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Abstract

Parallel programs running on shared memory multiprocessors coordinate via shared data
objects/structures. To ensure the consistency of the shared data structures, programs typically
rely on some forms of software synchronisations. Unfortunately typical software synchronisation
mechanisms usually result in poor performance because they produce large amounts of memory
and interconnection network contention and, more signi�cantly, because they produce convoy
e�ects that degrade signi�cantly in multiprogramming environments: if one process holding a
lock is preempted, other processes on di�erent processors waiting for the lock will not be able
to proceed. Researchers have introduced non-blocking synchronisation to address the above
problems. However, its performance implications are not well understood on modern systems or
on real applications. In this paper we study the impact of the non-blocking synchronisation on
parallel applications running on top of a modern, 64 processor, cache-coherent, shared memory
multiprocessor system: the SGI Origin 2000. In addition to the performance results on a
modern system, we investigate the key synchronisation schemes that are used in multiprocessor
applications and their e�cient transformation to non-blocking ones.

1 Introduction

Cache-coherent non-uniform memory access (ccNUMA) shared memory multiprocessor systems have
attracted considerable research and commercial interest in the last years. They are becoming in-
creasingly popular for running parallel programs and are considered to be the foundation of the
next generation shared memory multiprocessors. Unfortunately, synchronisation is still an intru-
sive source of bottlenecks in many parallel programs running on shared memory multiprocessors.
Synchronisation in these systems is explicit via high-level synchronisation operations like locks,
barriers, semaphores, etc. The systems typically provide a set of hardware primitives in order to
support the software implementation of these high-level synchronisation operations. There has been
a considerable debate about how much hardware support and what hardware primitives should be
provided by the systems to support software synchronisation primitives that the user can build. Soft-
ware implementations of synchronisation constructs are usually included in system libraries. Good
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synchronisation library design can be quite challenging and as it is expected many e�cient imple-
mentations for locks, barriers and semaphores have been proposed in the literature. Researchers
in the �eld �rst designed di�erent lock and semaphore implementations that lower the contention
when the system is in a high congestion situation, and they give di�erent execution times under
di�erent contention instances. But still the time spend by the processes on the synchronisation can
form a substantial part of the program execution time [8, 14, 15, 17, 27]. The reason for this is
that in any shared memory parallel systems concurrent processes that have been created either by
a parallel application or by the operating system very often need to share data or become coor-
dinated, and they do so via shared data objects/structures. To ensure consistency of the shared
data structures, programs rely on some forms of software synchronisation. Typical synchronisation
is based on blocking and introduces performance bottlenecks. There are two main reasons. The
�rst is that busy-waiting tends to produce a large amount of memory and interconnection network
contention. The second reason is the convoying e�ect that blocking synchronisation su�ers from: if
a process holding a lock is preempted, any other process waiting for the lock is unable to perform
any useful work until the process that hold the locks is scheduled. In a typical environment we
expect that the machine running our parallel program is used in a multiprogramming environment.
Other processes run for periods of time or, even if the machine is used exclusively, background
daemons run from time to time, processes are interrupted by page faults, I/O interrupts. These
events can cause the rate at which processes make progress to vary considerably. With blocking
synchronisation the parallel program as a whole slows down when one process is slowed (convoying
e�ect). To address the problems that arise from blocking researchers have proposed non-blocking
implementations of shared data structures.

Non-blocking implementation of shared data objects is a new alternative approach to the problem
of designing scalable shared data objects for multiprocessor systems. Non-blocking implementations
allow multiple tasks to access a shared object at the same time, but without enforcing mutual
exclusion to accomplish this. Since, in non-blocking implementations of shared data structures,
one process is not allowed to block another process, non-blocking shared data structures have the
following signi�cant advantages over lock-based ones:

1. they avoid lock convoys and contention points (locks).

2. they provide high fault tolerance (processor failures will never corrupt shared data objects)
and eliminates deadlock scenarios, where two or more tasks are waiting for locks held by the
other.

3. they do not give priority inversion scenarios.

The above features of non-blocking synchronisation makes it ideal for parallel and real-time
systems.

As it was expected, non-blocking synchronisation has attracted the attention of many researchers
that developed e�cient non-blocking implementations for several data structures. Some studies have
been focused on the developing of better software algorithms, while others have identi�ed the prop-
erties of di�erent atomic transaction operations in terms of their synchronisation power. Some
evaluation studies have also been performed for speci�c data structure implementations [15]. Most
of these performance evaluations were using micro-benchmarks and were performed on small scale
symmetric multiprocessors, as well as distributed memory machines [3, 9, 10, 7] or simulators [9, 12].
Micro-benchmarks are useful since they enable easy isolation of performance issues, but the real
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goal of better synchronisation methods is to improve performance of real applications, which micro-
benchmarks may not represent well. A substantial number of realistic scalable applications now
exist for this programming model. On the systems side, scalable, hardware coherent machines with
physically distributed memory have become very popular for moderate to large scale computing.
It is important to evaluate the bene�ts of non-blocking synchronisation in a range of interesting
applications running on top of modern realizations of these systems. In [17] the authors assess the
performance and scalability of several software synchronisation algorithms, as well as the interrela-
tionship between synchronisation, multiprogramming and parallel job scheduling. The main body of
their evaluation is performed with micro-benchmarks executed in dedicated and multiprogrammed
environments on a 64-processor Origin2000. This is the �rst paper, to the best of our knowledge,
that uses 3 applications from the SPLASH-2 benchmark suit, Cholemsky, Radiosity and LU, to
assess the performance of synchronisation algorithms under realistic conditions. In their evaluation,
i) minor modi�cations are applied in the synchronisation code of each application and ii) the appli-
cations selected because they spend a signi�cant amount of time in synchronisation points. In the
work presented here, continuing the work presented in [17] we try to understand how non-blocking
synchronisation a�ects the performance of parallel applications in general, not only to ones that
spend o lot of time in communication. Henceforth, i) we try to use a big set of applications with
di�erent characteristics, making sure that we include also applications that do not spend a lot of
time in synchronisation, ii) we also try to modify all the lock-based synchronisation points of these
applications if possible.

The goal of the work presented here is to provide an in depth understanding of how non-blocking
can improve the performance of modern parallel applications. More speci�cally, the main issues ad-
dressed in this paper include: i) The architectural implications of the ccNUMA on the design of
non-blocking synchronisation. ii) The identi�cation of the basic locking operations that parallel
programmers use in their applications. iii) The e�cient non-blocking implementation of these syn-
chronisation operations. iv) The experimental comparison of the lock-based and lock-free versions
of the respective applications on a cache-coherent non-uniform memory access shared memory mul-
tiprocessor system. v) The identi�cation of the structural di�erences between applications that
bene�t more from non-blocking synchronisation than others. We examine these issues, using a set
of applications on a 64 processor SGI Origin 2000 multiprocessor system. This machine is attractive
for the study because it provides an aggressive communication architecture and support for both in
cache and at memory synchronisation primitives. It should be clear however that the conclusions
and the methods presented in this paper have general applicability in other realizations of cache-
coherent non-uniform memory access machines. Our results can bene�t the parallel programmers in
two ways. First, to understand the bene�ts of non-blocking synchronisation, and then to transform
some typical lock-based synchronisation operations that are probably used in their programs to non-
blocking ones by using the general translations that we provide in this paper. The contributions of
this work are both in the results obtained as well as in the methodologies described and used.

The majority of the applications that we choose are of the SPLASH-2 shared-address-space par-
allel applications [24]. The SPLASH-2 applications are quite optimised for parallel performance and
usually perform synchronisation only when really needed. It is reasonable to expect versions of the
same or similar applications to be produced by non-expert programmers with more synchronisation.
Interestingly, we found that although we did not undo any of the optimisations, the non-blocking
synchronisation improved a lot the performance of many of these applications and does not worsen
any of them.
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The rest of the paper is organised as follows. Section 2 outlines the Origin 2000 architecture and
its hardware support for synchronisation. Section 3 discusses the applications that we used for our
evaluation. Section 4 presents the transformations that we applied in order to translate the basic
blocking synchronisation operations used in these applications to non-blocking ones. In the same
section we also present the experimental results. Finally, Section 5 concludes this paper.

2 Origin 2000

The SGI Origin2000 [10] is a commercial ccNUMA machine with fast, MIPS R10000 processors
[26], and an aggressive, scalable distributed shared memory (DSM) architecture. ccNUMA is a
relatively new system topology that is the foundation for many next-generation shared memory
multiprocessor systems. Based on "commodity" processing modules and a distributed, but uni�ed,
coherent memory, ccNUMA extends the power and performance of shared memory multiprocessor
systems while preserving the shared memory programming model. ccNUMA systems maintain a
uni�ed, global coherent memory and all resources are managed by a single copy of the operating
system. A hardware-based cache coherency scheme ensures that data held in memory is consistent
on a system-wide basis. ccNUMA systems are expected to become the dominant systems on large
high performance systems over the next few years. The reasons are: a) they scale up to as many
processors as needed. b) they support the cache-coherent globally addressable memory model c)
their entry level and incremental costs are relatively low.

2.1 The Platform

The SGI Origin2000 [10] is a scalable shared memory multiprocessing architecture, as shown in
Figure 1. It provides global address spaces not only for memory, but also for the I/O subsystem.
The communication architecture is much more tightly integrated than in other recent commercial
distributed shared memory (DSM) systems, with the stated goal of treating a local access as simply
as an optimisation of a general DSM memory reference. The two processors within a node do not
function as a snoopy share memory multiprocessor cluster, but operate separately over the single
multiplexed physical bus and are governed by the same, one-level directory protocol. Less snooping
keeps both absolute memory latency and the ratio of remote to local latency low [10, 11], and
provides remote memory bandwidth equal to local memory bandwidth (780MB/s each) [10, 11, 13].
The two processors within a node share a hardwired coherence controller called the Hub that
implements the directory based cache coherence protocol.

Two nodes (4 processors) are connected to each router, and routers are connected by CrayLinks
[4]. Within a node, each processor has separate 32KB �rst level I and D caches, and a uni�ed 4MB
second-level cache with 2 way associativity and 128 byte block size. The machine we use has Sixty
four 195MHz MIPS R10000 CPUs with 4MB L2 cache and 15.5GB main memory.

2.2 Hardware Support for Synchronisation

The SGI Origin 2000 provides two transactional instructions that can be used to implement any other
transactional synchronisation operation. The �rst instruction is the load_linked and store_conditional
instruction. The load_linked and store_conditional is comprised by two simpler operations, the
load_linked and the store_conditional one. The load_linked loads a word from the memory
to a register. The matching store_conditional stores back possibly a new value into the memory
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Figure 1: SGI Origin 2000 Architecture

word, unless the value at the memory word has been modi�ed in the meantime by another pro-
cess. If the word has not been modi�ed, the store succeeds and a 1 is returned. Otherwise the,
store_conditional fails, the memory is not modi�ed, and a 0 is returned. The speci�cation of this
operation is shown in Figure 2.

LL(pi,O) SC(pi; v; O)

Pset(O) := Pset(O) [ fpig if pi 2 Pset(O)

return value(O) value(O):= v

Pset(O):= ;
return true

else

return false

Figure 2: The load_linked_and_store_conditional primitive

The second hardware synchronisation mechanism is a group of fetch_and_op operations. The
fetch_and_op operations are implemented at the node memory and supports at-memory atomic
read-modify-write operations to special uncached memory locations. These operations are called
fetchops and only a few atomic operations are supported on this machine. The speci�cation of
this operation is shown in Figure 3. The operations that are supported in Origin 2000 include
fetch_and_and, fetch_and_or, fetch_and_increment, fetch_and_decrement,
fetch_and_exchange_with_zero. The fetch_and_and was �rst introduced by the NYU Ultracom-
puter Project [6]. Reads and updates of fetchop memory blocks require a single message in the
interconnection network and do not generate coherence tra�c. A shortcoming of fetchops is the
read latency experienced by a processor that spins on an uncacheable variable; spinning on fetchop
variables may generate signi�cant network tra�c. A second drawback of fetchops is that they lack
a powerful synchronisation power that operations like the compare_and_swap, that can atomically
check the and exchange the contents of a memory location, has.

For more information on the SGI Origin 2000 the reader is referred to [20, 10].
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fetch_and_op(int *address,int value)

{

int temp;

temp = *address;

*address = op(temp,value);

return temp;

}

Figure 3: The fetch_and_op primitive

3 Applications

Evaluating the impact of the synchronisation performance on applications is important for several
reasons. First, micro-benchmarks can not capture every aspect of primitive performance. It is hard
to predict the primitive impact on the application performance. For example, a lock or barrier that
generates a lot of additional network tra�c might have little impact on applications. Second, even
in applications that spend signi�cant time in synchronisation operations, the synchronisation time
might be dominated by the waiting time due to load imbalance and serialisation in the application
itself, which better implementations of locks and barriers may not be helpful in reducing. Third,
micro-benchmarks rarely capture (generate) scenarios that occur in real applications.

We use a large group of applications, some of which are from the SPLASH-2 [24] suite, and
some of which were developed more recently and are from the Spark98 kernels suit [18]. Below we
brie�y describe the applications that we have used. The actual descriptions of the applications can
be found in [19, 22, 24, 21].

Ocean simulates eddy currents in an ocean basin [25]. It consists largely of nearest neighbour
calculations on regular grids, including a multigrid solver [2]. Both its inherent and induced (at
page granularity) data referencing patterns generally involve one producer with one consumer. Read
and write accesses are coarse grained internally to a partition and along row-oriented partition
boundaries, but �ne-grained along column-oriented boundaries; i.e., when a process reads a word
from its neighbour along a column-oriented boundary, because of the way memory is laid out, it
reads only a single word on each page. Thus, there is signi�cant fragmentation in communicating
remote data in pages at column boundaries in shared memory systems.

Volrend renders three dimensional volume data into an image using a ray-casting method [16].
The volume data are read only. Its inherent data referencing pattern on data that are written (task
queues and image data) is migratory, while its induced pattern at page granularity involves multiple
producers with multiple consumers. Both the read accesses to the read only volume and the write
accesses to task queues and image data are �ne grained, so it su�ers both fragmentation and false
sharing.

Radiosity computes the equilibrium distribution of light in a scene using the iterative hierar-
chical di�use radiosity method [5]. A scene is initially modelled as a number of large input polygons.
Light transport interactions are computed among these polygons. and polygons are hierarchically
subdivided into patches as necessary to improve accuracy. In each step, the algorithm iterates over
the current interaction lists of patches, subdivides patches recursively, and modi�es interaction lists
as necessary. At the end of each step, the patch radiosities are combined via an up-ward pass
through the quad-trees of patches to determine if the overall radiosity has converged. The main
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data structures represent patches, interactions, interaction lists, the quad-tree structures, and a
BSP tree which facilitates e�cient visibility computation between pairs of polygons. The structure
of the computation and the access patterns to data structures are highly irregular. Parallelism is
managed by distributed task queues, one per processor, with task stealing for load balancing. No
attempt is made at intelligent data distribution. See [21] for more details.

Water-Nsquared is an improved version of the Water program in SPLASH [22]. This applica-
tion evaluates forces and potentials that occur over time in a system of water molecules. The forces
and potentials are computed using an 0(n2) algorithm , and a predictor-corrector method is used
to integrate the motion of the water molecules over time. The main di�erence from the SPLASH
program is that the locking strategy in the updates to the accelerations is improved. A process
updates a local copy of the particle accelerations as it computes them, and accumulates into the
shared copy once at the end.

Water-Spatial solves the same problem as Water-Nsquared, but uses a more e�cient algorithm.
It imposes a uniform 3-D grid of cells on the problem domain, and uses an O(n) algorithm which is
more e�cient than Water-Nsquared for large numbers of molecules. The advantage of the grid of
cells is that processors which own a cell need only look at neighbouring cells to �nd molecules that
might be within the cuto� radius of molecules in the box it owns. The movement of molecules into
and out of cells causes cell lists to be updated, resulting in communication.

Spark98 is a collection of sparse matrix kernels for shared memory and message passing sys-
tems. Each kernel performs a sequence of sparse matrix vector product operations using matrices
that are derived from a family of three dimensional �nite element earthquake applications. The mul-
tiplication of a sparse matrix by a dense vector is central to many computer applications, including
scheduling applications based on linear programming and applications that simulate physical sys-
tems. For example, the Quake project at Carnegie Mellon University uses a sequence of more than
16,000 sparse matrix-vector product operations to simulate the motion of the ground during the
�rst 40 seconds of an aftershock of the 1994 Northridge earthquake in the San Fernando Valley
[1]. The sparse matrix consists of over 13 million rows and 180 million nonzero entries, where each
nonzero entry is a dense sub-matrix of double precision �oating point numbers. These applica-
tions are irregular applications based on sparse matrices. The running time of these applications
is dominated by a sparse matrix-vector product (SMVP) operation that is repeated thousands of
times, and the SMVP is the only operation besides I/O that requires the transfer of data between
processors. Irregular applications based on sparse matrices are at the core of many important sci-
enti�c computations. Since the importance of such applications is likely to increase in the future,
high-performance parallel systems must provide adequate support for such applications.

3.1 Problem Size

Problem size is a very important issue. Generally, the larger the problem size the lower the frequency
of synchronisation relative to computation. On one hand, using large problem sizes will therefore
make synchronisation operations seem less important. On the other hand, small problem sizes
might result in very low speedup making them uninteresting on a machine of this scale. Because we
wanted to make the evaluation on realistic problem sizes for this machines, we selected signi�cant
problem sizes that do not favour synchronisation, but still as we will show later the improvements
were big in many applications. Figure 4 shows the inputs that we used for each of the applications.
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Application Input

Ocean 1026

radiosity largeroom

volrend 256x256x126

spark98 sf5.1.pack

water-spatial 1331 molecules

water-nsquared 1331 molecules

Figure 4: Applications and inputs

4 The Non-blocking Transformations

In this section, we show how to transform the lock-based synchronisations in the applications men-
tioned in the previous section into non-blocking ones. For doing so: i) We �rst, studied the above
applications, in-oder to identify all the lock-based high level synchronisation operations that they
use. ii) Second, we propose a set of e�cient lock-free implementations for these synchronisations.
These implementations are general enough and can be used in other parallel applications.

4.1 Typical Lock-Based Synchronisation Operations And Their Translations to

Non-blocking Ones

Before describing the detailed modi�cations for each application, we will �rst describe two very
common uses of locks in these and other parallel applications. A locks in many parallel applications
is used in order to protect a global shared variable which is updated after a simple arithmetic
calculation is performed on the value carried before in this shared variable. These shared variables
are used in the application programs to either: i) assign consecutive values to the processes, or ii)
to sum up values computed by processes of the system, or iii) to act as the index of an array.

We call this kind of Locks as SimpleLocks. It was easy to observe that these kind of locks can
be replaced with fetch_and_op operations to achieve the same functionality without locking.

One problem with the fetch_and_op operations is that they do not provide support for �oat-
ing point numbers. In high performance scienti�c computing though, people often use �oating
point numbers. In order to overcome this shortcoming of the hardware we propose an e�cient
software implementation of a fetch_and_op that supports �oating point numbers. We call these
operations double_fetch_and_op operations. We implemented them using the Load_Link and
Store_conditional primitives. The speci�cation of the new double_fetch_and_add operation is
given in Figure 5.
Now, with the help of the FAD (fetch_and_add) and DFAD (double_fetch_and_add) operations
we can remove all SimpleLocks in any parallel application.

4.2 The Applications And Their Synchronisation

In this subsection, we describe the di�erent lock-based synchronisation operations that are used
in the applications that we examine, together with our transformations that transform them to
non-blocking ones with the same functionality.

In the OCEAN application 4 di�erent locks are used:
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double_fetch_and_add(double *address,double value)

{

double temp;

temp = *address;

*address = temp + value;

return temp;

}

Figure 5: The double_fetch_and_add primitive

do

{

temp = LL(multi->err_multi);

if (local_err > temp)

rtn = SC(multi->err_multi, local_err);

}

while(rtn = TRUE)

Figure 6: Lock-free immplementation of the conditional update of error_lock

� idlock is a SimpleLock that protects the global variable index.

� psiailock is also a SimpleLock that protects the global variable psiai that carries �oating
point numbers.

� psibilock is also a SimpleLock that protects the global variable psibi that carries �oating
point numbers.

� error_lock on the other hand is not a SimpleLock, and, it protects the global variable
err_multi. The use of err_multi is describe below.

We replaced the �rst three of these locks with FAD or DFAD operations using the methods
described in the previous subsection. The fourth lock (error_lock) protects a global variable
which is updated conditionally as follows:

LOCK(locks->error_lock)

if (local_err > multi->err_multi) {

multi->err_multi = local_err;

}

UNLOCK(locks->error_lock)

For this lock we had to implement a non-blocking synchronisation with the same functionality
to replace it, in our implementation we used the Load_Link and Store_conditional primitives.
Figure 6 describes our implementation.

Figure 7(a) shows performance results for the original version and the modi�ed non-blocking
version of the OCEAN application. Because the ocean application requires the number of processes
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to be power of 2, we could only do the experiments for up to 32 processors. For this particular appli-
cation we do not observe any signi�cant improvement after the modi�cation, but, we also notice that
the non-blocking synchronisation do not hamper the performance. Ocean is a regular application
with very regular communication patterns and moreover below 32 processors, the synchronisation
time does not contribute much to the total execution time.

(a) OCEAN (b) RADIOSITY

Figure 7: Performance results: OCEAN and RADIOSITY

Radiosity uses 11 di�erent locks:

� index_lock is a SimpleLock that protects the variable index.

� bsp_tree_lock is a lock that protects the bsp_tree structure.

� pbar_lock is a lock that protects the global variable pbar_counter.

� task_counter_lock is a lock that protects the global shared variable task_counter.

� free_patch_lock is the lock that protects the global shared data object Patch that is imple-
mented as a queue where free "patches" are queued.

� free_element_lock is the lock that protects the global shared data object Element. Element
is implemented as a queue where processes queue free "elements".

� free_interaction_lock is the lock that protects the global shared data object Interaction.
Interaction is a queue structure where "interactions" are queued.

� free_elemvertex_lock is the lock that protects the global shared data object Elemvertex.
Elemvertex is also implemented as a queue where "free elements" are stored.

� free_edge_lock is the lock that protects the global shared data object Edge. Edge is also a
queue structure where "free edges" are queued.
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� avg_radiosity_lock is a lock that acts as a barrier that determines when parts of the com-
putation should stop.

� q_lock protects the task queue.

The bsp_tree is protected by the bsp_tree_lock that has also a tree structure. We used the
CAS (compare_and_swap) atomic operation to implement a non-blocking version of bsp_tree. The
speci�cation of the CAS primitive is shown in Figure 9. For the SGI Origin 2000 system we had to
emulate the compare_and_swap atomic primitive with the load_linked_and_store_conditional

instruction; this implementation is shown in Figure 10.

do

{

... ...

traversal the tree to find the leaf to add the node

... ...

}

while(CAS(leaf's address, NULL, node))

Figure 8: Non-blocking operations on bsp_tree

In the program, nodes are only added to the bsp_tree and they are never deleted from it. Moreover,
there is no operation that can change the position of a node that is already in the tree. New nodes
are added as leaves. Because of these special properties of the bsp_tree, we do not face the ABA
problem that most non-blocking protocols that use CAS have to phase. The ABA problem arises
when a process p reads the value A from a shared memory location, computes a new value based
on A, and using compare_and_swap updates the same memory location after checking that the
value in this memory location is still A and mistakenly concluding that there was no operation
that changed the value to this memory location in the meantime. But between the read and the
compare_and_swap operation, other processes may have changed the context of the memory location
from A to B and then back to A again. Our lock-free implementation for the bsp_tree is described
in Figure 8.

Compare_and_Swap(int *mem, register old, new)

{

temp = *mem;

if (temp == old) {

*mem = new;

new = old;

} else

new = *mem

}

Figure 9: The Compare_and_Swap primitive

pbar_counter is a counter that counts the number of working processors. It also emulates
the behaviour of a barrier; when there is no processor working, the program will exit the current
iteration and will check the radiosity convergence to determine whether to continue the iterations or
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Compare_and_Swap(int *mem, register old, new)

{

do

{

temp = LL(mem);

if (temp != old) return FALSE;

}while(!SC(mem,new));

return TRUE;

}

Figure 10: Emulating compare_and_swap with load_linked_and_store_conditional

not. We used the FAD operation to replace the locks, in this way we achieved the same functionality
without using locks.

The task_counter is used by the prcesses to determine the task that enters the function
check_task_counter. We implement this counter in a lock-free manner using the CAS primitive,
our implementation is shown in Figure 11.

check_task_counter(process_id)

{

do

{

tempold = global->task_counter;

tempnew = (tempold + 1) % n_processors;

}

while( CAS(global->task_counter, tempold, tempnew) == 0);

flag = !tempold;

return( flag ) ;

}

Figure 11: Non-blocking version of the check_task_counter

The remaining shared data objects that are protected by locks (free_patch, free_element,
free_interaction, free_elemvertex, free_edge, task_queue) are implemented as queues. Figure
12, describes some special properties of these queues.

We used the non-blocking queue implementation presented in [23], to replace the lock-based
implementations for the queue based shared objects mentioned before.

Figure 7(b) shows the performance of our non-blocking version comparing with original one.
There is no big di�erence between the two versions until we reach 32 processors where synchronisa-
tion becomes a signi�cant part of the total computing time. With 32 processors, the non-blocking
version is about 34% faster than the lock-based one and as the number of processors increases the
improvement on the performance also increase reaching a 93% better performance when using 60
processors, the maximum number of processors that we could use exclusively for running this ap-
plication. The access patterns to shared data structures in Radiosity are highly irregular, as we
mentioned in the previous section.
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Data Object Name Functionality

free_patch no enqueue operations run in parallel

free_element no enqueue operations run in parallel

free_interaction enqueue and dequeue operations run in parallel

free_elemvertex no enqueue operations are running in parallel

free_edge no enqueue operations are running in parallel

task_queue enqueue and dequeue operation are running in parallel

Figure 12: Data objects in Radiosity

Volrend in contrast with radiosity does not use many locks. It uses only two SimpleLocks and an
array lock. These locks are described below:

� IndexLock is a SimpleLock that protects the shared variable index.

� CountLock is a SimpleLock that protects the shared variable Counter.

� QLock is an array lock used to protect a global queue. The global queue is implemented as an
array. The protection is on the index of the array. As there is only one arithmetic operation,
we used a normal FAD fetch_and_add to translate it into a non-blocking one.

Figure 13(a) shows the performance of our non-blocking version comparing with original one.
The performance advantage of the non-blocking version starts to show as the number of processors
becomes greater than 8. The performance of the non-blocking one is close to optimal since its speed
up is very close to the theoretical limit. Volrend's inherent data referencing pattern on data that
are written (task queues and image data) is migratory, while its induced pattern at page granularity
involves multiple producers with multiple consumers.

(a) VOLREND (b) SPARK98

Figure 13: Performance results: VOLREND and SPARK98

From the Spark98 kernel we used the shared memory applications, the lmv and the rmv. Lmv is a
parallel shared memory program based on locks. Rmv is a parallel shared memory program based
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on a reduction of the number of locks that are used in lvm. Based on the naming schemes that the
developers of Spark98 have used, we named our version nmv. In order to create this non-blocking
version we used the lmv version from the kernel. All locks in this program are SimpleLocks and
they handle �oating point numbers. Due to the limited time for exclusive use that we had we
performed the experiments for up to 28 processors for this application. The results, graphically
shown in Figure 13(b), clearly show the power of non-blocking synchronisation for unstructured
applications like this one. The speedup of rmv and lmv stop when we go above 16 processors while
nmv scales uniformly. This allows us to conjecture that non-blocking will dramatically increase the
performance of these applications as the number of processors increases.

InWater-nsquared although 10 di�erent locks are de�ned, only 7 are used. These 7 are described
bellow:

� IndexLock is a SimpleLock that protects the global variable Index

� IntrafVirLock is a SimpleLock that protects the global variable VIR when computing the
intra-molecular force/mass acting.

� InterfVirLock is a SimpleLock that protects the variable VIR when computing the inter-
molecular force.

� KinetiSumLock is a SimpleLock that protects the array SUM

� PotengSumLock is a SimpleLock that protects the variables POTA, POTR, POTRF.

� MolLock, is an array of locks, all of them are SimpleLocks and they are used in order to update
the force on all moleculars.

� IOLock is a special lock that is used for I/O control. We used the implementations described
in the previous subsection in order to replace all SimpleLocks.

Water-spatial uses 7 di�erent locks. Five of these are SimpleLocks, the �rst �ve SimleLocks
that are listed in the Water-nsquared above (IndexLock, IntrafVirLock, InterfVirLock,

KinetiSumLock, PotengSumLock). We used the implementations described in the previous sub-
section in order to replace all SimpleLocks.

In Water-nsquared and Water-spatial the communication and the sharing of the data is
very simple: A process updates a local copy of the particle accelerations as it computes them,
and accumulates into the shared copy once at the end. This simple communication pattern does
not give the opportunity to lock-free synchronisation to show it's power. On the other hand, the
experiments show that lock-free synchronisation does not harm the performance of the applications.
The lock-free versions of both applications perform as well as the respective lock-based ones.

Figure 15 summarises our experimental results. It graphically shows the maximum speedup of
the lock-free and the respective lock-based implementation for each of our implementations.

5 Conclusion and Discussions

The main conclusions of our study are the following:
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(a) WATER-NSQUARED (b) WATER-SPATIAL

Figure 14: Performance results: WATER-NSQUARED and WATER-SPATIAL

Figure 15: Speedup for the non-blocking and the original versions

� For the fairly wide range of applications examined, non-blocking synchronisation performs as
well, and often better than the respective blocking synchronisation.

� For certain applications, the use of non-blocking synchronisation yields great performance
improvement. Figure 15 shows graphically shows the maximum speedup of the lock-free and
the respective lock-based implementation for each of our implementations. With 60 processors,
the non-blocking version of radiosity is about two times faster than the lock-based one; non-
blocking Volrend is about 7 times faster that the lock based one. Irregular applications bene�t
the most from non-blocking synchronisation. Since the importance of such applications is likely
to increase in the future, the importance of lock-free synchronisation in high-performance
parallel systems is also expected to increase.

� The methods that we introduce to remove lock based synchronisations are quite simple and
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can be used in any parallel application.
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