Windows
PC. However, we did not succeed in running it on a Xbox360, due to
lack of time. Working with C# worked well most of the time. There
were, however, some hindrances on the way, e.g. a mysterious Sys-
tem.OutOfMemoryException in the XNA Content Pipeline [29], which

71

11.2 Discussion 11 CONCLUSION

appeared at random throughout the development of the project. As this
error did, strangely enough, not occur all the time, but due to unknown
reasons, our faith in the stableness of XNA has been slightly lowered. Us-
ing HLSL in this project worked without complications once the required
knowledge of the language was acquired. Also, networking, artificial in-
telligence and sound handling was implemented without major problems.

There were several benefits of using an iterative programming style
during this project. Namely, since much of the programming concerned
implementations of features new to all of the members of this project,
creating an initially ugly, but working solution allowed the project to
make quick progress. Once a solution was proven to work, it was modified
to work well with the rest of the project. Although using the MVC
pattern to design the code structure enabled us to quickly start working,
some minor rewrites had to be done to cope with the increasing size of
the project.

In the end, this project resulted in a good-looking 3D game. While
presenting the game to test subjects, it was perceived as intriguing with
several impressive graphical effects. Some people especially complimented
the water effect and lighting.

11.2 Discussion

While the effectiveness of the team could be increased by dividing tasks,
we also noticed the importance of all team members having a unified
vision of the project. Using an incremental development model worked
well in this case, since we had regular meetings several times per week,
which served to keep the project on the right track.

The use of custom bounding volumes gave us an easy way of linking
the bridge between the 3d model and the game engine. However, the
lack of a specification of the FBX file structure caused complications
when importing bounding volumes. Many hours were spent on trying
to get the bounding volume parser working correctly. Nonetheless, some
bounding volumes were still translated in a faulty way.

Choosing to use XNA caused some complications, since XNA went
through a major upgrade from version 3 to 4 in 2010, with many break-
ing changes [97]. Since the vast majority of literature concerning XNA
was about version 3, we experienced some complications when trying to
implement certain effects, as the upgrade modified some of the internal
functionality of XNA.

Future work might include continuing the research for achieving phys-
ically correct deformations, since the current solution only works mod-
erately well. Shadows is another subject that might be interesting to
implement. Interesting solutions for rendering shadows include soft shad-
ows [98] and Screen Space Ambient Occlusion [99]. Another interesting
aspect for future consideration might be to implement actual gameplay,
since, as of now, the game merely functions as a visual demonstration of

72

11.2 Discussion 11 CONCLUSION

graphical and physical effects.

73

Glossary

Glossary

Glossary

3DS Max
Al
ASCII

billboard

FBX
FoV

GPU

HLSL

JigLibX

KD—Tree

LoD

mesh

MVC

texel

UDP

XACT
XNA

3D editing software., 45, 57

Artificial Intelligence., 55, 67
American Standard Code for Information In-
terchange, a encoding format., 45

A simple rectangular image which is always
rotated towards the camera., 34

Filmbox, a 3D object file format used by
XNA., 45

Field of view, used in cameras., 50

Graphics Processing Unit. The piece of hard-
ware responsible for quickly outputting images
onto a computer screen., 56

High Level Shading Language., 5, 71

A C# port of the physics engine JigLib., 42—
44, 46, 47, 54, 71

A tree data structure., 48

Level of detail, geometry based simplification.,
57, b8

A collection of edges, triangles and vertices,
which defines the shape of a 3D object., 12
The Model View Controller development pat-
tern., 72

The smallest element of a texture., 10

User Datagram Protocol. A fast, but unreli-
able network protocol., 63

Cross-platform Audio Creation Tool., 59, 60

A set of tools developed by Microsoft to accel-
erate game development., 5, 43, 45, 59, 71

74

REFERENCES REFERENCES

References

1]

2]

[10]

[11]

[12]
[13]

Lewis M. and Jacobson J. Game engines in scientific research. Communications of the
ACM, Vol. 45 issue 1, 2002.

Klucher M. XNA framework networking and live requirements. http://blogs.msdn.com/
b/xna/archive/2007/11/16/xna-framework-networking-and-live-requirements.
aspx, 2011. Online; accessed 15-May-2011.

Need for Speed 3: Hot Pursuit. http://en.wikipedia.org/wiki/Need_for_Speed_III:
_Hot_Pursuit, 2011. Online; accessed 15-May-2011.

Mafia II. http://www.mafia2game.com/, 2011. Online; accessed 15-May-2011.

Resident Evil: Extinction. http://www.imdb.com/title/tt0432021/, 2011. Online; ac-
cessed 15-May-2011.

Mad Max 2. http://www.imdb.com/title/tt0082694/, 1981. Online; accessed 15-May-
2011.

The Book of Eli. http://www.imdb.com/title/tt1037705/, 2010. Online; accessed 15-
May-2011.

Fallout 3. http://fallout.bethsoft.com/, 2008. Online; accessed 15-May-2011.

MotorStorm: Apocalypse. http://en.wikipedia.org/wiki/MotorStorm:_Apocalypse,
2011. Online; accessed 15-May-2011.

Hansen S. and Fossum T.V. Refactoring model-view-controller. Journal of Computing
Sciences in Colleges, Vol. 21 issue 1, 2005.

Blender Foundation. Blender. http://www.blender.org/, 2011. Online; accessed 15-
May-2011.

Autodesk. Maya. http://usa.autodesk.com/maya/, 2011. Online; accessed 15-May-2011.

Autodesk. 3D Studio Max. http://usa.autodesk.com/3ds-max/, 2011. Online; accessed
15-May-2011.

Autodesk. FBX file format. http://usa.autodesk.com/adsk/servlet/index?siteID=
123112&1d=7478532, 2011. Online; accessed 15-May-2011.

Wikipedia. FBX. http://en.wikipedia.org/wiki/FBX, 2011. Online; accessed 15-May-
2011.

Moller T., Haines E., and Akenine-Moller T. Real-Time Rendering. AKPeters, 2002.

Blender Foundation. Blender 2.57. http://www.blender.org/development/
release-logs/blender-257/, 2011. Online; accessed 15-May-2011.

GIMP. http://www.gimp.org/, 2011. Online; accessed 15-May-2011.

75

http://blogs.msdn.com/b/xna/archive/2007/11/16/xna-framework-networking-and-live-requirements.aspx
http://blogs.msdn.com/b/xna/archive/2007/11/16/xna-framework-networking-and-live-requirements.aspx
http://blogs.msdn.com/b/xna/archive/2007/11/16/xna-framework-networking-and-live-requirements.aspx
http://en.wikipedia.org/wiki/Need_for_Speed_III:_Hot_Pursuit
http://en.wikipedia.org/wiki/Need_for_Speed_III:_Hot_Pursuit
http://www.mafia2game.com/
http://www.imdb.com/title/tt0432021/
http://www.imdb.com/title/tt0082694/
http://www.imdb.com/title/tt1037705/
http://fallout.bethsoft.com/
http://en.wikipedia.org/wiki/MotorStorm:_Apocalypse
http://www.blender.org/
http://usa.autodesk.com/maya/
http://usa.autodesk.com/3ds-max/
http://usa.autodesk.com/adsk/servlet/index?siteID=123112&id=7478532
http://usa.autodesk.com/adsk/servlet/index?siteID=123112&id=7478532
http://en.wikipedia.org/wiki/FBX
http://www.blender.org/development/release-logs/blender-257/
http://www.blender.org/development/release-logs/blender-257/
http://www.gimp.org/

REFERENCES REFERENCES

[19]

[20]

[21]

[22]
[23]

[24]

[25]
[20]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

Wikipedia. Paint.NET. http://en.wikipedia.org/wiki/Paint.NET, 2011. Online; ac-
cessed 15-May-2011.

Corel. Corel Draw. http://www.corel.com/servlet/Satellite/us/en/Product/
1191272117978, 2011. Online; accessed 15-May-2011.

Wikipedia. Adobe Photoshop. http://en.wikipedia.org/wiki/Adobe_Photoshop,
2011. Online; accessed 15-May-2011.

Boardman T. 3ds max 6, fundamentals. New Riders, 2004.

The matrix page. http://classic-web.archive.org/web/20091027131421/http://
geocities.com/evilsnack/matrix.htm, 2009. Online; accessed 13-May-2011.

Max script origin. http://wiki.cgsociety.org/index.php/3ds_Max_History#3D_
Studio_MAX_R2, 2011. Online; accessed 15-May-2011.

Dropbox. https://www.dropbox.com, 2011. Online; accessed 15-May-2011.

Shader model 4. http://msdn.microsoft.com/en-us/library/bb509657 (v=vs.85)
.aspx, 2011. Online; accessed 15-May-2011.

The Direct3D pipeline. http://www.viznet.ac.uk/reports/gpu/6, 2011. Online; ac-
cessed 15-May-2011.

Microsoft. XNA generated geometry. http://create.msdn.com/en-US/education/
catalog/sample/generated_geometry, 2007. Online; accessed 15-May-2011.

Microsoft. ~ XNA content pipeline. http://msdn.microsoft.com/en-us/library/
bb447745 . aspx, 2011. Online; accessed 15-May-2011.

Hargreaves S. XNA reach vs. hidef. http://blogs.msdn.com/b/shawnhar/archive/
2010/03/12/reach-vs-hidef . aspx, 2010. Online; accessed 15-May-2011.

James S. 3D Graphics with XNA Game Studio 4.0. Packt Publishing, first edition, 2010.

GameDev.net remigus. Splat map definition. http://www.gamedev.net/
topic/505887-xnamanipulating-uv-coordinates-on-a-height-map/page__view_
_findpost__p__4299450, 2008. Online; accessed 15-May-2011.

GameDev.net haegarr. Splat map definition. http://www.gamedev.net/topic/
382840-i-dont-understand-splatmaps/page__view__findpost__p__3530521, 2006.
Online; accessed 15-May-2011.

Woop S. A Ray Tracing Hardware Architecture for Dynamic Scenes. Technical report,
Saarland University, 2004.

Ignatenko A. et al. A real-time 3d rendering system with brdf materials and natural
lighting, 2004.

Gouraud H. Continuous shading of curved surfaces. IEEE Transactions on Computers,
20:623-629, 1971.

76

http://en.wikipedia.org/wiki/Paint.NET
http://www.corel.com/servlet/Satellite/us/en/Product/1191272117978
http://www.corel.com/servlet/Satellite/us/en/Product/1191272117978
http://en.wikipedia.org/wiki/Adobe_Photoshop
http://classic-web.archive.org/web/20091027131421/http://geocities.com/evilsnack/matrix.htm
http://classic-web.archive.org/web/20091027131421/http://geocities.com/evilsnack/matrix.htm
http://wiki.cgsociety.org/index.php/3ds_Max_History#3D_Studio_MAX_R2
http://wiki.cgsociety.org/index.php/3ds_Max_History#3D_Studio_MAX_R2
https://www.dropbox.com
http://msdn.microsoft.com/en-us/library/bb509657(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/bb509657(v=vs.85).aspx
http://www.viznet.ac.uk/reports/gpu/6
http://create.msdn.com/en-US/education/catalog/sample/generated_geometry
http://create.msdn.com/en-US/education/catalog/sample/generated_geometry
http://msdn.microsoft.com/en-us/library/bb447745.aspx
http://msdn.microsoft.com/en-us/library/bb447745.aspx
http://blogs.msdn.com/b/shawnhar/archive/2010/03/12/reach-vs-hidef.aspx
http://blogs.msdn.com/b/shawnhar/archive/2010/03/12/reach-vs-hidef.aspx
http://www.gamedev.net/topic/505887-xnamanipulating-uv-coordinates-on-a-height-map/page__view__findpost__p__4299450
http://www.gamedev.net/topic/505887-xnamanipulating-uv-coordinates-on-a-height-map/page__view__findpost__p__4299450
http://www.gamedev.net/topic/505887-xnamanipulating-uv-coordinates-on-a-height-map/page__view__findpost__p__4299450
http://www.gamedev.net/topic/382840-i-dont-understand-splatmaps/page__view__findpost__p__3530521
http://www.gamedev.net/topic/382840-i-dont-understand-splatmaps/page__view__findpost__p__3530521

REFERENCES REFERENCES

[37]

[38]

[39]

[40]

[41]

[42]

[43]
[44]

[50]

[51]

[52]

[53]

Blinn J.F. Models of light reflection for computer synthesized pictures. SIGGRAPH
Comput. Graph., 11:192-198, July 1977.

Phong B.T. Illumination for computer generated pictures. Commun. ACM, 18:311-317,
June 1975.

Bishop G. and Weimer D.M. Fast phong shading. SIGGRAPH Comput. Graph., 20:103—
106, August 1986.

Hargreaves S. XNA specularity. http://blogs.msdn.com/b/shawnhar/archive/2007/
04/12/specularity.aspx, 2011. Online; accessed 15-May-2011.

Ngan A. et al. Experimental validation of analytical brdf models. In ACM SIGGRAPH
2004 Sketches, SIGGRAPH '04, pages 90—, New York, NY, USA, 2004. ACM.

Nvidia texture tools for adobe photoshop. http://developer.nvidia.com/
nvidia-texture-tools-adobe-photoshop, 2011. Online; accessed 15-May-2011.

Reconstruction filters in computer-graphics. Mitchell, D.P. and Netravali, A.N., 1988.

Sneep M. and Ubachs W. Direct measurement of the rayleigh scattering cross section in
various gases. Journal of Quantitative Spectroscopy and Radiative Transfer, Vol. 92 issue
293, 2005.

Nishita et al. Display of the earth taking into account atmospheric scattering. In Pro-
ceedings of the 20th annual conference on Computer graphics and interactive techniques,

SIGGRAPH 93, pages 175-182, New York, NY, USA, 1993. ACM.

Pharr M. and Fernando R. Gpu gems 2: programming techniques for high-performance
graphics and general-purpose computation. Addison-Wesley Professional, first edition,
2005.

Jensen H.W. et al. Night rendering. 2000.

Grootjans R. XNA 3.0 Game Programming Recipes: A Problem-Solution Approach.
Apress, Berkely, CA, USA, 2009.

Enright D. et al. Animation and rendering of complex water surfaces. ACM Trans. Graph.,
21:736-744, July 2002.

Carter C. Microsoft XNA Unleashed: Graphics and Game Programming for Xbox360 and
Windows. Sams, Indianapolis, IN, USA, first edition, 2007.

Nguyen D.Q., Fedkiw R., and Jensen H.W. Physically based modeling and animation of
fire. ACM Trans. Graph., 21:721-728, July 2002.

Fernando R. GPU gems: programming techniques, tips, and tricks for real-time graphics.
Addison-Wesley, pub-AW:adr, 2004.

Knutzen J. Generating climbing plants using L-systems. Master’s thesis, Chalmers Uni-
versity of Technology, 2003.

77

http://blogs.msdn.com/b/shawnhar/archive/2007/04/12/specularity.aspx
http://blogs.msdn.com/b/shawnhar/archive/2007/04/12/specularity.aspx
http://developer.nvidia.com/nvidia-texture-tools-adobe-photoshop
http://developer.nvidia.com/nvidia-texture-tools-adobe-photoshop

REFERENCES REFERENCES

[54]

[55]

[56]

[57]
[58]
[59]

[60]

[61]

[62]
[63]
[64]

[65]
[66]

[67]

[68]
[69]

[70]

[71]

Knott D. et al. Particle system collision detection using graphics hardware. In ACM
SIGGRAPH 2003 Sketches & Applications, SIGGRAPH 03, pages 1-1, New York, NY,
USA, 2003. ACM.

J.X. Chen, Fu X., and Wegman J. Real-time simulation of dust behavior generated by a
fast traveling vehicle. ACM Trans. Model. Comput. Simul., 9:81-104, April 1999.

Star Wars: Force Unleashed. http://www.lucasarts.com/games/theforceunleashed/,
2011. Online; accessed 15-May-2011.

Havok Physics Engine. http://www.havok.com/, 2011. Online; accessed 15-May-2011.
Half life 2. http://orange.half-1life2.com/, 2011. Online; accessed 15-May-2011.

PhysX physics engine. http://www.nvidia.com/object/physx_new.html, 2011. Online;
accessed 15-May-2011.

Bullet physics engine. http://bulletphysics.org/wordpress/, 2011. Online; accessed
15-May-2011.

Grand theft auto IV. http://www.rockstargames.com/grandtheftauto/, 2011. Online;
accessed 15-May-2011.

Open Dynamics Engine. http://www.ode.org/, 2011. Online; accessed 15-May-2011.
S.T.A.LK.E.R. http://www.stalker-game.com/, 2011. Online; accessed 15-May-2011.

World of Warcraft. http://eu.battle.net/wow/en/, 2011. Online; accessed 15-May-
2011.

http://www.msxbox-world.com/xbox360-specification.php.

Drifting. http://en.wikipedia.org/wiki/Drifting_%28motorsport?29, 2011. Online;
accessed 15-May-2011.

Wobbly vehicle car physics. http://forums.create.msdn.com/forums/p/29540/
175820.aspx. Online; accessed 15-May-2011.

Siggraph. Haptic Deformation using Graphics Hardware and KD-Trees, 2006.

Jon Louis Bentley. Multidimensional binary search trees used for associative searching.
Commun. ACM, 18:509-517, September 1975.

Che Y., Wang J., and Liang X. Real-time deformation using modal analysis on graph-
ics hardware. In Y. T. Lee, Siti Mariyam Hj. Shamsuddin, Diego Gutierrez, and
Norhaida Mohd. Suaib, editors, GRAPHITE, Proceedings of the 4th International Confer-
ence on Computer Graphics and Interactive Techniques in Australasia and Southeast Asia
2006, Kuala Lumpur, Malaysia, November 29 - December 2, 2006, pages 173-176. ACM,
2006.

Milev A. http://www.codeproject.com/KB/architecture/KDTree.aspx, 2007. Online;
accessed 15-May-2011.

78

http://www.lucasarts.com/games/theforceunleashed/
http://www.havok.com/
http://orange.half-life2.com/
http://www.nvidia.com/object/physx_new.html
http://bulletphysics.org/wordpress/
http://www.rockstargames.com/grandtheftauto/
http://www.ode.org/
http://www.stalker-game.com/
http://eu.battle.net/wow/en/
http://www.msxbox-world.com/xbox360-specification.php
http://en.wikipedia.org/wiki/Drifting_%28motorsport%29
http://forums.create.msdn.com/forums/p/29540/175820.aspx
http://forums.create.msdn.com/forums/p/29540/175820.aspx
http://www.codeproject.com/KB/architecture/KDTree.aspx

REFERENCES REFERENCES

[72]
[73]

[74]
[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

[87]

[88]

[39]

Jonsson G. and Nilsson E. Vagldra och Optik. Teach Support, 2008.

Longhurst C. The suspension bible. http://www.carbibles.com/suspension_bible.
html, 2011. Online; accessed 2-May-2011.

Kirmse A., editor. Game Programming Gems 4. Charles River Media, 2004.

Kincaid D. and Cheney W. Numerical analysis: mathematics of scientific computing (4th
ed). Brooks/Cole Publishing Co., Pacific Grove, CA, USA, 1999.

Millington I. Game Physics Engine Development; electronic version. Elsevier, San Diego,
CA, 2007.

Clark J.H. Hierarchical geometric models for visible surface algorithms. CACM,
19(10):547-554, October 1976.

Duchaineau M. et al. Roaming terrain: real-time optimally adapting meshes. In Proceedings
of the 8th conference on Visualization '97, VIS '97, pages 81-88, Los Alamitos, CA, USA,
1997. IEEE Computer Society Press.

Giegl M. and Wimmer M. Unpopping: Solving the image-space blend problem for smooth
discrete lod transitions, March 2007.

Audio in XNA game studio. http://msdn.microsoft.com/en-us/library/bb203895 (v=
XNAGameStudio.31) .aspx, 2011. Online; accessed 15-May-2011.

http://msdn.microsoft.com/en-us/library/microsoft.xna.framework.content.
pipeline.audio.audiofiletype.aspx, 2011. Online; accessed 15-May-2011.

Pitch. http://en.wikipedia.org/wiki/Pitch_(music), 2011. Online; accessed 15-May-
2011.

Panning. http://en.wikipedia.org/wiki/Panning_(audio), 2011. Online;accessed 15-
May-2011.

MediaPlayer Members. http://msdn.microsoft.com/en-us/library/microsoft.xna.
framework.media.mediaplayer_members.aspx, 2011. Online; accessed 15-May-2011.

Audio overview of XNA. http://msdn.microsoft.com/en-us/library/bb195055(v=
XNAGameStudio.31) .aspx, 2011. Online; accessed 15-May-2011.

Reed A. Learning XNA 3.0 - Game Development for the PC, Xbox 360, and Zune. O’Reilly,
2009.

Audio cues. http://msdn.microsoft.com/en-us/library/microsoft.xna.framework.
audio.cue(v=xnagamestudio.20) .aspx, 2011. Online; accessed 15-May-2011.

XNA game studio: mp3. http://msdn.microsoft.com/en-us/library/bb203895 (v=
xnagamestudio.20) .aspx, 2011. Online; accessed 15-May-2011.

Wavepad. http://www.nch.com.au/wavepad/index.html, 2011. Online; accessed 15-
May-2011.

79

http://www.carbibles.com/suspension_bible.html
http://www.carbibles.com/suspension_bible.html
http://msdn.microsoft.com/en-us/library/bb203895(v=XNAGameStudio.31).aspx
http://msdn.microsoft.com/en-us/library/bb203895(v=XNAGameStudio.31).aspx
http://msdn.microsoft.com/en-us/library/microsoft.xna.framework.content.pipeline.audio.audiofiletype.aspx
http://msdn.microsoft.com/en-us/library/microsoft.xna.framework.content.pipeline.audio.audiofiletype.aspx
http://en.wikipedia.org/wiki/Pitch_(music)
http://en.wikipedia.org/wiki/Panning_(audio)
http://msdn.microsoft.com/en-us/library/microsoft.xna.framework.media.mediaplayer_members.aspx
http://msdn.microsoft.com/en-us/library/microsoft.xna.framework.media.mediaplayer_members.aspx
http://msdn.microsoft.com/en-us/library/bb195055(v=XNAGameStudio.31).aspx
http://msdn.microsoft.com/en-us/library/bb195055(v=XNAGameStudio.31).aspx
http://msdn.microsoft.com/en-us/library/microsoft.xna.framework.audio.cue(v=xnagamestudio.20).aspx
http://msdn.microsoft.com/en-us/library/microsoft.xna.framework.audio.cue(v=xnagamestudio.20).aspx
http://msdn.microsoft.com/en-us/library/bb203895(v=xnagamestudio.20).aspx
http://msdn.microsoft.com/en-us/library/bb203895(v=xnagamestudio.20).aspx
http://www.nch.com.au/wavepad/index.html

REFERENCES REFERENCES

[90]

[91]

[92]

[93]

The freesound project. http://www.freesound.org/, 2011. Online; accessed 15-May-
2011.

Dobashi Y., Yamamoto T., and Nishita T. Real-time rendering of aecrodynamic sound using
sound textures based on computational fluid dynamics. ACM Trans. Graph., 22:732-740,
July 2003.

Lidgren networking library generation 3. http://code.google.com/p/
lidgren-network-gen3/, 2011. Online; accessed 15-May-2011.

Postel J. User datagram protocol rfc 768. http://tools.ietf.org/html/rfc768, 1980.
Online; accessed 13-May-2011.

Zadeh L.A. Fuzzy logic, neural networks, and soft computing. Commun. ACM, 37:77-84,
March 1994.

Reynolds C.W. Steering behaviors for autonomous characters, May 01 1999.

Missura O. and Gaertner T. Player modeling for intelligent difficulty adjustment, Octo-
ber 03 2009.

Hargreaves S. Breaking changes in XNA Game Studio 4.0. http://blogs.msdn.com/b/
shawnhar/archive/2010/03/16/breaking-changes-in-xna-game-studio-4-0.aspx,
2011. Online; accessed 15-May-2011.

Hasenfratz J. et al. A survey of Real-Time Soft Shadows Algorithms. Computer Graphics
Forum, 22:753-774, 12 2003. 1.: Computing Methodologies/1.3: COMPUTER GRAPH-
ICS/1.3.7: Three-Dimensional Graphics and Realism, I.: Computing Methodologies/1.3:
COMPUTER GRAPHICS/I.3.1: Hardware Architecture, I.: Computing Methodolo-
gies/1.3: COMPUTER GRAPHICS/I.3.3: Picture/Image Generation.

Bavoil L. Screen Space Ambient Occlusion. Whitepaper, http://developer.download.
nvidia.com/SDK/10.5/direct3d/Source/ScreenSpaceAl/doc/ScreenSpaceAl. pdf,
August 2008.

80

http://www.freesound.org/
http://code.google.com/p/lidgren-network-gen3/
http://code.google.com/p/lidgren-network-gen3/
http://tools.ietf.org/html/rfc768
http://blogs.msdn.com/b/shawnhar/archive/2010/03/16/breaking-changes-in-xna-game-studio-4-0.aspx
http://blogs.msdn.com/b/shawnhar/archive/2010/03/16/breaking-changes-in-xna-game-studio-4-0.aspx
http://developer.download.nvidia.com/SDK/10.5/direct3d/Source/ScreenSpaceAO/doc/ScreenSpaceAO.pdf
http://developer.download.nvidia.com/SDK/10.5/direct3d/Source/ScreenSpaceAO/doc/ScreenSpaceAO.pdf

	Introduction
	Purpose
	Limitations
	Report outline

	The Game
	Background story
	Theme
	Class Hierarchy

	Modeling
	Model Creation
	Results
	Discussion and conclusion

	MAXScript
	Results
	Discussion and conclusion

	Real-Time Graphics
	HLSL
	Terrain
	Results
	Discussion and conclusion

	Splat Maps
	Results
	Discussion and conclusion

	Lighting
	Normal mapping
	Specular mapping
	Results
	Discussion and conclusion

	Sunlight Model
	Results
	Discussion and conclusion

	Fog
	Results
	Discussion and conclusion

	Water
	Refraction Map
	Reflection Map
	Bump Mapping
	The Fresnel Term
	Specularity
	Results
	Discussion and conclusion

	Fire
	Results
	Discussion and conclusion

	Vegetation
	Results
	Discussion and conclusion

	Particle Systems
	Particle
	ParticleSystem
	ParticleSystemSettings
	Results
	Discussion and conclusion

	Physics
	Physics Engines
	Results
	Discussion and conclusion

	Collision Detection
	Results
	Discussion and conclusion

	Car Physics
	Results
	Discussion and conclusion

	Deformation of vehicles
	Results
	Discussion and conclusion

	Camera System
	Camera spring system
	Euler's method of integration
	Results
	Discussion and conclusion

	Level Editor
	Results
	Discussion and conclusion

	Optimizations
	Frustum Culling
	Occlusion Culling
	DLoD
	Results
	Discussion and conclusion

	Audio
	Results
	Sounds bound to movable objects
	Sounds bound to static objects
	Collision sounds

	Discussion and conclusion

	Networking
	Results
	Discussion and conclusion

	Artificial Intelligence
	Path following
	Collision avoidance
	Adaptive driving
	Results
	Path following
	Stuck situation behaviour
	Collision avoidance
	Collision seek
	Adaptive driving

	Discussion and conclusion

	Conclusion
	Results
	Discussion

	Glossary
	References

