
d

3D Racing Car Game
Project Lloyd

Bachelor’s Thesis

SVEN ABELSSON RUNING SVEN ANDERSSON

MATHIAS HÄLLMAN FREDRIK TOFT

NICOLE ANDERSSON RICKARD NILSSON

Department of Computer Science and Engineering

CHALMERS UNIVERSITY OF TECHNOLOGY

Gothenburg, Sweden, 2009

3D Racing Car Game 2009-05-19

2 (51)

3D Racing Car Game

Project Lloyd

Sven Abelsson Runing

Sven Andersson

Mathias Hällman

Fredrik Toft

Nicole Andersson

Rickard Nilsson

© Sven Abelsson Runing, Sven Andersson, Mathias Hällman, Fredrik Toft, Nicole

Andersson, Rickard Nilsson, May 2009.

Department of Computer Science and Engineering

CHALMERS UNIVERSITY OF TECHNOLOGY

SE-412 96 Gothenburg

Sweden

3D Racing Car Game 2009-05-19

3 (51)

Abstract

This bachelor thesis describes a case study, where we focusing on developing a 3D

racing car game, using a process based upon agile development; an evolutionary

development method.

The thesis will cover implementation of real-time graphics, physics engine, network

support, as well as sound effects and background music.

In the end, our case study will show that this development process was an

appropriate choice for our game development project.

Sammanfattning

Denna slutrapport beskriver en fallstudie gjord på utvecklingen av ett 3D-bilspel.

Utvecklingen använder sig av en process baserad på agile development, som är en

metod inom evolutionary development.

Slutrapporten kommer att täcka implementering av realtidsrenderad grafik,

fysikmotor, nätverksstöd, liksom ljudeffekter och bakgrundsmusik.

I slutändan kommer fallstudien att visa att utvecklingsprocessen var ett lämpligt val

för vårt spelutvecklingsprojekt.

3D Racing Car Game 2009-05-19

4 (51)

3D Racing Car Game 2009-05-19

5 (51)

Table of Content

1. INTRODUCTION ... 7

2. GAME DESIGN ... 8
2.1. Game Design and Concepts .. 8

2.1.1. Initial Concept .. 8

2.1.2. Second Iteration .. 8

2.1.3. Final Concept .. 8

2.2. Development Process .. 9

What Is a Software Process Model? .. 9

The Waterfall Model .. 10

Component-based Software Engineering .. 11

Evolutionary Development .. 11

2.2.1. Our Development Process ... 11

Agile Methods... 12

Milestones ... 13

2.3. Game Engine .. 13

2.3.1. Game Framework ... 13

Microsoft XNA ... 13

CodePlex ... 14

2.3.2. Physics Engine.. 14

Background ... 14

JigLibX .. 15

Limitations .. 15

2.3.4. Game Assets ... 17

2.3.4.1. Creation.. 17

2.3.4.2. Result and Discussion ... 18

2.3.4.3. Loading .. 18

2.3.5. GUI, Menu and HUD ... 19

Background ... 19

Results ... 20

Discussion ... 21

3. GRAPHICS .. 22
3.1. Lights and Rendering .. 22

3.1.1. Ambient Pass .. 23

3.1.2. Light Pass .. 24

3.2. Shadows ... 25

3D Racing Car Game 2009-05-19

6 (51)

3.2.1 Shadow Mapping ... 25

3.2.2. Variance Shadow Mapping.. 26

3.3. Bump Mapping .. 27

3.3.1. Techniques .. 27

3.3.2. Normal Mapping .. 27

3.3.3. Parallax Mapping ... 27

3.3.4. Result and Discussion .. 27

3.4. Post-processing Effects ... 28

3.4.1. Motion Blur .. 28

3.4.2. Screen-Space Ambient Occlusion ... 29

3.4.3. Bloom .. 31

3.5. Particle Systems ... 32

3.5.1. Sparks .. 33

3.5.2. Sprinkles and Glow .. 34

3.5.3. Smoke.. 34

3.6. Result .. 35

3.7. Discussion .. 36

4. NETWORK ... 37
4.1. Background .. 37

4.2. Results .. 38

4.3. Discussion .. 42

5. SOUND .. 42
5.1. Sound Effects ... 42

5.2. Background Music ... 43

6. RESULTS .. 43
6.1. Requirements ... 43

6.2. Features .. 43

6.3. Time Estimations ... 44

6.4. The Development Process ... 44

7. DISCUSSION .. 45

8. ABBREVIATIONS ... 46

APPENDIX A .. 47

APPENDIX B .. 48

REFERENCES ... 49

3D Racing Car Game 2009-05-19

7 (51)

1. Introduction

Developing software applications is a

time-consuming process, and with

time-consuming processes come high

costs. During the last years, several

software development methodologies,

often known as agile software

development, have become widely used

by software developers to address this

issue. Many different development

methodologies can be more or less

good, depending of the task and

application type.

One of the software development

methodologies is the evolutionary

software method, which, as the name

hints, takes on an evolutionary

approach to the problem, and allows

the project to evolve through different

stages of the project. Our case study

will show how well this evolutionary

approach worked on our project where

we choose to develop a 3D graphic

computer game. Some requirements

for the computer game were given from

the beginning, such as:

3D graphics – The game must

contain 3D models, and render these in

the game. 3D environments were never

a requirement, and platform games

with 2D environment could still open

up for 3D objects.

Impressive result – The game result

must impress whoever plays the game.

It should last long, and make the

players come back and play it over and

over again.

Graphical effects – To achieve an

impressive result, we would need to

add modern graphical effects, such as

real-time rendered soft shadows,

motion blur, and ambient occlusion.

Working with these requirements, we

decided to use Microsoft XNA as our

platform to develop our 3D game with.

This decision was made with regard to

that the platform had many in-built

tools and provided a good framework

for us to get started with the

development as fast as possible. The

fact that Microsoft XNA also used C#

as development language was also in

consideration, since we wanted to learn

this newly developed C-based object-

oriented language.

The requirement for the game to

contain 3D graphics introduced an

interesting challenge for the project

group, since all had none or little

experience in 3D modelling. Spending

time learning how to model proper 3D

models for our game was therefore

necessary. During the research to find

out what 3D modelling program to use,

we found that we could use different

studios to create models that we could

later import to our game project. The

complete game contains models made

in both Blender and 3D Studio MAX.

With these choices made, we soon had

our development environment set to

use Microsoft Visual Studio 2008 with

Microsoft XNA Game Studio 3.0

supporting the framework, and

Blender and 3D Studio MAX for

modelling the graphical components.

For some of the sound effects we also

made use of Adobe Audition 2.0.

3D Racing Car Game 2009-05-19

8 (51)

2. Game Design

2.1. Game Design and Concepts
In this project, we were left free to

decide what type of game we wanted to

develop. The suggestion was that a

racing game would be suitable, since

such a game usually do not depend on

advanced assets, e.g. animated models.

After some brainstorming, it was

decided that a racing game should be

developed. However, there were two

different racing game ideas, which will

be described below.

In compliance with our development

process, the game concept evolved, as

more and more features were added.

To further explain how the game

concept evolved, the development has

been divided into three parts.

2.1.1. Initial Concept
Our first concept had a game play

similar to Remedy’s game in 1996,

called Death Rally1, where each player

had a car equipped with a weapon, and

the goal was to hunt down the

opponent’s cars. The other idea was to

create a simple race track where

players could collect coins in order to

win. Since the first idea involved much

greater work than the latter one, it was

decided that the first idea were to be

given a low priority, whereas the

second were to be given a high priority.

2.1.2. Second Iteration
We decided that a joint solution would

be best, where players are able to

collect coins and then use the money to

make upgrades. Example of upgrades

was better weapons, faster engine, and

heavier car body. These upgrades

would be similar to the concept of

levelling, something that many players

appreciate. It was also decided that the

racing track should be a garage or a

store-house, filled with containers,

boxes, and miscellaneous objects

suitable for that environment. Since

driving a real car around a garage is

virtually impossible, it was decided

that we should make remote controlled

cars instead.

2.1.3. Final Concept
We kept most of the ideas from the

second iteration with one exception for

the death rally concept. It appeared

that our first instinct, to give this idea a

low priority, was right and in this last

iteration, the idea was dropped.

However, a racing game where players

only may collect coins and nothing

more, sounded a bit boring. Influenced

by games like Super Mario Kart, it was

decided that power-ups should be

added. There are a number of different

power-ups, and they could be divided

into two groups; those that affect the

car that hit the power-up, and those

that affect the opponents’ cars. A more

profound description of the different

power-ups follows.

In addition to the other improvements,

one change was made to the points

system. It should be possible to collect

three types of coins, worth 50, 100 and

200 points.

3D Racing Car Game 2009-05-19

9 (51)

Power-
up

Affects
opponents’
cars

Description

Nitro The player’s
car moves
faster.

Punch A punch from a
random
direction hits
the opponents’
cars.

Double
points

 The player’s
points are
doubled.

Slow Slows down
the opponents.

Reverse The
opponents’
steering
controls are
reversed.

Low
Friction

 Causes the car
to lose friction
to the ground.

Figure 1: Punch object.

2.2. Development Process
In a software development project, the

resulting product is required to fulfil

many different qualities. Examples of

such quality requirements are:

robustness, availability, maintain-

ability, dependability and usability. To

meet such varying demands, it is

important to base the work on a well

prepared strategy. In software engi-

neering, the term for such a strategy is

commonly known as software process,

which is built on one or several

software process models.

What Is a Software Process Model?
A software process model is a

theoretical philosophy that describes

the best way of developing software.

Based on one or several models, a

software process is formed providing

guidance on how to operate. A software

process model may also be described as

an abstract representation of a soft-

ware process. The concept of the

process model is similar to an abstract

java class, which can not be instan-

tiated, but it can be implemented by

another class, thus providing basic

guidelines for that other class.

A model may for example demand

customer involvement, but it does not

state exactly how. A process imple-

menting that model should involve the

customer in the process’ activities, but

is free to choose how2.

There is not only one type of process

model, but two. The first one is the

most common, and described above.

The second type of process model is

called a process paradigm, which is a

model even more general than an

ordinary process model. Such a model

does not hold any details on how the

activities that lead to the completion of

a project should be performed, but

what it does hold is basic guidelines of

how to develop software, and assump-

3D Racing Car Game 2009-05-19

10 (51)

tions about what sort of project could

benefit from implementing a particular

model. With this in regard, one can

conclude that a process paradigm

provides a framework that may be

adapted to form a process which suits a

particular project.

There are three major process para-

digms that are commonly used today in

software engineering practice; the

waterfall model, component-based

software engineering and evolutionary

development2.

The Waterfall Model
The waterfall model is recommended

for large and complex systems that

have a long life-time2. Some systems

which carry these attributes are also

critical systems. This means that if a

fault would occur, it may result in:

 Threat to human life (death or

injury)

 Economic loss

 Environmental damage2

It is believed that the waterfall model

would be an appropriate choice when

developing a critical system, since the

model emphasises on thoroughness3.

The basic concept is to take all the

activities and treat them separately.

One activity is always followed by

another, in the same way water travels

down some falls. This description

becomes even more obvious when

looking at a visualization of the model

(Figure 2).

Figure 2: The waterfall model2.

1. Requirements definition All
requirements on the system are
found by talking to system users.
Example of requirements can be
services, constraints and goals,
such as “We want a webpage that
colour-blind people can enjoy”.

2. System and software design In
this activity, the overall
architecture of the system is
established.

3. Implementation and unit testing
The software is implemented in
units which also are tested.

4. Integration and system testing
The units are merged together
into a complete system. Further
testing is required.

5. Operation and maintenance The
system is delivered to the
customer and put into operation.
“Bugs” are almost always found,
and therefore the system
required bug-fixing and
maintenance.

In each of the activities described

above, one or several documents are

produced. The idea is not to start on a

new activity until the documents

belonging to the previous activity is

signed off, but in practice, this is not

how it is done. Instead most of the

activities overlap and all the

documents feed information to the

different activities. Although these

documents provide a good overlook,

Requirements
definition

System and
software design

Implementation
and unit testing

Integration and
system testing

Operation and
maintenance

3D Racing Car Game 2009-05-19

11 (51)

they are very costly to produce. Due to

the cost of constantly producing, sign-

ing and reworking documents, the

waterfall model should not be applied

to a project where one is uncertain

about the requirements2.

Component-based Software
Engineering
As the name suggest, this model is used

when there are several already existing

components which can be reused and

put together to form a system.

Normally, reuse is an important part of

any software process, but in this case it

is the fundamental activity. The first

and the last activities, requirements

specification and system validation, are

the same as in any process model, but

the intermediate activities differ from

other models.

During the component analysis, one

searches for components that

correspond to the requirements. When

the right components are found, they

might differ a bit from the original

requirement specification, thus leading

to a modification of the requirements.

Before the system is developed and the

components are integrated, the

architecture of the system must be

established. This is done in

consideration to the found comp-

onents. When all of the components

are fully integrated, it is time for

validation2.

Figure 3: Component-based software

engineering.

Evolutionary Development
This model is recommended for small

and medium-sized systems that shall

be developed rapidly2. The idea is that

specification, implementation and

validation should work as concurrent

threads, all supplying input to the

other activities. Customer input is

considered to be very important, if not

even necessary for the development

and outcome of the project.

At the beginning of a project, an initial

implementation of the software is

produced and released to the customer.

This way, the customer can make

improvements and further describe

details, which might not have been

clear to the developers. Gradually the

system will improve, and when the

final release comes, the customer

should be fully satisfied with the

system.

Evolutionary development is divided
into two major types:

1. Exploratory development The
development start with the
requirements that are best
understood. To further evolve the
system, new features are
proposed by the customer. This
idea relies on the customer’s
willingness to spend much time
contributing to the project.

2. Throwaway prototyping The
development starts with the
requirements that are poorly
understood, because there is no
need to prototype requirements
that you already understand.

2.2.1. Our Development Process
In this project, evolutionary develop-

ment was chosen as a keystone for our

Requirements
specification

Component
analysis

Requirements
modification

System design
with reuse

Development
and integration

System
validation

3D Racing Car Game 2009-05-19

12 (51)

development process. The decision was

mainly based on the size and the

duration of the project. We had a

limited amount of time, namely 4.5

months, and during this time we

wanted a rapid development.

Component-based software engi-

neering was easily dismissed since

there were very few, or none,

components to work with. The

waterfall model was dismissed, since it

focuses a lot on writing documents,

which is a very time-consuming

activity.

When it came to deciding whether to

go with throwaway prototyping or

exploratory development, the latter

was chosen. This decision was based on

the following facts. The greatest

problem was not to understand the

basic requirements, but how much

time it would take implementing the

many possible features. Given the

circumstances, the best strategy was

first to implement the game

foundation, and subsequently imple-

ment one feature after another, hence

using exploratory development.

As indicated earlier, a process is

seldom based on one single model, and

models are not considered to be

mutually exclusive.

Since evolutionary development is a

process paradigm that provides little

detail on how to work, it would be wise

to choose a little more specific model.

This model would have to agree with

the ideas that evolutionary

development represents. There are two

major process models which would be

suitable; XP (eXtreme Programming)

and agile development methods2. How

these two models are connected to

evolutionary development, and which

level of detail they hold, is represented

by Figure 4.

Figure 4: Visual description of how different

process models are related to each other.

For example, agile methods agree with

evolutionary development on some

points, but other ideas and concepts

may be added, hence the agile circle is

not totally encased by the evolutionary

circle. The heights of the circles

indicate what level of detail the models

hold. XP is more detailed than agile,

which is more detailed than

evolutionary.

Since we, in this project, wanted to test

something other than XP, it was

decided that agile methods would be

suitable.

Agile Methods
Agile is a common name for a number

of different software process models.

Although the different models share

the same idea, that the best way of

developing software is throughout

incremental development and delivery,

they propose different ways to attain

this. However, they have one more

thing in common, namely a set of

principles, which are described below2:

 Customer involvement

3D Racing Car Game 2009-05-19

13 (51)

The customer should be closely

involved in the development

process and contribute by

providing new system require-

ments and evaluate each of the

iterations. In this project the

developers along with the

supervisor acted as customers.

 Incremental delivery

The customer specifies what

requirements are to be included

in what increment.

 People, not process

It is important that the

members of the development

team are free to develop their

own way of working, instead of

blindly following what the

process specifies.

 Embrace change

The system should be designed

in such a way, that it is easy to

implement changes or new

features.

 Maintain simplicity

Both development process and

software should be kept simple2.

Milestones
As indicated earlier, incremental

delivery is a keystone in agile

development, which also makes it an

important part in this project. Each

increment is here called a milestone, as

a way of indicating how far on the road

to a complete program we have come.

Since evolutionary development

stresses the importance of having short

increments, it was decided that each

milestone would last approximately

two weeks. In order to get a good

overview and make reasonable time

estimations we, acting as developers,

had two meetings per week. On these

meetings, we checked the project’s

status and saw to it that the milestones

would be delivered on time. In the

beginning of each milestone, we acted

as customers, thus providing new

features to be added. What features to

add, was based on an evaluation of the

most recent milestone. For more

information about what tasks that were

assigned to what milestones, see

appendix A.

In addition to the milestones, a rough

time estimation of the major parts of

the game was made, this is found in

appendix B.

2.3. Game Engine

2.3.1. Game Framework
To save time in our development

process, we choose to use Microsoft

XNA framework, when developing our

game.

Microsoft XNA
Microsoft XNA framework provides

different tools to help game developers

get started more quickly4. Such tools,

as the XNA Framework Content

Pipeline, help developers by reducing

the time you need to add 2D and 3D

content to your game5. In our game, we

used Microsoft XNA Game Studio 3.0,

which contains a complete class library

for handling game content and events6.

We took advantage of many of these

classes; Audio to implement sound

effects and background music to the

game, Graphics to implement 3D

graphics to the game, Input to

3D Racing Car Game 2009-05-19

14 (51)

communicate with the player, and Net

to implement network support to the

game.

CodePlex
CodePlex7 is a community to host open

source projects; most of them made in

.NET, and especially C#. The website is

hosted by Microsoft, and was started to

encourage open source development.

CodePlex provides different tools to

support the user in his or her

development; such as wiki pages,

discussion forum, RSS support and

statistics (over downloads and

visitors). It also provides the project

with a version control system, which

has support for different software,

including TortoiseSVN8, and Visual

Studio Team Explorer, which we used

in our project. A version control system

was absolutely necessary for our

project group to manage different

versions of the project files, especially

when many developers work with the

project concurrently.

2.3.2. Physics Engine

Background
The part that handles the physical

behaviour of the game world is called a

physics engine and it is made up of

three main parts; collision detection, a

dynamics simulation and updating the

system9. The dynamic simulation part

solves the forces affecting the

simulated object.

It is desirable that the game objects

behave in a realistic way. The objects

should be able to detect when they

collide with other objects. When they

hit another object, they should resolve

the collision in a realistic way. Their

speed should be affected by gravity.

Each game object is represented in the

physics engine by a simplified mesh,

called a collision skin. The collision

skins are often rough estimations of

the geometry of the game object in

order to make the simulation faster.

The chassis of our car objects are for

example represented by two boxes

(Figure 5), one large for the bottom of

the model and a smaller for the top.

Figure 5: The car is represented by two boxes

in the physics engine.

Rigid body physics is the part of

physics that deals with the motion of

rigid bodies. Rigid body simulations

are fast and easy to calculate relative to

other methods of simulating physics.

This makes it very useful in game

development where performance plays

an important role when trying to create

a realistic playing experience.

Rigid body physics can simulate

movement and rotation in three

dimensions and allows a body to have

properties like mass, friction, torque,

velocity etc. In a rigid body physics

simulation, all objects are non-

deformable. This means that an object

can never be squeezed or bent

regardless of what forces are applied to

them.

3D Racing Car Game 2009-05-19

15 (51)

JigLibX
We chose to use an open source

physics engine, called JigLibX, which

uses rigid body physics to simulate the

game world10. The main reason why we

choose to use an already existing

physics engine, as opposed to creating

our own, was to get a good simulation

of physics for relatively little work.

JigLibX also has a car class that was

considered very useful in our game.

Collision Primitives
Collision testing is the most

demanding part of the physics engine,

taking up 90% of the CPU time11. In

order to improve the performance of

the collision test, collision primitives

are used.

The shape of the objects being tested

for collision, greatly affect the speed of

the collision test12. By using simplified

shapes, collision testing can be done

more effectively.

In JigLibX, each game object has a

collision skin that is built up by one or

more collision primitives. The basic

shapes are boxes, spheres, capsules (a

cylinder with round ends, like a pill),

planes and rays. There are also more

advanced shapes such as height maps

and triangle meshes. If one wants parts

of an object to move separately, like the

links in a chain, one can use joints to

connect the different collision

primitives (Figure 6).

Figure 6: A sphere, box and capsules

connected by joints to simulate a human body

in JigLibX.

Flow of Control
In order to set up physics simulation in

JigLibX, one needs to create a physics

system instance that controls the

movement of the bodies. Then, it is

possible to add a body for each of the

game objects that typically has a

collision skin with one or more

collision primitives attached to it.

When the physics system is setup, one

can “advance time” and let the physics

system simulate what the world will

look like after a small amount of time

has passed. In JigLibX, this is called

integrating the physics system.

After the integration, one can extract

the transformation for each body and

apply it to the models of the game

objects.

Limitations

Rounding Errors
Generally, games prefer fast

simulations over accurate simulations.

This is because an accurate simulation

is slow and causes low frame rates,

which in turn create a poor playing

experience.

3D Racing Car Game 2009-05-19

16 (51)

However, the speed does come at a cost

in the form of rounding errors that can

cause unrealistic behaviour in the

game. When two objects are close, for

example a box lying on a floor, the

rounding errors can cause the position

of the box to be slightly inside the floor.

This causes a collision in the physics

engine and the box may start to shake

uncontrollably or even explode13.

Some physics engines, like the 3D

world of Second Life, solves this

problem and also saves processing

power by not update resting objects.

The physics engine can freeze objects

that have not been exposed to any

forces within the last two second. The

object remains frozen until it is

affected by a collision with an active

object. This may, however, create other

undesired behaviour like freezing a ball

that is thrown up in the air when it

slows down and start to fall down.

Primitive Collision Skins
In order to speed up the simulation,

the physics engine approximate the

shape of more complex objects with

primitive collision skins, referred to as

the collision geometry, like boxes and

spheres. If you take a tea cup that is

represented by a complex mesh, it

could be represented by a cylinder in

the physics engine (Figure 7). This

makes it impossible to fire a bullet

through the handle of the tea cup, and

since the cylinder typically is larger

that the cup, it would detect collisions

that actually should not occur. When

the cup is dropped on the floor, it

would not roll around on the floor like

a cup but as a cylinder.

Figure 7: The cup is represented by cylinder in

the physics engine.

Low Frame Rates
Low frame rates causes the physics

engine to take larger time steps for

each step of the simulation. Objects

that are moving do not move smoothly,

but appear to teleport from one point

to the next each frame. At a high

enough speed, a bullet could teleport

past its target and miss it, if the target

is thin enough to fit in the distance that

the bullet is teleported between each

frame (Figure 8). Even though the

frame rate is improved, there is always

a chance a collision is not detected12.

In Second Life, this problem is resolved

by adding a long invisible shaft to the

bullet. The shaft trails behind the

bullet, so that as the bullet teleports

forward, the shaft is long enough to

cover the gap between successive

teleports of the bullet and collide with

any object that might fit between the

calculated frames14.

3D Racing Car Game 2009-05-19

17 (51)

Figure 8: When the distance the object is

moved between two frames is greater than the

width of a wall, the object can teleport

through it.

2.3.4. Game Assets

2.3.4.1. Creation

Models
Almost all of the models in the game

have been created by us. Instead of

hunting the web for free models that

would suit our needs, we decided to

create the models ourselves. This

meant we had a very good flexibility

when deciding what kind of objects we

wanted to incorporate in the game.

The standard Content Pipeline

importers and content processors

available in XNA Game Studio, support

various common art-asset file

formats15. The model formats

supported by default are .x and .fbx15.

Support for these two formats was a

key factor when deciding what

modelling tool to use, since

implementing support for a different

type of format would increase our work

load.

Modelling Tools
There are a lot of modelling programs

on the market, such as 3ds Max16,

Blender17, Maya18 and Zbrush19, to

mention a few. Prices for these tools

differ a lot. Some are free to use, and

others are rather expensive. The

programs that seemed to suit our

needs best, and hence the programs

that were chosen for our modelling

purposes, was Blender and 3D Studio

MAX. This since they both support

exporting to the fbx format20, 16. There

are also a lot of information and

Internet tutorials21 available, which

also played an important role in our

decision.

Figure 9: Creating a car model in Blender,

using reference images to do one half of the

car. Then copy and mirror it, and “sew” the

two parts together.

Texturing
Applying textures to simple flat

objects, such as a big wall or floor, is

fairly simple. One can select a texture,

and simply let it repeat itself as many

times as needed, to cover the whole

surface22.

Texturing a more complex model, for

example a car, is somewhat more

complicated, but can be accomplished

by the use of projector functions, or

mesh unwrapping algorithms22. In

Blender, one can mark “seems” in the

model and then use the built in

unwrapping algorithm, which maps

each of the models vertices to specific

texture coordinates (Figure 10).

3D Racing Car Game 2009-05-19

18 (51)

Figure 10: The car model cut to smaller

sections and mapped to a texture image.

The normal map (section 3.3.2) is

mapped onto the model the same way

as the diffuse texture; hence the

normal map can be created directly

from the diffuse texture. In our game,

the normal maps were created using a

tool called CrazyBump23, which lets the

user create a normal map from a

diffuse texture.

2.3.4.2. Result and Discussion
By choosing to create the game models

ourselves we had the advantage of not

being dependent on finding good

models in the right format that were

also free to use. It also made it easier to

do changes or doing additions to the

models, since we had all the necessary

files and the knowledge about the

modelling tool.

On the other hand we had to spend

more time on creating models and

learning how to use Blender.

Our textures, or part of the textures,

are mostly obtained from various free

resources, such as CG Textures24, and

then modified to suit our needs. The

normal map and specular map were

created from the diffuse texture with

the program CrazyBump. A downside

using this program for the creation of

the normal map, instead of using a very

detailed (high polygon count) model, is

that the result will depend on how

good the program recognizes the

“shape” of the object in the diffuse

texture. The best method would be to

create a very high resolution model and

then extract the normals directly from

this model, as opposed to letting

CrazyBump guess the shape of the

surface. However, creating high

resolution models is a very time

consuming task, and would take a lot

of time for us to fully master. Although

CrazyBump may not produce an

exactly accurate result, it is accurate

enough, and the normal maps created

enhance the realism in the game a

great deal, hence it was used for

creating all of the normal maps for the

game.

2.3.4.3. Loading
The XNA framework uses an asset

loader, called the Content Pipeline,

which has been extended in our game

to properly load models and textures.

This asset loader is run when the game

is built in Visual Studio. It loads the

model and texture files, converts them

into a format usable by the XNA

framework, and then outputs them so

that they can be loaded again

efficiently at run-time25.

3D Racing Car Game 2009-05-19

19 (51)

In the basic asset loader, all models are

associated with the basic effect

provided by the XNA framework. Since

we needed our models to use our own

custom effects, an extension of the

basic asset loader was necessary25.

When a model is loaded, its textures

are loaded as well. The file format we

have used for exporting models is not

fully supported by the software we

have used for modelling, and the same

applies for XNA’s basic asset loader of

this file format17, 25. Because of this, our

extension of the basic asset loader also

includes the loading and association of

additional textures to a model. In

particular, a specular and a normal

map are loaded in addition to the

regular diffuse texture.

When a texture of any kind is used, it

may be the case that the same

computations will be done for all of its

texels. As an optimization, these

computations could be done at build-

time. That way, when a texel is looked

up, those computations do not have to

be carried out at run-time. Similarly,

we interrupt the loading of the diffuse

and specular textures to do some of the

normalization of the Bidirectional

Reflection Distribution Function

(BRDF) mentioned later (section 2.2).

We also interrupt the loading of the

normal maps, although this is done to

transform the normal held at each

texel. This is necessary, because the file

format that we use to store our normal

maps may only hold positive values,

while the normal maps needs to

contain both positive and negative

numbers if it should be able to

represent normal perturbations in all

directions in 3D-space26.

2.3.5. GUI, Menu and HUD

Background
Almost every game available has some

sort of methods to communicate

information to the player, for example

score, game map, and most commonly

some kind of menu system. Regarding

head-up-display (HUD) information,

such as score and game maps, usually

this is just rendered as sprites to the

screen as a last step in the rendering

pipeline.

Figure 12: A typical view from our game, with

GUI components such as score (A), round

timer (B) and player list (C) highlighted.

Figure 11: An asset is converted by XNA's Conent Pipeline to an intermediate file format, which in turn

is efficiently loaded at run-time.

3D Racing Car Game 2009-05-19

20 (51)

Results

Menu
When we started implementing the

multi-player part of our engine, we

needed some way to present the player

with a useful user interface. We looked

at a couple of different menu systems

available in tutorial form from the

community website for XNA27.

We also tried implementing these

tutorials directly in our existing game,

but found that this would need many

low level changes to our engine, so this

was scrapped quite early. Instead, we

created our own very basic menu

system, keeping some of the ideas from

the previous implementation.

Our menu system built on something

we called GameScreens, where each

screen took care of input, responding

to input, menu animations/transitions,

and drawing itself.

Each GameScreen can have zero or

more GameScreenComponents, the

most basic type of GUI widget in our

case. The menu hierarchy is built in

such way that each GameScreen can

hold another GameScreen, which is

called a sub screen. For example, when

the user interacts with a menu widget

that should open another screen, a new

GameScreen is initiated as sub screen

to the active GameScreen. When a new

sub screen is created, the

initiator/owner of this sub screen stops

its own rendering loop, and instead

calls the sub screens render method.

To go back to a previous screen, the

active screen is just deleted. When this

is done, the owner of the newly deleted

screen continues its original render

loop.

Figure 13: Our final menu system, the arrows

show the flow of navigation. (A) Main Menu

screen, (B) Settings screen, (C) Multiplayer

selection screen and (D) Lobby and car

selection screen.

HUD
As soon as we had added collectible

coins/points to the game, we needed a

way to inform the player his current

score. This, along with most of the

HUD, was rendered text to the screen.

To render the text, we used a feature in

XNA Game Studio called SpriteFonts.

When compiling the game, XNA loads

the specific TrueType described in the

each SpriteFont-file, and from this

creates a textures with all the needed

characters28.

For other GUI components, such as

backgrounds and icons, we load them

as external textures and simply render

them as sprites.

Special case: ScreenFlashes
We found that when a player picked up

either a coin or a power-up, it often

was not sufficient to just play a sound

3D Racing Car Game 2009-05-19

21 (51)

to inform what had just happened. To

solve this, we added a component we

named ScreenFlashes, which could

display a texture on the screen for a

limited amount of time, with a couple

of different animation sequences.

These were then used to display a

picture with the name of the power-up

or coin value that was picked up, with

an animation sequence that zoomed

and faded out the image.

ScreenFlashes were also used to

display the countdown sequence when

the game started.

Figure 14: A ScreenFlash being rendered as a

result of a remote player picking up the

"Reverse" power-up.

Discussion
Thanks to our menu system,

implementation turned out to be very

simple. It was relatively easy to

add/remove screens, and their

behaviour late in the game

development. One of the last things we

added was the Settings-screen, which

needed a new type of check box widget

for each available setting. Adding the

screen itself, as well as the new widget

type, was a straight forward imple-

mentation. We conclude that our

implementation was very well suited

for the development process we used,

which allows major changes to the

game and code late in the

development.

3D Racing Car Game 2009-05-19

22 (51)

3. Graphics

In accordance with the evolutionary

software development model, we

wanted to postpone as much work

related to graphics as possible, until we

had come so far in the development

that it was time to put focus on

graphics. The XNA framework

provided us with the major part of the

basic functionality to render our

game29. This allowed us to render our

game with minimal allocation of

developer time before we got started on

the graphics of the game. Although, to

give our game its own look, our usage

of this basic functionality later had to

be exchanged for more advanced

alternatives where we had more

control over how the game was being

rendered.

3.1. Lights and Rendering
To capture the very complex behaviour

of light in the real world so that a

computer may simulate it, relatively

simple models are needed. One

extensively used idea is to break up

light into three components; ambient,

diffuse and specular. The ambient

component is the colour of the light

that has bounced on the surroundings

numerous times before reaching the

destination point whose colour is

currently being computed. The diffuse

component is the colour of the light

that contributes to a surface’s base

colour. Finally, the specular

component is the colour of the

reflection of light on a surface33.

Figure 15: The different lightning components

contributing to the final image.

Since it makes little sense to have a

light source with different colours for

different material properties, only one

colour is normally used for all of light

source’s components. However, the

material of a surface is modelled in

part by these three components as well.

The diffuse component of a material is

lit by the diffuse component of a light.

Similar reasoning holds for the

specular and ambient components33.

Another essential part of modelling the

behaviour of real light is how it is

affected when it comes in contact with

a surface. One can not assume that the

light bounces off with the same angle

as the incident angle. More care needs

to be taken when dealing with

computer graphics. Of course each

individual photon cannot possibly be

traced through the entire scene in real-

time with the computational power of a

modern computer, and actually no

light is traced in any way by a regular

rasterizing renderer22. Instead, when a

fragment of a surface is being

rendered, all of the incident light is

assumed to come directly from the

light source (except for the ambient

light), and the amount of outgoing

3D Racing Car Game 2009-05-19

23 (51)

light in all directions from the

fragment is determined by a BRDF.

The BRDF is supposed to capture the

surface’s way of scattering the incident

light, since this one point that is being

rendered actually represents a small

area that may not be completely flat,

which would be a requirement for the

light to simply bounce off the surface

with the same angle as the incident

angle30.

Figure 16: This BRDF lobe shows how incident

light can scatter non-uniformly in all

directions.

The computations involved in this

model of real light behaviour are done

in a separate small program called a

shader, and it is run on the graphics

hardware. To allow several shaders to

reside in one file, called an effect file,

shaders are grouped in passes, which

in turn are grouped in techniques31.

The XNA framework provides an

object called an effect, which

aggregates an effect file and the basic

operations one would like to perform

on it, such as assignment of parameters

and activation of individual passes for

upcoming rendering32.

The first step towards using our own

effects was to implement our own light

sources that we could place in the game

world. In the rendering process, we

also needed to properly setup the

effects used by the model. With this in

place, we needed to create the actual

effect files used by our models.

The game has only one effect file,

which is used by all models. The

corresponding effect object is used in a

similar manner for all models. This

means that all models in the game are

rendered as if the materials they were

made of were all the same. Only by

giving the effect a different set of

parameters is it possible to make two

surfaces look as if they were made of

two distinct materials. For giving a

surface its own look, the textures

handed to the effect is the most

important of these parameters.

The effect file consists of a technique

containing three passes. The first is the

ambient pass, and the other two are the

point light pass and spotlight pass. The

latter two are essentially the same,

differing only in the type of light source

used. All of the passes use Phong

shading, which means that the colour

is computed per pixel33. An alternative

to this, giving reasonable visual results

for most cases, would be to compute

the colour per vertex. A triangle’s three

vertices would then have its own

colour, and then these colours would

be interpolated over the triangle’s

surface. This is called Gouraud

shading34.

3.1.1. Ambient Pass
The ambient pass renders the scene

with only the ambient light

3D Racing Car Game 2009-05-19

24 (51)

contribution. After it has been run, the

depth buffer holds the final depth at

each pixel. This allows the following

passes to save a lot of computations by

discarding all fragments but the one

that is actually seen in the final

image35.

The ambient pass also uses a second

and third rendering target. These

targets record the final depth and the

surface normal of the rendered

fragments. After the ambient pass has

been run, the results from the

rendering targets are stored as

textures, for later use by the post-

processing effects.

3.1.2. Light Pass
For any model, the light pass is run for

each light source that lits the model.

Each light source’s contribution is

added onto the previous light sources’

contribution or the ambient light’s

contribution if it is the first light being

used. Depending on the light source

used, either the point light pass, or the

spot light pass, is used.

The light passes use a normalized

version of the Blinn-Phong BRDF. This

particular BRDF is the one used by the

OpenGL and Direct3D fixed function

pipelines, though unnormalized in

these cases36, 37. It was designed spe-

cifically to produce credible visual

results, as opposed to many other

BRDF’s, which has been designed to

model reality38. Because of this, the

original Blinn-Phong BRDF does not

preserve energy. This could become

evident when adjusting the parameters

to make a surface look more shiny. The

specular light would be focused on a

smaller portion of the surface, but it

would not become any brighter. The

normalization simply adjusts the BRDF

to preserve energy, so that light

becomes brighter when focused22.

Figure 17: The upper row shows a ball being

rendered with different shininess, using the

normalized Blinn-Phong BRDF. The lower

row shows the same ball being rendered with

the same different shininess’, using the

unnormalized Blinn-Phong BRDF.

The diffuse and specular components

are computed according to this BRDF.

Then, the normalization takes place,

and finally the result is multiplied by

the lights intensity. A specular map is

also used to determine how much the

specularity a surface has at each point.

The light intensity is computed

differently depending on the light

source used. A point light is omni-

directional, meaning that only the

distance to the light is needed. When

the distance to the light is within a

falloff start, full intensity is used. When

it is beyond a falloff end, the light is

completely blacked out. If the distance

is between the falloff start and falloff

end, an interpolation determines how

much intensity the light has. Spotlights

use the same kind of falloff, but it also

has a direction and a cut-off angle. This

cut-off is computed in much the same

way as the falloff, only that it is the

angle between the spotlights direction

3D Racing Car Game 2009-05-19

25 (51)

and the fragments position relative to

the spotlights position that is used

instead of the distance. Finally, the

computed light intensity is multiplied

by the shadowing factor.

Figure 18: Full light intensity is used up to

point a, it then falls off until point b is reached,

where the light intensity becomes nonexistent.

Likewise, full light intensity is used up to angle

α, it then falls off until the angle reaches β,

where the light intensity becomes nonexistent.

3.2. Shadows
Shadows are highly important for a

good sense of realism. If objects that

occlude the light would not cast

shadows onto other objects in a scene,

an observer is likely to quickly pick up

on that something is wrong39. Variance

Shadow Mapping40 was selected for

computing the shadows in our game.

3.2.1 Shadow Mapping
Shadow Mapping is a technique

commonly used in games to cast

shadows. The basic idea is to record

how far the light from a specific source

reaches, and then compare this to the

length between the light source and the

actual fragment being rendered. More

specifically, one starts with rendering

the scene from the view of the light

source, but for each pixel, a depth

value is stored instead of a colour. The

texture produced is called a depth map,

or more commonly, shadow map. This

means that for any point in the scene, a

depth has been recorded in the

direction from the light source

approximately to that point, and this

depth represents how far the light

reaches towards the point before

something stops it. For any point that

is closer or just as close to the light

source as the recorded depth, the point

must be in light. If on the other hand,

the point is further away from the light

source than the recorded depth, this

must mean that some other object is

occluding the light, and this point must

be in shadow41.

Figure 19: Point P2 is being rendered, and the

depth recorded in the direction from the light

source to P2 is looked up. The depth in this

case is the distance from the light source to the

point P1, meaning that the light stops there

and doesn’t reach P2.

Since the depth map only has a finite

set of texels, several close by points

which may have different actual

distances to a light source will use the

same depth value from the depth map.

This may cause self-shadowing

artifacts on lit surfaces. To prevent

this, a small bias is added to the depths

of the depth map. This lets more points

be closer to the light than the recorded

3D Racing Car Game 2009-05-19

26 (51)

depth in the points’ approximate

direction, and therefore putting the

point in light42.

An arguably more significant drawback

of regular shadow mapping is that a

point is either considered in shadow, or

not. This produces what is called hard

shadows, which looks less realistic than

the alternative, called soft shadows.

For soft shadows, there is a middle

ground, such as 10% in shadow, which

may be the case for a point in the outer

edge of a shadows penumbra39.

3.2.2. Variance Shadow Mapping
Variance Shadow Mapping is an

improvement on the regular Shadow

Mapping technique; it was designed

specifically to yield soft shadows. The

ideas behind it are founded in

probability theory. In particular, it

calculates the probability that a point

should be in shadow, and based on

this, a certain amount of shadow is cast

on that point. Two things that differs

variance shadow mapping from regular

shadow mapping is that the variance

shadow map does not need any bias,

and it may be blurred. In fact, blurring

is required in order to get the soft

shadows40.

A nice feature of the soft shadows

produced by Variance Shadow

Mapping is that the spread of the

shadows penumbra is relative to the

distance between the receiver of a

shadow and the light source. That is, if

a pillar is used as an occluder for a light

source placed right behind it, the

penumbras spread would be quite

small at the root of the pillar, but the

further away from the light source you

look, the penumbra would become

larger, and eventually the entire

shadow would fade away40.

Figure 20: This image shows how the

penumbra becomes wider at a greater

distance from the light source, positioned

right behind the stack of boxes.

Although, Variance Shadow Mapping

has its drawbacks as well. Perhaps the

most prevalent of these would be light

leakage. Light leakage occurs when an

object casts a shadow within the region

of a larger shadow. The result is that

the edges of the smaller shadow lights

up and become visible, even though

they should be occluded by the larger

shadow40.

Figure 21: This image shows light leakage in

our game.

In our implementation of variance

shadow mapping, each light source has

its own shadow map that is

3D Racing Car Game 2009-05-19

27 (51)

recomputed whenever necessary.

Creating the shadow map can be costly,

although measures can be taken to

keep these costs down. One way to do

this is by not recreating parts of the

shadow map that is certain not to have

changed. For instance, a game consists

of a lot of objects that does not move. If

the light source has not moved either,

these static objects contribution to the

shadow map could be reused. For that

reason, our implementation has an

internal separate shadow map for static

objects that is only recreated when

necessary. Dynamic objects on the

other hand could move from frame to

frame. These needs to be taken into

consideration in each frame to create

the new shadow map.

3.3. Bump Mapping
The bump mapping technique was

introduced by Blinn in 197843. It is

used to describe small details on a

surface that would be too complex to

render efficiently if it was represented

by polygons. This is done by using a

texture which contains pixel level

information on how the normal differ

from the surface’s normal. Knowing

how the normal differs, one can then

account for it in the lightning

calculation. This will darken or

highlight small areas on the surface,

giving the illusion that the surface has

bumps in it.

3.3.1. Techniques
These methods are commonly referred

to as bump mapping techniques:

Blinn’s original methods, Normal

mapping and Parallax mapping.

One of the original methods developed

by Blinn is to use a height field

texture22. This means that each texel in

the texture represents a height. By

taking the difference between adjacent

texels the slopes can be determined44.

3.3.2. Normal Mapping
For modern graphics cards, it is

preferred to use normal mapping22.

The normal map texture stores the

direction of the normal in the RGB-

values of the texels. Normal mapping is

preferred, since storing three

components versus storing a height

map, or two offsets as in Blinn’s

original method, is no longer

considered too memory consuming22.

These methods all produce identical

results, but using normal mapping will

reduce the number of computations

per pixel needed when calculating the

shading22.

3.3.3. Parallax Mapping
Parallax mapping45, 46 is a more refined

method than normal mapping and

Blinn’s methods. The idea is that the

position of bumps moves relative to

each other as the view changes, and

when you move around and look from

different direction the bumps should

occlude each other.

3.3.4. Result and Discussion
The technique chosen for our game

was normal mapping. This since we

were not short of memory, but more in

need of fast and efficient rendering.

There were also a lot of information

and examples to be found that

demonstrated this technique.

Implementing this method for our

game was fairly straight forward. The

lightning calculations for a point light

and a directional light were already

implemented, but they only used the

3D Racing Car Game 2009-05-19

28 (51)

normal for the surface as a whole. For

the implementation of normal

mapping we needed to use the

information about how the normals

were orientated at each pixel, obtained

by sampling our normal map texture.

The final orientation of the normals

were then calculated in the vertex

shader and sent as an input to the

lighting fragment shader.

Figure 22: A scene from the game without

normal mapping.

Figure 23: The same scene with normal

mapping.

An unforeseen problem occurred when

trying to implement this technique. It

was a result of using Blender and the

fbx-format for the models in the game.

When exporting from Blender we could

link only one texture for each model,

which meant that we had to find

another way to get all types of textures

loaded; colour, normal and specular

textures (section 2.3.4.2).

3.4. Post-processing Effects
Post-processing effects are effects that

are achieved by processing the image

after it has been rendered, hence after

referred to as the original image. This

is done by first rendering the entire

scene to textures, three of them in our

case, instead of the screen. The three

textures contain information about

colour, depth and surface normals.

When the scene has been rendered to

the textures, one post-processing effect

is run at a time. For each effect, the

appropriate textures and other

parameters are assigned to it, and then

a quadrilateral covering the full image

is drawn. In this way, the textures are

essentially being stretched over the

screen, so that each texel matches up

with each of the screens pixels. This

allows the fragment shader to process

the rendered image at each texel, using

its colours and perhaps depth and

surface normals.

3.4.1. Motion Blur
Motion Blur is meant to simulate

speed. The faster an object travels, the

more we want to blur it. This effect

could be implemented in a variety of

ways. We chose to implement it in

screen space as a post-processing effect

because this is an easy way to integrate

motion blur into an already existing

rendering process. Had we chosen to

implement it in another way, we may

have been forced to modify a lot of our

code47.

In addition to the colour texture, the

motion blur effect will also need the

3D Racing Car Game 2009-05-19

29 (51)

depth texture. The inverse view matrix,

along with the depth and the view

direction at each pixel, is used to

compute the view space position of the

rendered fragment, that is, where in

front of the camera the rendered

fragment is located. The previous

frame’s view-projection matrix is then

used to compute where this position

was projected onto the screen in the

last frame. The velocity of the pixel is

then computed with the screen space

position of the fragment, both in the

current and in the previous frame. The

actual blurring is then carried out by

sampling the colour texture along this

velocity vector, starting in the current

screen space position of the fragment47.

Figure 24: (A) represents the first frame, the

cameras orientation makes the ball project to

the right half of the screen. (B) represents the

second frame, where the camera has moved,

making the ball project to the left half of the

screen. (C) shows how the ball has moved in

screen space, and how a velocity vector is

computed by this.

Since we want our car to look crisp, we

use a map to mask it out in order to

avoid applying blurring to the texels

containing the car. The map is held in

the alpha channel of the colour texture,

and it consists of simply zero if the

texel may be used in blurring, or one if

it may not.

Figure 25: This is a comparison of a frame in

our game with and without motion blur. The

right half of this image uses motion blur, while

the left half does not.

3.4.2. Screen-Space Ambient
Occlusion
Ambient occlusion is an effect that is

hard to account for by the regular

shading models that are used for real-

time rendering. The ambient light is

not supposed to be as strong in

cramped areas such as corners or

cracks as it is on wide open surfaces.

The effect called ambient occlusion

strives to darken these places, where

the ambient light would have a hard

time reaching it48.

Taking ambient occlusion into account

in screen space with a post-processing

effect is a relatively simple way of

implementing it. It also has an

acceptable efficiency, making it a good

candidate for real-time rendering.

Lastly, it gives more than adequate

visual results for gaming purposes if

implemented properly49.

As any post-processing effect, the

processing is done per pixel of the

original image. At each pixel, the view

space position of the rendered

fragment is computed, much like in the

motion blur effect. Next, a number of

3D Racing Car Game 2009-05-19

30 (51)

samples in 3D-space located in a

sphere with its centre at this view space

position are considered. Each sample is

projected onto the screen and the

depth at the projected position is

looked up in the depth texture and

compared to the samples actual depth.

These comparisons of the samples’

depths around the rendered fragment’s

view space position is used to

determine how much ambient light the

fragment should be exposed to. If a lot

of the samples’ actual depths are larger

than the looked up depths, it is likely

that the rendered fragment is located

in a corner or something similar. On

the other hand, if a lot of the samples’

actual depths are smaller than the

sampled depths, it is likely that the

rendered fragment is located on an

edge49.

Figure 26: The figure shows a 2D-

representation of three points that has been

rendered, and their corresponding samples.

Red samples represent occluded samples.

Green samples represent exposed samples.

Our ambient occlusion effect is

achieved in three passes. In the first

pass, we determine how much ambient

light each pixel is supposed to be

exposed to, as described above. To get

good results, it is important to not only

have a sample pattern with a good

distribution of the samples in the

sphere, but also to have this sample

pattern different for each pixel49.

Although we only use one sample

pattern, we rotate this pattern for each

pixel by reflecting each sample around

a normal that is taken arbitrarily from

a separate texture holding a large

number of normals. This results in

different sample patterns for each pixel

in a non-predictable way.

Since the samples are distributed over

a sphere, half of the samples are

expected to be located behind the scene

geometry on a plane surface. These

samples could only be used to

determine how much more exposed to

light the area is, compared to a flat

surface. As we are only interested in

darkening the image in cramped areas,

and not make it brighter in exposed

areas, these samples could just as well

have been omitted. Hence, it would be

optimal to only sample in the

hemisphere above the surface49. We do

this by looking at the angle between the

surface normal, which is looked up

from the surface normal texture, and

the sample’s position relative to the

spheres centre. If this angle is larger

than 90 degrees, the sample position is

reflected so that it comes up on the

hemisphere on the right side of the

surface.

The texture containing occlusion

factors from the first pass contains a

lot of noise. This noise occurs because

only a few samples in the sphere are

taken. A weighting of the samples that

are determined to be occluded, based

on the samples distance to the sphere

centre, helps to reduce noise, although

3D Racing Car Game 2009-05-19

31 (51)

further measures needs to be taken49.

In the second pass, a smart blurring of

the occlusion factors is carried out. The

blurring is supposed to smooth out the

aforementioned noise, although this

blurring cannot naively blur like all

adjacent texels are the same, since that

may cause occluded areas to bleed into

very exposed areas. These transitions

from exposed to occluded must still be

sharp in the blurred texture. The smart

blurring is carried out by comparing

the normal at the texel to be blurred

with the normals at the surrounding

texels to blur with. If these normals are

not very similar, odds are that they are

from two distinct surfaces and their

occlusion factors should not be

blurred.

In the third and final pass, each texel of

the colour texture is multiplied by the

corresponding texel of the texture

holding the occlusion factors. A texel

with a high amount of occlusion has a

smaller value, why the color at that

texel will become darkened.

Figure 27: This is a comparison of a frame in

our game with and without ambient

occlusion. The right half of this image uses

ambient occlusion, while the left half does not.

3.4.3. Bloom
A Bloom filter is used to accentuate

bright areas of the screen by making

the bright areas even brighter while

also letting the brighter areas leak into

the darker areas. This is supposed to

improve realism by mimicking the

human eyes’ way of naturally

accentuating brighter areas. The eye

cannot do this on its own; since a

computer screen can not display

colours with a high enough light

intensity50.

We achieve this effect in three passes.

In the first pass, a bright pass filter is

applied to the original image. This will

effectively make the dark areas even

darker while leaving the brighter areas

as they were. This bright passed image

has only half the resolution of the

original image, both horizontally and

vertically. Some performance is gained

by allowing it to have a smaller

resolution than the original image,

since this result in less texels to process

and store. In effect, this will also result

in some free blurring of the bright

passed image50.

In the second pass, a Gaussian blur is

applied to the bright passed image.

This is where the bright areas start to

leak into the darker areas.

In the third and final pass, the blurred

bright passed image is added to the

original image. The bright passed

image is stretched over the original

image, so that each texel of the bright

passed image covers four texels in the

original image. That is how we get

some blurring for free. While adding a

bright passed texel with a texel from

the original image, some additional

3D Racing Car Game 2009-05-19

32 (51)

computations are done to adjust

saturation and intensity depending on

the parameters given to the effect.

Figure 28: The rendered image is bright

passed and down sampled, blurred, and then

added onto the original image to produce the

bloom filtered image.

Figure 29: This is a comparison of a frame in

our game with and without a bloom filter. The

left half of this image uses a bloom filter, while

the right half does not.

3.5. Particle Systems
Particle systems are used to represent a

variety of different objects, groups of

objects, or general effects or

phenomena that have no fixed form,

such as water, clouds, thunder and fire.

What they all should have in common

in their physical representation is that

they should consist of a large amount

of individual particles, each of which

may move around in the world with or

without any regard to the other

particles’ placement or movement.

Each particle may also be drawn with

or without any regard to the other

particles in the system. The basic

operations that a particle system ought

to handle is the spawning of particles,

moving them around in the world,

drawing them, and if necessary declare

them dead or respawn them51.

Memory bandwidth may be an issue,

for instance when updating the

particles of a particle system. By

storing the particles in an array, they

can be accessed sequentially to

maximize cache hits. It may also be a

good idea to do all the work for each

particle in one iteration through the

array. This means that as the particles

are being updated, they must also be

setup for fast rendering. A particle

normally only has one certain position,

but it may represent something larger

like a small cloud. Setting up a particle

for rendering then means that a shape

has to be put up in the world, and the

shape’s vertices must be computed and

stored for efficient rendering. The

shapes of the particles are normally flat

and screen aligned. When all the alive

particles has been setup for rendering,

they may all be rendered in only one

rendering call to the graphics

hardware, instead of the alternative to

iterate through all particles again and

issue a separate rendering call for each

particle51.

The simplest kinds of particle systems

are those whose particles stay

completely unaffected by their

3D Racing Car Game 2009-05-19

33 (51)

surrounding environment, including

the other particles in the system. That

is, each particle moves around in the

world and gets drawn with no respect

to any other particle. This is how our

particle systems work. Each particle

has a position, velocity, energy, size

and a few system specific attributes.

When a particle is updated, its position

is updated with respect to its velocity.

The velocity is recomputed for each

frame according to the systems defined

movement for all of its particles. This

allows the particle systems to have all

of its particles moving individually, yet

very similar to each other. The

particles energy may also be

decremented, to shorten its life span.

The size is used only to scale the shape

of the particle when it is setup for

rendering.

Our particle systems may also be

drawn with a technique called Soft

Particles. With regular ”hard” particles,

the shapes of the particles are simply

drawn where they appear and whatever

colour it has is used for a pixel if the

particle is in front of any other

geometry at that pixel. A shape may be

only partially visible however, with

part of the shape cutting into already

drawn geometry. This could cause

artifacts for some types of particle

systems, since visible edges of

individual particles may not be desired.

With soft particles, the colour at the

pixels drawn for individual particles

may be faded out if it is in front of, and

close to other geometry. This is

achieved by handing a texture

containing the depth of the drawn

scene to the particle system’s draw

method. For each fragment drawn by

the particle system, its screen space

position is calculated and the depth is

looked up at the pixel where the

fragment is to be drawn. This depth is

then compared to the fragment’s

depth, and a level of fading may be

applied52.

Figure 30: This is a comparison of a particle

system in our game with and without soft

particle rendering. The bottom half of this

image uses soft particles, while the top half

does not.

3.5.1. Sparks
Whenever the chassis of the car in our

game hits something, several sparks

are emitted with a velocity

proportional to the speed of the car. A

random vector is also added to the

sparks velocity to get a nice spread of

the particles. The particles movement

is very simple, since they need only

have a gravitational pull added onto

the velocity for each frame. However,

setting up the shape of a spark is

somewhat trickier, since it would not

look very convincing to just put up a

quadrilateral of some sort where the

particle is positioned. Instead, several

previous positions needs to be stored,

and a quadrilateral must be stretched

from the current position to one of the

previous positions. To make sure that

the quadrilateral becomes fully visible,

it has to be set up correctly. This is

3D Racing Car Game 2009-05-19

34 (51)

done by disregarding the depths of the

view space positions while using the

positions to compute the screen

aligned direction of a particle. With

this direction, the vertices of a proper

screen aligned quadrilateral can be

computed.

Figure 31: This image shows the spark

particle system in our game.

3.5.2. Sprinkles and Glow
Sprinkles, as we call it here, is a non-

physical effect to bring some additional

attention towards the power-ups in our

game. In particular, brightly coloured

stars are emitted around the power-

ups. The stars then rise in a spiral

while spinning and pulsating in size,

until they finally fade away.

Glow is very much like sprinkles, only

that it stays put where the power-up is

located. As with the sprinkles, it spins

and pulsates in size, but it never fades

away.

Figure 32: This image shows the sprinkles and

glow particle systems in our game.

3.5.3. Smoke
While we do not have anything in our

game that would realistically cause any

smoke, smoke can be a nice feature all

on its own. Our smoke particle system

simply spawns all of its particles in the

centre of the system with a velocity

randomly chosen over a distribution

such that a flattened hemisphere of

smoke appears around the systems

centre. The particles’ velocity is never

altered, though their colours’ alpha

channel is gradually decreased when

the particle starts to reach the

hemisphere’s outer bound. When the

particle has fully faded away, it is

respawned in the centre again.

Figure 33: This image shows the smoke

particle system in our game.

3D Racing Car Game 2009-05-19

35 (51)

3.6. Result
The XNA framework made it easy for

us to render our game at an early phase

of the development. Because of the

simple usage of the XNA framework, it

was very straightforward to modify the

rendering process later on in the

development when it was time to focus

on the graphics.

Since we knew even from the

beginning that we wanted to have post-

processing effects, we expected that we

would have to use other render targets

than the screen. Despite this, we

decided to keep things simple by not

immersing ourselves with these details

until it was needed, to keep compliance

with the evolutionary software

development model. This change of

render target also turned out to be very

straight forward, as the XNA

framework supplied us with most of

the functionality needed for such a

change.

Shadow Mapping was also easily

integrated into the already existing

rendering process, although point

lights require several shadow maps to

be created to record the depth in all

directions, as opposed to spotlights

which has a defined direction. This

turned out to be very costly, and since

we did not want to spend too much

time on optimizations, point lights

became deprecated. If we would have

had a more extensive plan to begin

with, as the evolutionary software

development model specifically told us

not to have, all the time we spent on

implementing point lights could have

been put to better use.

In large, the evolutionary software

development model posed little

difficulties when implementing the

graphical part of our game. If anything,

not thinking ahead too much allowed

us to quickly go from one thing to

another. This let us see what worked

and what did not, often in an early

phase, so that we could adapt our plans

according to the circumstances and

spend time where it was needed.

3D Racing Car Game 2009-05-19

36 (51)

3.7. Discussion
Since we did not plan much from the

beginning, and time was a limited

resource, we spent time where it was

needed in the present without worrying

too much about the future, yet trying to

proceed to the next task as fast as

possible. This also meant that

whenever we had to choose from

several alternative methods, we mostly

picked an alternative and stuck with it.

We consider most of the choices we

made to have been good ones, although

one thing we might have done different

is to use another shadowing technique.

Variance Shadow Mapping turned out

to be quite costly, and we consider the

soft shadows to be a bit too soft. Often

in real life, shadows have an almost

hard look. It also caused a lot of

shadows to even fade away, long before

they would have done so in a real life

scene.

If time would have allowed us, there

are a few features we would have liked

to implement. One feature would be

more, distinct shaders, allowing

different surfaces to be rendered in

different ways. This, we think would

have given the game a much more

interesting look. For instance, we

would have liked to see reflections in

the cars, which we could have gotten by

rendering the cars with a shader

supporting environment maps.

Another feature would be more

optimization, something which we did

not look into very much, and as a

result, the FPS was undesirably low.

More details on the performance of our

game can be found in Section 6.

3D Racing Car Game 2009-05-19

37 (51)

4. Network

4.1. Background
Our original game design would need

at least two people playing the game

simultaneously, since we decided to

not include any single player

capability. Generally, there are two

possible solutions that are considered

when designing multiplayer. The first

solution is a single-system multiplayer

functionality, and the second is a

networking multiplayer functionality.

Single-system multiplayer uses only

one machine for simulation, where the

players control the game using one or

more input devices. In a Networking-

multiplayer game, each player runs a

version of the simulation on separate

machines, while important game

specific information is sent via a

network topology.

One network topology for game

networking is Client-Server, which has

one server machine, and one or more

client machines.

Figure 34: A typical Client-Server

architecture, the arrows show the line of

communication.

In a Client-Server approach, each

client sends its game-action/-data to a

designated server, which in return

propagates the data to the rest of the

clients. Depending on the

implementation, servers can act either

as a dedicated server, and just

propagate the data, or as a combined

server and game simulation. Another

possible network topology for game

networking is a Peer-to-Peer structure.

In contrast to Client-Server, Peer-to-

Peer lacks a dedicated server; instead

every client is considered both client

and server.

Figure 35: A Peer-to-Peer network, the

arrows show the line of communication.

Each peer is connected to the other

peers, instead of only being connected

to the server, as in a Client-Server

topology, and the data is sent to each

peer. This means that a Peer-to-Peer

structure is less vulnerable, and less

likely, to break down on connection

errors/problems, while if the server in

a Client-Server structure looses

connection, no client would be able to

continue communicating53.

3D Racing Car Game 2009-05-19

38 (51)

Figure 36: A Peer-to-Peer network with a

disconnected peer (Peer 2). The

communication will however continue

between Peer 1, Peer 3 and Peer 4.

Figure 37: A Client-Server network. Here the

server is removed, and no further

communication is possible.

Implementing either of these, or any

other topology, can either be done

from scratch via the network interface

provided by the language, or via an

external network library. Some

network libraries may even come

equipped with different topology

support, like Peer-to-Peer in the

Lidgren-networking-library54.

4.2. Results
Early in the development, we

established the need for multiplayer

support in the game, but very little

research into different alternatives was

made. Midway into development, when

the most ground work on the engine

was done, we started looking into two

attractive options, Lidgren-nework-

library and the standard XNA

networking interface.

XNA Game Studio 3.0 provided a

network interface that could be used on

both Microsoft Windows and Microsoft

Xbox360 machines with none to minor

code changes. While this was a very

tempting alternative, it also had its

share of limitations. A couple of things

to consider when networking via XNA

Game Studio 3.0:

 LIVE accounts

Windows Live is a collection of

services provided and developed by

Microsoft, which include instant

messaging, photo and movie

sharing55 for example. To access

these services, a Windows Live

account is needed. Likewise, using

the built-in network methods in

XNA also require the usage of

Windows Live accounts, even for

local networking. This means that

as soon as we would want to do

anything over the network, the

user/developer would need to be

logged into a Windows Live

account. In a sense, this is a

positive feature, since we would not

need to handle player name/profile

creation, as this is automatically

handled via Live accounts. But for

small games that do not need any

3D Racing Car Game 2009-05-19

39 (51)

account management, and in a

debugging view point, it might

result being unnecessary.

 No Internet connected

games on Microsoft

Windows

There was one difference in the

network capabilities via the XNA

framework on Windows to the

Xbox360 version. On Xbox360,

there was both the possibility to

initiate an Internet or system link

(a game only available on the local

subnet) game, while on Windows

only the later was available. To be

able to do networking via the

Internet on Windows machines,

usage of the underlying

System.Net-classes would be

needed. This would however in

return not work on Xbox360

machines56.

 Voice Chat

A feature we discovered in the final

days of development was that

Windows Live-accounts support

Voice-chat by default. This was a

pleasant surprise, as it worked

without any modifications to our

code. It is reasonable to assume

that Voice-chat is more interesting

to those players with a large

geographical distance between each

other. Considering this, it might not

be of much use on a local subnet

game. And as described earlier, it is

not possible to connect games over

the Internet on Windows with XNA,

so Voice-Chat in XNA games on

Windows might not make much

sense57.

An alternative network library

compatible with C#/XNA is Lidgren

networking library. This is contrary to

the built-in interface that XNA

provides, in such way that it does not

require any part of XNA to work.

Another difference is that it is not

possible to utilize networking on

Xbox360 machines via Lidgren

networking library. The Lidgren library

also lacks account management, in

contrast to XNA usage of Windows

Live accounts; it does however provide

methods to send serialized typical XNA

data.

To make a decision regarding which

library we would use in our game

engine, we surveyed how we wanted to

synchronize the physics simulations

and player data between the clients.

The only data that would really need to

be synchronized was the players’ cars,

while letting each client have its own

physics simulation. This could of

course result in different physics

representation on each individual

simulation, but it is reasonable to

assume the difference would be

minimal and would not really impact

the game play. We, however, wanted

one simulation to act as a primary one,

in case we wanted to synchronize the

simulation data in the future. This

primary simulation could either be

chosen in some predetermined way in

a Peer-to-Peer topology, or for example

just act as the server in a Client-Server

topology. In our game, we simply went

with the later choice.

During the development phase, we had

access to two Windows machines,

connected to the same subnet network.

This meant that while developing, the

http://code.google.com/p/lidgren-network/
http://code.google.com/p/lidgren-network/
http://code.google.com/p/lidgren-network/

3D Racing Car Game 2009-05-19

40 (51)

network tests would never take place

over the Internet, only via the local

subnet. Knowing this, we choose to use

the XNA networking interface.

Our first network implementation sent

the following data:

 Spawn point data

Spawn point is 3d information

specifying where the players are

able to start when the game is

initiated. These points are saved in

the level file. When the game is

started, each client loads the map

data, but does not parse the spawn

point data. The server, on the other

hand, reads the spawn point data,

and then sends one spawn point for

each client, to every connected

client.

 Player data

When the game has started, for

each game update, the players send

the position, orientation (rotation)

and velocity of their car to the

server. When the server receives

this information from a client, it

starts by updating its local re-

presentation of the client’s car, and

then forwards the information to all

the other clients. And likewise,

when the clients receive player data

from the server, they update their

local representation of the player

cars with this information.

One problem with multiplayer games

on connections with high latency is

that it can result in jittering and

jumpy/freezing behaviour on data

shared over the network. In a racing

game, the car could appear to jump

from different positions between

frames, because the position data of

the car is taking to long to travel on the

network. This however, is solved by

interpolating and taking qualified

guesses of the position at each frame,

by taking into account the positions

from previous frames.

In our game, since each player runs its

own simulation, and we also know

velocity beside position and

orientation, we could automatically get

a simple interpolation by letting the

physics engine take care of it for us. We

do this by just letting each remote

player be represented in the physics

engine by a car, and updating its

position and velocity. This means, if

data for a specific player has not been

received in a long time, the car’s

position is just simulated in the physics

engine depending on previously

received position and velocity data.

This implementation worked out

smoothly and very straight forward,

and from what we could tell, the

interpolation via the physics engine

worked surprisingly well.

In the last steps of the development, we

needed to add some more game play

data to be sent over the network.

Among these were:

 Car selection

Each player should be able to

pick the type of car they wanted

to control. Such selection was

added to the lobby screen,

before each game round. When

a new car is selected, the new

car type is sent to the server,

3D Racing Car Game 2009-05-19

41 (51)

which saves the car selection to

the corresponding player. When

the game begins, the server then

sends out the correct car type

together with each spawn point.

Figure 38: The car selection interface.

 Game round timer

Until late in the development, we

did not have any specific type of

game round. More precisely, the

game did not have an end. To solve

this, we added a timer that when

reaching zero, ended the game and

returned the gamer to the game

lobby screen. We accomplished this

by letting each client/server have a

timer each, but that was only

started when the server sent a

special message. The timers on the

client side filled only a graphical

purpose, while the timer on the

server was the only one that could

end the game. This was done in

such way to avoid sending to much

unnecessary information over the

network to just synchronize the

clock.

Figure 39: (A) shows the round timer which

has just started. The round timer turns from

white to red when the time left is below 10

seconds, as shown in (B).

 Round start count down

We needed a way to show the player

that the game had started. Earlier,

the player jumped directly from the

lobby screen into the game. This

was solved by letting the server

send four special messages to all

the clients, as soon as the game

world was loaded. The messages

contained a "count down" number,

starting at 3, down to 0, with a

second interval. For each "count

down" message received on the

clients, a sprite was rendered for

the number and a sound clip was

played. For the final number (zero),

the sprite rendered was simply the

text "GO!".

Figure 40: (A), (B), (C): The count down

sequence as shown to the player. (D): When

the count down reaches zero, the text "GO!" is

shown instead.

3D Racing Car Game 2009-05-19

42 (51)

4.3. Discussion
By using the built-in networking

capabilities in XNA Game Studio 3.0,

we were forced to limit ourselves to

local subnet games. In our case this

was not a problem, but in a larger

game development, with the need of

Internet multiplayer, this would have

to be taken into consideration when

deciding network library.

However, if we had changed our game

design late in the development, in a

way that would need games to be able

to connect over the Internet, this would

result in major changes to our code.

This is because the multiplayer

component in our game is heavily

affected by the network library. For

instance, the lobby-screen relies much

on specific features provided by XNA.

If we would change network library, we

would be forced to implement these

features ourselves, or altogether drop

the lobby functionality in our game.

This does not go well with the process

we have been using, that stresses the

importance of embracing change. In

retrospect we should have

implemented a more flexible solution,

to accommodate this design principle.

5. Sound

The graphical aspect of the game

definitely was one our top priorities,

but even though we focused much on

blowing the players’ visual mind, music

and sound effects in the game were

also features we wanted to include. We

felt that visual effects lost some of its

context without corresponding audio

effects, and that sound therefore was

necessary in the game to offer the

player a complete experience.

5.1. Sound Effects
In order to find sound effects that

matched the graphical dittos, we had to

search through several different sound

banks. The largest sound bank, which

provided us with sounds like the

electronic engine, was Digiffects58, a

sound bank provided by many

companies in different countries,

including Swedish “Ljudproduktion

AB”. We also took great use of many

public sound banks on the Internet:

FindSounds59, and PacDV60.

Even though we were satisfied with

many of the sound effects we found

from different sound banks, we still

had problems finding good sound

effects for collisions. By recording our

own sound effects, we felt like we were

adding a more personal touch to the

game, besides the fact that we needed

collision sound effects.

One of the lecture rooms on the 5th

floor in the EDIT house (Chalmers

University, Gothenburg), became our

studio when we recorded our own

sound effects. The relatively compact

size of this lecture room, in

combination with its great acoustic

qualities, made it a convenient choice

to use as a recording studio.

We used a variety of different tools for

our collision recording session,

including crayons, a blackboard duster,

a cleaning sponge, a computer mouse,

and a mouse pad. The cleaning sponge

and the mouse pad made excellent

tools to use when we needed a more

dull sound. The sounds were produced

by simply dropping the object on a

3D Racing Car Game 2009-05-19

43 (51)

desk, banging them into each other, or

smashing them softly into the

blackboard repeatedly.

For our collision sessions, we used a

basic computer microphone61,

connected to a computer, and recorded

with Adobe Audition 2.0. To increase

the quality of the sound effects, we

used a restoration effect called Noise

Reduction. With Noise Reduction, we

captured a noise profile from the quite

sessions in between the sound effects

to analyze the background noise in the

environment. This noise profile was

then used to filter the whole session

from background noise, leaving only

the desirable sound left, more like what

a studio recording would have resulted

in. Each session was filtered based

upon its own background noise, which

is always changing between the

sessions. We also changed the

amplitude of the sessions to match

each other, and then splinted up each

session into different sound effects,

making our own sound bank.

5.2. Background Music
Just as sound effects, different types of

music can also be found on the

Internet. For example, PacDV,

provided not only sound effects, but a

variety of different instrumental music

tracks as well. Even though some of the

tracks were possible to have in our

game, we felt that we wanted more

famous background music, which

could possibly give the user a nostalgic

feeling. We choose to use background

music from an old game called Turtles,

which was released on Super Nintendo

Entertainment System.

6. Results

Due to the fact that we chose to base

our development process on the

evolutionary development model, there

were not very many requirements on

the game when the development

started. As the project evolved, more

and more features were added, in order

to reach the game play requirement.

When it comes to the result of the

project, we distinguish between

features and requirements, mainly

because they can be viewed as medium

priority requirements, respectively

high priority requirements.

6.1. Requirements
We managed to meet the major part of

all our high priority requirements, such

as multiplayer functionality and a fun

game play.

One of the most significant low priority

requirements was to develop a death

rally game, where you could shoot and

destroy the opponents. This

requirement was not met, since we

change our priorities.

6.2. Features
Here follows a list of features and their

respective results:

1. Power-ups

All desired power-ups, such as

punch, reverse keys, slow, nitro,

double points, and low friction,

were implemented.

2. Models

All major models, such as

containers, cars, boxes, barrels,

and thread plates, were made

and implemented, although, it

3D Racing Car Game 2009-05-19

44 (51)

would be desirable that all

models were uniform, and that

the level of polygon detail would

remain the same. It would also

be desirable that more

miscellaneous objects had been

created.

3. Textures

The models’ textures were

satisfactory, although they were

not always particularly uniform.

4. Sound

The sound effects that was

added satisfactory, was car

engine sound, power-up sounds,

and coin sounds.

5. Graphical effects

The most important graphical

effects that we wanted to use in

the game were added with an

appealing visual result.

6. Optimization

Not very much time was spent

on this part, which resulted in a

low FPS. On our test computers,

the FPS ranges from between 35

and 40.

The specifications for our test

computers were:

AMD Athlon(tm) 64 X2 Dual

Core 5000+ 2.6 GHz

2 GB RAM, PC2-5300 DDR2

nVidia GeForce 8800 GS

The game was run with a

resolution of 800 x 600, and all

post-processing effects enabled.

6.3. Time Estimations
In a software development project, one

thing that is considered to be very

difficult is time estimations. The time

estimations in project Lloyd was very

good, and we managed to produce a

playable game within the given time

limit.

6.4. The Development Process
In order to evaluate the development

process used in this project, each of the

agile principles was evaluated.

Customer involvement The developers,

along with their supervisor, have acted

as customers, providing feedback on

releases, and what features that should

be added to what milestone.

Incremental delivery The project was

divided into milestones with releases

once every two weeks.

People, not process The process was

not allowed to control the way of

working.

Embrace change The system was

initially developed to support future

changes, but as it evolved, the structure

became harder to maintain.

Maintain simplicity In order to

maintain simplicity for the

development process, focus lied on

these five principles. In regard to the

software, it was difficult to maintain

simplicity as the project progressed.

3D Racing Car Game 2009-05-19

45 (51)

7. Discussion

The process we used is well fitted to

projects that need fast specified results.

We believe that our working method

enables us to achieve more features in

our game than if we used a more pre-

planned method. With our method,

developers can get started directly with

game specific features, and do not need

to think about structure and writing

general code.

The lack of early planning can also be a

downside for this method. Solutions

that seem valid early on can turn out to

be unsuitable for the project. Many

times, this could have been avoided by

more rigorous planning.

For larger projects, we think that

planning and having a good structure,

become even more important. For

example, if we wanted to make some

major changes to our game, we would

probably have to discard a lot of

previous work, because our lack of

good structure and generally written

code. This is something we think could

have been avoided by choosing another

development method that focuses

more on early planning, and structure

throughout the project.

Choosing C# and Microsoft XNA as a

framework turned out to be a good

choice for this type of project. The

functionality provided by XNA offered

a good ground for us to start develop

the game as fast as possible. Using

another language, like C++, which was

also in the discussions when choosing

development language, would have

required us to write much of the

fundamental functionality ourselves.

Using an already complete framework

saved us time, and allowed us to start

building the game directly, rather than

building the foundation of the game.

All C# coding was done in Microsoft

Visual Studio 2008, which we consider

to be an excellent developing environ-

ment, allowing us to debug the game

properly. Using Microsoft Visual

Studio 2008 also allowed us to use

CodePlex, which provided us with a

version control system in Microsoft

Team Explorer.

The game concept changed several

times during the project. In our

opinion, the final product became a

very action filled game, which was very

fun to play as well. This was greatly

influenced by our development

method, which allowed us to change

many of the concepts during the

development. When we found a

working concept that was fun, we

centered the game idea around it. In

the beginning, the game concept did

not include collecting power-ups, but

as we came up with the idea of a

punching power-up, we found that it

made the game fun and action packed.

As more ideas for different power-ups

emerged, we could implement these as

well in the game. Soon, we had a racing

car game with different kinds of power-

ups, making it the suitable mix for an

action car game.

We believe that it is difficult to

establish all of the game concepts in an

early stage. It is preferable to let the

good ideas grow, and discard the bad

ones, as the project develops.

3D Racing Car Game 2009-05-19

46 (51)

8. Abbreviations

GUI – Graphical User Interface

HUD – Head-Up Display

BRDF – Bidirectional Reflection Distribution Function.

FPS – Frames Per Second.

Pixel – Picture Element.

RSS – Really Simple Syndication

Texel – Texture Element.

3D Racing Car Game 2009-05-19

47 (51)

Appendix A

Here follows a list of milestones and what tasks that were assigned to which milestone.

Milestone 1 Implement fundamental classes; GameModel, GameObject etc.

Make it possible to load models, for now, placeholder models
will do. The development of models will be ongoing throughout
the project.

Milestone 2 Create a class for handling the camera. Input should be taken
from both mouse and keyboard.

Milestone 3 Find a physics engine and integrate it into the game.

Milestone 4 Game logic, create and add new models.
Implement a car and make integrate it properly into the physics
engine.

Milestone 5 Add effects, shadow maps.
Continue working o models.

Milestone 6 Make progress on models.
Multiplayer functionality, evaluate and implement.

Milestone 7 Multiplayer (via local subnet) with up to 4 players (not
much of a game play yet)

 Menu system with lobby etc
 Redesigned level (demonstration purpose)
 Score
 Add power-ups
 More models, e.g. container, can, walls + floor, wooden box
 Add specular textures
 Shadows
 A simple level editor
 Show FPS

Milestone 8 Add more power-ups
 Add more coins
 Modify the oil barrels’ collision skin
 Add more models, e.g. shelves, pallet, pencil, can, table, lamp
 Make power-ups and coins respawn
 Extend the racing track
 Synchronize the power-ups (network) so that they may

affect other players
 Normal maps
 Motion blur

3D Racing Car Game 2009-05-19

48 (51)

Appendix B

3D Racing Car Game 2009-05-19

49 (51)

References

1
 Remedy Entertainment. http://www.remedygames.com/games/death_rally.html (2009-05-

10).

2
 Sommerville, Ian. Software Engineering, 8th edition; Pearson Education Limited: Harlow,

2007; pp 44, 65-70.

3
 Royce, W.W. Managing the Development of Large Software Systems. Proceedings. 1970;

pp 1-9.

4
 Microsoft: Next Generation of Games Starts With XNA.

https://www.microsoft.com/presspass/press/2004/mar04/03-24xnalaunchpr.mspx (2009-05-
18).

5
 XNA Game Studio. http://msdn.microsoft.com/sv-se/directx/aa937794(en-us).aspx (2009-

05-18).

6
 XNA Framework Class Library. http://msdn.microsoft.com/sv-se/library/bb203940(en-

us).aspx (2009-05-18).

7
 CodePlex – Open Source Project Community. http://www.codeplex.com (2009-05-18).

8
 CodePlex Information and Discussion.

http://codeplex.codeplex.com/Wiki/View.aspx?title=Using%20TortoiseSVN%20with%20Co
dePlex&referringTitle=CodePlex%20FAQ (2009-05-18).

9
 Eberly, D. H. Game Physics; Morgan Kaufmann Publishers: San Francisco, 2004.

10
 JigLibX Wiki. http://jiglibx.wikidot.com/ (2009-05-09).

11
 Hansson, H. Craft Physics Interface; Linköping: LiTH-ISY-EX--07/3887—SE, 2007.

(http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-8497)

12
 Van den Bergen, G. Collision detection in interactive 3D environments; Morgan Kaufmann

Publishers: San Francisco, 2004.

13
 Google Video, Limitations of 3D Physics Engines: Unintended Explosion.

http://video.google.com/videoplay?docid=-1279309767827721998 (2009-05-09).

14
 Wiki, Second Life. http://wiki.secondlife.com/wiki/Physics_engine (2009-05-15).

15
 MSDN: XNA Developer Center, Standard Importers and Processors.

http://msdn.microsoft.com/en-us/library/bb447762.aspx (2009-05-10).

16
 Autodesk 3ds Max. http://www.autodesk.com/3dsmax (2009-05-10).

17
 Blender. http://www.blender.org (2009-05-10).

18
 Autodesk Maya. http://www.autodesk.com/maya (2009-05-10).

19
 Pixologic. http://www.pixologic.com (2009-05-10).

20
 Blender Features. http://www.blender.org/features-gallery/features/ (2009-05-10).

21
 Blender 3D: Noob to Pro. http://en.wikibooks.org/wiki/Blender_3D:_Noob_to_Pro (2009-

05-10).

22
 Akenine-Möller, T.; Haines, E.; Hoffman N. Real-Time Rendering, Third Edition; A K

Peters: Wellesley, 2008; pp. 150-151, 154, 187, 257.

23
 CrazyBump. http://www.crazybump.com/ (2009-05-15).

3D Racing Car Game 2009-05-19

50 (51)

24

 CG Textures. http://www.cgtextures.com/ (2009-05-15).

25
 MSDN, XNA Developer Center, Content Pipeline. http://msdn.microsoft.com/en-

us/library/bb203887.aspx (2009-05-19).

26
 Truevision TGA File Format Specification.

http://www.dca.fee.unicamp.br/~martino/disciplinas/ea978/tgaffs.pdf (2009-05-19).

27
 MSDN, XNA Developer Center, XNA Creators Club Online - game state management.

http://creators.xna.com/en-US/samples/gamestatemanagement (2009-05-19).

28
 MSDN, XNA Developer Center, SpriteFont Class. http://msdn.microsoft.com/en-

us/library/microsoft.xna.framework.graphics.spritefont.aspx (2009-05-19).

29
 MSDN, XNA Developer Center, Microsoft.Xna.Framework.Graphics Namespace.

http://msdn.microsoft.com/en-us/library/microsoft.xna.framework.graphics.aspx (2009-05-
19).

30
 Koenderink, J. J., van Doorn, A. J., and Stavridi, M. Bidirectional Reflection Distribution

Function Expressed in terms of surface scattering mode, Proceedings of the 4
th
 European

Conference on Computer Vision, 1996, vol. 2, pp. 28-39.

31
 O'Rorke, J. GPU Gems: Integrating Shaders into Applications, R.F., Ed.; Addison-Wesley

Professional, location: Boston, MA, 2004.

32
 MSDN, XNA Developer Center, Effect Class. http://msdn.microsoft.com/en-

us/library/microsoft.xna.framework.graphics.effect.aspx (2009-05-19).

33
 Phong, B.T. Illumination for Computer Generated Pictures, Communications of the ACM,

1975, vol. 18, no. 6, pp. 311-317.

34
 Gouraud, H., Continuous Shading of Curved Surfaces, IEEE Transactions on Computers,

1971, vol. C-20, pp. 623-629.

35
 Catmull E., Computer Display of Curved Surfaces, Proceedings of the IEEE Conference on

Computer Graphics, Pattern Recognition and Data Structures, Los Angeles, CA, May 1975,

pp. 11-17.

36
 McReynolds T.; Blythe D. Advanced Graphics Programming Using OpenGL; The Morgan

Kaufmann Series in Computer Graphics; Morgan Kaufmann: San Francisco, 2005.

37
 Fosner R. Real-Time Shader Programming; The Morgan Kaufmann Series in Computer

Graphics; Morgan Kaufmann: San Francisco, 2002.

38
 Blinn, J.F. Models of Light Reflection for Computer Synthesized Pictures. ACM Computer

Graphics (SIGGRAPH '77 Proceedings), July 1977. pp. 192-198.

39
 Wanger, L. The effect of shadow quality on the perception of spatial relationships in

computer generated imagery, Computer Graphics (1992 Symposium on Interactive 3D
Graphics), 1992, vol. 25, no. 2, pp. 39-42.

40
 Donnelly, W., and Lauritzen, A., Variance Shadow Maps, Proceedings Symposium on

Interactive 3D Graphics, 2006, pp. 161-165.

41
 Williams, L., Casting Curved Shadows on Curved Surfaces, Computer Graphics

(SIGGRAPH Proceedings), August 1978, pp. 270-274.

42
 Schüler, C. Eliminating Surface Acne with Gradient Shadow Mapping, Engel W., Ed.;

ShaderX4, Charles River Media: Boston, USA, 2005, pp. 289-297.

3D Racing Car Game 2009-05-19

51 (51)

43

 Blinn, J.; In Simulation of wrinkled surfaces, Computer Graphics (SIGGRAPH '78
Proceedings), August 1978, pp. 286-292.

44
 Schlag, J. Fast embossing effects on raster image data; P. S. Heckbert., Ed.; Graphics

Gems Series; Academic Press: San Diego, 1994; pp. 433-437.

45
 Kaneko, T.; Takahei, T.; Inami, M.; Kawakami, N.; Yanagida, Y.; Maeda, T.; Tachi, S. In

Detailed Shape Representation with Parallax Mapping, Proceedings of ICAT, Dec. 2001;
Tokyo, 2001; pp. 205-208.

46
 Welsh, T. Parallax Mapping with Offset Limiting: A Per-Pixel Approximation of Uneven

Surfaces, Infiscape Corp., 2004.

47
 Rosado, G., GPU Gems 3, Motion Blur as a Post-Processing Effect, H.N., Ed.; Addison-

Wesley Professional, location: Boston, MA, 2008.

48
 Langer M.S.; Bulthoff H.H. Depth discrimination from shading under diffuse lighting.

Perception. 2000, 29, 0301-0066.

49
 Mittring, M., Finding Next Gen-CryEngine 2, SIGGRAPH 2007 Advanced Real-Time

Rendering in 3D Graphics and Games course notes, 2007,

http://ati.amd.com/developer/gdc/2007/Mittring-
Finding_NextGen_CryEngine2(Siggraph07).pdf.

50
 Anirudh, S. S., High Dynamic Range Rendering, GameDev.net.

http://www.gamedev.net/reference/articles/article2108.asp (2009-05-19).

51
 van der Burg, J. Building an Advanced Particle System,

http://www.gamasutra.com/features/20000623/vanderburg_pfv.htm (2009-08-06).

52
 Lorcach, T. Soft Particles,

http://developer.download.nvidia.com/whitepapers/2007/SDK10/SoftParticles_hi.pdf (2009-

05-19).

53
 Kurose, J. F.; Ross, K. W. Computer Networking: A top down approach, 4th

 ed.; Addison
Wesley: Boston, 2008.

54
 PeerToPeer - lidgren-network - The Peer to peer class - Google Code.

http://code.google.com/p/lidgren-network/wiki/PeerToPeer (2009-05-19).

55
 Essentials - Windows Live. http://download.live.com/ (2009-05-19).

56
 MSDN, XNA Developer Center, XNA Frequently Asked Questions.

http://msdn.microsoft.com/sv-se/xna/aa937793(en-us).aspx (2009-05-19).

57
 MSDN, XNA Developer Center, Voice Support. http://msdn.microsoft.com/en-

us/library/bb976068.aspx (2009-05-19).

58
 Ljudproduktion – Digiffects. http://www.ljudproduktion.se/digiffects.html (2009-05-18).

59
 FindSounds. http://www.findsounds.com/ (2009-05-18).

60
 Free Sound Effects. http://www.pacdv.com/sounds/index.html (2009-05-18).

61
 Clas Ohlson Internetbutik. http://www.clasohlson.se/Product/Product.aspx?id=60642904

(2009-05-18).

	Abstract
	Sammanfattning
	Table of Content
	1. Introduction
	2. Game Design
	2.1. Game Design and Concepts
	2.1.1. Initial Concept
	2.1.2. Second Iteration
	2.1.3. Final Concept

	2.2. Development Process
	What Is a Software Process Model?
	The Waterfall Model
	Component-based Software Engineering
	Evolutionary Development
	2.2.1. Our Development Process
	Agile Methods
	Milestones

	2.3. Game Engine
	2.3.1. Game Framework
	Microsoft XNA
	CodePlex

	2.3.2. Physics Engine
	Background
	JigLibX
	Collision Primitives
	Flow of Control

	Limitations
	Rounding Errors
	Primitive Collision Skins
	Low Frame Rates

	2.3.4. Game Assets
	2.3.4.1. Creation
	Models
	Modelling Tools
	Texturing

	2.3.4.2. Result and Discussion
	2.3.4.3. Loading

	2.3.5. GUI, Menu and HUD
	Background
	Results
	Menu
	HUD
	Special case: ScreenFlashes

	Discussion

	3. Graphics
	3.1. Lights and Rendering
	3.1.1. Ambient Pass
	3.1.2. Light Pass

	3.2. Shadows
	3.2.1 Shadow Mapping
	3.2.2. Variance Shadow Mapping

	3.3. Bump Mapping
	3.3.1. Techniques
	3.3.2. Normal Mapping
	3.3.3. Parallax Mapping
	3.3.4. Result and Discussion

	3.4. Post-processing Effects
	3.4.1. Motion Blur
	3.4.2. Screen-Space Ambient Occlusion
	3.4.3. Bloom

	3.5. Particle Systems
	3.5.1. Sparks
	3.5.2. Sprinkles and Glow
	3.5.3. Smoke

	3.6. Result
	3.7. Discussion

	4. Network
	4.1. Background
	4.2. Results
	4.3. Discussion

	5. Sound
	5.1. Sound Effects
	5.2. Background Music

	6. Results
	6.1. Requirements
	6.2. Features
	6.3. Time Estimations
	6.4. The Development Process

	7. Discussion
	8. Abbreviations
	Appendix A
	Appendix B
	References

