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Abstract

Let X1; : : : ; Xc be variables which together constitute a composite register. These vari-
ables are shared by a number of processes which operate in a totally asynchronous and
wait-free manner. An operation by a process on the composite register is either a write to
one of the variables or a read of the values of all variables. All operations are required to
be atomic, i.e. an execution of any number of them (including reads) must be linearizable.
in a way consistent with the values returned by the reads. In a single reader composite
register no two reads can concurrently access the composite register. We give a new pro-
tocol implementing a single reader composite register for the case when there is a single
writer per variable. Our construction uses time-stamps that may take values as large as
the number of operations performed. The advantages of our construction over previous
(bounded time-stamps) solutions are: (i) Both the protocol and its formal correctness
proof are easy to understand. (ii) The time complexity of an operation of our construc-
tion (i.e. the number of its sub-operations) and the number of the subregisters used in our
construction are at most equal to the number of processes that can concurrently access
the composite register.

Keywords: Distributed Computing, Wait-Free Registers, Snapshot Problem.

1 Introduction

Recently, a number of constructions have been proposed for a shared, array-like variable
(called a composite register) that is comprised of a number of variables X1; : : : ; Xc (the
components), so that each Xk, k = 1; : : : ; c, can be written to by a set of processes (the
writers of this component) and the values of all components can be read in a single atomic
operation by one or more processes (the readers). All processes are assumed to operate
totally asynchronously, while all operations (i.e. either writes to a component or multi-reads)
are required to be executed in a wait-free manner. The building blocks of these constructions
are atomic, single-component variables, called subregisters. A read or a write operation on
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the level of the composite register (a high-level operation) may have as sub-operations both
reads and writes on the level of subregisters (low-level operations). A construction of a com-
posite register is said to be wait-free i� any high-level read or write operation is guaranteed
to �nish in a �nite number of steps, regardless of the speed of the other processes that may
access the object concurrently. Informally, a wait-free composite register (snapshot) gives
the means to processes to take an instantaneous picture of memory components while are
have being concurrently updated by other processes. A composite register is one of the most
powerful synchronization abstract data types that can be implemented in a wait-free manner
using as building blocks only read and write objects.

A composite register is characterized by the number of readers that can concurrently read
it, the number of writers that can concurrently write to the same component, the number of
components, as well as the number of bits per component. The general case is the n-reader,
m-writer per component, c-component, b-bit per component composite register. The problem
which we study in this paper is the wait-free implementation of a single-reader, c-component,
1-writer per component, b-bit per component composite register using one component regis-
ters. It must be pointed out that the case of multi-reader is rather di�erent in nature than
the single-reader case, in the sense that it has an increased di�culty in achieving sequential
consistency among read \results" by di�erent processes.

Multi-reader composite register implementations have been proposed: i) by Afek et al.
in [1] (bounded memory and quadratic number of sub-operations per operation), Anderson
in [2] (bounded memory and exponential number of sub-operations per operation) and by
Attiya and Rachman in [5] (bounded memory and O(n logn) sub-operations per operation);
these implementations solve the general case of the problem (multi-reader and multi-writer),
ii) by Aspnes and Herlihy in [3] (unbounded memory and quadratic number of sub-operations
per operation); this is an implementation for the multi-reader, single writer per component
composite register and uses unbounded time-stamps. These constructions are all for the multi-
reader problem; however, the corresponding time complexities (i.e. number of sub-operations
per operation) remain the same even if they are restricted to the case of a single reader and
single writer per component composite register.

Because of the signi�cance of the problem much work has been done in the general area
of composite register constructions. Kirousis, Spirakis, and Tsigas in [10] proposed an im-
plementation for the single-reader, multi-writer per component composite register (bounded
memory, linear time complexity for a read operation and constant for a write operation);
in that work, �rst an implementation using unbounded number of subregisters is proposed
and subsequently it is shown that bounded number of subregisters are su�cient. Dwork et
al. in [7] give a linear time-lapse snapshot object. Attiya, Herlihy, and Rachman in [4] give
an O(n log2 n) implementation that uses Test&Set registers, and an O(n) implementation
that uses dynamic Test&Set registers. Israeli, Shaham, and Shirazi in [9], by modifying
and extending the construction presented here, give a general technique to transform any
snapshot construction that requires O(f(n)) operations per read or write, into a construction
that requires O(f(n)) operations per read, and only linear number of operations per write;
in the same paper they also give a general technique to transform any snapshot construction
that requires O(f(n)) operations per read or write, into a construction that requires O(f(n))
operations per write. Hoepman and Tromp in [8] showed that the complexity of the general
composite register implementation reduces to the complexity of the implementation of a com-
posite register whose components are binary variables. Chandy and Lamport in [6] considered
a closely related problem in the message{passing model.
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In this paper we use time-stamping and we present a solution for the case of single-reader,
single-writer per component composite register. Besides its contribution to the design of
other wait-free algorithms (cf. [9]), our construction has the nice feature that the number of
sub-operations per operation as well as the number of (multi-reader) subregisters used are
at most equal to the total number of processes that can concurrently access the composite
register. We believe that the resulting construction is simple and transparent, while its formal
correctness proof is elegant and easy to understand. The time-stamps used may take values
that are at most equal to the number of operations in a run, therefore it is enough to assume
that the subregisters of our construction can \hold" a number of bits that is linear in the
logarithm of the number of operations. Given the word-length that is achieved with today's
technology, it seems that \unbounded" time-stamps in this sense is a fair price to pay for the
simplicity attained.

2 Model and De�nitions

A formalism for the problem of composite registers can be found either in [2] or in [1]. In [11]
one can �nd a formalism for the notion of atomic registers and the global time assumption
that we adopt. Our notation is compatible with these formalisms. We assume that each
operation Op has a time interval [sOp; fOp] on a linear time axis. Think of sOp and fOp as the
starting and �nishing times of Op. Moreover, we assume that there is a precedence relation on
operations which is a strict partial order (denoted by `!'). Semantically, a ! b means that
operation a ends before operation b starts. If two operations are incomparable under !, they
are said to overlap. If a ! b, then for any sub-operations s and t of a and b, respectively,
we have that s! t.

A construction of a composite register is comprised of: (i) a description of the set of the
subregisters and their initial values and (ii) procedures (protocols) that describe a high-level
operation in terms of its sub-operations on the subregisters. A construction, apart from the
shared variables (i.e. the subregisters), may make use of local variables as well. The local
variables might be static i.e. retain their values between invocations of the corresponding
procedures. We adopt the convention to denote shared variables with capital letters and local
variables with lower case letters.

A reading function �R for a register R is a function that assigns a write operation w to
each read operation r on R, such that the value returned by r is the value written by w. It is
assumed that there exists a write operation, which initializes the register R, that precedes all
other operations on R. Similarly, a reading function �k for a component k of the composite
register is function that assigns to each high-level read r a high-level write w to Xk so that
the value returned by r is written to Xk by w.

A run on a register is an execution of an arbitrary number of operations according to its
protocol.

Following [11] we distinguish the single-component registers (i.e. the subregisters that
are the building blocks of composite register constructions) according to the consistency
guaranteed in presence of concurrent reads and writes. For all these cases we assume that
for every run on a register R there exists a write operation which precedes all the other
operations. This write operation writes the initial value to subregister R.
� A run on a register R is safe if every read operation r that is not concurrent with any
write operation returns a value which is equal to the value written by a write operation that
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directly precedes r (a write operation w directly precedes r if there is no other write operation
u such that w! u! r). A read operation that overlaps a write operation returns one of the
possible values of the register. The register is called safe if all its runs are safe.
� A run on a register R is regular if every read operation r returns a value which is equal to
the value written by a write operation that is either concurrent with r or directly precedes r.
A register is regular if all its runs are regular.
� A run on a register R is atomic if there is a total order ) on the set of all the operations
of the run such that: (i) The total order ) extends the precedence relation !, (ii) every
read operation r returns a value which is equal to the value written by a write operation that
directly precedes r in the total ordering ). A register is atomic if all its runs are atomic.

Obviously, an atomic register is regular, and a regular one is safe.
A run on a composite register is atomic if the partial order ! on its operations can be

extended to a strict total order) and if for each component k there is a reading function �k,
such that for all high-level reads r: (i) �k(r)) r and (ii) there is no write w to Xk such that
�k(r)) w) r. A composite register is atomic if all its runs are atomic.

3 The Protocol

We �rst give an atomicity criterion for single-reader, single-writer per component, c-component,
composite register constructions; this theorem will help in giving the intuition of the algo-
rithm with the informal description that follows, and will also be used in order to prove the
correctness of our construction.

Theorem 1 In the case of a single-reader, single-writer per component, c-component, com-
posite register a run is atomic if for each k, where 1 � k � c, there exists a reading function
�k, whose domain is the set of high-level reads and whose range is a set of high-level writes
to component k, such that the following four conditions hold:

(F) Future For any high-level read r and for any component k, it is not the case that:
r ! �k(r).

(P) Past For any high-level read r, for any component k, and for any high-level write w to
component k it is not the case that: �k(r)! w! r.

(N-O) New-Old Inversion For all high-level reads r1; r2, and for any component k, it is
not the case that: (r1! r2 and �k(r2)! �k(r1)).

(In-C) Inconsistency For any high-level read r, for all components k; l and for any high-
level write w to component k, it is not the case that: �k(r)! w ! �l(r).

This theorem is essentially the restriction to the single-reader, single-writer per compo-
nent, composite register case of the atomicity criterion for the general case given in [2], so we
omit its proof. 2

3.1 Informal Description

The �rst three conditions of Theorem 1 constitute a correctness criterion for atomic (single-
component) register constructions. The fourth condition is the essence of the snapshot prob-
lem; this condition disallows read operations from obtaining inconsistent views of the values
of the components.
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type Rtype = record val : valtype; tag : integer end;
var B : array[1::c] of array[1::c] of Rtype;

/* Shared variables declaration; initially, they hold the same arbitrary value*/

procedure reader /*returns array[1::c] of valtype*/
var mr : array[1::c] of array[1::c] of Rtype;

a : array[1::c] of valtype;
col; row : 1::c;

begin

for row := 1 to c do read mr[row] := B[row] od;
for col := 1 to c do

select row such that (8l : 1 � l � c)(mr[row][col]:tag � mr[l][col]:tag);
a[col] := mr[row][col]:val;

od;
return (a[1]; : : : ; a[c]);

end

procedure writer /* writes u : valtype on component i*/
var mw : array[1::c] of array[1::c] of Rtype;

b : array[1::c] of Rtype;
col; row : 1::c;

begin

for row := 1 to c do read mw[row] := B[row] od;
for col := 1 to c do

select row such that (8l : 1 � l � c)(mw[row][col]:tag � mw[l][col]:tag);
b[col]:val := mw[row][col]:val;
b[col]:tag := mw[row][col]:tag;

od;
b[i]:tag := b[i]:tag+ 1;
b[i]:val := u;
write B[i] := [b[1]; : : : ; b[c]];

end

Figure 1: The protocol.

Our construction uses an idea which has also been used in the Vit�anyi-Awerbuch matrix
(see [12]). However, instead of having the classical Vit�anyi-Awerbuch matrix of subregisters,
we keep an one-dimensional array of subregisters, each entry of which carries the information
included in a \snapshot" of the multiple components. Besides the \snapshot", each entry of
the array carries a sequence of time-stamps, each one corresponding to a di�erent component.
So, the basic idea of our construction is that the writer of each component takes a view of
the values of the other components and propagates it to the reader by writing these values
together with the value it has to write to its component. The reader, during each read r,
collects the views propagated by the writers and combines them so that for all components
k; l, either �k(r) and �l(r) directly precede one the other or �k(r) and �l(r) overlap. During
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each write operation to the ith component, the respective writer appends an increasing time-
stamp value to the value it writes. The time-stamp values are propagated together with the
values of the respective components. This is done so that the reader is able to know the
precedence relation between write operations to the same component.

The architecture of the construction is the following: for each component k = 1; : : : ; c we
introduce an atomic subregister B[k] which can be written by the writer of the corresponding
component and can be read by all processes. We call these subregisters Bu�ers. A bu�er
holds an array[1::c] of records. The ith entry of this array holds a value corresponding to
the ith component of the composite register and a time-stamp (tag) appended to this value.

The reader and writer procedures are shown in Figure 1. The protocol's behaviour is:
� The writer of the ith component (i = 1; : : : ; c) reads sequentially B[1]; : : : ; B[c]. Thus, since
each B[i] is an array[1::c], the writer obtains a matrixmw (writer'smatrix) of dimension (c; c).
Each column of this matrix corresponds to a component. Moreover, the entries of the column
are values (with an attached tag) of high-level writes to the corresponding component. The
writer now selects an entry with a maximum tag for each column col = 1; : : : ; i�1; i+1; : : : ; c
and stores the value and tag of this entry in the local variable b[col]. On the other hand, for
col = i (i.e. the value of col corresponding to the component where this writer writes) the
writer selects again from column i an entry with maximum tag, increments this tag by one
and stores into b[i] the value that it must write to component i (say, this value is u) together
with the incremented tag. Finally, the writer writes the array b to B[i].
� The reader acts similarly to the writer. A read operation �rst reads sequentially B[1]; : : : ; B[c].
Thus, it obtains a matrix mr (reader'smatrix) of dimension (c; c); next, for each column, col
(col = 1; : : : ; c), of the matrix mr it selects an entry with maximum tag and stores the value
of this entry in the local variable a[col]; then it returns the values currently stored in a.

Initially, the subregisters B[1]; : : : ; B[c] hold the same arbitrary value. The local variables
are arbitrarily initialized.

It is easy to check from the similarity of the reader's and writer's procedures that the
writer of the ith component takes a \snapshot" of the other c� 1 components and writes this
\snapshot" (tags included) together with the value u and its attached tag to B[i].

The following two observations give intuitively the reason for the correctness of the con-
struction (in particular why the fourth condition of Theorem 1 is satis�ed).
(i) Each write operation w to component k propagates (in B[k]) for any component l a value
written by a write operation that either directly precedes or overlaps w.
(ii) Each write operation w0 to component l, which propagates (in B[l]) for a component k
the value v written by the write operation w to component k, will propagate for all the other
components either the same values as w propagated or values that \overwrote" them (values
associated with greater tag).

3.2 Proof of Correctness

The proof is given by a series of lemmas.

Lemma 1 The protocol satis�es condition (F).

Proof Because B[k] is atomic for 1 � k � c, it follows from the protocol that for all high-level
reads r and for all k = 1; : : : ; c the �nal step of �k(r) occurs before the �nal step of r. 2

Lemma 2 The protocol satis�es condition (P).
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Proof Assume, towards a contradiction, that there is a high-level read r, a component k of
the composite register and a high-level write w to this component such that �k(r)! w ! r.
Assume that the tag that �k(r) attaches to its value is �. Since �k(r)! w, w attaches to its
value a tag � such that � > �. Since w! r, the reader will read a value from B[k] written by
a high-level write w1 to component k such that either w ! w1 or w1 = w. Thus, the reader
will store in column k and row k of its matrix mr a value written by w1 with tag greater than
or equal to �. Therefore, it will not return the value written by �k(r), since this value has
smaller tag than the tag of the value written by w1, a contradiction. 2

Lemma 3 The protocol satis�es condition (N-O).

Proof Assume, towards a contradiction, that there are two high-level reads r1 and r2 and a
component k of the composite register such that: r1 ! r2 and �k(r2) ! �k(r1). Since B[k]
is atomic, the last sub-operation of �k(r1) (which is its unique sub-write) occurs before the
last sub-operation of r1. Since r1 ! r2, it follows that �k(r2) ! �k(r1) ! r2, which is a
contradiction according to the previous lemma. 2

Lemma 4 The protocol satis�es condition (In-C).

Proof Assume, towards a contradiction, that there are two components k, l of the com-
posite register, a high-level read r, and a high-level write w to component k such that
�k(r)! w! �l(r). By this hypothesis, the reader during r returns as value for compo-
nent l a value written by the high-level write �l(r). This high-level write, at its last subwrite
on B[l], besides writing its \own" value with a tag to B[l][l], it writes a value and a tag on
B[l][k] as well. Since w ! �l(r), the latter tag is greater than or equal to the tag that w
attaches to its value to component k and, therefore (since �k(r) ! w), it is strictly greater
than the corresponding tag of �k(r). Now, since r reads �l(r), the tag that r uses for choosing
a value for component k is greater than or equal to the tag of B[l][k], so r cannot read �k(r),
a contradiction. 2

From the above results and by Theorem 1 we have that:

Theorem 2 A single-reader, c-component, single-writer per component atomic composite
register can be constructed using c atomic, (c + 1)-reader, single-writer, subregisters. The
number of sub-operations for a read operation is c, while a write operation has (c + 1) sub-
operations.

3.3 Using Regular Subregisters

We can easily notice that, provided time-stamps are used, it is enough to assume that B[k]
are regular and simulate the atomic subregisters B[k] used in the above construction by using
a method given in [11]. In order to adopt this in our protocol we �rst have to make the reader
remember both the values that it last returned and the respective tag values. This means
that the local array a will have to be extended (its entries will be of Rtype instead of valtype)
and considered static. The reader's protocol must be slightly modi�ed; the assignments to
the entries of the extended static array a are conditional, so that its tag �elds never decrease.
This means that the entry mr[row][col] obtained after the select \statement", together with
its tag, replaces the corresponding entry in a (a[col]), only if a[col]:tag is smaller than the tag
of the value selected from mr. No changes have to be done to the writer's protocol. Thus,
Theorem 2 can be extended to:
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Theorem 3 A single-reader, c-component, single-writer per component atomic composite
register can be constructed using c regular, (c + 1)-reader, single-writer, subregisters. The
number of sub-operations for a read operation is c, while a write operation has (c + 1) sub-
operations.
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