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Abstract. When parallelizing hierarchical view frustum culling and col-
lision detection, the low computation cost per node and the fact that the
traversal path through the tree structure is not known à priori make the
classical load-balance versus communication tradeoff very challenging.
In this paper, a comparative performance evaluation of a number of load
distribution strategies is conducted. We show that several strategies suf-
fer from a too high an orchestration overhead to provide any meaningful
speedup. However, by applying some straightforward tricks to get rid of
most of the locking needed, it is possible to achieve interesting speedups.
For our industrially related test scenes, we get about a four-fold speedup
on eight processors for view frustum culling and three times speedup for
collision detection.

1 Introduction

View frustum culling (VFC) and collision detection are two very common com-
ponents of real time computer graphics applications. VFC aims at reducing
the computational complexity of a succeeding rendering pass by extracting the
graphics objects that are in the view frustum. For hierarchical VFC, a hierarchy
is built up as a tree structure from the bounding volume of each object. Each
node in the tree has a bounding volume enclosing a part of the scene. The tree
is traversed from the root in a depth-first manner, and if a bounding volume
is found to be outside the frustum during the traversal, the contents of that
subtree can be culled from rendering. The typically low computation cost makes
the load distribution in a parallel implementation extremely challenging.

In this paper we evaluate the effectiveness of a set of load distribution strate-
gies on parallel implementations of hierarchical view frustum culling with scenes
from an industrial application. We also examine the capability of the most
promising scheme applied on collision detection. For VFC we use axis aligned
bounding box (AABB) trees [8], while for collision detection we use both AABB-
and oriented bounding box (OBB) trees [4].

The load distribution schemes we select are a global task queue, and a number
of distributed task queue schemes well-known from the literature. We evaluate
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the speedup of the parallel implementations using these strategies on a 13-node
Sun Enterprise shared-memory multiprocessor and on a dual PentiumIII 500
MHz personal computer.

We find that while some of the schemes were expected to provide a reason-
able speedup, they performed inferior owing to the high communication and
synchronization cost. Our results show that due to the low computation cost
per node compared to the distribution cost, only the more sophisticated lock-
free scheme provides interesting speedup numbers. By considering a number of
optimizations – especially by getting rid of the synchronizations – we managed
to get promising results, even for highly unbalanced industrial scenes. For our
scenes, we achieve a speedup of around four on eight processors for view frustum
culling and about three on seven processors for collision detection with real test
cases from an industrial case study.

2 Experimental Set-Up

The code for testing a bounding volume against the view frustum is the one of a
previously proposed optimized algorithm [1]. This implements many optimiza-
tions such as caching of previous computations, implying little computation cost
per node in many cases. Other optimizations include plane-coherency, octant,
and translation and rotation coherency tests (see [1] for details).

We use three trees that are the hierarchical scene graph representations of
three 3D models - all of real environments and all used in industrial applications.
The three highly unbalanced trees used in the tests are: a car factory shop floor
in 3, 932 graph nodes, a factory shop floor in 1, 137 graph nodes and a factory
cell in 254 graph nodes. We refer to them as the large model, the medium model,
and the small model, respectively.

The camera–or view frustum–used in the view frustum culling computations
is moved along one specific path for each model, each sampled from a user
walk through in the model. The presented traversal times and speedups are the
average times and average speedups of all traversals during the walk through.

The experiments are carried out on a Sun Enterprise 4000 shared-memory
multiprocessor. This machine is equipped with 14 UltraSPARC-II CPUs running
at 248 MHz. Each CPU is attached to a 16-Kbyte L1 data cache and a 1-
Mbyte L2 cache, both using a line size of 32 bytes. The locks used have been
implemented using the SPARC-instruction ldstub which loads a byte followed
by a store that sets all bits in that byte atomically. We only show results for
up to 13 processors. One processor is left for the operating system to avoid the
perturbation it would cause when it is invoked every millisecond.

3 Evaluation of Load-Distribution Schemes

In this section, we consider the effectiveness of load distribution strategies that
seem adequate for the dynamic behavior of our workload. As a reference, we use
the classical global task queue scheme which we consider first.
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3.1 Global Task Queue

In this approach, each processor removes and add tasks (tree-nodes) using a
global task queue. The virtue is good load balance while the overhead associated
with orchestrating the global task queue is known to be high.

Results from the experiments of parallel VFC are presented in Figure 1.
Figure 1.a-1.c show the average speedup, and Figure 1.e-1.f show the average
execution time for VFC of one frame.

For the global task queue, the maximum number of processors that can pro-
vide speed-up, before the global task queue becomes the bottle-neck, is limited
to the total time for processing a node divided by the time for accessing the
global queue (node cost/ access cost). We see that we get a maximum speedup
of only 1.5, with only three processors on the small model. Moreover, when we
increase the number of processors, the speedup goes down owing to serialization
effects, as expected.

3.2 The Global Counter Scheme

A more scalable strategy is to associate a local task queue with each processor.
Each processor adds tasks to the local queue pointed to by a global counter
that is incremented after each insertion by any processor and protected by a
lock1 according to [11]. In this way the load will be nearly optimally balanced
if all processors can process nodes equally fast. The serialization of accesses to
one single queue is replaced by the serialization of reading and incrementing the
global counter, which is usually faster. However, the lock mechanism around the
counter can potentially become a new bottleneck when we increase the number
of processors. In addition, the locks that synchronize the accesses to the queue
attached to each processor is another potential bottleneck.

As can be seen in Figure 1a, compared to the global task queue algorithm,
the stagnation in speed-up which peaks at about 1.9, comes later – at more
than eight processors instead of three, which is expected since incrementing a
counter is quicker than inserting or removing a task (which in our implementation
basically consists of changing an array index and reading the contents of the array
element, i.e about twice the cost). The stagnation comes from the global lock
which gives a high cost and introduces serialization.

3.3 The Hybrid Scheme

To further reduce the orchestration overhead and contention due to locking and
shared memory access, we considered two optimizations of the global counter
scheme. The resulting scheme is referred to as hybrid.

– The skip-pointer tree optimization: A common optimization in raytrac-
ing is to represent the tree in depth-first order in an array [16], with a skip

1 For some processors it is possible to atomically read and increment a variable with
just one or two assembler instructions instead of using a lock.
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index for each node that points out the next element to access if the un-
derlying sub-graph should be skipped during the traversal. Then a full tree
traversal can be performed by simply accessing the array sequentially from
start to end. Every subtree will be represented in the array as a consecutive
chunk of elements, so instead of distributing a node (subtree), we send the
start-index and the stop-index of the array. While it provides good cache-
locality in the sequential single processor case, it can also give better locality
in the parallel case.

– Trading off larger tasks for less load balance: This straightforward
optimization uses the observation that at a certain depth, when the under-
lying subtree only contains a few nodes, it will be faster to process the nodes
rather than distributing them, if the computation-cost is smaller than the
distribution-cost [13].

Since the size of each subtree is not known beforehand, the heuristic we have
tried is to distribute tasks at the node-level until a certain level after which
the rest of the subtrees are considered as tasks. The first phase uses the global
counter scheme according to Section 3.2, whereas the second phase serially ex-
ecutes the tree traversal algorithm with no further balancing of the load. Both
phases use the skip pointer optimization and thus will enjoy the increased local-
ity it provides. A counter keeps track of how many nodes that so far have been
processed by the distribution algorithm. If a threshold number is exceeded, all
processors finish the computations and distribution of children for the node it
is currently working on, and enter the serial phase. We found empirically that a
threshold of six times the number of processors gave the best performance for
our models with a difference in load of less than 2% for the large model.

The skip-pointer tree optimization contributed with an overall speedup of
15 − 40% compared to the global counter scheme. Despite the possibility to
also trade between load balance and larger tasks, the total speedup for both
optimizations together peaks at only 2.2 times (for 10 processors).

We also made measurements showing that if the cost of the VFC compu-
tations at each node were virtually zero, we would get a huge slowdown using
more than one processor. The reason is the high distribution cost compared to
the cost of the serial traversal of the skip-pointer tree. Skipping the distribution
phase, resulting in a serial single processor algorithm, would actually have been
optimal for this case.

The schemes used so far suffer from too much overhead, especially concering
lock accesses. This motivated us to seek for a lock-free approach which we study
in the next section.

4 A Lock-free Scheme

The Lock-Free scheme distributes the load without requiring locks or any syn-
chronization. The way we adapted the original scheme to avoid locking is as
follows.
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Each processor has one local-queue and some in-queues. A processor removes
tasks from its local-queue and its in-queues, and adds new tasks to its local queue
and dedicated in-queues of neighboring processors. The in-queues are created
such that one processor can insert tasks at one end of the queue and another
processor can remove tasks from the other end of the queue, without any need
for synchronization between the two. There is one dedicated in-queue for each
sender/receiver pair. We use a ring buffer with two indices to point out the start
and the end of the buffer.

The insert() method only needs to affect the start-index, and the remove()
method only needs to affect the end-index. It is easy to assure that the insert()
and remove() operations never can access the same memory location simulta-
neously.

The remove() operation needs to check if the queue is empty before allowing
removal of a task, and because the insert() operation always inserts a task
into the array before incrementing the end-index, computing end - start will
always give a safe result. The same safe situation holds for the insert() method,
when checking if the queue has room for more elements before inserting a task.
The array simulates a ring and the indices will wrap around to the first element
after passing the last element of the array, but this is easy to adjust for.

Since we want to avoid locks completely, we only allow a processor to either
insert or remove jobs from an in-queue - not both. The opposite could be inter-
esting to try, since there are ways to implement this such that the locks, with a
high probability, seldom will be used [3].

4.1 Topology

In order to easily change the number of processor connections in the topology,
we first order the processors virtually in a ring, where each processor distributes
tasks to its successor’s in-queue. When increasing the connectivity and wanting
every processor to send tasks to n receivers, with p processors in the ring, we
add connections to every ( p

n + 1):th successor. When inserting a connection
between two processors, we assign an in-queue for the receiver and let the sender
send tasks to this queue. Figure 1.h) shows an example of 6 processors, each
distributing to 3 receivers.

Load Balancing For Adaptive Contracting within neighborhood (ACWN),
the least loaded nearest neighbor is always selected as the receiver of a newly
generated job. It is known that local averaging strategies generally outperforms
methods such as the randomized allocation and the ACWN algorithm signifi-
cantly in large scale system [17]. Since our shared memory system is a so called
one-port communication system (i.e at most one neighbor can receive a message
in a communication step) with one central data bus, we use the Local Averag-
ing Dimension Exchange (LADE) policy. Generally it is better than the diffusion
method (LADF) on such a system [18]. In LADF, load balancing is done with all
neighbors, while in LADE load balancing is only done with one of the neighbors,
or one at a time with the new load-balance successively considered.
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Our approach is to use a sender-induced rather than a receiver-induced load
distribution strategy. An advantage of the receiver-induced approach is that
tasks are only distributed on demand which potentially reduces the overall cost
of distribution. A disadvantage, however, is that processors may sit idle to wait
for tasks to be available which may waste computing cycles. We briefly tried some
receiver-induced approaches for the lock-based schemes, but they were inferior
to the sender-induced, and thus we decided to try the sender-induced policy first
for the lock-free schemes. Cilk-5 [3] is a parallel development system that uses
the other approach (see section 6).

A high degree of connections between processors in the virtual topology en-
ables better load-balancing. Since the communication is the bottle-neck and the
computation cost at each node in the tree is low, we need a simple/fast load-
balancing scheme. Only sending newly generated jobs to each receiver and to the
local queue in a round-robin fashion, was found to be insufficient to maintain
good load-balance. We needed to consider the load difference between proces-
sors, which costs computation and communication. If a processor has more jobs
than the receiver, it sends half the difference of the load. However, empirically
we found that it was enough to even out the load balance this way with only one
of the receivers and send blindly to the rest, to get similar load balance as the
global task queue. We chose to consider the load balance difference only with
the successor in the main ring. If n jobs are transferred in this step, we wait at
least n traversed nodes before trying to load-balance carefully again, since load
balancing is expensive and the successor probably will have work to do at least
the corresponding time. In the final algorithm, after every processed node we
distribute the newly generated jobs to the local-queue and the receiving proces-
sors in a round-robin fashion. If n = 0, where n is a variable set to the number
of tasks sent to the successor last time and decreased after every traversed node,
we also do the extra load-balancing with the successor. Every time we distribute
jobs to the successor we may increment n.

If we have a topology with many connections for each processor, we poten-
tially risk lowering cache-locality when we spread the jobs over many queues.
In the shared memory system, the jobs are physically sent when the receiving
processor reads its in-queues and the corresponding cache-blocks are transferred
from the sending processor to the receiving. In order to minimize the number of
cache-block reads, the receiving processor selects one in-queue for reading until
it is empty, before selecting a new in-queue. We could also avoid using an in-
queue for reading that does not fill up an entire cache-block, if there are others
that do, but we did not implement this.

In general, a high number of connections between processors in the virtual
topology seemed to be preferred (see tables at the side of Figure 1.a-1.c).

4.2 Experimental results

For this scheme, the speedup is substantially better for the large and medium
model, with 4.3 and 3.1 times respectively. For the small model it is only 1.7, but
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this model provides poor speedup for all the schemes. Load balance is similar to
what that of the other schemes.

It was found that the time for just traversing the trees in parallel, not do-
ing any VFC-computations, was fairly constant independently of the number of
processors used. This means that we can decompose the total execution time as:

timetotal = timetraversal + timeV FC (1)

where timeV FC is the only term that enjoys speedup from the parallelism in
VFC. This speedup, however, is basically optimal with respect to the possible
parallelism provided by the traversed paths.

Depending on which parts of the scene-graph that are visible in a frame,
the maximum of possible parallelism can vary, since there is a limited amount of
parallel paths in the traversed graph. We found that if the whole tree is traversed,
with each child selected for continued traversal disregarding the result of the
VFC computations, the speedup peaks at 5.1, which is slightly higher than the
average speedup. This indicates that the speedup is limited by the appearance
of the scene graph. Since it represents a bounding box hierarchy, we cannot
rearrange the graph without caution.

We also tested the Lock-Free scheme on a 2-processor PentiumIII 500MHz,
with 256 Mb RAM, with a simpler load distribution policy that just keeps every
2:nd child and distributes the other to the other processor. The topology is
a virtual ring of 2 nodes. With this approach we got 1.7, 1.5 and 1.3 times
speedup for the large-, medium- and small model respectively. The load balance
was practically perfect.

5 Collision Detection

Since the lock-free scheme was pretty successful in parallelizing VFC we tested it
on hierarchical collision detection to see how it performs on this similar type of
problem. We kept the same load balancing strategy. Collision detection is known
as non-trivial to parallelize [14].

To find collision between two objects, their bounding box hierarchies are
tested against each other for overlap. If any of the leaves between the two trees
intersect, the objects are considered colliding. The algorithm starts with the root
boxes of both trees. If intersection occurs, the algorithm continues recursively
by testing the smallest of the two boxes (or the one that is not a leaf) against
the children of the larger box respectively. If both boxes are leaves, a collision is
found and the algorithm terminates. In this way a virtual graph is traversed.

A hierarchical AABB-tree of a small industry-robot with 102 nodes and a
tree-depth of 11, was tested for intersection against the large model (a car fac-
tory). The robot was spatially placed such that the algorithm is forced to traverse
deep down in both trees to verify that collision (in this case) not occurs.

Testing two AABBs against each other for overlap is extremely fast and basi-
cally consists of just 6 compares, while testing two arbitrarily oriented bounding
boxes (OBBs) costs about 200 flops in average [4]. OBBs, however, can be more
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tight fitting and are thus often preferred. We wanted to test both cases. In
the OBB-case, for simplicity, the AABBs were treated as OBBs in the overlap-
computation with the orientation incidentally coinciding with the x,y,x-axes.

We found that for collision detection as well as for VFC, the traversal time
without collision computations was nearly independent of the number of pro-
cessors used. Consequently, since AABBs are very fast to test for overlap, we
only got very limited speedup - 30% with 4 processors. For OBBs, however, the
speedup peaks at 3.2 as can be seen in Figure 1.d).

6 Related Work and Discussion

Several older parallel branch-and-bound techniques [2, 5, 7, 9, 10, 19] and depth-
first search algorithms like backtracking [11–13] seem at a first glance to be
applicable to the applications we have at hand. Our results indicate, however,
that the load distribution strategies in these algorithms do not apply very well
to tree traversals found in VFC and collision detection because of the low com-
putation cost per node compared to the distribution cost.

In this paper we have focused on sender-induced schemes since this seemed
most promising for the lock-based approaches. However, Cilk-5, which has been
available for a short time, uses task-stealing in a way that looks promising. It
requires the use of locks, but there are convincing arguments that they seldom
will cause contention or significantly increased communication. Two of the main
features of Cilk-5 is 1) that it compiles two versions of the code: one serial and
one parallel, and can switch in run-time when load-balancing requests are issued,
and 2) that load-balancing can occur efficiently through queues similar to those
we use in our lock-free schemes.

Other related work that aims at reducing the orchestration overhead in tree
traversals includes using prefetching techniques to tolerate communication la-
tencies in the system. Karlsson et al. [6] studied how annotation of prefetch
instructions can speed up tree traversals to tolerate the latency of cache misses.
They especially considered the class of tree traversals where the traversal path
is not known beforehand and obtained encouraging results. While they studied
only sequential tree traversals it would be interesting to study the potential for
parallel tree traversals.

7 Conclusion

In this paper we have presented a comparative evaluation of load distribu-
tion strategies based on a real application case study including two important
computer graphics algorithms used in virtual reality. The low computation-to-
communication ratio in these algorithms make load distribution particularly
challenging. Based on some minor – but important – adaptations of well-known
load distribution schemes in the literature, we managed to demonstrate rea-
sonable speedups on a symmetric multiprocessor. Since multiprocessors of this
scale are now being used in personal computers, and are seriously considered to
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Fig. 1. (a-c) Speedup with 1 to 13 processors for the large, medium and small model.
For the lock-free scheme, the figures are for the best topology, with the number of
connections (in-queues) per processor marked at the side. (d) Speedup for collision
detection with an OBB-algorithm with the lock-free scheme. The jaggedness comes
from the difference in topology and number of optimal connections. (e-g) Corresponding
execution time for the algorithms. (h) Virtual topology for 6 processors where each
processor distributes load to 3 other processors. Note that depending on the camera
position, a larger tree can be faster to traverse than a smaller. This is the case for the
small vs. medium model, where the small offers more immerse navigation.
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migrate to the chip-level, our results are indeed encouraging. They show that
multiprocessors can be exploited for an emerging class of real-time computer
graphics applications.
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