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Abstract. Ambient occlusion is used widely for improving the realism of real-time lighting
simulations. We present a new method for precomputed ambient occlusion, where we store
and retrieve unprocessed ambient occlusion values in a 3D grid. Our method is very easy to
implement, has a reasonable memory cost, and the rendering time is independent from the
complexity of the occluder or the receiving scene. This makes the algorithm highly suitable
for games and other real-time applications.

1. Introduction

An “ambient term” is commonly used in illumination simulations to account for the
light that remains after secondary reflections. This ambient term illuminates areas
of the scene that would not otherwise receive any light. In first implementations,
ambient light was an uniform light, illuminating all pointson all objects, regardless
of their shape or position, flattening their features, giving them an unnatural look.

To counter this effect,ambient occlusion was introduced by [Zhukov et al. 98]. By
computing theaccessibility to ambient lighting, and using it to modulate the effects,
they achieve a much better look. Ambient occlusion is widelyused in special ef-
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2 journal of graphics tools

Figure 1. Example of contact shadows. This scene runs at 800 fps.

fects for motion pictures [Landis 02] and for illumination simulations in commercial
software [Christensen 02, Christensen 03].

Ambient occlusion also results in objects havingcontact shadows: for two close
objects, ambient occlusion alone creates a shadow of one object onto the other (see
Figure 1).

For offline rendering, ambient occlusion is usually precomputed ateach vertex of
the model, and stored either as vertex information or into a texture. For real-time
rendering, recent work [Zhou et al. 05, Kontkanen and Laine 05] suggest storing
ambient occlusion as a field around moving objects, and projecting it onto the scene
as the object moves. These methods provide important visualcues for the spatial
position of the moving objects, in real-time, at the expenseof extra storage. They
pre-process ambient occlusion, expressing it as a functionof space whose parameters
are stored in a 2D texture wrapped around the object. In contrast, our method stores
theseun-processed, in a 3D grid attached to the object. The benefits are numerous:

• faster run-time computations, and very low impact on the GPU, with a com-
putational cost being as low as 5 fragment shader instructions per pixel,

• very easy to implement, just by rendering one cube per shadowcasting object,

• shorter pre-computation time,

• inter-object occlusion has high quality even for receivingpoints inside the oc-
cluding object’s convex hull,

• handles both self-occlusion and inter-object occlusion inthe same rendering
pass.

• easy to combine with indirect lighting stored in environment maps.

The obvious drawback should be the memory cost, since our method’s memory
costs are inO(n3), instead ofO(n2). But since ambient occlusion is a low frequency



i

i

“jgt” — 2006/10/27 — 15:33 — page 3 — #3
i

i

i

i

i

i

Malmer et al.: Fast Precomputed Ambient Occlusion 3

phenomenon, in only needs a low resolution sampling. In [Kontkanen and Laine 05],
as in our own work, a texture size ofn = 32 is sufficient. And since we are storing
a single component per texel, instead of several function coefficients, the overall
memory cost of our method is comparable to theirs. For a texture size of 32 pixels,
[Kontkanen and Laine 05] report a memory cost of 100 Kb for each unique moving
object. For the same resolution, the memory cost of our algorithm is of 32 Kb if we
only store ambient occlusion, and of 128 Kb if we also store the average occluded
direction.

2. Background

Ambient occlusion was first introduced by [Zhukov et al. 98].In modern imple-
mentations [Landis 02, Christensen 02, Christensen 03, Pharr and Green 04, Bun-
nell 05, Kontkanen and Laine 05], it is defined as the percentage of ambient light
blocked by geometry close to pointp:

ao(p) =
1
π

∫

Ω

(1− V(ω))⌊n · ω⌋ dω (1)

Occlusion values are weighted by the cosine of the angle of the occluded direction
with the normaln: occluders that are closer to the directionn contribute more, and
occluders closer to the horizon contribute less, corresponding to the importance of
each direction in terms of received lighting. Ambient occlusion is computed as a
percentage, with values between 0 and 1, hence the1

π
normalization factor.

Most recent algorithms [Bunnell 05, Kontkanen and Laine 05]also store the aver-
age occluded direction, using it to modulate the lighting, depending on the normal at
the receiving point and the environment.

[Greger et al. 98] also used a regular grid to store illumination values, but their
grid was attached to the scene, not to the object. [Sloan et al. 02] attached radiance
transfer values to a moving object, using it to recompute theeffects of the moving
object on the environment.

3. Algorithm

3.1. Description of the algorithm

Our algorithm inserts itself in a classical framework whereother shading informa-
tion, such as direct lighting, shadows, etc. are computed inseparate rendering passes.
One rendering pass will be used to compute ambient lighting,combined with ambi-
ent occlusion. We assume we have a solid object moving through a 3D scene, and
we want to compute ambient occlusion caused by this object.
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Figure 2. We construct a grid around the object. At the center of each grid element, we
compute a spherical occlusion sample. At runtime, this information is used to apply shadows
on receiving objects.

Our algorithm can either be used with classical shading, or with deferred shading.
In the latter case, the world-space position and the normal of all rendered pixels is
readily available. In the former, this information must be stored in a texture, using
the information from previous rendering passes.

Precomputation: The percentage of occlusion from the object is precomputed at
every point of a 3D grid surrounding the object (see Figure 2). This grid is
stored as a 3D texture, linked to the object.

Runtime: • render world space position and normals of all shadow receivers in
the scene, including occluders.

• For each occluder:

1. render the back faces of the occluder’s grid (depth-testing is dis-
abled).

2. for every pixel accessed, execute a fragment program:

(a) retrieve the world space position of the pixel.

(b) convert this world space position to voxel position in the grid,
passed as a 3D texture

(c) retrieve ambient occlusion value in the grid, using linear inter-
polation.

3. Ambient occlusion valuesa from each occluder are blended in the
frame buffer using multiplicative blending with 1− a.

The entire computation is thus done in just one extra rendering pass. We used the
back faces of the occluder’s grid, because it is unlikely that they are clipped by the
far clipping plane; using the front faces could result in artifacts if they are clipped by
the front clipping plane.
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3.2. Shading surfaces with ambient occlusion alone

The ambient occlusion values we have stored correspond to the occlusion caused by
the occluder itself:

ao′(p) =
1

4π

∫

Ω

(1− V(ω)) dω (2)

that is, the percentage of the entire sphere of directions that is occluded. When we
apply these occlusion values at a receiving surface, duringrendering, the occlusion
only happens over a half-space, since the receiver itself isoccluding the other half-
space. To account for this occlusion, we scale the occlusionvalue by a factor 2.
This shading does not take into account the position of the occluder with respect to
the normal of the receiver. It is an approximation, but we found it performs quite
well in several cases (see Figure 1). It is also extremely cheap in both memory and
computation time, as the value extracted from the 3D textureis used directly.

We use the following fragment program (using Cg notation):

1 float4 pworld = texRECT(PositionTex , pscreen)

2 float3 pgrid = mul(MWorldToGrid, pworld)

3 out.color.w = 1 - tex3D(GridTexture , pgrid)

There are two important drawbacks with this simple approximation: first, the in-
fluence of the occluder is also visible where it should not, such as a character moving
on the other side of a wall; second, handling self-occlusionrequires a specific treat-
ment, with a second pass and a separate grid of values.

3.3. Shading surfaces with ambient occlusion and average occluded direction

For more accurate ambient occlusion effects, we also store the average occluded
direction. That is equivalent to storing the set of occludeddirections as a cone (see
Figure 3). The cone is defined by its axis (d) and the percentage of occlusiona
(linked to its aperture angleα). Axis and percentage of occlusion are precomputed
for all moving objects and stored on the sample points of the grid, in an RGBA
texture, with the cone axisd stored in the RGB-channels and occlusion valuea stored
in the A-channel.

3.3.1. Accounting for surface normal of receiver

In order to compute the percentage of ambient occlusion caused by the moving oc-
cluder, we clip the cone of occluded directions by the tangent surface to the receiver
(see Figure 3(b)). The percentage of effectively occluded directions is a function of
two parameters: the angle between the direction of the cone and the normal at the
receiving surface (β), and the percentage of occlusion of the cone (a). We precom-
pute this percentage and store it in a lookup tableTclip. The lookup table also stores
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α

d

(a) The cone is defined by its directiond
and its apertureα.

α

d

n

β

(b) The cone is clipped by the tangent plane to the
receiver to give the ambient occlusion value.

Figure 3. Ambient occlusion is stored as a cone.

Figure 4. Ambient occlusion computed with our algorithm that accounts for the surface
normal of the receiver and the direction of occlusion.

the effect of the diffuse BRDF (the cosine of the angle between the normal and the
direction). For simplicity, we access the lookup table using cosβ.

We now use the following fragment program:

1 float4 pworld = texRECT(PositionTex , pscreen)

2 float3 pgrid = mul(MWorldToGrid, pworld)

3 float4 {dgrid, a} = tex3D(GridTexture , pgrid)

4 float3 dworld = mul(MGridToWorld, dgrid)

5 float3 n = texRECT(NormalTex, pscreen)

6 float cosβ = dot(dworld,n)
7 float AO = texRECT(Tclip, float2(a, cosβ))
8 out.color.w = 1-AO

This code translates to 16 shader assembler instructions. Figure 4 and 5 were
rendered using this method, with a grid resolution of 323.

Compared to storing only ambient occlusion values, using the average occluded
direction has the advantage that results are more accurate and self-occlusion is natu-
rally treated.
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(a) (b) (c) Ground Truth

Figure 5. Ambient occlusion values, accounting for the normal of the occluder and the direc-
tion of occlusion (135 to 175 fps).

(a) Gouraud shading (b) Blending occlusion from
multiple occluders

(c) Ground truth

Figure 6. Checking the accuracy of our blending method: comparison ofAmbient Occlusion
values computed with ground truth.

3.3.2. Combining occlusion from several occluders

When we have several moving occluders in the scene, we compute occlusion values
from each moving occluder, and merge these values together.The easiest method to
do this is to use OpenGL blending operation: in a single rendering pass, we render
the occlusion values for all the moving occluders. The occlusion value computed
for the current occluder is blended to the color buffer, multiplicatively modulating it
with (1− a).

[Kontkanen and Laine 05] show that modulating with (1− ai), for all occludersi,
is statistically the best guess. Our experiences also show that it gives very satisfying
results for almost all scenes. This method has the added advantage of being very
simple to implement: the combined occlusion value for one pixel is independent
from the order in which the occluders are treated for this pixel, so we only need one
rendering pass.

Each occluder is rendered sequentially, using our ambient occlusion fragment pro-
gram, into an occlusion buffer. The cone axes are stored in the RGB channels and
the occlusion value is stored in the alpha channel. Occlusion values are blended mul-
tiplicatively and cone axes are blended additively, weighted by their respective solid
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angle:

αR = (1− αA)(1− αB)

dR = αA dA + αBdB

This is achieved usingglBlendFuncSeparate in OpenGL. See Figures 5 and 6 for a
comparison of blending values from several occluders with the ground truth values,
computed with distributed ray-tracing: The two pictures exhibit the same important
features, although our method is noticeably lighter (see also Section 4.3).

We have designed a more advanced method for blending the occlusions between
two cones, taking into account the respective positions of the cones and their aper-
ture (see the supplemental materials), but our experimentsshow that the technique
described here generally gives similar results, runs faster and is easier to implement.

3.3.3. Illumination from an environment map

The occlusion cones can also be used to approximate the incoming lighting from
an environment map, as suggested by [Pharr and Green 04]. Foreach pixel, we
first compute the lighting due to the environment map, using the surface normal for
Lambertian surfaces, or using the reflected cone for glossy objects. Then, we subtract
from this lighting the illumination corresponding to the cone of occluded directions.

We only need to change the last step of blending the color buffer and occlusion
buffer. Each shadow receiving pixel is rendered using the following code:
P 
1 Read coned, α from occlusion buffer
2 Readnormal from normal buffer
3 Compute mipmap level from cone angleα
4 A = EnvMap(d, α). i.e., lookup occluded light within the cone
5 B = AmbientLighting(normal). i.e., lookup the incoming light due to the envi-
ronment map.
6 return B-A.

In order to use large filter sizes, we used lat-long maps. It isalso possible to use
cube maps with a specific tool for mip-mapping across textureseams [Scheuermann
and Isidoro 06].

3.4. Details of the algorithm

3.4.1. Spatial extent of the grid

An important parameter of our algorithm is thespatial extent of the grid. If the grid
is too large, we run the risk of under-sampling the variations of ambient occlusion,
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(a) (b) (c) Robot parts

Figure 7. Using ambient occlusion with environment lighting. These images are rendered in
roughly 85 fps.

ri

Occluder

ei

Ai

Grid

(a) Our notations (b) Cubic object (c) Elongated object.
Notice the grid isthinner
along the longer axis

Figure 8. Our notations for computing the optimal grid extent based onthe bounding-box of
the occluder (a), and optimal grid extents computed withǫ = 0.1 (b-c).

otherwise we have to increase the resolution, thus increasing the memory cost. If the
grid is too small, we would miss some of the effects of ambient occlusion.

To compute the optimal spatial extent of the grid, we use the bounding box of the
occluder. This bounding box has three natural axes, with dimension 2ri on each axis,
and a projected area ofAi perpendicular to axisi (see Figure 8(a)).

Along thei axis, the ambient occlusion of the bounding box is approximately:

ai ≈
1

4π
Ai

(d − ri)2
(3)

whered is the distance to the center of the bounding box.
If we decide to neglect occlusion values smaller thanǫ, we find that the spatial

extentei of the grid along axisi should be:

ei = ri +

√

Ai

4πǫ
(4)

We takeǫ = 0.1, giving an extent ofei ≈ 3ri for a cubic bounding box (see
Figure 8(b)). For elongated objects, equation 4 gives an elongated shape to the grid,
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(a) Using raw values, discontinuities can
appear

(b) After re-scaling, ambient occlusion
blends continuously

Figure 9. We need to re-scale occlusion values inside the grid to avoid visible artifacts.

following the shape of the object, but with the grid being thinner on the longer axes
of the object (see Figure 8(c)).

We use a relatively large epsilon value (0.1), resulting in a small spatial extent. As
a consequence, there can be visible discontinuities on the boundary of the grid (see
Figure 9(a)). To remove these discontinuities, we re-scalethe values inside the grid
so that the largest value at the boundary is 0. If the largest value on the boundary of
the grid isVM, each cell of the grid is rescaled so that its new valueV ′ is:

V ′ =

{

V if V > 0.3
0.3 V−VM

0.3−VM
if V ≤ 0.3

The effect of this scaling can be seen on Figure 9(b). The overall aspect of ambient
occlusion is kept, while the contact shadow ends continuously on the border of the
grid.

3.4.2. Voxels inside the occluder

Sampling points that are inside the occluder will have occlusion values of 1, ex-
pressing that they are completely hidden. As we interpolatevalues on the grid, a
point located on the boundary of the occluder will often havenon-correct values.
To counter this problem, we modify the values inside the occluder (which are never
used) so that the interpolated values on the surface are as correct as possible.

A simple but quite effective automatic way to do this is: for all grid cells where
occlusion value is 1, replace this value by an average of the surrounding grid cells
that have an occlusion value smaller than 1. This algorithm was used on all the
figures in this paper.
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4. Results

All timings and figures in this paper were computed on a Pentium 4, running at 2.8
GHz, with a NVidia GeForce 7800GTX, using a grid resolution of 323.

4.1. Timing results

The strongest point of our method is its performance: addingambient occlusion
to any scene increases the rendering time by≈ 0.9 ms for each occluder. In our
experiments, this value stayed the same regardless of the complexity of the scene or
of the occluder. We can render scenes with 40 different occluders at nearly 30 fps.

The cost of the method depends on the number of pixels coveredby the occluder’s
grid, so the cost of our algorithm decreases nicely for occluders that are far from the
viewpoint, providing an automatic level-of-detail.

The value of 0.9 ms corresponds to the typical situation, visible in all the pictures
in this paper: the occluder has a reasonable size, neither too small nor too large,
compared to the size of the viewport.

4.2. Memory costs

Precomputed values for ambient occlusion are stored in a 3D texture, with a memory
cost ofO(n3) bytes. With a grid size of 32, the value we have used in all ourtests,
the memory cost for ambient occlusion values is 32 Kb per channel. Thus, storing
just the ambient occlusion value gives a memory cost of 32 Kb.Adding the average
occluded direction requires three extra channels, bringing the complete memory cost
to 128 Kb.

4.3. Comparison with Ground Truth

Figure 5(b)-5(c) and 6(b)-6(c) show a side-by-side comparison between our algo-
rithm and ground truth. Our algorithm has computed all the relevant features of
ambient occlusion, including proximity shadows. The main difference is that our
algorithm tends to underestimate ambient occlusion.

There are several reasons for this difference: we have limited the spatial influence
of each occluder, by using a small grid, and the blending process (see Section 3.3.2)
can underestimate the combined occlusion value of several occluders.

While it would be possible to improve the accuracy of our algorithm (using a
more accurate blending method and a larger grid), we point out that ambient oc-
clusion methods are approximative by nature. What is important is to show all the
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relevant features: proximity shadows and darkening of objects in contact, something
our algorithm does.
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Web Information:

Two videos, recorded in real-time and demonstrating the effects of pre-computed ambient
occlusion on animated scenes are available at:

http://www.ce.chalmers.se/˜uffe/ani.mov

http://www.ce.chalmers.se/˜uffe/cubedance.mov

A technique for better accuracy in blending the occlusion from two cones is described in a
supplemental material.
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