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Figure 1: Images rendered with the novel shadow algorithm. All images rendered in 1024x1024, time taken to generate shadow buffers
in parenthesis. (a) Pixel accurate hard shadows in a game scene (7.29ms, 60k triangles). (b) Alpha-textured shadow casters (13ms, 35k
triangles). (c) Colored transparent shadows. Image rendered using depth peeling of 8 layers (75.66ms, 5-19 ms per layer, 60k triangles).

Abstract

This paper presents a novel method for generating pixel-accurate
shadows from point light-sources in real-time. The new method is
able to quickly cull pixels that are not in shadow and to trivially ac-
cept large chunks of pixels thanks mainly to using the whole trian-
gle shadow volume as a primitive, instead of rendering the shadow
quads independently as in the classic Shadow-Volume algorithm.
Our CUDA implementation outperforms z-fail consistently and sur-
passes z-pass at high resolutions, although these latter two are hard-
ware accelerated, while inheriting none of the robustness issues as-
sociated with these methods. Another, perhaps even more impor-
tant property of our algorithm, is that it requires no pre-processing
or identification of silhouette edges and so robustly and efficiently
handles arbitrary triangle soups. In terms of view sample test and
set operations performed, we show that our algorithm can be an or-
der of magnitude more efficient than z-pass when rendering a game-
scene at multi-sampled HD resolutions. We go on to show that
the algorithm can be trivially modified to support textured, semi-
transparent and colored semi-transparent shadow-casters and that
it can be combined with either depth-peeling or stochastic trans-
parency to also support transparent shadow receivers. Compared
to recent alias-free shadow-map algorithms, our method has a very
small memory footprint, does not suffer from load-balancing issues,
and handles omni-directional lights without modification. It is eas-
ily incorporated into any deferred rendering pipeline and combines
many of the strengths of shadow maps and shadow volumes.
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1 Introduction

Generating accurate shadows from point light-sources for each
pixel sample remains a challenging problem for real-time appli-
cations. Despite generations of research, we have yet to see a
pixel-accurate shadow-algorithm for point lights that requires no
pre-processing, works on any arbitrary set of triangles and that runs
at stable real-time frame rates for typical game-scenes on consumer
level hardware. Traditional shadow mapping [Williams 1978] tech-
niques generate shadows from a discretized image representation
of the scene and so alias when queried for light visibility in screen
space. Real-time techniques based on irregular rasterization [Sin-
torn et al. 2008] tend to generate unbalanced workloads that fit cur-
rent GPUs poorly and consequently, frame rates are often very un-
stable. Real-time ray tracing algorithms rely heavily on geometry
pre-processing to generate efficient acceleration structures. Finally,
robust implementations of the Shadow-Volume algorithm require
pre-processing the mesh to find edge connectivity, work poorly or
not at all for polygon soups without connectivity, and have frame
rates that are all but stable as the view of a complex scene changes.
Nevertheless, the idea of directly rasterizing the volumes that rep-
resent shadows onto the view samples remains compelling. In the
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upcoming sections, we hope to convince the reader that this basic
idea is sound and that choosing the right manner of rasterization is
the key to efficiently generate shadows using shadow volumes.

Figure 2: A point lies in the shadow volume of a triangle if it lies
behind all planes CAB, DAC, BAD and BCD. To optimize culling of
tiles, let E be the eye position and test against the planes EDA and
EAB, in order to get a less conservative tile-test (see Section 3.5) .
These two planes are depicted with red dashed lines.

The basic algorithm described in this paper can be easily summa-
rized. We render the shadow volume of each triangle, see Figure 2,
onto a depth buffer hierarchy generated from the standard depth
buffer after rendering the camera view of the scene. A node in
this hierarchy is a texel at some level, containing the min and max
depths and defines a bounding box in normalized device coordi-
nates (see Section 3). To avoid confusion with traditional shadow
volumes, which represent shadows from an object, we will refer to
our single triangle shadow volumes as shadow frustums. A shadow
frustum can either intersect a node, in which case the child-nodes
must be inspected; completely envelop a node, in which case the
node and all its child-nodes are in shadow and can be flagged as
such; or the node can lie completely outside the frustum, in which
case all child-nodes can be abandoned. We have implemented this
algorithm in CUDA, where it takes the form of a hierarchical ras-
terizer operating on shadow frustum primitives. The algorithm has
many things in common with the traditional Shadow-Volume algo-
rithm, but by considering every shadow frustum separately (as op-
posed to forming the shadow volume from the silhouette edges of an
object) and by maintaining the complete frustum throughout traver-
sal (as opposed to splitting it into per-edge shadow-quads), we man-
age to elegantly steer clear of the many quirks and robustness issues
that are associated with other Shadow-Volume algorithms.

Our main contribution is an accurate and efficient algorithm for de-
termining light source visibility for all view samples which:

• works for any arbitrary triangle-soup without pre-processing.

• is demonstrated to be very efficient in the amount of work
performed per shadowed view sample.

• has a very low memory footprint.

• trivially extends to allow for textured shadow-casters.

• trivially extends to allow for semi-transparent and colored
semi-transparent shadow-casters.

• is easy to integrate into any deferred rendering pipeline.

We show that the shadow frustum–depth hierarchy traversal, as well
as interpolation of per-vertex attributes, can be done entirely in
homogeneous clip space, thereby eliminating any potential prob-
lems with near and far clip planes. Additionally, we suggest a
novel method where binary light visibility is recorded stochasti-
cally per view sample with a probability equal to the opacity of
the shadow-casting triangle. This allows us to store a single bit
of visibility information per sample in Multi-Sample Anti Alias-
ing (MSAA), Coverage-Sample Anti Aliasing (CSAA) or Super-
Sample Anti Aliasing (SSAA) rendering contexts and still get a
correct-on-average visibility result when the pixel is resolved. We

also propose a scheme to anti-alias the shadow-edges without ac-
tually using more than one depth-value per pixel in the depth-
hierarchy. This method is equivalent to PCF filtering of an infinite
resolution shadow map and like PCF filtering gives occasionally
incorrect but visually pleasing results.

2 Previous Work

For a thorough overview of real-time shadow algorithms, we refer
the reader to [Eisemann et al. 2009]. Below, we will review the
work most relevant to the algorithm presented in this paper. Al-
gorithms for rendering hard shadows in real-time can be roughly
sorted into three categories:

Shadow mapping Today shadow mapping [Williams 1978] and
related techniques constitute the de-facto standard shadowing algo-
rithm for real-time applications, despite suffering from quite severe
aliasing artifacts. This widespread adoption has come about due to
good hardware support, ability to handle arbitrary geometry, and
low variability in frame times.

Another reason for the popularity is that the shadow map can be fil-
tered to hide artifacts, mimicking the effect of an area light-source.
Filtering during lookup usually requires a large number of sam-
ples [Reeves et al. 1987; Fernando 2005], whereas pre-filtering re-
quires additional attributes, which increases storage and bandwidth
requirements [Donnelly and Lauritzen 2006; Annen et al. 2008].
Filtering can enable the use of relatively low resolution shadow
maps while producing visually pleasing results.

However, without resorting to a very high-resolution shadow map,
sharp shadows cannot be produced, leaving shadows artificially
blurred or with obvious discretization artifacts. Several algorithms
attempt to improve precision where it is most needed, without ab-
horrent memory requirements, either by warping or by partitioning
the shadow map. Warping techniques [Stamminger and Drettakis
2002; Wimmer et al. 2004; Lloyd et al. 2008] can yield impres-
sive results but suffer from special cases where they degenerate to
ordinary shadow maps. Partitioning approaches can produce high-
quality sharp shadows quickly for some scenes [Arvo 2004; Zhang
et al. 2006; Lefohn et al. 2007; Lauritzen et al. 2011], but have dif-
ficulties if the scenes are very open with widely distributed geome-
try, leading to aliasing re-appearing, unpredictable run-time perfor-
mance, or escalating memory requirements.

Alias-free shadow maps Alias-free shadow-mapping algo-
rithms are exact per view sample [Aila and Laine 2004; Johnson
et al. 2005; Sintorn et al. 2008]. To our knowledge, the only pixel
accurate alias-free shadow algorithm that runs in real-time on cur-
rent GPUs for complex scenes is [Sintorn et al. 2008]. While this
algorithm runs admirably on some scenes and is likely to perform as
well as or better than ours on views with a very high variance in the
depth buffer, it breaks down in other configurations (e.g. when all
view samples project to a single line in light space). Like our algo-
rithm, these exact methods could trivially support semi-transparent
and textured shadow casters.

Shadow volumes The Shadow-Volume algorithm, introduced
by Crow in [1977], was implemented with hardware acceleration
in 1985 [Fuchs et al. 1985] but did not see widespread use until a
version was suggested that could be hardware accelerated on con-
sumer grade graphics hardware with the z-pass algorithm [Heid-
mann 1991]. The idea is to isolate the silhouette-edges and extrude
these away from the light-source, forming shadow-quads that en-
close the shadow volume for an object. These shadow volumes are



rendered onto the camera’s depth buffer and the stencil buffer is in-
cremented for front-facing quads and decremented for back-facing
so that, when all quads are processed, the stencil buffer value will
be 0 only for those pixels that do not lie in shadow. This essentially
creates a per-pixel count of the number of shadow volumes that are
entered by a ray cast from the eye to the view sample. Alternatively,
the counting can be performed from the view samples to infinity, a
method called z-fail [Bilodeau and Songy 1999; Carmack 2000].

Z-pass classically suffers from the eye-in-shadow problem, i.e. if
the camera lies within one or more shadow volumes, or if the near-
plane clips any shadow quad, the values in the stencil buffer will
be incorrect. This is partly solved by Hornus et al. [2005] where
the lights’ view is aligned with that of the camera and the light’s
far plane is set to equal the camera’s near plane. Since the light is
not in shadow, the scene can then be rendered from the light with a
projection matrix set up to match that of the camera, and the stencil
buffer is updated with all shadow quads that lie between the light
and the camera near plane in a first pass. The algorithm has some
robustness issues that get worse as the lights’ position approaches
the cameras near plane. With the advent of depth-clamping, the
solution to the eye in shadow problem is reduced to evaluating how
many shadow casters lie between the camera and light, but to date
no fully robust solution has been presented to this problem.

While the z-fail algorithm can be made practically robust [Everitt
and Kilgard 2002], it is typically significantly slower due to higher
overdraw [Laine 2005] and the need for near- and far capping ge-
ometry. An eight-bit stencil buffer (still the maximum allowed on
current GPUs) can overflow, and resorting to using higher-precision
color buffers will accentuate the rasterization cost significantly.

Several papers exist that aim to reduce fill rate requirements. In
[Lloyd et al. 2004], the authors consider the objects in a scene
graph and discuss a number of ways to prune the set of objects
to find potential shadow-casters (for the current light view) and po-
tential shadow receivers (for the current camera view). They also
suggest a way to limit the distance a shadow caster has to extend
its shadow volume in order to conservatively reach all potential
shadow receivers. All of the optimizations in this paper are equally
applicable to our algorithm (if we were to include a far plane for
our shadow frustums), but as our rasterization already culls re-
ceiving tiles much more efficiently than the z-pass or z-fail algo-
rithms, the overdraw reductions would probably not be large. Aila
and Akenine-Moller [2004] suggest an optimization that in some
ways resemble ours. In the first stage of their algorithm, 8x8 pixel
tiles that lie on the shadow-volume boundary are identified (a min-
imum and maximum z for each tile is maintained, and thus, the 3D
bounding box for the tile can be tested against each shadow-quad)
and other tiles are classified as either fully in shadow or fully lit.
One such shadow buffer (containing a boolean boundary flag and
an eight-bit stencil value) is required per shadow volume. In the
second stage, the per pixel shadow is calculated for boundary tiles
whereas non-boundary tiles can be set to the shadow state of the
tile. The authors suggest two hardware modifications to make the
algorithm more efficient: a hierarchical stencil-buffer that would
make classification of tiles faster and a so called Delay Stream that
would help the rasterizer keep track of when the classification of
a shadow volume is complete and final stencil buffer updates can
begin. Nevertheless, this solution would be infeasible for a larger
amount of shadow volumes.

Chan and Durand [2004] use a shadow map to fill in the hard shad-
ows and also identify shadow-silhouette pixels. Then, shadow vol-
umes are used to generate correct shadows at these silhouette pix-
els. However, the algorithm relies on custom hardware to reject
non-silhouette pixels and cannot guarantee not missing small sil-
houettes due to the discrete shadow map sampling.

Textured and semi transparent shadows Materials that are
semi-transparent are common in real-time applications and present
a problem for most shadow algorithms. A semi transparent surface
is given an alpha or opacity value, α, which is defined as the ratio
of received light that is absorbed or reflected at the surface (1 − α
is the ratio that continues through the surface). This same model
is commonly used to represent both materials that have partial cov-
erage (e.g. a screen door) and materials that transmit light (e.g.
thin glass) [McGuire and Enderton 2011]. For shadow-map based
methods, these materials are difficult because a visibility lookup is
no longer a binary function and so, a single depth value is not suf-
ficient to define the visibility along a ray from the light towards the
point being shadowed. Several techniques have been suggested to
solve this by rendering shadow maps with several layers, the most
common being Deep Shadow Maps [Lokovic and Veach 2000] for
which the scene has to be rendered several times in the absence
of a hardware accelerated A-buffer [Carpenter 1984], or by sam-
pling visibility at discrete depths [Kim and Neumann 2001; Yuksel
and Keyser 2008; Sintorn and Assarsson 2009] which works well
for ”fuzzy” geometry such as smoke or hair, but not so well for
polygons where strong transitions in visibility happen at every sur-
face. Recently, a different method was proposed [Enderton et al.
2010; McGuire and Enderton 2011] in which, when generating the
shadow map, a triangle fragment is simply discarded with probabil-
ity (1 − α). A PCF lookup into this map will return a value that
is correct on average. However, if too few taps are taken from the
filter region, the result will be noisy and so, to achieve sharp and
noise free shadows, very many taps will be required from a very
high resolution shadow map.

Semi-transparent shadows have been considered for shadow-
volume type algorithms as well. A straightforward approach was
suggested in [Kim et al. 2008], where the stencil buffer is re-
placed by a floating point buffer and the stencil increment/decre-
ment operations are replaced by adding or removing log(1 − α),
where α is the opacity of the object that generated the shadow
quad. This elegantly produces a final stencil value, s, such that
exp(s) =

∏
i(1 − αi), where αi is the opacity value of a shadow

caster that covers the sample point, which is exactly the visibility
at that point. The method produces pixel-accurate sharp shadows
and can easily be extended to support colored shadow-casters, but
requires opacity to be constant per object. Needless to say, the addi-
tional math and blending operations exacerbate the overdraw prob-
lem inherent in the traditional Shadow-Volume algorithm. Also,
textured shadow casters are not supported.

In [Hasselgren and Akenine-Moller 2007] the problem is instead
solved simply by handling semi-transparent or textured objects sep-
arately, so that every triangle shadow volume is rendered for such
objects. Despite the optimizations discussed in that paper, this will
cause very much overdraw and will be prohibitively slow for com-
plex geometry. The realization from that paper, that transparent
and textured shadow casters are easily supported when the trian-
gles’ shadow volumes are handled separately, is, however, the ba-
sis for these extensions to our algorithm which renders per-triangle
shadow volumes very efficiently. It should also be mentioned that a
similar idea was used for textured soft shadows [Forest et al. 2009].

In games and other real-time graphics applications, complex ge-
ometry is often approximated by mapping a binary alpha mask to
simple geometry. A common example is the leaves on the tree in
Figure 1(b). Casting shadows from such objects is simple when us-
ing shadow-mapping type algorithms, where, when rendering the
shadow map, a fragment can simply be discarded if the alpha value
is below some threshold. Unfortunately, as the filtered opacity value
will not be binary even if the original alpha mask is, this technique
introduces even more aliasing to the shadow-map algorithm. The
problem with shadow casters of this kind, when using shadow-



volume type algorithms, is that when a shadow-quad is rendered
over a view sample, we know only that the sample lies within the
shadow volume of some object but we have no means of determin-
ing which triangle covers the sample, and so, we cannot do a lookup
into the alpha mask to see if the point is truly in shadow. If we ren-
der triangle shadow volumes individually however (as in [Hassel-
gren and Akenine-Moller 2007]), we may pass along the uv coordi-
nates of each vertex, as well as the vertices themselves, and then do
a ray-triangle intersection test prior to updating the stencil buffer,
or by some other means find the uv coordinates on the triangle.

Figure 3: Every texel in the second level of the depth hierarchy de-
fines a bounding box in normalized device coordinates and, equiv-
alently, a world space frustum which contains all view samples in-
side.

3 Algorithm

We start out with as basic an approach to shadow volumes as we
can imagine. The scene has been rendered to an off-screen set
of buffers containing the ambient light component, direct lighting
and the depth buffer. The depth buffer, along with the model-view-
projection matrix, implicitly gives us the position of a point on a ray
shot from the camera through the mid-sample of each pixel, at the
closest triangle intersection. We call these positions view samples
and they are the points for which we want to evaluate shadow (i.e.
we want to evaluate whether these points are visible from the light
source or not). We can do this by testing, for every view sample,
whether it lies within the shadow frustum (i.e. the shadow volume
of the triangle). If so, the sample is marked as shadowed in a sep-
arate buffer requiring a single bit per pixel. We will call this buffer
the shadow buffer in the discussion below. To evaluate whether the
sample is within the volume or not is a matter of testing the point
against the four planes that make up the volume (See Figure 2).

While exhaustively testing all view samples against all triangle vol-
umes is obviously not a good idea in practice, it is worthwhile to
note a few things about this naive algorithm:

• It works without modification for any arbitrary triangle soup.

• It will be robust as long as some precautions are taken (see
paragraph on robustness below)

• It requires a very small amount of extra memory storage (a
single bit per view sample).

• It requires no pre-processing nor does it matter where the
light, camera near or far planes are situated.

• When a pixel has been marked as in-shadow, it need no longer
be considered by other triangle shadow volumes.

Let’s consider what could be done to alleviate the overdraw prob-
lems in an imaginary customized stamp rasterizer with a two-level
hierarchical depth buffer and an equally sized two-level hierarchi-
cal shadow buffer (which can be thought of as a one bit stencil
buffer). Let’s say the upper level of the hierarchical depth buffer
contains the min and max of the 4x4 depth-values of the lower

level. A texel’s (x, y) coordinates and these two depths then de-
fine an axis aligned bounding box in normalized device coordinates
(or a bounding-frustum in world space, see Figure 3), for the view
samples contained within. We will refer to such bounding-frustums
as tiles from here on.

Our imaginary rasterizer takes a triangle and a light-source position
as input and rasterizes the projected shadow volume. The main
difference in how our rasterizer works, compared to how shadow
quads are traditionally rasterized, lies in the way that we cull against
the hierarchical depth buffers. Where a traditional rasterizer will
cull a number of fragments of a shadow quad only if they all lie
in front of the min depth stored in the upper level of the hierarchy
(for z-fail), our rasterizer tests the tile against each plane of the
shadow frustum. If the tile is found to lie outside either plane, it
can be culled and no bits will be set for the contained view samples
in the shadow buffer. Additionally, if the tile is found to lie inside
all planes, we know that all contained view samples are covered
by this triangle, and so, we simply set a bit in the higher level of
our hierarchical shadow buffer and can then safely abandon the tile.
If the bounding-box can not be trivially rejected nor accepted, the
individual view samples will be tested against the shadow volume
planes and the lower level of the shadow buffer is updated.

Before the shadow buffer is used to determine whether a pixel
should be considered in shadow or not, the two levels must be
merged. This is done by, for each set bit in the higher level, also
setting the corresponding 4x4 bits in the lower level, regardless of
their current state.

For the algorithm to be perfectly robust, two things must be consid-
ered. First, if an edge is shared by two triangles, a view sample will
be tested against the same plane twice, only with opposite normals.
If the sample lies very close to the plane, we can get the erroneous
result that the sample lies outside both, unless we make sure that
the equations for these planes are constructed in exactly the same
way, which may not happen if we simply use the vertices in the or-
der they are submitted. Instead, when constructing a plane from the
light’s position and two edge vertices, the vertices are taken in an
order defined by their world space coordinates (any unique ordering
will do). Similarly, for a perfectly robust solution, testing whether a
sample lies below the plane formed by the triangle should be done
exactly in the same way as when the original depth buffer value
was created. A hardware vendor could ensure that this is the case,
but our software implementation must resort to adding a bias to the
triangle plane to avoid self shadowing artifacts. Unlike the bias re-
quired for shadow maps, this bias can be very small and constant
and in practice it does not introduce any noticeable artifacts.

3.1 A software hierarchical shadow-volume rasterizer

To evaluate the new algorithm, we have designed a hierarchical
shadow volume rasterizer and implemented the design in software
using NVIDIA’s CUDA platform. We chose a fully hierarchical ap-
proach because this is the most viable known approach to parallel
SIMD software rasterization [Abrash 2009], while for a hardware
implementation it is likely that a two-level stamp rasterizer would
prove more efficient.

The rasterizer extends the two-level approach presented earlier to be
fully hierarchical, with L = dlogsNe levels, for some branching
factor s and number of pixels, N , in both the hierarchical z-buffer
and shadow buffer. These hierarchies represent an implicit full tree
with branching factor s, which is traversed during rasterization of a
triangle shadow volume.

Our design broadly follows the approach used for the 2D triangle
rasterizer in Larrabee [Abrash 2009], which is illustrated in Fig-



Algorithm 1 Basic parallel traversal algorithm, for a square tile size
T × T , which assumes SIMD with T × T lanes. The algorithm is
expressed as a program running on an individual SIMD lane, iden-
tified by simdIndex ∈ [0..T × T ) and able to broadcast a single
bit to each other using BALLOT. We use ⊗ to denote element-wise
multiplication. Tiles are referenced using integer tuples defining
their location within the current hierarchy level.

1: procedure TRAVERSAL(level , parentTile, tri )
2: subTile ← (simdIndex mod T, simdIndex/T )
3: tile ← parentTile ⊗ (T, T ) + subTile
4: if level is final level then
5: if TESTVIEWSAMPLE(tile ,tri ) then
6: UPDATESHADOWBUFFER(level , tile)
7: return
8: tileIntersects ← TESTTRIVOLUME(level , tile, tri)
9: if tileIntersects = ACCEPT then

10: UPDATESHADOWBUFFER(level , tile)
11: else
12: queue ← BALLOT(tileIntersects = REFINE)
13: for each nonzero bit b i in queue do
14: child ← parentTile ⊗ (T, T ) + (i mod T, i/T )
15: TRAVERSAL(level + 1, child , tri )

ure 4, as this is simpler to illustrate and exactly analogous to what
we do. The example shows 4 × 4 tiles, which would be suitable
for 16-wide SIMD, with each lane processing a tile at the current
level in the hierarchy. For each edge, a trivial accept corner and
a trivial reject corner are found. These are the tile corners with
greatest and least projection on the edge normal, as shown for tile
0 in the figure. If the trivial reject corner is outside any edge, then
the tile can be rejected (shown in green). Conversely, if the trivial
accept corner is inside all edges, then the tile can be trivially ac-
cepted (shown in blue). If neither of these conditions are satisfied
(white), then the tile must be recursively refined at the next level of
the hierarchy (Figure 4(b)). Note the single yellow tile shown (tile
9), which is obviously outside the triangle but cannot be rejected by
the algorithm because its trivial reject corners are not outside any
edge. This is sometimes called the triangle shadow [McCormack
and McNamara 2000], and produces false positives unless some ex-
tra test is employed that is capable of rejecting such tiles.

Figure 4: Hierarchical 2D triangle rasterization illustrated by two
levels. In (a), the green tiles are trivially rejected, white tiles need
more refining and the yellow tile (9) is in the triangle shadow. The
purple and blue dots show, for tile 0, the trivial reject and accept
corners, respectively, to use with the red edge. In (b), showing the
next level of refinement for tile 6, the blue tiles are trivially ac-
cepted.

Our suggested process for rasterizing shadow frustums is very sim-
ilar, with some notable differences. Firstly, as we are rasterizing

shadow frustums, the three edge equations defining a triangle are
replaced by four plane equations, which define the shadow frus-
tum. Secondly, the hierarchical shadow buffer enables much sim-
pler trivial accept handling; only a single bit needs to be updated
in the correct hierarchy level. Lastly, our rendering is fully hierar-
chical instead of tiled, with each primitive traversing the hierarchy
from the root and writing the results directly into the shadow-buffer
hierarchy. Certain other implementation details are also different as
we target an NVIDIA GPU rather than the Larrabee architecture.
This is further elaborated on in Section 3.4.

Using homogeneous clip space is advantageous since, by preced-
ing the perspective divide, it removes the need for clipping [Olano
and Greer 1997]. The intersection test between a tile and trian-
gle shadow volume is very similar to the frustum vs. AABB test –
commonly used for view frustum culling – with the shadow volume
being the frustum.

Traversing the hierarchy from the root, as opposed to using a tiled
approach, has the advantages of improved scaling with resolution
and that large shadow volumes can trivially accept or reject larger
tiles. Even though triangles in today’s complex scenes are often
very small, the projected shadow frustums generated from such tri-
angles can still be arbitrarily large, especially in the worst cases
(see Figure 5). Efficiently handling the worst cases is important if
we wish to construct a shadowing algorithm with low variability in
frame times.

The basic SIMD traversal algorithm is shown in Algorithm 1. Each
SIMD lane handles one sub-tile. They then exchange their results
as bits in a single word, before recursively descending to the next
level.

3.2 Textured and transparent shadows

As described in section 2, the original Shadow-Volume algorithm
relies on extending shadow quads from the silhouette edges only. In
that way, a large number of shadow quads can be culled away and
overdraw is reduced, but we lose the ability to determine which tri-
angles cover which view samples. If all we want is binary shadow
information, this is acceptable, as a sample will be in shadow re-
gardless of which or how many triangle shadow volumes it lies
within. If one intends to draw textured shadows or shadows cast
from semi-transparent triangles, however, all triangles that cover a
view sample must be considered individually.

In our approach, the triangle shadow volumes are always consid-
ered individually. Hasselgren et. al. [2007] show that if all tri-
angle shadow volumes are rendered separately, textured and semi-
transparent shadows are feasible, but they do not suggest any
method to render shadow frustums efficiently and so are limited
to rather low polygon counts. We incorporate their ideas into our
efficient rendering of shadow frustums and can render hundreds of
thousands of textured or semi-transparent shadows in real-time. Be-
low, we describe how textured and semi-transparent shadow-casters
can be taken care of with very small changes to the original algo-
rithm.

Semi-transparent shadow casters To incorporate semi trans-
parent shadows in our method, we modify the hierarchical shadow
buffer such that it contains a floating point value, instead of a bit, for
every tile and view sample. The shadow buffer is cleared to zero.
When updating the shadow buffer (UPDATESHADOWBUFFER in
Algorithm 1), instead of setting a bit, log(1 − α) is atomically
added. To merge the hierarchical shadow buffer into a single
shadow buffer with a transmittance value per view sample, we sim-
ply add the value of a parent node to all its children instead of OR-
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Figure 5: Visualizing the overdraw caused by different algorithms (according to the metric given in Section 4). From left to right (total
number of view sample test-and-set operations in parenthesis): The scene, z-pass algorithm (19.7 million), z-fail algorithm (18.3 million),
ours (1.2 million). The overdraw in the first two algorithms is proportional to the sum of the areas of projected shadow-quads, whereas in
our algorithm view-samples that lie outside the triangle shadow-frustums are quickly culled.

ing them. The leaf nodes will now contain, for every view sample,∑
log(1− αi) = log(

∏
1− αi) for every triangle i that lies be-

tween it and the light source. To get the transmittance, for each
view sample we simply raise e to the power of that value. This al-
lows us to efficiently render shadows from models with per-triangle
alpha values, which is often sufficient to generate compelling im-
ages (see Figure 1(c)). If the alpha-value needs to be interpolated
over the triangle or fetched from a texture, we can not trivially ac-
cept an internal node in this simple way, as explained in the next
paragraph. Colored transparent shadows are trivially supported by
applying the above scheme to each wavelength (e.g. to a shadow
buffer of RGB-tuples).

Textured shadow casters Computing interpolated texture coor-
dinates to support textured shadow casters is surprisingly simple
in our method. Recall from section 3.1 that to determine whether
a view sample is in shadow, we test its position against the four
planes that make up the shadow frustum and evaluate the sign of
the results. Though perhaps not immediately obvious, it can be
shown that the distances obtained from each of the planes generated
from the triangle edges (d0, d1, d2), are indeed a scaled version of
the barycentric coordinates on the triangle. Scaling these distances
such that d′0 + d′1 + d′2 = 1, we have the true barycentric coordi-
nates and can obtain the texture coordinates for the view sample.
Moreover, this same approach holds in clip space, so no transfor-
mations are required. Given the texture coordinates, we can get the
alpha-mask value, opacity value, or colored opacity value from a
texture and proceed to update the shadow buffer for a view sample.

Note that while it is simple for us to introduce support for textured
shadow casters, we are forced to abandon the trivial accept opti-
mization described in section 3.1. It is simply not the case any more
that if a tile lies entirely within the shadow volume of a triangle, all
sub-tiles will have the same shadow value. Indeed, the triangle may
cast no shadow if its texture is empty. Instead, when a tile is trivially
accepted, we flag it as such and immediately traverse all sub-tiles
without testing, until we reach the individual samples, for which we
evaluate the texture and update the final level of the shadow buffer.
This gives worse performance, of course, than when trivial accept
is as simple as updating a shadow-buffer node, but still works at
acceptable frame rates for complex models. There is a large drop in
performance in our implementation, however, when the shadow of
a single or very few triangles cover a large part of the screen. In this
case, only one or a few multiprocessors will have any work to do
and load-balancing becomes a problem. To alleviate this, we could
instead employ the method described in [Abrash 2009] to trivially
accept a tile. The tile and shadow frustum pair would then simply
be pushed to a work queue that could be processed efficiently in a

separate pass.

As noted previously, alpha-masked shadow casters are trivially
supported by the shadow-mapping algorithm. When rendering
the shadow map, a fragment can simply be discarded if the al-
pha value is below some threshold. Real valued alpha textures,
however, are not easily supported, and one has to use more com-
plex shadow-mapping techniques for this to work (e.g. Stochas-
tic Transparency [Enderton et al. 2010]). Even when rendering
alpha-masked shadow casters, the projection of a fragment onto the
shadow map rarely covers a single texel, and so, filtering should
be employed, and then the simple alpha-mask texture again re-
turns a real valued result which will be thresholded. Our method
trivially handles filtered lookups into an alpha-mask texture, and
consequently, produces higher quality shadows (this too was noted
by [Hasselgren and Akenine-Moller 2007]).

Algorithm 2 Testing a shadow frustum against a tile. The algorithm
first constructs the normalized device coordinate representation of
the tile, and then tests the trivial-reject and trivial-accept corners
against each of the four planes that define the shadow frustum. The
xy extents of the tiles at a level, in normalized device coordinates,
are available through the constant tileSizelevel.

1: procedure TESTTRIVOLUME(level , tile, tri )
2: tileMin.xy ← (−1.0,−1.0) + tile ⊗ tileSizelevel

3: tileMin.z ← fetchMinDepth(level, tile)
4: tileMax.xy ← tileMin.xy + tileSizelevel

5: tileMax.z ← fetchMaxDepth(level, tile)
6: numInside ← 0
7: for each plane pi in tri do
8: if TESTPLANEAABB(pi, tileMin , tileMax) > 0 then
9: return REJECT

10: else
11: numInside ← numInside + 1
12: if numInside = 4 then
13: return ACCEPT
14: else
15: return REFINE

Stochastic transparent shadows When the shadow buffer con-
tains a float per node instead of a single bit, the memory require-
ments are obviously much higher. Especially for high quality an-
tialiased render targets (MSAA, CSAA or SSAA buffers) where ev-
ery pixel has several depth samples, each of which should be tested
against the shadow volumes for correct shadows, the memory foot-
print may be a limiting factor to the usefulness of our algorithm (or
any other sample-accurate transparent shadows algorithm). For ex-



ample, a 1920x1080 buffer with 16 depth samples per pixel and 32-
bit float transmittance values would require 130MB of memory for
the final level. Therefore, we suggest a different approach, where
every pixel sample still holds a single bit of shadowing information.
When updating the shadow buffer with a semi transparent shadow
caster, the bit is simply set stochastically with a probability equal to
α. The shadow buffer is used as per usual to decide whether each
sample shall be considered lit or in shadow. When resolving the
final pixel color the result will be noisy but correct on average (see
Figure 6(a)). The proofs to why this works are equivalent to those
in [Enderton et al. 2010], and, while we have not implemented it,
the same scheme to stratify samples over a pixel as is presented in
that paper should work well to reduce the noise.

Transparent shadow receivers We have shown that semi-
transparent shadow casters present no problems to our algorithm.
Since it is, like the original shadow-volume algorithm, essentially a
deferred rendering algorithm, transparent shadow receivers are not
quite as trivial, though. Since the light-visibility calculations do
not (as with e.g. shadow maps) happen during fragment shading,
but in a post-processing pass, simple techniques where polygons
are sorted on depth before rendering will not work with our algo-
rithm. Oftentimes, these approaches are not sufficient anyways, as
they are prone to errors (two triangles may span the same depth and
cannot be uniquely sorted). Our algorithm works well with depth-
peeling [Everitt 2001], where layers of transparent objects are ren-
dered in several passes and with Stochastic Transparency [Enderton
et al. 2010], although the latter produces z-buffers with a high vari-
ance which causes a hierarchical z-buffer to be less than optimal.

(a) (b)

Figure 6: Stochastic (a) and Real valued (b) transparent shadows.

3.3 Antialiasing

Hard shadow edges often mean that two neighboring pixels will
have vastly different intensities, and so, anti-aliasing can greatly
improve image quality. Our algorithm works well with full screen
anti-aliasing schemes like MSAA, CSAA or SSAA as long as the
pixel-sample positions’ can be obtained. For the shadow calcula-
tions, such a buffer is simply considered a large render target, and
when the shadow buffer has to be updated for a view sample, the
pixel sample positions offset is fetched from a table.

We also suggest a novel anti-aliasing scheme that requires no extra
depth-samples per pixel. When the scene is rendered from the cam-
era, an additional color buffer is rendered that contains the x and y
derivatives of the fragment’s depth. Building the depth buffer hi-
erarchy works exactly as before, except the derivatives are used to
find a minimum and a maximum depth already at the lowest level.
The shadow buffer hierarchy is allocated with one additional level
(so that a view sample will have a number of shadow bits instead of
one single bit), and when traversing the shadow frustums through
the hierarchical depth buffer, we simply traverse as though there
were an additional level of the depth hierarchy, but the final view

samples to be tested are generated from the samples (x, y) positions
in the pixel and the depth derivatives. The final shadow value used
for the pixel will be the ratio of set bits to clear bits in the shadow
buffer. Note that this is equivalent to projecting a fragment on a
shadow map of infinite resolution and taking a number of PCF taps
within this region.

3.4 Implementation

We have implemented our algorithm using CUDA, where the native
SIMD group (called a warp) is 32 threads wide. One warp is issued
per shadow frustum (with enough warps in each CUDA block to
fully utilize the hardware), and the threads in each warp cooper-
ate in rasterization of the frustum. The threads in a warp can effi-
ciently exchange bit flags using the __ballot intrinsic (available on
NVIDIA GPUs of compute capability 2.0 and above). On devices
that lack this instruction, a parallel reduction in shared memory will
yield the same result, at some cost in performance. Choosing a
branching factor that matches the SIMD width allows the traversal
to entirely avoid divergence (threads within a warp executing differ-
ent code paths, for example if shadow frustums traverse the tree to
different depths). A branching factor of 32 also matches the 32-bit
word width, which makes updating bit masks simple and efficient.

However, 32 items cannot tile a square region. To construct a tree
from a square frame buffer, we instead alternate between 8× 4 and
4× 8 at each level. The implementation is otherwise faithful to the
traversal algorithm (Algorithm 1) presented earlier. To accumulate
results in the shadow-buffer hierarchy, we use atomic operations,
e.g. the atomicOr intrinsic. While atomic operations are often held
to be slow, we were not able to observe any penalty from using
them, which may be because of the relatively low load the depth
first traversal places on the memory subsystem.

In order to support transparency, we need to use 32 floating point
numbers per tile instead of 32 bits used for binary shadow. Updat-
ing these is done by using atomic add from each SIMD lane. To
handle colored transparent shadows, we simply use three atomic
adds, one per component.

3.5 Optimizations

Culling against shadow frustum silhouette As described in
section 3.1, our shadow frustum vs. tile test is conservative, and
can thus produce false positives leading to tiles refined unneces-
sarily. This problem is the 3D equivalent of the triangle-shadow
problem for 2D rasterization (see Section 3.1), and causes traver-
sal to refine tiles that are outside the projected shadow volume. To
improve culling efficiency, we also test two additional edges that
define the 2D projection of the shadow volume (illustrated using
red lines in Figure 2). The new edges are defined in 2D homo-
geneous clip space, and are tested in a very similar fashion to the
planes already used. Adding this test helps ensuring that we do not
visit any tiles not actually within the on-screen shadow.

Front face culling When rendering closed objects, we can
choose to use only the triangles that face the light or the back-facing
triangles as shadow casters [Zioma 2003]. This is also employed in
shadow mapping, where rendering only back facing triangles can
reduce self shadowing artifacts. For our algorithm, there is an even
more compelling reason to use this approach. Consider what hap-
pens when a front-facing triangle that is visible from the camera is
used as a shadow caster. This triangle will have to traverse the hi-
erarchical depth buffer all the way down to the view samples that
belong to that triangle, since all of these will lie exactly on the trian-
gle plane. Unlike the traditional shadow-volume algorithm, using



this optimization does not require that the model is actually mod-
eled as a two manifold mesh. As long as the object will render
correctly to screen with backface-culling, it will work robustly as a
shadow caster with front-face culling. For example, unclosed back-
drop geometry will cast shadows properly.

Remove unlit depth samples We want to avoid computing light
visibility for view samples that are already unlit, either because of
the sample not facing the light, or being unlit for other reasons like
being part of the background. To achieve this, we flag unlit view
samples and do not include their depths when building the hierar-
chical depth buffers.

Maintaining an updated shadow buffer When traversing all
shadow frustums through the hierarchical depth buffer, we set bits
in the hierarchical shadow buffer representing completely shad-
owed tiles or view samples. Naturally, once a tile or view sample is
found to be in shadow, given some triangle frustum, its state cannot
change. Therefore an obvious optimization to our traversal algo-
rithm is to stop traversal as soon as we reach a node that is already
marked as being in shadow. It is simple to modify Algorithm 1
to AND the bitmask queue with the inverse of the current shadow
buffer value for the node. This, however, will only stop the shadow
frustum from being traversed through nodes that have previously
been trivially accepted by some shadow frustum (not tiles that have
been filled by several different shadow frustums), so the gain in effi-
ciency is modest. Alternatively, a thread that fills a node can either
recursively propagate that change up the hierarchy or simply up-
date the one level above and rely on the changes to propagate due
to other threads over time. Neither method improves performance
in our implementation however, probably due to the increased cost
of reading the shadow-buffer and the potentially long latency be-
fore an update is visible to other threads. An even more efficient
optimization would be to keep the hierarchical depth buffer dynam-
ically updated (by removing shadowed tiles from the hierarchy), but
this seems less likely to be feasible.

4 Results and Discussion

To evaluate the performance of our algorithm, we have imple-
mented carefully tuned versions of the z-pass and z-fail algorithms.
Our implementations are similar to those suggested by [Aldridge
and Woods 2004], except they are implemented using shaders and
run entirely on the GPU. Since the stencil buffer can only be in-
cremented or decremented by one, shadow quads shared by two
triangles are rasterized twice, as this is much faster than replacing
the stencil buffer with a color buffer (which, using blending, can be
incremented by two or more). In the z-fail implementation, we ren-
der the near and far caps, while in the z-pass we need only render
the shadow quads. Both implementations rely on depth clamping
to avoid clipping artifacts. In the z-pass algorithm, we initialize the
stencil buffer with a value corresponding to the number of shadow
volumes the camera is in. As mentioned, establishing this value ro-
bustly is still an unsolved problem and occasionally causes grave
artifacts. Both z-pass and z-fail can also fail if the eight-bit stencil
buffer overflows.

The time taken to render the shadow volumes is plotted for a fly-
through of a game-scene (see supplementary video), in Figure 7.
We show results for two resolutions, 1024x1024 and 4096x4096.
This latter resolution may seem extravagant, but really corresponds
to approximately the same number of samples that would be pro-
cessed for an image rendered in 1080p with 8xMSAA. The timings
reported for our algorithm are those measured for generating the
shadow buffer (build depth hierarchy, triangle-setup, rasterization

and final merging) and omit any redundant buffer copies that hap-
pen when mixing OpenGL and CUDA. The timings presented for
z-pass omit the time taken to evaluate how many shadow casters
lie between the light and the camera. The graphs show the per-
formance with and without the front-face culling (FFC) optimiza-
tion described in section 3.5. The scene used is a part of the freely
available Epic Citadel [Epic Games 2011] (∼ 60k triangles) which
contains many open edges, in what are really closed objects, and
so would not have worked with the simpler shadow-volume algo-
rithms. The scene has been slightly modified to contain no one-
sided geometry (the cloth in the original model). All timings were
measured on an NVIDIA GTX480 GPU.
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Figure 7: Comparing z-pass, z-fail and the new algorithm, with
and without Front Face Culling (FFC), in a fly-through of the
citadel scene. Above: Time taken (in ms) to generate per–view-
sample shadow information. Below: Millions of test-and-set oper-
ations required. Left is for a render target of size 1024x1024, right
4096x4096.

As can be seen from Figure 7, when front-face culling is enabled,
our software GPU implementation outperforms z-fail even at the
lower resolution, and performs with a similar average as z-pass at
the higher resolution, though with much lower variability. With-
out front-face culling, z-pass is still faster than our algorithm at
the higher resolution but, as noted previously, the z-pass algorithm
is not entirely robust and so our algorithm is a compelling alter-
native. Moreover, for meshes without connectivity information or
with short silhouette loops (e.g. destructible buildings, or a flock of
birds) our frame times stay low while z-pass rendering times would
increase significantly.

To further examine the performance of our algorithm we have mea-
sured the total number of test-and-set operations per view sample.
For the shadow-volume algorithms, we have ignored the work re-
quired by the rasterizer and early z-culling (as we lack information
to properly evaluate that), and so the number of test-and-set opera-
tions reported is simply the total number of stencil updates required
for a frame. For our algorithms, we have counted the total number
of tile/shadow frustum and sample/shadow frustum tests performed.

Figure 7 shows the number of test-and-set operations for the same
scene and animation as before. Clearly, the new hierarchical al-
gorithm is more efficient, even at relatively low resolutions, while
at the high resolution it is especially effective. As expected, our



hierarchical approach scales well with increasing resolutions: rais-
ing the number of view samples sixteenfold only requires between
about two to four times as many test-and-set operations, while for
z-pass the increase is around 16 times. The results also demon-
strate the low variability of the new algorithm which is due to our
algorithms ability to trivially accept large tiles that lie within the
shadow frustum and to trivially reject tiles that lie outside. Observe
that, when front-face culling is disabled, the number of required
test-and-set operations is more than doubled (roughly 2.2 times for
the lower, and around 2.4 times for the higher resolution). This is
the expected behavior, as visible front faces must be refined all the
way to the sample level (see Section 3.5), and shows that front-face
culling ought to be enabled whenever possible.

Another important consideration for a shadowing algorithm is ro-
bustness and the artifacts it may produce. The z-pass algorithm is
generally not robust, because of the camera in shadow problem, and
because of stencil buffer overflow, which also affects the z-fail algo-
rithm. When these failures are encountered, the shadow computed
for the entire screen may be incorrect – a highly disturbing artifact.
Our algorithm, on the other hand, has no inherent robustness issues,
and will at worst produce light leakage if the mesh is not properly
welded.

The amount of memory required by our basic (non transparent) al-
gorithm, is very low. For a 4096x4096 rendertarget our hierarchi-
cal shadow buffer requires only 2.1MB, besides the resident depth
buffer, our hierarchical depth buffers require an additional 2.1MB
for a total of 4.2MB. An eight-bit stencil buffer, which is a bare
minimum for shadow-volume algorithms requires ∼ 16MB for the
same resolution. The alias-free shadow-map implementation de-
scribed in [Sintorn et al. 2008] stores all view sample positions
(three floats) in a compact array of lists per light space pixel which
would take ∼ 200MB at this resolution. Additionally, they require
a shadow map where each texel needs to store as many bits as are
the maximum list size. For a shadow map of 1024x1024 and a max
list size of 512 that would mean an additional 16MB of memory.
For comparison, a 4096x4096 omnidirectional shadow map would
require 384MB.

The results of the stochastic shadow buffer described in section 3.2
are demonstrated in Figure 6. The images are rendered at a reso-
lution of 4096x4096 and downsampled to 1024x1024. Again, this
is to illustrate how the algorithm could work with images rendered
using high quality MSAA or CSAA. While it is quite noisy, the
stochastic image renders slightly faster than using a float value per
sample and, more importantly, requires only a single bit of visi-
bility information per view sample. The memory footprint of our
algorithm is thus reduced from the original∼ 64MB in Figure 6(b),
to only ∼ 2MB in Figure 6(a).

Figure 8: The results of rendering a scene with different variants
of our algorithm.

Figure 8 shows the tree from figure 1(b) rendered with different

variants of our algorithm. The algorithm and the time taken to gen-
erate the shadows were (from left to right): standard binary visibil-
ity (7.9ms), semi-transparent shadow casters where all leafs have
constant α = 0.5 (8.6ms), semi-transparent textured shadow cast-
ers (12.9ms), stochastic semi-transparent textured shadow casters
(12.9ms), and colored semi transparent shadow casters (10.4ms).

The choice of 32 as a branching factor for the hierarchical depth
and shadow buffers is natural, as this matches both native word size
and SIMD width. However, a high branching factor results in more
wasted work; for example, all shadow frustums that are not culled
in the setup phase will need to test all 32 tiles in the first level of
the hierarchy, whereas a binary tree would only need to test two.
Lower branching factor, on the other hand, results in deeper trees
and more divergence. We have not explored this trade-off.

5 Future Work

The optimization where unlit samples are removed enables the use
of a two-pass approach, where a first pass runs the algorithm only
on those triangles that are expected to be good blockers by some
heuristic, then refreshes the hierarchy by removing yet more un-
lit samples, and finally traverses the remaining triangles [Olsson
and Assarsson 2011]. As constructing the depth hierarchy is cheap,
this optimization may yield a significant increase in efficiency, es-
pecially if blocker geometry (i.e. conservative simple geometry) is
placed manually or generated.

The algorithm could be extended to handle soft shadows quite sim-
ply, in a manner similar to that of [Sintorn et al. 2008]. The triangle
frustums would then be expanded to include the whole influence
region of the triangle, given an area light source, and the shadow
buffer could contain, for each view sample, a bit per light sam-
ple. Also, our novel antialiasing scheme resembles PCF filtering in
many ways. It seems likely that this algorithm could be modified
to support samples taken outside the pixels’ bounding box, to sup-
port PCF style blurred shadows in our algorithm. Several problems
remain to be solved in these areas, though.

6 Conclusion

We have presented a novel shadow algorithm based on individual
triangle shadow volumes, which combines many of the strengths
of shadow maps and shadow volumes. We also demonstrated a
GPU software implementation of a hierarchical rasterizer that sup-
ports the algorithm. Despite running entirely in software, it com-
petes well against highly tuned implementations of shadow vol-
umes which rely heavily on hardware acceleration, and offers real-
time performance. Meanwhile, the new algorithm is completely
robust, works for any aribtrary collection of triangles and integrates
easily into a deferred rendering pipeline making it a compelling
choice for rendering pixel accurate shadows, especially at high res-
olutions.

References

ABRASH, M. 2009. Rasterization on larrabee. Dr. Dobbs Journal.
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