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ABSTRACT
A non-blocking FIFO queue algorithm for multiprocessor
shared memory systems is presented in this paper. The al-
gorithm is very simple, fast and scales very well in both
symmetric and non-symmetric multiprocessor shared mem-
ory systems. Experiments on a 64-node SUN Enterprise
10000 � a symmetric multiprocessor system � and on a
64-node SGI Origin 2000 � a cache coherent non uniform
memory access multiprocessor system � indicate that our
algorithm considerably outperforms the best of the known
alternatives in both multiprocessors in any level of multipro-
gramming. This work introduces two new, simple algorith-
mic mechanisms. The �rst lowers the contention to key vari-
ables used by the concurrent enqueue and/or dequeue oper-
ations which consequently results in the good performance
of the algorithm, the second deals with the pointer recycling
problem, an inconsistency problem that all non-blocking al-
gorithms based on the compare-and-swap synchronisation
primitive have to address. In our construction we selected
to use compare-and-swap since compare-and-swap is an
atomic primitive that scales well under contention and ei-
ther is supported by modern multiprocessors or can be im-
plemented e�ciently on them.

1. INTRODUCTION
Concurrent FIFO queue data structures are fundamental
data structures used in many applications, algorithms and
operating systems for multiprocessor systems. To protect
the integrity of the shared queue, concurrent operations that
have been created either by a parallel application or by
the operating system have to be synchronised. Typically,
algorithms for concurrent data structures, including FIFO
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queues, use some form of mutual exclusion (locking) to syn-
chronise concurrent operations. Mutual exclusion protects
the consistency of the concurrent data structure by allowing
only one process (the holder of the lock of the data struc-
ture) at a time to access the data structure and by block-
ing all the other processes that try to access the concurrent
data structure at the same time. Mutual exclusion and, in
general, solutions that introduce blocking are penalised by
locking that introduces priority inversion, deadlock scenarios
and performance bottlenecks. The time that a process can
spend blocked while waiting to get access to the critical sec-
tion can form a substantial part of the algorithm execution
time [5, 9, 10, 14]. There are two main reasons that locking
is so expensive. The �rst reason is the convoying e�ect that
blocking synchronisation su�ers from: if a process holding
the lock is preempted, any other process waiting for the lock
is unable to perform any useful work until the process that
hold the locks is scheduled. When we taking into account
that the multiprocessor running our program is used in a
multiprogramming environment, convoying e�ects can be-
come serious. The second is that locking tends to produce a
large amount of memory and interconnection network con-
tention, locks become hot memory spots. Researchers in the
�eld �rst designed di�erent lock implementations that lower
the contention when the system is in a high congestion situ-
ation, and they give di�erent execution times under di�erent
contention instances. But on the other hand the overhead
due to blocking remained. To address the problems that
arise from blocking researchers have proposed non-blocking
implementations of shared data structures. Non-blocking
implementation of shared data objects is a new alterna-
tive approach to the problem of designing scalable shared
data objects for multiprocessor systems. Non-blocking im-
plementations allow multiple tasks to access a shared object
at the same time, but without enforcing mutual exclusion
to accomplish this. Since in non-blocking implementations
of shared data structures one process is not allowed to block
another process, non-blocking shared data structures have
the following signi�cant advantages over lock-based ones:

1. they avoid lock convoys and contention points (locks).

2. they provide high fault tolerance (processor failures
will never corrupt shared data objects) and eliminates
deadlock scenarios, where two or more tasks are wait-
ing for locks held by the other.

3. they do not give priority inversion scenarios.



(a) The architec-
ture of the SUN En-
terprise 10000

(b) The architecture of the Ori-
gin 2000

Figure 1: Architectures

Among all the innovative architectures for multiprocessor
systems that have been proposed the last forty years shared
memory multiprocessor architectures are gaining a central
place in high performance computing. Over the last decade
many shared memory multiprocessors have been built and
almost all major computer vendors develop and o�er shared
memory multiprocessor systems nowadays. There are two
main classes of shared memory multiprocessors: the Cache-
Coherent Nonuniform Memory Access multiprocessors (cc-
NUMA) and the symmetric or UniformMemory Access (UMA)
multiprocessors, their di�erences coming from the architec-
tural philosophy they are based on. In symmetric shared
memory multiprocessors every processor has its own cache,
and all the processors and memory modules attach to the
same interconnect, which is a shared bus. ccNUMA is a rel-
atively new system topology that is the foundation for next-
generation shared memory multiprocessor systems. As in
UMA systems, ccNUMA systems maintain a uni�ed, global
coherent memory and all resources are managed by a sin-
gle copy of the operating system. A hardware-based cache
coherency scheme ensures that data held in memory is con-
sistent on a system-wide basis. In contrast to symmetric
shared memory multiprocessor systems in which all memory
accesses are equal in latency, in ccNUMA systems, mem-
ory latencies are not all equal, or uniform (hence, the name
- Non-Uniform Memory Access). Accesses to memory ad-
dresses located on "far" modules take longer than those
made to "local" memory.

This paper addresses the problem of designing scalable, prac-
tical FIFO queues for shared memory multiprocessor sys-
tems. First we present a non-blocking FIFO queue algo-
rithm. The algorithm is very simple, it algorithmically im-
plements the FIFO queue as a circular array and introduces
two new algorithmic mechanisms that we believe can be
of general use in the design of e�cient non-blocking algo-
rithms for multiprocessor systems. The �rst mechanism re-
stricts contention to key variables generated by concurrent
enqueue and/or dequeue operations in low levels; contention
to shared variables degrades performance not only in mem-
ory tanks where the variables are located but also in the
processor-memory interconnection network. The second al-
gorithmic mechanism that this paper introduces is a mech-
anism that deals with the pointer recycling (also known as

ABA) problem, a problem that all non-blocking algorithms
based on the compare-and-swap primitive have to address.
The performance improvements are due to these two mech-
anisms and to its simplicity that comes from the simplic-
ity and richness of the structure of circular arrays. We
have selected to use the compare-and-swap primitive since
it scales well under contention and either is supported by
modern multiprocessors or can be implemented e�ciently
on them. Last, we evaluate the performance of our algo-
rithm on a 64-node SUN Enterprise 10000 multiprocessor
and a 64-node SGI Origin 2000. The SUN system is a Uni-
form Memory Access (UMA) multiprocessor system while
the SGI system is a Cache-Coherent Nonuniform Memory
Access (ccNUMA) one; SUN Enterprise 10000 supports the
compare-and-swap while SGI Origin 2000 does not. The ex-
periments clearly indicate that our algorithm considerably
outperforms the best of the known alternatives in both UMA
and ccNUMA machines with respect to both dedicated and
multiprogramming workloads. Second, the experimental re-
sults also give a better insight into the performance and
scalability of non-blocking algorithms in both UMA and
ccNUMA large scale multiprocessors with respect to ded-
icated and multiprogramming workloads, and they con�rm
that non-blocking algorithms can perform better than block-
ing on both UMA and ccNUMA large scale multiprocessors,
and that their performance and scalability increases as mul-
tiprogramming increases.

Concurrent FIFO queue data structures are fundamental
data structures used in many multiprocessor programs and
algorithms and, as can be expected, many researchers have
proposed non-blocking implementations for them. Lamport
[6] introduced a wait-free queue that does not allow more
than one enqueue operation or dequeue operation at a time.
Herlihy and Wing in [4] presented an algorithm for a non-
blocking linear FIFO queue which requires an in�nite array.
Prakash, Lee and Johnson in [11] presented a non-blocking
and linearisable queue algorithm based on a singly-linked
list. Stone describes a non-blocking algorithm based on a
circular queue. Massalin and Pu [8] present a non-blocking
array-based queue which requires the double-compare-and-
swap atomic primitive that is available only on some mem-
bers of the Motorola 68000 family of processors. Valois in
[12] presents a non-blocking queue algorithm together with



several other non-blocking data structures, his queue is an
array-based one. Michael and Scott in [10] presented a non-
blocking queue based on a singly-link list, which is the most
e�cient and scalable non-blocking algorithm compared with
the other algorithms mentioned above.

The remainder of the paper is organised as follows. In Sec-
tion 2 we give a brief introduction to shared memory multi-
processors. Section 3 presents our algorithm together with
a proof sketch. In Section 4, the performance evaluation
of our algorithm is presented. The paper concludes with
Section 5.

2. SHARED MEMORY MULTIPROCESSORS:
ARCHITECTURE AND SYNCHRONIZA-
TION

There are two main classes of shared memory multiprocessors;
the Cache-Coherent NonuniformMemory Access (ccNUMA)
multiprocessors and the symmetric multiprocessors. The
most familiar design for shared memory multiprocessor sys-
tems is the "�xed bus" or shared-bus multiprocessor sys-
tem. The bus is a path, shared by all processors, but us-
able only by one at a time to handle transfers from CPU
to/from memory. By communicating on the bus, all CPUs
share all memory requests, and can synchronise their local
cache memories. Such systems include the Silicon Graphics
Challenge/Onyx systems, OCTANE, Sun's Enterprise (300-
6000), Digital's 8400, and many others - most server vendors
o�er such systems.

Central Crossbar Mainframes and supercomputers have of-
ten used a crossbar "switch" to build shared multiprocessor
systems with higher bandwidth than feasible with busses,
where the switch supports multiple concurrent paths to be
active at once. Such systems include most mainframes, the
CRAY T90, and Sun's new Enterprise 10000; Figure 1(a)
graphically describes the architecture of the new SUN En-
terprise 10000. Shared-bus and central crossbar systems are
usually called UMAs, or Uniform Memory Access systems,
that is, any CPU is equally distant in time from all memory
locations. Uniform memory access shared memory multi-
processors dominate the server market and are becoming
more common on the desktop. The price of these systems
rise quite fast as the number of processors increases.

ccNUMA is a relatively new system topology that is the
foundation for many next-generation shared memory multi-
processor systems. Based on "commodity" processing mod-
ules and a distributed, but uni�ed, coherent memory, cc-
NUMA extends the power and performance of shared mem-
ory multiprocessor systems while preserving the shared mem-
ory programming model. As in UMA systems, ccNUMA
systems maintain a uni�ed, global coherent memory and
all resources are managed by a single copy of the operat-
ing system. A hardware-based cache coherency scheme en-
sures that data held in memory is consistent on a system-
wide basis. I/O and memory scale linearly as processing
modules are added, and there is no single backplane bus.
The nodes are connected by an interconnect, whose speed
and nature varies widely. Normally, the memory "near" a
CPU can be accessed faster than memory locations that are
"further away". This attribute leads to the "Non" in Non-

LL(pi,O)
{

Pset(O) := Pset(O) [ fpig
return value(O)
}

SC(pi; v; O)
{

if pi 2 Pset(O)
value(O):= v
Pset(O):= ;
return true

else
return false

}

Figure 2: The load-linked/store-conditional primi-

tive

Uniform. ccNUMA systems include the Convex Exemplar,
Sequent NUMA-Q, Silicon Graphics/CRAY S2MP (Origin
and Onyx2). In the Silicon Graphics Origin 2000 system a
dual-processor node is connected to a router. The routers
are connected with a fat hypercube interconnect, Figure 1(b)
graphically describes the architecture.

ccNUMA systems are expected to become the dominant sys-
tems on large high performance systems over the next few
years. The reasons are: i) they scale up to as many proces-
sors as needed. b) they support the cache-coherent globally
addressable memory model c) their entry level and incre-
mental costs are relatively low.

A widely available hardware synchronisation primitive that
can be found on many common architectures is compare-and-
swap. The compare-and-swap primitive takes as arguments
the pointer to a memory location, and old and new values.
As it can be seen from Figure 3 that describes the speci�-
cation of the compare-and-swap primitive, it automatically
checks the contents of the memory location that the pointer
points to, and if it is equal to the old value, updates the
pointer to the new value. In either case, it returns a boolean
value that indicates whether it has succeeded or not. The
IBM System 370 was the �rst computer system that intro-
duced compare-and-swap. SUN Enterprise 10000 is one of
the systems that support this hardware primitive. Some
newer architectures, SGI Origin 2000 included, introduce
the load-linked/store-conditional instruction which can
be implemented by the compare-and-swap primitive. The
load-linked/store-conditional is comprised by two sim-
pler operations, the load-linked and the store-conditional
one. The load-linked loads a word from the memory to a
register. The matching store-conditional stores back pos-
sibly a new value into the memory word, unless the value
at the memory word has been modi�ed in the meantime
by another process. If the word has not been modi�ed,
the store succeeds and a 1 is returned. Otherwise the,
store-conditional fails, the memory is not modi�ed, and
a 0 is returned. The speci�cation of this operation is shown
in Figure 2. For more information on the SGI Origin 2000
and the SUN ENTERPRISE the reader is referred to [7, 2]
and [1], respectively.



Compare-and-Swap(int *mem, register old, new)

{
temp = *mem;
if (temp == old) {

*mem = new;
new = old;

} else
new = *mem

}

Figure 3: The Compare-and-Swap primitive

The compare-and-swap primitive though gives rise to the
pointer recycling (also known as ABA) problem. The ABA
problem arises when a process p reads the value A from a
shared memory location, computes a new value based on A,
and using compare-and-swap updates the same memory lo-
cation after checking that the value in this memory location
is still A and mistakenly concluding that there was no oper-
ation that changed the value to this memory location in the
meantime. But between the read and the compare-and-swap
operation, other processes may have changed the context of
the memory location from A to B and then back to A again.
In this scenario the compare-and-swap primitive fails to de-
tect the existence of operations that changed the value of
the memory location; in many non-blocking implementa-
tions of shared data structures this is something that we
would like to be able to detect without having to use the
read_modify_write operation that has very high latency
and creates high contention. A common solution to the
ABA problem is to split the shared memory location into
two parts: a part for a modi�cation counter and a part for
the data. In this way when a process updates the memory
location, it also increments the counter in the same atomic
operation. There are several drawbacks of such a solution.
The �rst is that the real word-length decreases as the counter
now occupies part of the word. The second is that when the
counter rounds there is a possibility for the ABA scenario to
occur, especially in systems with many, and with fast pro-
cessors such as the systems that we are studying. In this
paper we present a new, very simple e�cient technique to
overcome the ABA problem; the technique is described in
the next section together with the algorithm.

Compare-and-Swap(int *mem, register old, new)
{

do

{
temp = LL(mem);
if (temp != old) return FALSE;
}while(!SC(mem,new));
return TRUE;

}

Figure 4: Emulating compare-and-swap from

load-linked/store-conditional

3. THE ALGORITHM
During the design phase of any e�cient non-blocking data
structure, a large e�ort is spent on guaranteeing the consis-

tency of the data structure without generating many inter-
connection transactions. The reason for this is that the per-
formance of any synchronisation protocol for multiprocessor
systems heavily depends on the interconnection transactions
that they generate. A high number of transactions causes
a degradation in the performance of memory banks and the
processor/memory interconnection network.

As a �rst step, when designing the algorithm presented here,
we tried to use simple synchronisation instructions (primi-
tives), with low latency, that do not generate a lot of coher-
ent tra�c but are still powerful enough to support the high-
level synchronisation needed for the non-blocking implemen-
tation of a FIFO queue. In the construction described in
this paper we have selected to use the compare-and-swap
atomic primitive since it meets the three important goals
that we were looking for. First, it is a quite powerful prim-
itive and when used together with simple read and write
registers is su�cient for building any non-blocking imple-
mentation of any "interesting" shared data-structure [3].
Second, it is either supported by modern multiprocessors
or can be implemented e�ciently on them. Finally, it does
not generate a lot of coherent tra�c. The only problem
with the compare-and-swap primitive is that, it gives rise to
the pointer recycling (also known as ABA) problem. As a
second step, we have tried when designing the algorithm pre-
sented here to use the compare-and-swap operation as little
as possible. The compare-and-swap operation is an e�cient
synchronisation operation and its latency increases linearly
with the number of processors that use it concurrently, but
still it is a transactional one that generates coherent traf-
�c. On the other hand read or update operations require
a single message in the interconnection network and do not
generate coherent tra�c. As a third step we propose a sim-
ple new solution that overcomes the ABA problem that does
not generate a lot of coherent tra�c and does not restrict
the size of the queue.

Figure 6 and Figure 7 present commented pseudo-code for
the new non-blocking queue algorithm. The algorithm is
simple and practical, and we were surprised not to �nd it in
the literature. The non-blocking queue is algorithmically im-
plemented as a circular array with a head and a tail pointer
and a special shared variable called the vnull. The vnull
shared variable has been introduced in order to help us to
avoid the ABA problem as we are going to see at the end of
this section. During the design phase of the algorithm we
realised that: i) we could use the structural properties of a
circular array to reduce the number of compare-and-swap
operations that our algorithm uses as well as to overcome
more e�ciently the ABA problem and ii) all previous non-
blocking implementations were trying to guarantee that the
tail and the head pointers always show the real head and
tail of the queue but by allowing the tail and head pointers
to lag behind we could even further reduce the number of
compare-and-swap asymptotically close to optimal. We as-
sume that enqueue operations inserts data at the tail of the
queue and dequeue operations remove data from the head of
the queue if the queue is not empty. In the algorithm pre-
sented here we allow the head and the tail pointers to lag at
most m behind the actual head and tail of the queue, in this
way only one every m operations has to consistently adjust
the tail or head pointer by performing a compare-and-swap



operation. Since we implement the queue as a circular array,
each queue operation that successfully enqueues or dequeues
data knows the index of the array where the data have been
placed, or have been taken from, respectively; if this index
can be divided by m, then the operation will try to update
the head/tail of the queue, otherwise it will skip the step
of updating the head/tail and let the head/tail lag behind
the actual head/tail. In this way, the amortised number of
compare-and-swap operations for an enqueue or dequeue
operation is only 1 + 1=m, 1 compare-and-swap operation
per enqueue/dequeue operation is necessary. The drawback
that such a technique introduces is that each operation on
average will need m=2 more read operations to �nd the ac-
tual head or tail of the queue; but if we �x m so that the la-
tency of (m�1)=m compare-and-swap operations is larger
than the latency of m=2 read operations, there will be a per-
formance gain from the algorithm, and these performance
gains will increase as the number of processes increases.

It is de�nitely true that array-based queues are inferior to
link-based queues, because they require in�exible maximum
queue size. But, on the other hand, they do not require
memory management schemes that link-based queue imple-
mentations need and they bene�t from spatial locality sig-
ni�cantly more than link-based queues. Taking these into
account and having a a simple, fast and practical imple-
mentation in mind we decided to use a cyclical-array in our
construction.

We have used the compare-and-swap primitive to atom-
ically swing the head and tail pointers from their current
value to a new one. For the SGI Origin 2000 system we
had to emulate the compare-and-swap atomic primitive with
the load-linked/store-conditional instruction; this im-
plementation is shown in Figure 4. However, using compare-
and-swap in this manner is susceptible to the ABA prob-
lem. In the past researchers have proposed to attach a
counter to each pointer, reducing in this way the size of
the memory that these pointers can point at e�ciently. In
this paper we observe that the circular array itself works like
a counter mod l where l is the length of the cyclical array,
and we can �x l to be arbitrary large. In this way by de-
signing the queue as a circular array we overcome the ABA
problem the same way the counters do but without having
to attach expensive counters to the pointers, that restrict
the pointer size. Henceforth, when an enqueue operation
takes place, the tail changes in one direction and goes back
to zero when it reaches the end of the array. Henceforth, the
tail will change back to the same old value after the shared
object �nishes l enqueue operations and not after two suc-
cessive operations (exactly as when using a counter mod l).
The same also holds for the dequeue operations.

The atomic operations on the array are other potential places
where the ABA problem can take place giving rise to the fol-
lowing scenario:

1. the array location x is the actual tail of the queue and
its content is Null1

2. processes a and b �nd the actual tail

1the cell is empty

# MAXNUM is l, the length of the cyclical
structure Queue

{head: unsigned integer,
nodes: array[0..MAXNUM+1] of pointer,
tail: unsigned integer,
vnull: unsigned integer}

newQueue(): pointer to Queue
Queue *temp;

temp = (Queue *) malloc( sizeof(Queue));
temp->head = 0;
temp->tail = 1;
#we define another NULL
temp->vnull = NULL(1);
for (i=0;i<=MAX_NODES;i++)

#NULL means empty
temp->nodes[i]=NULL(0);

temp->nodes[0] = NULL(1);
return temp;

Figure 5: Initialisation

3. process a enqueues data and updates the content of
location x with the use of
compare-and-swap. Since the contents of x is Null, a
succeeds

4. process c dequeues data and updates the content of
location x to Null, changing also the pointer head

5. process b enqueues data and updates the contents of
location x with the use of
compare-and-swap. Since the content of x is Null, b
incorrectly succeeds to enqueue a non active cell in the
queue.

In order to overcome this speci�c ABA instance instead of
using a counter with all the negative side-e�ects, we intro-
duce a new simple mechanism that we were surprised not
to �nd in the literature. The idea is very simple; instead
of using one value to describe that an entry in the array is
empty we use two, NULL(0) and NULL(1). When a pro-
cessor dequeues an item, it will swap into the cell one of the
two NULLs in such a way that two consecutive dequeue
operations on the same cell give di�erent NULL values to
the cell. Returning to the ABA scenario described above,
the scenario would now look like this:

1. array location x is the actual tail and it's content is
NULL(0)

2. processes a and b �nd the actual tail, ie. location x

3. process a enqueues data and updates the content of
location x with a compare-and-swap operation. Since
x0s content is NULL(0), a succeeds

4. process c dequeues data and updates the content of
location x to NULL(1)

5. process b enqueues data and updates the content of
location x with
compare-and-swap. As the content isNULL(1), b fails
in this turn.



Enqueue(t: pointer to Queue, newnode:
pointer to data type):Boolean

loop
te = t->tail; #read the tail
ate = te;
tt = t->nodes[ate];
#the next slot of the tail
temp = (ate + 1) & MAXNUM;

#we want to find the actual tail
while (tt<>NULL(0) AND tt<>NULL(1)) do

#check tail's consistency
if (te != t->tail) break;

#if tail meet head,
# it is possible that Queue is full

if (temp == t->head) break;
#now check the next cell
tt = t->nodes[temp];
ate = temp;
temp = (ate + 1) & MAXNUM;

end while

#check the tail's consistency
if (te != t->tail) continue;
#check whether Queue is full
if (temp == t->head)

ate = (temp + 1) & MAXNUM;

tt = t->nodes[ate];
#the cell after head is OCCUPIED
if (tt<>NULL(0) AND tt<>NULL(1))

return FAILURE; #Queue Full
#if head rewind try update null
if (!ate)

t->vnull = tt;
#help the dequeue to update head
cas(&t->head,temp,ate);
#try enqueue again
continue;

end if

#check the tail consistency
if (te != t->tail) continue;
#get the actual tail and try enqueue data
if (cas(&(t->nodes[ate]),tt,newnode))

if (temp%2==0) #enqueue has succed
cas(&(t->tail),te,temp);

return SUCCESS;
end if

endloop

Figure 6: The enqueue operation

A variable, vnull is used to help the dequeue operations to
determine which NULL they should use any time.

With this mechanism the ABA scenario that was taking
place before, when a process was preempted by only one
other process, now changes to an ABA0BA scenario. The
ABA0B0A scenario is still a pointer recycling problem, but in
order to take place l dequeue operations are needed to take
the system from A to B and subsequently to A0, after that
l more dequeue operations are needed in order to take the
system from A0 to B0 and then to A. Moreover, all these
operations have to take place while the process that will
experience the pointer recycling is preempted. Taking into

account that l is an arbitrary large number, the probability
that the above ABA0B0A scenario can happen can go as
close to 0 as we want2.

The above sketches a proof of the following theorem:

Theorem 1. The algorithm does not give rise to the pointer
recycling problem, if an enque or dequeue operation can not
be preempted by more than l operations, l is an arbitrary
large number.

For the rest of these paper we assume that we have selected
l to be large enough not to give rise to the pointer recycling
problem in our system.

The accessing of the shared object is modelled by a history
h. A history h is a �nite (or not) sequence of operation
invocation and response events. Any response event is pre-
ceded by the corresponding invocation event. For our case
there are two di�erent operations that can be invoked, an
Enqueue operation or a Dequeue operation. An operation is
called complete if there is a response event in the same his-
tory h; otherwise, it is said to be pending. A history is called
complete if all its operations are complete. In a global time
model each operation q �occupies" a time interval [sq ; fq ] on
one linear time axis (sq < fq); we can think of sq and fq
as the starting and �nishing time instants of q. During this
time interval the operation is said to be pending. There ex-
ists a precedence relation on operations in history denoted
by <h, which is a strict partial order: q1 <h q2 means that
q1 ends before q2 starts; Operations incomparable under <h

are called overlapping. A complete history h is linearisable
if the partial order <h on its operations can be extended to
a total order !hthat respects the speci�cation of the object
[4].

Any possible history, produced by our implementation, can
be mapped to a history where operations use an auxiliary
array that is not bounded on the right side. In order to
simplify the proof we will use this new auxiliary array. Our
algorithm guarantees that enqueue operations enqueue data
at consecutive array entries from left to right on this ar-
ray, and dequeue operations dequeue items also from left
to right. In this way it makes sure that the operations are
dequeued in the order they have been enqueued. From the
previous theorem we also have that when an Enqueue(x)
operation �nishes after writing x to some entry e of the ar-
ray, the head pointer of our implementation, that guides
the dequeue operations, will not over-pass this entry e, thus
making sure that no enqueued item is going to be lost. The
above sketches a proof for the next theorem:

Theorem 2. In a complete history such that Enqueue(x)!
Enqueue(y), either Dequeue(x)! Dequeue(y) or Dequeue(y)
and Dequeue(x) overlap.

2We should point out that the technique of using 2 di�erent
NULL values can be extended to k di�erent values requiring
more than k � l dequeue operations to preempt an operation
inorder to cause the pointer recycling problem. We think
that the scheme with 2 �NULL values is simple enough and
su�cient for the systems that we are looking at.



The dequeue operation that dequeues x is the only one that
succeeds to read and "empty" the array entry where x was
written, because of the atomic compare-and-swap operation;
making in this way sure that no other operation dequeues
the same item. Moreover, since the array entry was written
by an enqueue operation, the dequeue operations will always
dequeue items that have been "really" enqueued. The above
sketches the proof of the following theorem:

Theorem 3. If x has been dequeued, then it was enqueued,
and Enqueue(x)! Dequeue(x)

The last 2 theorems guarantee the linearizable behaviour
of our FIFO queue implementation [4]. Due to space con-
straints, we only sketched the proof of these theorems.

4. PERFORMANCE EVALUATION
We implemented our algorithm and conducted our exper-
iments on a SUN Enterprise 10000 with 64 250MHz Ul-
traSPARC processors and on a SGI Origin 2000 with 64
195MHz MIPS R10000 processors. The SUN multiprocessor
is a symmetric multiprocessor while the SGI multiprocessor
is a ccNUMA one. To ensure accuracy of the results, we had
exclusive access to the multiprocessors while conducting the
experiments. For the tests we compared the performance of
our algorithm (new) with the performance of the algorithm
by Michael and Scott (MS) [10] because their algorithm ap-
pears to be the best non-blocking FIFO queue algorithm.
In our experiments, we also included a solution based on
locks (ordinary lock) to demonstrate the superiority of non-
blocking solutions over blocking ones.

4.1 Experiments on SUN Enterprise 10000
We have conducted 3 experiments on the SUNmultiprocessor,
in all of them we had exclusive use. In the �rst experiment
we measured the average time taken by all processors to per-
form one million pairs of enqueue/dequeue operations. In
this experiment (Figure 8a) a process enqueues an item and
then dequeues an item and then it repeats. In the second
experiment (Figure 8b) processes stay idle for some random
time between each two consecutive queue operations. In
the third experiment we used parallel quick-sort, that uses
a queue data structure, to evaluate the performance of the
three queue implementations. Parallel quick-sort had to sort
10 million randomly generated keys. The results of this ex-
periment are shown in Figure 8c. The horizontal axis in the
�gures represent the number of processors, while the vertical
one represents execution time normalised to that of Michael
and Scott algorithm.

The �rst two experiments (on 58 processors), show that the
new algorithm outperforms the MS algorithm by more than
30% and the spin-lock algorithm by more than 50%. The
third experiment shows that the new queue implementation
o�ers 40% better response time to the sorting algorithm.

4.2 Experiments on the SGI multiprocessor
On the SGI machine, the �rst three experiments were basi-
cally the same experiments that we performed on the SUN
multiprocessor. The only di�erence is that on the SGI ma-
chine we could select to use the system as a dedicated sys-
tem (multiprogramming level one) or as a multiprogrammed

Dequeue(t: pointer to Queue, oldnode:
pointer of pointer to data type)

loop
th = t->head; #read the head
#here is the one we want to dequeue
temp = (th + 1) & MAXNUM;
tt = t->nodes[temp];
# find the actual head after this loop

while (tt==NULL(0) OR tt==NULL(1)) do
#check the head's consistency
if (th != t->head) break;
#two consecutive NULL means EMPTY return
if (temp == t->tail) return 1;
temp = (temp + 1) & MAXNUM; #next cell

tt = t->nodes[temp];
end while
#check the head's consistenicy
if (th != t->head) continue;
#check whether the Queue is empty
if (temp == t->tail)

#help the enqueue to update end
cas(&t->tail,temp,(temp+1) & MAXNUM);
continue; #try dequeue again

end if
#if dequeue rewind to 0,

#switching NULL to avoid ABA
if (temp)

if (temp < th)
tnull = t->nodes[0];

else
tnull = t->vnull;

else
tnull = (void *) (((unsigned ) t->vnull) � 1);

#check the head's consistency
if (th != t->head) continue;

#Get the actual head, null value means empty
if (cas(&(t->nodes[temp]),tt,tnull))

#if dequeue rewind to 0,
#switch NULLs to avoid ABA
if(!temp) t->vnull = tnull;
if ((temp%2)==0) cas(&(t->head),th,temp);
*oldnode = tt; #return the value
return 0;

end if
endloop

Figure 7: The dequeue operation

system with two and three processes per processor (mul-
tiprogramming level two and three respectively). For the
SUN multiprocessor this was not possible. Figures 9, 10
and 11a show graphically the performance results. What is
very interesting is that our algorithm gives almost the same
performance improvements on both machines.

On the SGI multiprocessor, it was possible to use the ra-
diosity from SPLASH-2 shared-address-space parallel appli-
cations[13]. Figure 11b shows the performance improvement
compared with the original SPLASH-2 implementation. The
vertical axis represents execution time normalised to that of
the SPLASH-2 implementation.
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Figure 8: Results on the SUN multiprocessor
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Figure 9: Results on the SGI multiprocessor with
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Figure 10: Results on the SGI multiprocessor with

di�erent multiprogramming levels under random

waiting contention
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Figure 11: Applications on SGI



5. CONCLUSIONS
In this paper we presented a new bounded non-blocking con-
current FIFO queue algorithm for shared memory multi-
processor systems. The algorithm is simple and introduces
two new simple algorithmic mechanisms that can be of gen-
eral use in the design of e�cient non-blocking algorithms.
The experiments clearly indicate that our algorithm con-
siderably outperforms the best of the known alternatives in
both UMA and ccNUMAmachines with respect to both ded-
icated and multiprogramming workloads. The experimental
results also give a better insight into the performance and
scalability of non-blocking algorithms in both UMA and cc-
NUMA large scale multiprocessors with respect to dedicated
and multiprogramming workloads, and they con�rm that
non-blocking algorithms can perform better than blocking
on both UMA and ccNUMA large scale multiprocessors.
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