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Abstract. Ambient occlusion is used widely for improving the realisfir@al-time lighting
simulations. We present a new method for precomputed ambeatusion, where we store
and retrieve unprocessed ambient occlusion values in a 8D Qur method is very easy to
implement, has a reasonable memory cost, and the rendériegg independent from the
complexity of the occluder or the receiving scene. This make algorithm highly suitable
for games and other real-time applications.

1. Introduction

An “ambient term” is commonly used in illumination simulatis to account for the
light that remains after secondary reflections. This anthienm illuminates areas
of the scene that would not otherwise receive any light. Ist finplementations,
ambient light was an uniform light, illuminating all poings all objects, regardless
of their shape or position, flattening their features, givimem an unnatural look.
To counter this fect,ambient occlusion was introduced by [Zhukov et al. 98]. By
computing theaccessibility to ambient lighting, and using it to modulate tHéeets,
they achieve a much better look. Ambient occlusion is widedgd in special ef-
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Figure 1. Example of contact shadows. This scene runs at 800 fps.

fects for motion pictures [Landis 02] and for illuminatiamsilations in commercial
software [Christensen 02, Christensen 03].

Ambient occlusion also results in objects haviomgtact shadows:. for two close
objects, ambient occlusion alone creates a shadow of oeetadnjito the other (see
Figure 1).

For ofline rendering, ambient occlusion is usually precomputexhah vertex of
the model, and stored either as vertex information or intexéute. For real-time
rendering, recent work [Zhou et al. 05, Kontkanen and Laifpstiggest storing
ambient occlusion as a field around moving objects, and gtioeit onto the scene
as the object moves. These methods provide important visies for the spatial
position of the moving objects, in real-time, at the expeofsextra storage. They
pre-process ambient occlusion, expressing it as a funofispace whose parameters
are stored in a 2D texture wrapped around the object. In astitour method stores
theseun-processed, in a 3D grid attached to the object. The benefits are numerous

¢ faster run-time computations, and very low impact on the GRith a com-
putational cost being as low as 5 fragment shader instmgper pixel,

e very easy to implement, just by rendering one cube per shadsting object,

e shorter pre-computation time,

e inter-object occlusion has high quality even for receivimints inside the oc-
cluding object’s convex hull,

e handles both self-occlusion and inter-object occlusiothensame rendering
pass.

e easy to combine with indirect lighting stored in environme@ps.

The obvious drawback should be the memory cost, since ouradstmemory
costs are ir0(n®), instead ofO(n?). But since ambient occlusion is a low frequency
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phenomenon, in only needs a low resolution sampling. In fKamen and Laine 05],
as in our own work, a texture size nf= 32 is suficient. And since we are storing
a single component per texel, instead of several functicefficeents, the overall
memory cost of our method is comparable to theirs. For atexdize of 32 pixels,
[Kontkanen and Laine 05] report a memory cost of 100 Kb folheamique moving
object. For the same resolution, the memory cost of our @fguoris of 32 Kb if we
only store ambient occlusion, and of 128 Kb if we also stoeedherage occluded
direction.

2. Background

Ambient occlusion was first introduced by [Zhukov et al. 9&h modern imple-
mentations [Landis 02, Christensen 02, Christensen 03y Rhd Green 04, Bun-
nell 05, Kontkanen and Laine 05], it is defined as the perggntd ambient light
blocked by geometry close to poipt

ao(p) = - [ (L-Vi)in- wldo )

Occlusion values are weighted by the cosine of the anglesodticluded direction
with the normaln: occluders that are closer to the directioeontribute more, and
occluders closer to the horizon contribute less, corredimgrto the importance of
each direction in terms of received lighting. Ambient ositin is computed as a
percentage, with values between 0 and 1, hencé th@rmalization factor.

Most recent algorithms [Bunnell 05, Kontkanen and Lainedlsp store the aver-
age occluded direction, using it to modulate the lightirepehding on the normal at
the receiving point and the environment.

[Greger et al. 98] also used a regular grid to store illumaravalues, but their
grid was attached to the scene, not to the object. [Sloan 82hhttached radiance
transfer values to a moving object, using it to recomputeefterts of the moving
object on the environment.

3. Algorithm
3.1. Description of thealgorithm

Our algorithm inserts itself in a classical framework whetieer shading informa-
tion, such as direct lighting, shadows, etc. are computedparate rendering passes.
One rendering pass will be used to compute ambient lightiombined with ambi-
ent occlusion. We assume we have a solid object moving tiraugD scene, and
we want to compute ambient occlusion caused by this object.
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Figure 2. We construct a grid around the object. At the center of eaahaement, we
compute a spherical occlusion sample. At runtime, thisrinttion is used to apply shadows
on receiving objects.

Our algorithm can either be used with classical shading,ithr deferred shading.
In the latter case, the world-space position and the norinall oendered pixels is
readily available. In the former, this information must lbered in a texture, using
the information from previous rendering passes.

Precomputation: The percentage of occlusion from the object is precomputed a
every point of a 3D grid surrounding the object (see Figure)is grid is
stored as a 3D texture, linked to the object.

Runtime: ¢ render world space position and normals of all shadow receiw
the scene, including occluders.

e For each occluder:
1. render the back faces of the occluder’s grid (depthrtgss dis-
abled).
2. for every pixel accessed, execute a fragment program:
(a) retrieve the world space position of the pixel.
(b) convert this world space position to voxel position ie trid,
passed as a 3D texture
(c) retrieve ambient occlusion value in the grid, usingdinmter-
polation.
3. Ambient occlusion values from each occluder are blended in the
frame bufer using multiplicative blending with % a.

The entire computation is thus done in just one extra rendgrass. We used the
back faces of the occluder’s grid, because it is unlikely thay are clipped by the
far clipping plane; using the front faces could result infacts if they are clipped by
the front clipping plane.
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3.2. Shading surfaces with ambient occlusion alone

The ambient occlusion values we have stored correspone tocitiusion caused by
the occluder itself:

()= 5~ [ (1-V(e)do @

that is, the percentage of the entire sphere of directioatsishoccluded. When we
apply these occlusion values at a receiving surface, dueindering, the occlusion
only happens over a half-space, since the receiver itseligiiding the other half-
space. To account for this occlusion, we scale the occlugidue by a factor 2.
This shading does not take into account the position of tlvéuder with respect to
the normal of the receiver. It is an approximation, but wenfbit performs quite
well in several cases (see Figure 1). It is also extremelgple both memory and
computation time, as the value extracted from the 3D texsuused directly.
We use the following fragment program (using Cg notation):

float4 pPuorng = texXRECT (PositionTex, Pscreen

float3 Poria = mul (MwondtoGrids  Pworld)
out.color.w = 1 - tex3D(GridTexture, pPyid)

There are two important drawbacks with this simple appration: first, the in-
fluence of the occluder is also visible where it should nathsas a character moving
on the other side of a wall; second, handling self-occlusémuires a specific treat-
ment, with a second pass and a separate grid of values.

3.3.  Shading surfaces with ambient occlusion and average occluded direction

For more accurate ambient occlusioffieets, we also store the average occluded
direction. That is equivalent to storing the set of occludedctions as a cone (see
Figure 3). The cone is defined by its axid) @nd the percentage of occlusian
(linked to its aperture angle). Axis and percentage of occlusion are precomputed
for all moving objects and stored on the sample points of the, gn an RGBA
texture, with the cone axi$stored in the RGB-channels and occlusion valsered

in the A-channel.

3.3.1. Accounting for surface normal of receiver

In order to compute the percentage of ambient occlusionechlng the moving oc-
cluder, we clip the cone of occluded directions by the tahgerface to the receiver
(see Figure 3(b)). The percentage fieetively occluded directions is a function of
two parameters: the angle between the direction of the coddle normal at the
receiving surfacef), and the percentage of occlusion of the come (We precom-
pute this percentage and store it in a lookup taklg. The lookup table also stores
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(a) The cone is defined by its directiah(b) The cone is clipped by the tangent plane to the
and its aperturer. receiver to give the ambient occlusion value.

Figure 3. Ambient occlusion is stored as a cone.

]

' ] |
Figure 4. Ambient occlusion computed with our algorithm that acceufr the surface
normal of the receiver and the direction of occlusion.

the dfect of the diftuse BRDF (the cosine of the angle between the normal and the
direction). For simplicity, we access the lookup table gsinss.
We now use the following fragment program:

float4 pPuorng = texRECT(PositionTex, Pscreen

float3 pyig = mul (MwordTorid: Pworid)
float4 {dyig.a) = tex3D(GridTexture, Pyig)

float3 dug = mul (Megrigroworids Agria)

float3 n = texRECT(NormalTex, Pereen)
float cosB = dot (Gworla,N)

float A0 = texRECT(Tgp, float2(a cosB))
out.color.w = 1-A0

This code translates to 16 shader assembler instructiomgire=4 and 5 were
rendered using this method, with a grid resolution of.32

Compared to storing only ambient occlusion values, usiegatrerage occluded
direction has the advantage that results are more accurdige#f-occlusion is natu-
rally treated.
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(@) (b) (c) Ground Truth

Figure 5. Ambient occlusion values, accounting for the normal of tbeleder and the direc-
tion of occlusion (135 to 175 fps).

p
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(a) Gouraud shading (b) Blending occlusion from (c) Ground truth
multiple occluders
Figure 6. Checking the accuracy of our blending method: comparisofnabient Occlusion
values computed with ground truth.

3.3.2. Combining occlusion from several occluders

When we have several moving occluders in the scene, we cenopalusion values
from each moving occluder, and merge these values togéthereasiest method to
do this is to use OpenGL blending operation: in a single renggass, we render
the occlusion values for all the moving occluders. The asiolu value computed
for the current occluder is blended to the coloffby multiplicatively modulating it
with (1 - a).

[Kontkanen and Laine 05] show that modulating with-(%;), for all occluders,
is statistically the best guess. Our experiences also shatittgives very satisfying
results for almost all scenes. This method has the addedh&dy@of being very
simple to implement: the combined occlusion value for onelpis independent
from the order in which the occluders are treated for thigpiso we only need one
rendering pass.

Each occluder is rendered sequentially, using our ambeatiision fragment pro-
gram, into an occlusion liier. The cone axes are stored in the RGB channels and
the occlusion value is stored in the alpha channel. Ocalugtues are blended mul-
tiplicatively and cone axes are blended additively, weaghty their respective solid
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angle:

ar (1-an)(1-as)

dR = aAdA+aBdB

This is achieved usinglBlendFuncSepar atein OpenGL. See Figures 5 and 6 for a
comparison of blending values from several occluders viighground truth values,
computed with distributed ray-tracing: The two picturekibit the same important
features, although our method is noticeably lighter (sse Skction 4.3).

We have designed a more advanced method for blending thesimes between
two cones, taking into account the respective positionsefcones and their aper-
ture (see the supplemental materials), but our experinghuw that the technique
described here generally gives similar results, runsifaste is easier to implement.

3.3.3. lllumination from an environment map

The occlusion cones can also be used to approximate the ingdighting from

an environment map, as suggested by [Pharr and Green 04]edébr pixel, we

first compute the lighting due to the environment map, udiegsurface normal for

Lambertian surfaces, or using the reflected cone for gldsg@cts. Then, we subtract

from this lighting the illumination corresponding to thengoof occluded directions.
We only need to change the last step of blending the colfieband occlusion

buffer. Each shadow receiving pixel is rendered using the fatigwode:

Pseupo cobg

1 Read condl, a from occlusion bfer

2 Readnormal from normal bufer

3 Compute mipmap level from cone angle

4 A =EnvMap(, ). i.e., lookup occluded light within the cone

5 B = AmbientLightingfiormal). i.e., lookup the incoming light due to the envi-

ronment map.

6 return B-A.

In order to use large filter sizes, we used lat-long maps. dtse possible to use
cube maps with a specific tool for mip-mapping across tex¢aens [Scheuermann
and Isidoro 06].

3.4. Detailsof thealgorithm

3.4.1. Spatial extent of the grid

An important parameter of our algorithm is theatial extent of the grid. If the grid
is too large, we run the risk of under-sampling the variaiohambient occlusion,
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(b) (c) Robot parts
Figure 7. Using ambient occlusion with environment lighting. Thesages are rendered in

roughly 85 fps.
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(a) Our notations (b) Cubic object (c) Elongated object.
Notice the grid ighinner

along the longer axis

Figure 8. Our notations for computing the optimal grid extent basetherbounding-box of
the occluder (a), and optimal grid extents computed with0.1 (b-c).

otherwise we have to increase the resolution, thus ingrgalse memory cost. If the
grid is too small, we would miss some of th&exts of ambient occlusion.

To compute the optimal spatial extent of the grid, we use thending box of the
occluder. This bounding box has three natural axes, witledsion 2; on each axis,
and a projected area 8f perpendicular to axis(see Figure 8(a)).

Along thei axis, the ambient occlusion of the bounding box is approsetya

L1 A
& dmd-n)y

®3)

whered is the distance to the center of the bounding box.
If we decide to neglect occlusion values smaller tkawe find that the spatial
extente of the grid along axi$ should be:

&="ri+>— (4)

We takee = 0.1, giving an extent o ~ 3r; for a cubic bounding box (see
Figure 8(b)). For elongated objects, equation 4 gives amgelted shape to the grid,
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(a) Using raw values, discontinuities can (b) After re-scaling, ambient occlusion
appear blends continuously

Figure 9. We need to re-scale occlusion values inside the grid tadaxisible artifacts.

following the shape of the object, but with the grid beingtier on the longer axes
of the object (see Figure 8(c)).

We use arelatively large epsilon valuel() resulting in a small spatial extent. As
a consequence, there can be visible discontinuities ondahiedary of the grid (see
Figure 9(a)). To remove these discontinuities, we re-sitedevalues inside the grid
so that the largest value at the boundary is 0. If the largasewvon the boundary of
the grid isVyy, each cell of the grid is rescaled so that its new values:

volV if V>03
~| 03 if V<03

0.

The dfect of this scaling can be seen on Figure 9(b). The overadi@sd ambient
occlusion is kept, while the contact shadow ends continyarsthe border of the
grid.

3.4.2. Voxels inside the occluder

Sampling points that are inside the occluder will have cgiolu values of 1, ex-
pressing that they are completely hidden. As we interpolatees on the grid, a
point located on the boundary of the occluder will often haea-correct values.
To counter this problem, we modify the values inside theuabet (which are never
used) so that the interpolated values on the surface aregt@xtas possible.

A simple but quite &ective automatic way to do this is: for all grid cells where
occlusion value is 1, replace this value by an average ofuh@snding grid cells
that have an occlusion value smaller than 1. This algorithas wsed on all the
figures in this paper.
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4. Results

All timings and figures in this paper were computed on a Pemélyrunning at 2.8
GHz, with a NVidia GeForce 7800GTX, using a grid resolutié32?.

4.1. Timing results

The strongest point of our method is its performance: addimdpient occlusion
to any scene increases the rendering timexb§.9 ms for each occluder. In our
experiments, this value stayed the same regardless of thplerity of the scene or
of the occluder. We can render scenes with 4Bedént occluders at nearly 30 fps.

The cost of the method depends on the number of pixels cobgréak occluder’s
grid, so the cost of our algorithm decreases nicely for abis that are far from the
viewpoint, providing an automatic level-of-detail.

The value of 0.9 ms corresponds to the typical situationbldsn all the pictures
in this paper: the occluder has a reasonable size, neitbesrt@ll nor too large,
compared to the size of the viewport.

4.2. Memory costs

Precomputed values for ambient occlusion are stored in &8ire, with a memory
cost ofO(n%) bytes. With a grid size of 32, the value we have used in alltests,
the memory cost for ambient occlusion values is 32 Kb per ebharrhus, storing
just the ambient occlusion value gives a memory cost of 32A¢dling the average
occluded direction requires three extra channels, brintlia complete memory cost
to 128 Kb.

4.3. Comparison with Ground Truth

Figure 5(b)-5(c) and 6(b)-6(c) show a side-by-side congmaribetween our algo-
rithm and ground truth. Our algorithm has computed all tHeviant features of
ambient occlusion, including proximity shadows. The maifiedence is that our
algorithm tends to underestimate ambient occlusion.

There are several reasons for thiffelience: we have limited the spatial influence
of each occluder, by using a small grid, and the blendinggss¢see Section 3.3.2)
can underestimate the combined occlusion value of sevecalaers.

While it would be possible to improve the accuracy of our &lhon (using a
more accurate blending method and a larger grid), we poihthat ambient oc-
clusion methods are approximative by nature. What is ingmbris to show all the
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relevant features: proximity shadows and darkening ofaibj@ contact, something
our algorithm does.
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Web Infor mation:

Two videos, recorded in real-time and demonstrating tiieces of pre-computed ambient
occlusion on animated scenes are available at:

http://www.ce.chalmers.se/ uffe/ani.mov
http://www.ce.chalmers.se/ uffe/cubedance.mov

A technique for better accuracy in blending the occlusiemftwo cones is described in a
supplemental material.
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