
Technical Report no. 2005:18

Competitive Freshness Algorithms for Wait-free Data Objects

Peter Damaschke, Phuong Hoai Ha, Philippas Tsigas

Department of Computing Science and Engineering
Chalmers University of Technology and Göteborg University

SE-412 96 Göteborg, Sweden

Göteborg, 2005

Department of Computing Science and Engineering
Division of Computing Science
Chalmers University of Technology and Göteborg University
SE-412 96 Göteborg, Sweden

Technical Report no. 2005:18
ISSN: 1652-926X

Göteborg, Sweden, October 2005.

Abstract

Wait-free concurrent data objects are widely used in multiprocessor systems and real-time systems. Their popularity
results from the fact that they avoid locking and that concurrent operations on such data objects are guaranteed to finish in
a bounded number of steps regardless of the other operations interference. The data objects allow high access parallelism
and guarantee correctness of the concurrent access with respect to its semantics. In such a highly-concurrent environment,
where write-operations update the object state concurrently with read-operations, the age/freshness of the state returned by
a read-operation is a significant measure of the object quality.

In this paper, we first propose a freshness measure for wait-free concurrent data objects. Subsequently, we model the
freshness problem as an online problem and present two algorithms for the problem. The first one is an optimal deterministic
algorithm with freshness competitive ratio

√
α, where α is a function of execution-time upper-bound of wait-free operations.

The second one is a competitive randomized algorithm with freshness competitive ratio ln α
1+ln 2− 2√

α

.

Keywords: wait-free synchronization, online algorithms, concurrent data structures.

1 Introduction

Freshness is a significant property for shared data in general and achieves great concerns in databases [9, 14, 2] as well as
in caching systems [13, 10, 12]. Briefly, freshness is a yardstick to evaluate how fresh/new a value of shared data returned
by a read-operation is, where the shared data is updated and read concurrently. Read-operations on shared data are always
expected to return the newest/freshest values of the data.

Although concurrent data objects play a significant role in multiprocessor systems, they create challenges on consistency.
In concurrent environments like multiprocessor systems, consistency of a shared data object is guaranteed mostly by mutual
exclusion, a form of locking. However, mutual exclusion degrades the system’s overall performance due to lock convoying,
i.e. other concurrent operations cannot make any progress while the access to the shared object is blocked. Mutual exclusion
also contains risks of deadlock and priority inversion. To address these problems, researchers have proposednon-blocking
algorithms for shared data objects. Non-blocking methods do not involve mutual exclusion, and therefore do not suffer the
problems that blocking can cause. Non-blocking algorithms are either lock-free or wait-free.Lock-free algorithms guarantee
that regardless of both the contention caused by concurrent operations and the interleaving of their sub-operations, always
at least one operation will progress. However, there is a risk for starvation as progress of other operations could cause one
specific operation to never finish.Wait-free [5] algorithms are lock-free and moreover they avoid starvation. In a wait-free
algorithm every operation is guaranteed to finish in a limited number of steps, regardless of actions of other concurrent
operations. Non-blocking algorithms have been shown to be of big practical importance [16, 17], and recently NOBLE,
which is a non-blocking inter-process communication library, has been introduced [15].

However, to the best of our knowledge there has been no research on the freshness of non-blocking concurrent data objects
in multiprocessor systems. For the non-blocking objects, although read-operations are allowed to return any value written
by other concurrent operations, they are preferred to return the freshest/latest one of these valid values. Simpson [8, 7]
suggested a freshness specification for a single-writer-to-single-reader asynchronous communication mechanism, which is
different from atomic register suggested by Lamport [11]. Simpson’s communication model with a single writer and a single
reader is not suitable for fully concurrent shared objects where many readers and many writers can concurrently access the
objects.

In this paper, we define and attack the freshness problem for wait-free shared objects. We model the problem as an online
problem and then present two algorithms for it. The first one is an optimal deterministic algorithm, which was inspired by
an online search algorithm calledreservation price policy [4]. The algorithm achieves a competitive ratio

√
α, whereα is

a function of execution-time upper-bound of wait-free operations. The second is a competitive randomized algorithm with
competitive ratio ln α

1+ln 2− 2√
α

. The randomized algorithm is nearly optimal since it results from an elaboration on the EXPO

search algorithm [4] thatO(ln α) is an asymptotically optimal competitive ratio [3].
The rest of this paper is organized as follows. Section 2 briefly introduces the concept of competitive ratio, which will

be used throughout the paper. Section 3 describes the freshness problem and models it as an online problem. Section 4
presents the optimal deterministic algorithm for the freshness problem. Section 5 presents the randomized algorithm. Finally,
Section 6 concludes the paper.

2 Preliminaries

In this section, we give a brief introduction to the competitive ratio of online algorithms that will appear frequently in this
paper.

Online problems are optimization problems, where the input is received online and the output is produced online so that
the cost of processing the input is minimum or the outcome is best. If we know the whole input in advance, we may find an
optimal offline algorithm OPT processing the whole input with the minimum cost. In order to evaluate how good an online
algorithm is, the concept ofcompetitive ratio is suggested.

Competitive ratio : An online algorithmALG is considered competitive with a competitive ratioc (or c-competitive) if
there exists a constantβ such that for any finite inputI [1]:

ALG(I) ≤ c · OPT (I) + β (1)

whereALG(I) andOPT (I) are the costs of the online algorithmALG and the optimal offline algorithmOPT to service
input I, respectively. The competitive ratio is a well-established concept and the comparison with the optimal off-line
algorithm is natural in scenarios where either absolute performance measures are meaningless or assumption on known
probability distributions of some inputs is not feasible.

A popular way to analyze an online algorithm is to consider a game between anonline player and a maliciousadversary.
In this game, i) the online player applies the online algorithm on the input generated by the adversary and ii) the adversary
with the knowledge of the online algorithm tries to generate the worst possible input for the player. The input processing
costs are very expensive for the online algorithm but still inexpensive for the optimal offline algorithm.

Adversary : For deterministic online algorithms, the adversary with knowledge of the online algorithms can generate the
worst possible input to maximize the competitive ratio. However, the adversary cannot do that if the online player uses
randomized algorithms. In randomized algorithms, depending on whether the adversary can observe the output from the
online player to construct the next input, we classify the adversary into different categories. The adversary that constructs
the whole input sequence in advance regardless of the output produced by the online player is calledoblivious adversary. A
randomized online algorithm isc-competitive to an oblivious adversary if

E[ALG(I)] ≤ c · OPT (I) + β (2)

whereE[ALG(I)] is the expected cost of the randomized online algorithmALG on the inputI.
The competitive analysis that uses the competitive ratio as a yardstick to evaluate algorithms is a valuable approach to

resolve the problems where i) if we had some information about the future, we could have found an optimal solution, and ii)
it is impossible to obtain that kind of information.

3 Problem and Model

Linearizability [6] is the correctness condition for concurrent objects. It requires that operations on the objects appear to
take effect atomically at a point of time in their execution interval. This allows a read operation to return any of values written
by concurrent write operations, which is illustrated by Figure 1.

W(0) A W(1) B

R(0 or 1) C

Figure 1. Concurrent reading and writing

We use “W(x) A” (“R(x) A”) to stand for a write (read) operation of valuex to (from) a shared register by processA. It
is correct forC to return either 0 or 1 with respect to linearizability. However, from freshness point of view we preferC

to return 1, the newer/fresher value of the register. The freshness problem is to find a solution for read operations to obtain
the freshest value from a shared object. Intuitively, if a read operation lengthens its execution interval by putting some delay
between the invocation and the response, it can obtain a fresher value but it will respond slower from application point of
view. Therefore, the freshness problem is to design read-operations that both respond fast and return fresh values.

p1

p2

p3

p4

e1

e2

e3

e0s0 e0+d

R0

W1

W2

W3

W4

e0+D

Figure 2. Freshness problem

The freshness problem is illustrated by Figure 2. In the illustration, a read operationR0 occurs concurrently to three write
operationsW1, W2 andW3 on a shared object. In this paper, read/write operations imply operations on the same object.
The actual execution interval of a operationi is defined from the timesi the operation starts to the timeei it takes effect.
A time axis runs from left to right. The value returned byR0 becomes fresher if there are more endpointsei appear in the
interval[s0, e0]. In the illustration, ifR0 delays the time-pointe0 to e′0 = e0 + d, the execution interval[s0, e

′
0] includes two

more endpointse1 ande2 and thus the value returned is newer. This implies thatR0 needs to find the time delayd so as to
maximize the freshness valuefd = k(#wed)

h(d) , where#wed is the number of new write-endpoints earned by delayingR0’s
read-endpoint an intervald andk, h are increasing functions that depend on real applications. Each application may specify
its own functionsk andh according to its purpose.

Assume that the shared object supports a function for read operations to check how many write operations (with their
timestamp) are ongoing at a time1. A write-timestampwt shows thestart-point of the corresponding write operation whereas
a read-timestamprt shows theendpoint of the corresponding read operation. The timestamp objective is to helpR0 ignore
W4 due tort0 < wt4. Note thatR0 only needs to consider write-endpoints of write operations that occur concurrently to
R0 in its original execution interval[s0, e0], e.g. R0 will ignore W4. Therefore, in the freshness problem, the number of
concurrent write operations that have not finished at the original read-endpointe0 is known and is calledM . This number is
also the total number of considered write-endpoints, i.e.#we ≤ M .

The most challenging issue in the freshness problem is that the endpoints of concurrent write operations appear unpre-
dictably. In order to analyze the problem, we consider it as an online game between a player and an adversary where the
malicious adversary decides when to place the write-endpointsei on-the-fly and the player (the read operation) decides when
she should stop and place her read-endpointe′0. The online game starts at the original read-endpointe0 and the player knows
the total number of write-endpointsM that the adversary will use throughout the game. At a timet, the player knows how
many ofM endpoints have been used by the adversary so far, i.e.#wet, (by comparingM with the number of ongoing write
operations that ran concurrently with the original read operation) and computes the current freshness valueft = k(#wet)

h(t) .
For eachft observed, without knowledge of how the value will vary in the future, the player must decide whether she ac-
cepts this value and stops or waits for a better one. In this online game, the player’s goal is to minimize the competitive
ratio c = fmax

fchosen
, wherefchosen is the freshness value chosen by the player andfmax is the best value in this game, which

is chosen by the adversary. The duration of this gameD is the upper bound of execution time of the wait-free read/write
operations and is known to the player. This implies that all theM write-endpoints must appear at a time-point in the interval,

1This can be done by adding a list of timestamps of ongoing write operations to the shared object. The timestamp can be achieved via an atomic-increment
counter.

i.e. #weD = M .
In summary, we define the freshness problem as follows. LetM be the number of ongoing wait-free write operations

at the original read-endpointe0 of a wait-free read operation andD be the execution-time upper-bound of these wait-free
read/write operations. The read operation needs to find a delayd ≤ D for its new endpointe′0 so as to achieve an optimal
freshness valuefd = k(#wed)

h(d) , where#wed is the number of write-endpoints earned by the delayd andk, h are increasing
functions that depend on real applications. We assume the time is discrete, where a time unit is the period with which the
read operation regularly checks the number of ongoing write operations on the shared object. The extended read operation is
still wait-free with an execution-time upper-bound2D.

The rest of this paper presents two competitive online algorithms for the freshness problem. The first one is an optimal
deterministic algorithm with competitive ratio

√
α , whereα = h(D)

h(1) . The second one is a nearly-optimal randomized

algorithm with competitive ratio ln α
1+ln 2− 2√

α

. Note that the competitive ratios do not depend onk andM , the parameters

related to the number of endpoints.

4 Optimal Deterministic Algorithm

Modeling the freshness problem as an online game, we observe that the freshness problem is a variant of the online search
problem [4]. In the online search problem, a player searches for the maximum (minimum) price in a sequence of prices that
unfolds daily. For each dayi, the player observes a pricepi and she must decide whether to accept this price or to wait for a
better one. The search game ends when the player accepts a price, which is also the result.

In the freshness problem, in addition to the fact that the player is searching for the best in a sequence of freshness values
that unfolds sequentially in a foreknown range, there are more restrictions on how the adversary can vary the freshness value
ft at a timet:

ft−1 ∗ h(t − 1)
h(t)

=
k(#wet−1)

h(t)
≤ ft =

k(#wet)
h(t)

≤ k(M)
h(t)

(3)

The restrictions come from the fact that the adversary cannot remove the endpoints she has placed, i.e.#wet−1 ≤
#wet ≤ M , where#wet is the number of endpoints that have appeared until a timet, and the freshness value at the timet is
ft = k(#wet)

h(t) , wherek, h are increasing functions. Since1 ≤ t ≤ D, from Equation (3) it followsft ≤ k(M)
h(1) . On the other

hand, sinceM ongoing write-operations must end at time-points in the intervalD, the player is ensured a freshness value
fmin = k(M)

h(D) by just waiting untilt = D. Therefore, the player considers to stop at a freshness valueft only if ft ≥ k(M)
h(D) .

We havek(M)
h(D) ≤ ft ≤ k(M)

h(1) .
Inspired by an online search algorithm calledreservation price policy [4], we suggest a competitive deterministic algorithm

for the freshness problem. Then, we prove that the algorithm is optimal, i.e., no deterministic algorithm can achieve a better
competitive ratio.

Deterministic Algorithm: The read operation accepts the first freshness value that is not smaller thanf∗ = k(M)√
h(1)h(D)

.

Indeed, letf∗ be the threshold for accepting a freshness value andfmax be the highest value chosen by the adversary.
The player (the read operation) waits for a valueft ≥ f∗. If such a value appears in the intervalD, the player accepts it and
returns it as the result. Otherwise, when waiting until the timeD, the player must accept the valuefmin = k(M)

h(D) .

Case 1: If the player chooses a big value asf∗, the adversary will choosefmax < f∗, causing the player to wait until the
timeD and accept the valuefmin = k(M)

h(D) . The competitive ratio in this case isc1 = fmax
k(M)
h(D)

< f∗
k(M)
h(D)

.

Case 2: If the player chooses a small value asf∗, the adversary will placef∗ at a timet, causing the player to accept the
value and stop. Right after that, the adversary places allM endpoints, achieving a valuefmax = k(M)

h(t) ≤ k(M)
h(1)

(equality occurs when the adversary choosest = 1). The competitive ratio in this case isc2 =
k(M)
h(1)

f∗ .

In order not to be fooled by the adversary, the player should choosef∗ so as to makec1 = c2, which results inf∗ =
k(M)√

h(1)h(D)
and the competitive ratioc = c1 = c2 =

√
h(D)
h(1) .

Let α = h(D)
h(1) . This leads to the following corollary.

Corollary 4.1. The suggested deterministic algorithm is competitive with competitive ratio c =
√

α, where α = h(D)
h(1) .

We now prove that there is no deterministic algorithm for the freshness problem that achieves a better competitive ratio
than

√
α.

For convenience, we consider the game on a real axis for the logarithm of freshness values, abbreviated LF in the following.
Let t be the time, initiallyt = 1. We normalize the LF axis in such a way that freshnessk(M)

h(D) corresponds to point0 and

freshnessk(M)
h(1) to point ln h(D)

h(1) (or ln α). That is, going one unit upwards on the LF axis increases the freshness by factore
(Euler’s number). (All this is done for convenience only. Scaling factors do not affect the competitive ratios.)

We also introduce some parameters that characterize the status of a game. At any moment, letf be the maximum LF
the adversary has already reached during the history of the game. But initially we setf = 0, sincek(M)

h(D) is the guaranteed
freshness of the adversary. That meansf ≥ 0 at any time. Letg be the maximum LF the adversary can still achieve at a given
time. (This corresponds to freshnessk(M)/h(t) at timet unlessf is already larger, in which case we haveg = f . However
in the latter case the game is over, without loss of generality: The adversary cannot gain more and would therefore decrease
freshness as quickly as possible to make the player’s position worse, hence the player should stop now. The dotted polyline in
Figure 3 illustrates the casef = g(t) in which the player should stop att.) It is also convenient to consider the time-function
h(t) on a logarithmic axis too, whereh(1) corresponds to point0 andh(D) corresponds to pointln h(D)

h(1) (= lnα). Note that,
on the logarithmic time axis,g decreases at unit speed, starting at pointln α. Finally, letc denote the current LF. We remark
thatc can decrease at most at unit speed but can jump upwards arbitrarily as long asc ≤ g.

0

g

c2

f2 c1

f1

t

f

ln(h(D)/h(1))

LF: freshness(logarithm)

ln(h(D)/h(1))/2

ln(h(D)/h(1))

h(time) (logarithm)

Figure 3. Illustration for the proof of Theorem 4.1

Theorem 4.1. The optimal deterministic competitive ratio is asymptotically (subject to lower-order terms)
√

α, where α =
h(D)
h(1) .

Proof. To prove the theorem, we only need to show one of the adversary’s strategies against which no online deterministic
algorithm can achieve a competitive ratio better than

√
α.

The adversary starts withc = ln α
2 =

ln
h(D)
h(1)

2 . Then she decreasesc at unit speed until the player stops. Immediately after
this moment,c jumps tog if c > 0 at stop time (1), otherwisec keeps on decreasing at unit speed (2). Clearly, we have
constantlyg− c = ln α

2 until the stop. Letp be the player’s LF. In case (1) we finally havef = g, hencef −p = g− c = ln α
2

(cf. the dashed polylinec1 in Figure 3). In case (2),f has still its initial valueln α
2 whereasp ≤ 0, hencef − p ≥ ln α

2 (cf.

the linec2 in Figure 3). Thus the competitive ratio is at leaste
ln α
2 =

√
α. The player can achieve this competitive ratio by

applying the deterministic algorithm given above.

This result shows that a deterministic player cannot take advantage of the constraints on the behavior of freshness in time
(compared to online search on unrestricted sequences of profit values).

5 Competitive Randomized Algorithm

In this section, we present a competitive randomized algorithm for the freshness problem. The algorithm achieves a
competitive ratioc = ln α

1+ln 2− 2√
α

, whereα = h(D)
h(1) .

As discussed in the previous section, our problem is a restricted case of online search. We model the problem by a game
between an (online) player and an adversary. The adversary’s profit is the highest freshness ever reached. The player’s profit
is the freshness value at the moment when she stops. Note that for a player running a randomized strategy, the profit is the
expected freshness value, with respect to the distribution of stops resulting from the strategy and input. We shall make use of
a known simple transformation of (randomized) online search to (deterministic) one-way trading [4]: The player has some
budget of money she wants to exchange while the exchange rates may vary over time. Her goal is to maximize her gain.
The transformation is given as follows: The budget corresponds to probability 1, and exchanging some fraction of money
means to stop the game with exactly that probability. Note that a deterministic algorithm for online search has to exchange all
money atone point in time. The transformation was inspired by a well-known competitive randomized algorithm EXPO [4].
Applying the EXPO algorithm on the freshness problem achieves a competitive ratio� 2�−1+1/ ln 2

2�−1+1/ ln 2− 1
ln 2

, where� = log2 α.

That means for the freshness problem our randomized algorithm is better than the EXPO algorithm by a constant factor1+ln 2
ln 2

whenα becomes large.

Theorem 5.1. There is a randomized algorithm for the freshness problem with competitive ratio ln α
1+ln 2− 2√

α

, where α = h(D)
h(1)

Proof. We start with some conventions. We imagine that the money, both exchanged and non-exchanged, is “distributed”
on the LF axis. Formally, the allocation of money on the LF axis at any time is described by two non-negative realdensity
functions S andT , whereS(x) is the density of not yet exchanged money in pointx of the LF axis,T (x) is similarly defined
for the money that has been already exchanged. What functionsS andT specifically are, and how they are modified by
the opponents’ actions, will be described below. Let the total amount of money beln α by convention. (Recall that scaling
factors do not influence the competitive ratio.)

Thevalue of every piece ofexchanged money is the freshness value of its position on the LF axis. Note that the total value
of exchanged money defined in this way, i.e. the integral over the value-by-density product, is the player’s profit in the game.
Moreover, the player can temporarily have some of the money in herpocket.

The idea of the strategy is to guarantee some concentration of exchanged money immediately below the finalf , either
some constant minimum density ofT or, even better, a constant amount at one point not too far fromf . We want to keep
T simple in order to make the calculations simple. (The well-knownδx symbol used below denotes the distribution with
infinite density at a single pointx but with integral 1 on any interval that containsx. We also use the same notationsf, g, c
as earlier.) Locating much money instantaneously is risky becausec may jump upwards, and then this money has little value
compared to the adversary’s. On the other hand, sincec decreases at most with unit speed, the player may completely abstain
from exchanging money as long asc is increasing, and wait untilc goes down again. These preliminary thoughts lead to the
following strategy.

In the beginning, let the not-yet-exchanged money be located on the LF axis on interval[0, ln α] with density 1, that is,
we haveS = 1 on this interval. Remember thatg decreases at unit speed. The player puts the money aboveg in her pocket.
Wheneverf increases, she also puts the money below the newf in her pocket. Hence we always haveS = 1 on [f, g], and
S = 0 outside. The player continuously locates exchanged money on the LF axis, observing the following rule:If you have
money in your pocket and c is positive and decreasing, and T (c) < 2 at the current c, then set T (c) := 2. If the game is over

0

g
f

t

c
a

(A)

ln(h(D)/h(1))

LF: freshness(logarithm)

0

x

x+r

r

c

f

worst

(B) (C)

T=2

T=0

T=2

(r + ln(h(D)/h(1)))/2

f

c

x

ln(h(D)/h(1))

h(time) (logarithm)

Figure 4. Illustration for the randomized algorithm

(because of f = g) and not all money is exchanged yet, put the rest r on the current c. Note that the adversary must set the
final c nonnegative.

Filling-up densityT to 2 is always possible, by the following argument: The player uses the one unit of money fromS
that she gets per time unit from the region above the fallingg, and the money fromS that she got directly from the current
pointsc whenf went upwards.

Obviously, the player produces a density functionT that is constantly 2 on certain intervals and 0 outside, plus some
componentrδc. We make some crucial observations regarding the final situation: (1)T has density 2 on interval(c, f], or we
havec = f . (2) Thegaps with T = 0 between the “T = 2 intervals” have a total length not exceedingr.

These claims follow easily from the strategy: (1) Eitherc begins decreasing, starting from the lastf , andT is filled up to
2 all the time whenc > 0, as we saw above, or the finalc equals the finalf . (2) Wheneverf went upwards, the player has
taken fromS the money corresponding to the increase off , and later she has transferred it toT and located it at the same
points again. Hence, only on intervals not “visited” again byc we haveT = 0, and the money taken fromS on these intervals
is still in the player’s pocket and thus contributes tor.

Figure 4-(A) illustrates the player’s behavior. The dashed line represents a variation ofc in a game; pointc is the final
value ofc when the game ends, i.e.f = g(t). For all valuesv on the LF axis betweenf anda and betweena andc, the
player setsT (v) = 2.

Using (1),(2) we now analyze the profit the player can guarantee herself. Remember that the value of exchanged money
located on the LF axis decreases exponentially. Letx = f − c (final values). Bothr andx depend on the input, i.e., the
behavior ofc in time. The total amount of money is fixed, it equalsln α. For any fixedr, x, the worst case is now that the
gaps inT sum up to the maximum lengthr and are as high as possible on the LF axis, that is, immediately below pointc,
because in this case all exchanged money outside[c, f] has the least possible value. That is,T has only one gap, namely
interval[c − r, c].

Figure 4-(C) illustrates the worst case corresponding to an instance -(B), where solid lines represent ranges on the LF axis
with T = 2. In the worst case, the adversary shifts all solid lines except for[c, f] to the lowest possible position so as to
minimize the player’s profit.

Hence, a lower bound on the player’s profit, divided by the value atf , is given by

min
r,x

(
2
∫ x

0

e−tdt + re−x + 2
∫ (r+ln α)/2

x+r

e−tdt

)
,

where we started integration (witht = 0) at point f and go down the LF axis (cf. Figure 4-(C)). Verify that, in fact,∫
Tdt = lnα. The above expression evaluates to

2 + (r − 2 + 2e−r)e−x − 2e−(r+ln α)/2 > 2 + (r − 2 + 2e−r)e−x − 2/
√

α.

For any fixedx, this is minimized if2e−r = 1, that is,r = ln 2. Since nowr − 2 + 2e−r = ln 2− 2 + 1 < 0, the worst case
is x = 0, which gives1 + ln 2 − 2/

√
α. The adversary earnsln α times the value atf .

6 Conclusions

To the best of our knowledge, this paper is the first paper that defines the freshness problem for wait-free data objects.
Within this paper, we have modeled the freshness problem as an online problem and then have presented two online algo-
rithms to solve it. The first one is an optimal deterministic algorithm with freshness competitive ratio

√
α, whereα is a

function of execution-time upper-bound of wait-free operations. The functionα is specified by real applications according
to their purpose. The second is a randomized algorithm with freshness competitive ratioln α

1+ln 2−2/
√

α
. The randomized

algorithm is nearly optimal. In [3] it has been showed thatO(ln α) is a lower bound on competitive ratios for the one-way
trading with time-varying exchange-rate bounds corresponding to the freshness problem. This gives a lower boundO(ln α)
to competitive ratios of randomized freshness algorithms.

Our proofs worked with a logarithmic transformation that reveals the geometry of this online problem and enabled us to
find optimal competitive ratios, subject to constants. This transformation was inspired by the randomized EXPO algorithm [4]
for unrestricted online searching.

This paper provides a starting point to further research the freshness problem on concurrent data objects as an online
problem. It has presented algorithms that can apply on general wait-free data objects without any restrictions. However, wait-
free data objects are just one kind of concurrent data objects while freshness itself is an interesting problem for concurrent
data objects in general.

References

[1] A. Borodin and R. El-Yaniv.Online computation and competitive analysis. Cambridge University Press, 1998.
[2] J. Cho and H. Garcia-Molina. Synchronizing a database to improve freshness. InSIGMOD ’00: Proceedings of the 2000 ACM

SIGMOD international conference on Management of data, pages 117–128, 2000.
[3] P. Damaschke, P. H. Ha, and P. Tsigas. One-way trading with time-varying exchange rate bounds.Technical report CS:2005-17,

Chalmers University of Technology, 2005.
[4] R. El-Yaniv, A. Fiat, R. M. Karp, and G. Turpin. Optimal search and one-way trading online algorithms.Algorithmica, 30(1):101–

139, 2001.
[5] M. Herlihy. Wait-free synchronization.ACM Transaction on Programming and Systems, 11(1):124–149, Jan. 1991.
[6] M. Herlihy and J. Wing. Linearizability: a correctness condition for concurrent objects.ACM Transactions on Programming

Languages and Systems, 12(3):463–492, July 1990.
[7] H.R.Simpson. Correctness analysis for class of asynchronous communication mechanisms.Computers and Digital Techniques, IEE

Proceedings-, 139(1):35– 49, Jan., 1992.
[8] H.R.Simpson. Freshness specification for a class of asynchronous communication mechanisms.Computers and Digital Techniques,

IEE Proceedings-, 151(2):110–118, Mar., 2004.
[9] K.-D. Kang, S. H. Son, and J. A. Stankovic. Managing deadline miss ratio and sensor data freshness in real-time databases.IEEE

Transactions on Knowledge and Data Engineering, 16(10):1200–1216, Oct., 2004.
[10] A. Labrinidis and N. Roussopoulos. Exploring the tradeoff between performance and data freshness in database-driven web servers.

The VLDB Journal, 13(3):240–255, 2004.
[11] L. Lamport. On interprocess communication. part ii: Algorithms.Distributed Computing, 1(2):86–101, 1986.
[12] W.-S. Li, O. Po, W.-P. Hsiung, K. S. Candan, and D. Agrawal. Engineering and hosting adaptive freshness-sensitive web applications

on data centers. InWWW ’03: Proceedings of the 12th international conference on World Wide Web, pages 587–598, 2003.
[13] Y. Ling and W. Chen. Measuring cache freshness by additive age.SIGOPS Oper. Syst. Rev., 38(3):12–17, 2004.
[14] E. Pacitti and E. Simon. Update propagation strategies to improve freshness in lazy master replicated databases.The VLDB Journal,

8(3-4):305–318, 2000.
[15] H. Sundell and P. Tsigas. NOBLE: A non-blocking inter-process communication library. InProceedings of the 6th Workshop on

Languages, Compilers and Run-time Systems for Scalable Computers, LNCS. Springer Verlag, 2002.

[16] P. Tsigas and Y. Zhang. Evaluating the performance of non-blocking synchronization on shared-memory multiprocessors. InProceed-
ings of the 2001 ACM SIGMETRICS international conference on Measurement and modeling of computer systems, pages 320–321,
2001.

[17] P. Tsigas and Y. Zhang. Integrating non-blocking synchronisation in parallel applications: Performance advantages and methodolo-
gies. InProceedings of the 3rd ACM Workshop on Software and Performance (WOSP’02), pages 55–67, July 2002.

