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Abstract—The fact that graphics processors (GPUs) are today’s most powerful computational hardware for the dollar has motivated
researchers to utilize the ubiquitous and powerful GPUs for general-purpose computing. However, unlike CPUs, GPUs are optimized for
processing 3D graphics (e.g. graphics rendering), a kind of data-parallel applications, and consequently, several GPUs do not support
strong synchronization primitives to coordinate their cores. This prevents the GPUs from being deployed more widely for general-purpose
computing.
This paper aims at bridging the gap between the lack of strong synchronization primitives in the GPUs and the need for strong
synchronization mechanisms in parallel applications. Based on the intrinsic features of typical GPU architectures, we construct strong
synchronization objects such as wait-free and t-resilient read-modify-write objects for a general model of GPU architectures without
hardware synchronization primitives such as test-and-set and compare-and-swap. Accesses to the wait-free objects have time complexity
O(N), where N is the number of processes. The wait-free objects have the optimal space complexity O(N2). Our result demonstrates
that it is possible to construct wait-free synchronization mechanisms for GPUs without strong synchronization primitives in hardware and
that wait-free programming is possible for such GPUs.
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1 INTRODUCTION

Graphics processors (GPUs) are emerging as powerful
computational co-processors for general purpose com-
putations. The demands of graphics as well as non-
graphics applications have driven GPUs to be today’s
most powerful computational hardware for the dollar
[1]. Moreover, unlike previous GPU architectures, which
are single-instruction multiple-data (SIMD), recent GPU
architectures (e.g. OpenCL architecture [2] and Com-
pute Unified Device Architecture (CUDA) [3]) are single-
program multiple-data (SPMD). The latter consists of
multiple SIMD multiprocessors of which each can simul-
taneously execute a different instruction. This extends the
set of general-purpose applications on GPUs, which are
no longer restricted to follow the SIMD-programming
model.

However, unlike graphics computation, general-
purpose computation usually needs support for reliability
and inter-process synchronization. Errors in computation
domains such as radiology in which GPUs are used for
medical image processing are very costly and potentially
harmful to people. Although hardware errors in logic
have not happened frequently, such errors are expected
to become significant within the next five years due
to the scaling of CMOS technology [4]. Realizing the
problem, researchers have recently proposed a hardware
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redundancy and recovery mechanism for reliable
computation on GPUs [5].

In this paper, we explore the possibilities of address-
ing the GPU reliability issues, namely crash failures, at
the software layer. Particularly we are looking at fault-
tolerant synchronization techniques such as non-blocking
and wait-free programming [6]. Recently, blocking syn-
chronization mechanisms to synchronize threads running
on different cores of a GPU (namely, global barriers)
have been reported [7], [8]. However, unlike the com-
putation using non-blocking synchronization, the compu-
tation using the traditional blocking synchronization (e.g.
barrier and mutual exclusion) is vulnerable to deadlock
caused by both scientists inexperience and scheduling
mechanisms. It is notoriously difficult for scientists to
deal with the deadlock when their computation needs
to block many threads. Non-preemptive scheduling mecha-
nisms used in GPUs to deal with the massive number of
threads (e.g. threadblock-scheduling in CUDA [9]), increase
the probability of deadlock to occur, namely active threads
may be waiting for not-yet-scheduled threads due to
blocking synchronization while the latter are waiting for
the former to finish due to non-preemptive scheduling.
Group-scheduling mechanisms used within an SIMD core
(or warp-scheduling in CUDA terminology) also increase
the probability of deadlock. Due to the SIMD architecture,
different execution paths of a divergent code (e.g. one con-
taining if-statement) must be serialized. If a barrier is used
in different paths of the code executed by the same thread-
group (or warp in CUDA terminology), deadlock will
occur. The challenge is that since GPUs are optimized for
processing 3D graphics (e.g. graphics rendering), a kind
of data-parallel applications, several GPUs do not support
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strong synchronization primitives such as compare-and-
swap (e.g. OpenCL architecture [2] and NVIDIA Tesla
C870 and Quadro FX 5600 GPUs with 16 cores [3]),
which are usually used to construct fault-tolerant/strong
synchronization mechanisms.

This paper aims at bridging the gap between the lack
of strong synchronization primitives in the GPUs and the
need for strong synchronization mechanisms in parallel
applications. Based on the intrinsic features of typical
GPU architectures (e.g. OpenCL [2] and CUDA [3]), we
first generalize the architectures to an abstract model
of an MIMD1 chip with multiple SIMD cores sharing a
memory (cf. Section 2). Then, we construct wait-free and
t-resilient synchronization objects [6], [10] for this model.
The wait-free and t-resilient objects can be deployed as
building blocks in parallel programming to help parallel
applications tolerate crash-failures and gain performance.

We observe that due to SIMD architecture, each SIMD
core with M hardware threads can read/write M mem-
ory locations in one memory transaction. For instance, in
CUDA [3], simultaneous memory accesses to the global
shared memory by threads of an SIMD core, during the
execution of a read/write instruction, will be coalesced
into a single memory transaction if coalescing conditions
are satisfied (cf. Appendices G.3.2 and G.4.2 in [3]). For a
comprehensive analysis of the coalesced memory access,
the reader is referred to [11]. Note that this atomic ac-
cess to M memory locations results from appropriately
coordinating the accesses of M threads of an SIMD core,
and thus this atomic access is clearly not a conventional
synchronization primitive such as test-and-set and compare-
and-swap that can be invoked by each thread. Compared
with the conventional m-register operation in the literature
[6], which allows a thread to write to m arbitrary registers
atomically, this atomic access is M -register operation to
each SIMD core with M threads, where M ≤ M due to
the conditions for coalescing to occur. Value M increases
when the coalescing conditions are relaxed (cf. coalescing
conditions for different versions of CUDA with respect to
compute capability 1.1, 1.2 and 2.0 in Appendices G.3.2
and G.4.2 in [3]). For the sake of readability, we use the
conventional term M-register operation in the literature to
denote this atomic access for each SIMD core with M
hardware threads, but note that the number M of registers
in the atomic operation may be less than the number M
of hardware threads of an SIMD core.

Although building synchronization objects using M -
register read/write operations has been reported in the
previous work [6], this paper improves the previous
work [6] in several aspects. First, this paper shows how
coalesced memory accesses on GPUs provide atomic M -
register read/write operations. Second, unlike the short-
lived consensus (SLC) object in [6] where the object vari-
ables are used once during the object lifetime, the long-
lived consensus (LLC) object in this paper must allow
processes to re-use the object variables so as to keep the
object size bounded. This implies that the LLC object

1. MIMD: Multiple-Instruction-Multiple-Data

must include a wait-free/resilient memory management
mechanism [12], [13] inside itself. Third, the new LLC
object has the optimal space complexity O(N2) and access
time complexity O(N), which is better than the access
time complexity O(N2) of the SLC object in [6] 2. Finally,
unlike the proposal used in the SLC object, the new
wait-free read-modify-write (RMW) objects in this paper,
which are built on the new LLC objects, must handle
the proposal that is too large to be stored within one
register. Since M -register assignment can atomically write
M values to M memory locations only if each value can
be stored in one register, the RMW objects must handle
the proposal-size issue while tolerating the same number
of crash failures (2M − 3) as the SLC object.

The main contribution of this paper is a new formal
model for GPU computing and novel wait-free synchro-
nization mechanisms for the GPU computing model,
empowering the programmer with the necessary and
sufficient tools for wait-free programming on graphics
processors without synchronization primitives such as
test-and-set and compare-and-swap. The technical contribu-
tions of this paper are threefold:

• We develop a wait-free long-lived consensus (LLC) ob-
ject for N = (2M − 2) processes using only M -
register read/write operations and read/write registers
(cf. Section 3). The new LLC object guarantees weaker
semantics than previous long-lived consensus proto-
cols [14], namely the execution on the LLC object is
organized as a (infinite) sequence of rounds and the
LLC object guarantees consensus for only processes
participating in the latest round at the moment the LLC
object is invoked (cf. Definition 2.4). The processes that
do not participate in the latest round, are considered
faulty. Surprisingly, the LLC object with such weak
semantics is powerful enough to construct any wait-
free read-modify-write (RMW) object for N processes
(cf. Section 4). To the best of our knowledge, long-lived
consensus objects with such weak semantics have not
been reported previously. The new LLC algorithm has
optimal space complexity O(N2) and time complexity
O(N), which are better than the time complexity O(N2)
of the well-known short-lived consensus (SLC) algorithm
[6].
• We develop a wait-free long-lived read-modify-write

(RMW) object for N = (2M−2) processes using only M -
register read/write operations and read/write registers
(cf. Section 4). The RMW object is basically built on top
of the new LLC object. Accesses to the RMW object have
time complexity O(N). The RMW object has the optimal
space complexity O(N2). This result implies that it is
possible to construct wait-free synchronization mech-
anisms for GPUs without hardware synchronization
primitives such as test-and-set and compare-and-swap.

• We develop a (2M − 3)-resilient long-lived RMW (Re-
silientRMW) object for an arbitrary number N of pro-

2. The SLC object needs to construct a directed graph of processes,
leading to the time complexity O(N2)
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cesses using only M -register read/write operations and
read/write registers (cf. Section 5). The (2M − 3)-
resilient RMW object is built on top of both the wait-free
RMW object and the wait-free LLC object for (2M − 2)
processes.

The rest of this paper is organized as follows. Section 2
presents a general model of an MIMD chip with multiple
SIMD-cores on which the new wait-free/resilient objects
are developed. Section 3 presents the wait-free long-lived
consensus object for N = (2M − 2) processes. Section 4
presents the wait-free read-modify-write (RMW) object
for N = (2M − 2) processes. Section 5 presents the
(2M − 3)-resilient RMW object for an arbitrary number
N of processes. Finally, Section 6 concludes this paper.
The new wait-free objects have been implemented and
evaluated on commodity NVIDIA graphics cards. Due to
the space constraint, the reader is referred to [15] for the
detailed experimental study.

2 THE MODEL

Inspired by emerging media/graphics processing unit
architectures such as OpenCL [2], CUDA [3] and Cell
BE [16], the abstract system model we consider in this
paper is illustrated in Fig. 1. The model consists of N
SIMD-cores P0, . . . , PN−1 sharing R registers (or memory
words) V0, . . . , VR−1 and each core can processM threads
T0, . . . , TM−1 (in an SIMD manner) in one clock cycle. For
instance, NVIDIA GeForce 8800GTX graphics processor
has 16 SIMD-cores/SIMD-multiprocessors, each of which
processes up to 16 concurrent threads in one clock cycle
of the SIMD core.

Using terminologies in the literature [17], we model
SIMD cores as (nondeterministic) state machines and
model executions as alternating sequences of configura-
tions and events.

A configuration in the model is a vector

C = (p0, . . . , pN−1, v0, . . . , vR−1)

where pi is a state of core Pi and vj is a value of register
Vj . In initial configuration, all cores are in their initial states
and all registers have their initial values.

An event φ = [i, b0 . . . bM−1] in the model is a compu-
tation step by core Pi, where bit bk determines whether
thread Tk of Pi participates in the computation step.
At each computation step by Pi, the following happens
atomically:

• Pi determines the set S of its threads Tk that participate
in a specific operation (i.e. bk = 1), based on Pi’s current
state. The size of set S is at least one.

• Each thread Tk of S chooses a shared register to access
with the operation, based on Pi’s current state.

• Each thread Tk performs the operation on its chosen
register. If more than one threads of S write to the same
register, the value of the register after this step is one
of the values written (nondeterministic) [3].

Shared Memory

SIMD core SIMD core SIMD core...

Fig. 1. The abstract model of an MIMD chip with multiple
SIMD-cores

• Pi’s state changes according to Pi’s transition function,
based on Pi’s current state and the values returned by
the operation to the threads of S.
An execution segment of an algorithm is an alternating

sequence of configurations Ci and events φj :

E = C0, φ1, C1, φ2, C2, φ3 . . .

If φk = [i, b0 . . . bM−1] and Pi’s state in Ck−1 indicates
that shared registers Vj , · · · , Vl, 0 ≤ j < l ≤ R − 1, to
be accessed, Ck is the result of changing Ck−1 according
to Pi’s computation step performing on Pi’s state in
Ck−1 and the values of registers Vj , · · · , Vl in Ck−1. An
execution is an execution segment that starts with an initial
configuration.

In this model, SIMD cores access shared registers (or
memory words) using only read-/write-operations. The
shared memory is sequentially consistent (e.g. the global
memory in CUDA GPUs with compute capability 1.0 sup-
ports sequential consistency for concurrent threads from
different SIMD cores [18]). Since several graphics pro-
cessors do not support strong synchronization primitives
such as test-and-set and compare-and-swap (e.g. OpenCL
specification [2] and CUDA GPUs with compute capabil-
ity 1.0 [3]) , we make no assumption on the existence of
such strong synchronization primitives in this model. In
this model, each of the M threads of one SIMD core can
read/write one register in one atomic step. Due to SIMD
architecture, each SIMD core can read/write M different
registers in one atomic step (e.g. coalesced memory ac-
cesses in CUDA [3]), namely each SIMD core can execute
M READ and M ASSIGNMENT (atomic) operations [6],
where the number M of registers in the atomic operation
may be less than the numberM of hardware threads of an
SIMD core due to conditions for the memory transaction
to occur (e.g. coalescing conditions in CUDA [3]). In
CUDA [3], simultaneous memory accesses to words of an
128-byte memory segment by threads of an SIMD core,
during the execution of a read/write instruction, will be
coalesced into a single memory transaction (cf. Appendices
G.3.2 and G.4.2 in [3]). That means in CUDA each SIMD
core with M hardware threads, where M = 16, can exe-
cute M READ and M ASSIGNMENT (atomic) operations
on words of an 128-byte memory segment.

Different cores can concurrently execute different user
programs. Let process be a sequential execution of compu-
tation steps of a program on one SIMD core. Namely, a
process is comprised of M threads of an SIMD core and
can execute M READ and M ASSIGNMENT operations,
where M ≤M. Processes are asynchronous and can crash
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due to the program errors. The failure category considered
in this model is the crash failure: a failed process cannot
take another computation step in the execution. This
model supports the strongly t-resilient formulation in
which the access procedure at some port3 of an object is
infinite only if the access procedures in more than t other
ports of the object are finite, nonempty and incomplete in
the object execution [19].

Definition 2.1 (Wait-freedom [6], [20], [21]): An object
implementation is wait-free if any non-faulty process
completes any operation on the object in a finite number
of steps regardless of the execution speeds of other
processes.

Definition 2.2 (t-resilience [22], [23]): An object imple-
mentation is t-resilient if non-faulty processes will com-
plete their operations as long as no more than t processes
fail, where t is a specified parameter.

Definition 2.3 (Short-lived consensus object): A short-
lived consensus object allows each process pi to propose
an input from some set S, |S| ≥ 2, and then returns an
output to pi so that the following properties are satisfied
in every execution:
• Wait-freedom: each non-faulty process gets an output

after a finite number of steps.
• Agreement: the outputs of all non-faulty processes are

identical;
• Validity: the output of each non-faulty process is the

input of some process;
In the short-lived consensus setting, processes start with

their inputs and have to solve consensus once. In order
to construct real data objects on which each process can
execute an arbitrary sequence of operations, we need a
long-lived consensus setting in which processes change
inputs over time and have to solve consensus repeat-
edly. A round is intuitively the interval between two
input changes. The definition of when a round starts
and finishes, depends on specific algorithms that use the
long-lived consensus setting. The long-lived consensus
(LLC) object considered in this paper is required to satisfy
the three aforementioned properties only for processes
participating in the latest round at the moment the LLC
object is invoked. The processes that do not participate in
the latest round, are considered faulty in the latest round.
The long-lived consensus object will be used to construct
wait-free read-modify-write (RMW) objects in Section 4.
The precise definition of the long-lived consensus object
is as follows.

Definition 2.4 (Long-lived consensus object): Each process
is associated with the latest round in which it participates.
In each round, a long-lived consensus object allows each
process pi to propose an input from some set S, |S| ≥ 2,
and then returns an output to pi so that the following
properties are satisfied in every execution:
• Wait-freedom: each non-faulty process (regardless of the

latest round participation) gets an output after a finite

3. An object that allows N processes to access concurrently is consid-
ered having N ports.

number of steps.
• Agreement: the outputs of all non-faulty processes par-

ticipating in the latest round are identical;
• Validity: the output of each non-faulty process partici-

pating in the latest round is the input of some process
participating in the same round;
Definition 2.5 (Read-modify-write object [24]): A read-

modify-write object allows each process to read the object
value X , update the object value to Y and return the old
value X atomically.

Definition 2.6 (Consensus number [6]): The consensus
number of an object type is either the maximum number
of processes for which wait-free (short-lived) consensus
can be solved using only objects of this type and registers
4, or infinity if such a maximum does not exist.

3 WAIT-FREE LONG-LIVED CONSENSUS OB-
JECTS USING M ASSIGNMENT FOR N = 2M − 2

In this section, we consider the following consensus prob-
lem. Each process is associated with a round number
before participating in a consensus protocol. The round
number must satisfy Requirement 1 below. The problem is
to construct a long-lived object that guarantees consensus
among processes with the latest round number (or pro-
cesses within the latest round) using M ASSIGNMENT op-
eration. Since i) the adversary can arrange all N processes
to be in the latest round and ii) the M ASSIGNMENT
operation has consensus number (2M − 2) [6], we cannot
construct any wait-free consensus objects that guarantee
consensus for more than (2M−2) processes using only the
operation and read/write registers [6], or N ≤ (2M − 2)
must hold. The constructed wait-free long-lived consen-
sus object will be used as a building block to construct
wait-free read-modify-write objects in Section 4.

Requirement 1: The requirements for processes’ round
number:
• a process’ round number must be increasing and be

updated only by this process,
• processes get a round number r only if the round (r−1)

has finished 5 and
• processes declare their current round number in shared

variables before participating in a consensus protocol.
For the sake of simplicity, round numbers are assumed
to be unbounded. General solutions to bounding round
numbers have been reported in [25], [26].

3.1 General descriptions

We now present a high-level description of the wait-free
long-lived consensus (LLC) object for N = (2M − 2)
processes using M ASSIGNMENT operations. The detailed
algorithms and correctness proofs are presented in Section
3.2.

4. A register supports only read and write operations.
5. The definition of when a round finishes, depends on specific

algorithms that use this long-lived consensus object.
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The LLC object is developed from the short-lived con-
sensus (SLC) object using M ASSIGNMENT in [6]. The
LLC object will be used to achieve an agreement among
processes in the latest round. Unlike the SLC object,
variables in the LLC object that are used in the current
round can be reused in the next rounds. The LLC object,
moreover, must handle the case that some processes (e.g.
slow processes) belonging to other rounds try to modify
the shared data/variables that are being used in the
current round.

The algorithm of the wait-free LLC object using
M ASSIGNMENT is presented in Algorithm 1. Before a
process pi invokes the LONGLIVEDCONSENSUS proce-
dure, pi’s round number must be declared in the shared
variable ri. The procedure returns i) ⊥ if pi’s round had
finished and a newer round started or ii) one of the
proposal data proposed in pi’s round.

The LLC algorithm divides the group of (2M − 2)
processes into two fixed equal subgroups of (M − 1)
processes (line 1L). In the first phase, the invoking process
pi finds the proposal of the earliest process of its group in
its current round (line 2L). Then in the second phase, pi
uses the agreement achieved among its group in the first
phase as its proposal for finding an agreement with its
opposite group in its round (line 6L). The data structures
used in the two phases are one array of 2-writer registers
2WR[][] where element 2WR[i][j] can only be written by
processes pi and pj , and two arrays of 1-writer registers
1WR[][0] and 1WR[][1] where 1WR[][0] is used in the first
phase, 1WR[][1] is used in the second phase and elements
1WR[i][0], 1WR[i][1] can only be written by process pi.

Figure 2 illustrates the LLC algorithm for 4 processes
within the latest round using 3 assignment (i.e. M = 3
and N = 4). The algorithm divides the 4 processes into
two groups G0 = {p0, p1} and G1 = {p2, p3}. Consider
group {p0, p1}. In the first phase, group {p0, p1} uses
one 2-writer register 2WR[1][0] and two 1-writer registers
1WR[0][0] and 1WR[1][0] to achieve an agreement within
the group. Process p0 proposes its index 0 by writing 0
atomically to two registers 2WR[1][0] and 1WR[0][0] using
3 assignment. Similarly, process p1 proposes its index 1
by writing 1 atomically to two registers 2WR[1][0] and
1WR[1][0]. Based on the values of the three registers writ-
ten in the latest round, p0 and p1 determine who is the first
process executing the 3 assignment and then agree on the
proposal of the first process. The fact that the final value of
2WR[1][0] is 1, p1’s proposal (cf. Figure 2(a)), and p0 has
written 0 to 2WR[1][0] (since 1WR[0][0] = 0), indicates
that p1 has come after p0 and overwritten 2WR[1][0] with
p1’s proposal. Therefore, p0 and p1 agree on p0’s proposal
0 in the first phase and propose 0 in the second phase
to find an agreement with the other group {p2, p3}. The
details of the first phase are presented in Algorithm 2.

In the second phase (cf. Figure 2(b)), the four
processes use four 2-writer registers 2WR[2][0],
2WR[3][0], 2WR[2][1], 2WR[3][1] and four 1-writer
registers 1WR[0][1], 1WR[1][1], 1WR[2][1], 1WR[3][1], in
order to agree on a proposal proposed by one of the two

Algorithm 1 LONGLIVEDCONSENSUS( bufi: proposal) in-
voked by process pi with round ri
REG[ ][ ] of Integer: 2-writer registers. REG[i][j] can be written by
processes pi and pj . Initially, REG[i][j]←⊥. For the sake of simplicity,
we use a virtual array 2WR[1 . . . N ][1 . . . N ] that has no elements
2WR[i][i] and is mapped to a strictly lower triangular matrix REG

of size N(N−1)
2

as follows

2WR[i][j] =

{
REG[i][j] if i > j
REG[j][i] if i < j

Privacy : record value, round end.
1WR[1 . . . N ][0 . . . 1] of Privacy: 1-writer registers. 1WR[i] can be
written by process pi only. Initially, 1WR[i][0]← 1WR[i][1]← 〈⊥,⊥〉.

Input: pi’s unique proposal bufi and pi’s round number ri.
Output: a proposal or ⊥.
1L: gId← b i

M
c // Divide processes into 2 groups of size (M−1) with

group ID gId ∈ {0, 1}
// Phase I:Find an agreement in pi’s group with indices {gId(M −
1) + 1, · · · , gId(M − 1) +M − 1}

2L: first ← FIRSTAGREEMENT(bufi, gId) // first is the proposal of
the earliest process of group gId in pi’s round

3L: if first =⊥ then
4L: return ⊥ // pi’s round had finished and a new round has started
5L: end if

// Phase II: Find an agreement with the other group with indices
{(¬gId)(M − 1) + 1, · · · , (¬gId)(M − 1) +M − 1}

6L: winner ← SECONDAGREEMENT(first, gId)
7L: if winner =⊥ then
8L: return ⊥ // pi’s round had finished and a new round has started
9L: end if
10L: return winner

3

0 1 2 3

0

1

2

3

2WR[][]

1WR[][0]

0 1 2 3

0 1 2 3

1

(a) Phase I

2

0 1 2 3

0

1

2

3

2WR[][]

0 1 2 3

0 2

1

3

1WR[][1]0 20

2

2

2

(b) Phase II

Fig. 2. Illustration for the LLC algorithm with 4 processes.

groups. Assume that group {p2, p3} proposes 2. Process p0
proposes its group’s proposal 0 by writing 0 atomically to
three registers 2WR[2][0], 2WR[3][0] and 1WR[0][1] using
3 assignment. Similarly, process p1 writes 0 atomically
to three registers 2WR[2][1], 2WR[3][1] and 1WR[1][1].
Process p2 proposes its group’s proposal 2 by writing
2 atomically to three registers 2WR[2][0], 2WR[2][1] and
1WR[2][1]. Similarly, process p3 writes 2 atomically to
three registers 2WR[3][0], 2WR[3][1] and 1WR[3][1].
Consider process p0 of group G0 and processes
p2, p3 of group G1. Based on the values of registers
2WR[2][0], 2WR[3][0] written by p0, p2 and p3 in the
last round, processes p0, p2 and p3 can determine which
group is the first group executing the 3 assignment
in the second phase and then agree on the proposal
of the first group. In Figure 2(b), the final value of
2WR[2][0] is 2, p2’s proposal, indicating that p2 has
come after p0 and overwritten 2WR[2][0] with p2’s
proposal. Similarly, 2WR[3][0] = 2 indicates that p3 has
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Algorithm 2 FIRSTAGREEMENT(bufi: proposal; gId: bit)
invoked by process pi with round ri
Output: ⊥ or the proposal of the earliest process in pi’s round
1F: M ASSIGNMENT({1WR[i][gId], 2WR[i][α + 1], · · · , 2WR[i][α +

M − 1]}, {〈bufi, ri〉, bufi, · · · , bufi}), where α = gId(M − 1) //
2WR[i][i] is not written.

2F: first← i // Initialize the winner first of pi’s group to pi
3F: for k in α+ 1, · · · , α+M − 1 do
4F: {first, ref} ← ORDERING(first, k, gId) // Find the earliest

process first of pi’s group in pi’s round
5F: if first =⊥ then
6F: return ⊥ // pi’s round had finished and a new round has

started
7F: end if
8F: end for
9F: return ref // first’s proposal in pi’s round

come after p0. That means G0 is the first group that
executes the 3 assignment in the second phase and thus
p0, p2 and p3 agree on G0’s proposal 0. Similarly, p1, p2
and p3 also agree on G0’s proposal 0 by looking at
2WR[2][1], 2WR[3][1]. The details of the second phase are
presented in Algorithm 3.

3.2 Detailed algorithms and correctness proofs

Definition 3.1 (Single-group order  s): Suppose two
processes pi and pj belong to the same subgroup G and
are in the same round r. Process pi precedes pj (denote
pi  s pj) in round r iff pi executes its M ASSIGNMENT
on their shared register 2WR[i][j] (line 1F in Algorithm
2) before pj in round r.

Definition 3.2 (Different-group order  d): Suppose two
processes pi and pj belong to different subgroups G and
¬G, and are in the same round r. Process pi precedes
pj (denote pi  d pj) in round r iff pi executes its
M ASSIGNMENT on their shared register 2WR[i][j] (line
1S in Algorithm 3) before pj in round r.

Note that the single-group order and different-group
order do not define an order over all processes, but only
an order over either two processes of the same subgroup
(i.e. single-group order) or two processes of different
subgroups (i.e. different-group order).

Definition 3.3 (Earliest process): The earliest process of a
subgroup G in round r is the process that precedes the
rest of G in round r according to the single-group order.

Note that pi’s round number is unchanged when pi is
executing the LONGLIVEDCONSENSUS procedure. If pi’s
round has already finished, the procedure returns ⊥ since
pi is not allowed to participate in a consensus protocol of
a round to which it doesn’t belong (lines 4L and 8L).

The FIRSTAGREEMENT procedure (cf. Algorithm 2), af-
ter executing M ASSIGNMENT (line 1F), simply scans all
members of pi’s group to find the earliest process in pi’s
round using the ORDERING procedure (cf. Algorithm 4).
The ORDERING procedure receives as input two processes
first and k, and returns the preceding one together
with its proposal in pi’s round (cf. Lemma 3.4). If both
processes first and k belong to pi’s round, the preceding
process is the one that first executes its M ASSIGNMENT
(line 1F). If process k belongs to a previous round, it is

Algorithm 3 SECONDAGREEMENT(first: proposal; gId:
bit) invoked by process pi with round ri
1S: M ASSIGNMENT({1WR[i][¬gId], 2WR[i][β + 1], · · · , 2WR[i][β +

M − 1]}, {〈first, ri〉, first, · · · , first}), where β = (¬gId)(M − 1)
// 2WR[i][i] is not written.

2S: winner ← i // Initialize the winner winner to pi
3S: w gId← gId // Initialize the winner’s group ID w gId
4S: pivot[w gId] ← i // Set pivots for both groups to check all

members of each group in a round-robin manner
5S: pivot[¬w gId]← β+1 // The smallest index in winner’s opposite

group
6S: next← pivot[¬w gId]
7S: repeat
8S: previous← winner
9S: {winner, ref} ← ORDERING(winner, next,¬w gId)
10S: if winner =⊥ then
11S: return ⊥ // pi’s round had finished and a new round has

started
12S: else if winner 6= previous then
13S: w gId← ¬w gId // winner now belongs to the other group
14S: next← previous
15S: end if
16S: next← the next member index in next’s group in a round-robin

manner.
17S: until next = pivot[¬w gId] // All members of winner’s opposite

group have been checked
18S: return ref // winner’s proposal in round roundi

Algorithm 4 ORDERING(first, k: index; gId: bit) invoked
by process pi with round ri
Output: {⊥,⊥} or {index, proposal}
1O: 1wrk ← 1WR[k][gId]; 2wrfirst,k ← 2WR[first][k]; 1wrfirst ←

1WR[first][gId] // Registers are read sequentially from left to
right.

2O: if (ri < 1wrfirst.round) or (ri < 1wrk.round) then
3O: return {⊥,⊥} // A newer round has started⇒ pi’s round had

finished.
4O: else if 1wrfirst.round > 1wrk.round then
5O: return {first, 1wrfirst.value} // ri = 1wrfirst.round and

1wrk.round has finished ⇒ Ignore 1wrk .
6O: end if

// ri = 1wrfirst.round = 1wrk.round.
7O: if 2wrfirst,k = 1wrk.value then
8O: return {first, 1wrfirst.value}
9O: else
10O: return {k, 1wrk.value}
11O: end if

considered a faulty process in pi’s round and is ignored
by the ORDERING procedure. Since the preceding order
is transitive, the variable first after the for-loop is the
earliest process of pi’s group in pi’s round. Since FIRSTA-
GREEMENT scans (M − 1) processes of pi’s group to find
the earliest one and ORDERING has time complexity O(1),
FIRSTAGREEMENT has time complexity O(M) (or O(N)).

The SECONDAGREEMENT procedure (cf. Algorithm 3)
is an innovative improvement of the abstract idea in the
SLC algorithm [6]. The SLC algorithm suggests the idea
of constructing a directed graph between two groups each
of (M − 1) processes with property that there is an edge
from Pl to Pk if Pl and Pk are in different groups and Pl’s
assignment precedes Pk’s (or Pl precedes Pk for short).
Constructing such a directed graph has time complexity
O(M2) since each member of one group must be checked
with (M − 1) members of the other group.

However, the SECONDAGREEMENT procedure finds an
agreement with time complexity only O(M). The idea is
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...
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Fig. 3. Illustration for the SECONDAGREEMENT procedure,
Algorithm 3

that we can find a process pw in a group G0 that precedes
all members of the other group G1 without the need for
such a directed graph. Such a process is called source.
Since all members of G1 are preceded by pw, they cannot
be sources. All sources must be members of pw’s group
G0, which suggest the same proposal, their agreement
achieved in the first phase. Therefore, all processes in both
groups will achieve an agreement, the agreement of pw’s
group.

The SECONDAGREEMENT procedure utilizes the transi-
tive property of the preceding order to achieve the better
time complexity O(M). Fig. 3 illustrates the procedure.
Assume that process pi belongs to group 0, which is
marked as p0i in the figure. The procedure sets a pivot
index for each group (e.g. pivot0 = p0i and pivot1 = p11)
and checks members of each group in a round-robin
manner starting from the group’s pivot (lines 4S and 5S).
In the figure, p0i , which is the temporary winner (line
2S), consecutively checks the members of group 1: p11, p12
and p13, and discovers that it precedes p11 and p12 but it
is preceded by p13 according to the different-group order
(cf. Definition 3.2). At this point, the temporary winner
winner is changed from p0i to p13 and p13 starts to checks
the members of group 0 starting from p0i+1 (lines 12S-14S).
Then, p13 discovers that it precedes p0i+1 but it is preceded
by p0i+2. At this point, the temporary winner winner is
again changed from p13 to p0i+2. p0i+2 continues to check
the members of group 1 starting from p14, the index before
which p0i stopped, instead of starting from pivot1 = p11 (lines
12S-14S). It is clear from the figure that p0i+2 precedes
p11 and p12 (or p0i+2  d p11 and p0i+2  d p12 for short)
since p0i+2  d p13  d p0i and p0i precedes both p11 and
p12. Therefore, as long as the temporary winner (e.g. p0i+2)
checks the pivot of its opposite group again, it can ensure
that it precedes all the members of its opposite group
(line 17S) and becomes the final winner. Therefore, the
procedure needs to check at most (2M −2) times, leading
to the time complexity O(M). This argument also leads
to the following lemma.

Lemma 3.1: The process winner 6=⊥ whose ref is re-
turned by SECONDAGREEMENT precedes all processes of
the other group.

Proof: Let the final winner ( 6=⊥) be W . Since the
ORDERING procedure returns the preceding process of

two processes winner and next in the same round roundi
(cf. Lemma 3.4), the final winnerW precedes all processes
in roundi that are checked in the repeat-until loop (lines 7S
- 17S) according to the different-group order (cf. Definition
3.2). What we need to prove is that all processes in
the other group ¬w gId have been checked in the loop.
Indeed,
• if the winner has never been changed (i.e. winner =
previous all the time), the next member of the group
¬w gId in a round-robin manner (line 16S) will be
checked against winner until the repeat-until loop
makes a complete check on all members of the group
¬w gId (line 17S).
• if the winner has ever changed to a member W̃ of

the other group ¬w gId, W̃ will continue to check the
next member after the previous winner previous in a
round-robin manner (lines 14S and 16S) until either all
members of W̃ ’s opposite group have been checked
within the loop or a member of W̃ ’s opposite group
precedes W̃ . That means in each iteration, regardless of
whether winner is changed or not, the next member in
one of the two groups will be checked in a round-robin
manner, starting from the group pivot (lines 4S and 5S).
Since members of each group is checked consecutively
and the loop finishes when the pivot of a group G̃
is checked again, all members of the group G̃ are
checked when the loop finishes. The fact that the final
winner W belongs to the other group G 6= G̃ when the
loop finishes, implies that all members of W’s opposite
group have been checked in the loop.

Lemma 3.2: The SECONDAGREEMENT procedure has
time complexity O(N).

Proof: As shown in the proof of Lemma 3.1, in each
iteration of the repeat-until loop (lines 7S-17S), regardless
of whether winner is changed or not, the next member in
one of the two groups will be checked in a round-robin
manner, starting from the group pivot (lines 4S and 5S).
Therefore, the repeat-until loop has at most N iterations.
Since the time complexity of ORDERING is O(1), the time
complexity of SECONDAGREEMENT is O(N).

We now show that the values of shared variables
(e.g. 2WR and 1WR) used by the ORDERING procedure
(Algorithm 4) are written by processes in pi’s round.
Such values are considered belonging to pi’s round. The
procedure ensures that by checking the round field of the
1WR variables.

Lemma 3.3: Let α be any execution which contains the
execution of some instance ord of the ORDERING proce-
dure (Algorithm 4) by some process pi with round ri.
Then,

1) at all configurations of α following the execution of
line 4O by ord and preceding the response of ord, it
holds that 1wrfirst.round = ri and 1wrfirst.round ≥
1wrk.round, and

2) at all configurations following the execution of line
7O by ord and preceding the response of ord, it holds
that 1wrk.round = 1wrfirst.round = ri
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Proof: We first prove that in all configurations of α
during the execution of ord, it holds that 1wrfirst.round ≥
ri. Let first0, first1, first2, . . . be instances of parameter
first of ORDERING (first, k, gId) invoked by pi during
the loop 3F-8F in Algorithm 2 or the loop 7S-17S in Al-
gorithm 3, where first0 = i (line 2F or 2S). We will prove
by induction on index j ≥ 0 that 1wrfirstj .round ≥ ri.
• The hypothesis holds when j = 0. Indeed, we have
first0 = i. Since i) pi writes ri to 1WR[i][gId].round
(line 1F or 1S) before calling ORDERING(first, k, gId)
(line 4F or 9S) and ii) pi’s round ri is unchanged while
pi is executing LONGLIVEDCONSENSUS (cf. Require-
ment 1, items 1 and 3), it holds that 1wrfirst0 .round(=
1wri.round) ≥ ri.
• We now prove that if 1wrfirstj .round ≥ ri then

1wrfirstj+1
.round ≥ ri. Indeed, firstj+1 6=⊥ is the

index returned from ORDERING(firstj , k, gId) invoked
by pi with round ri (line 4F or 9S). Index firstj+1

is either firstj (line 5O or 8O) or k (line 10O).
If firstj+1 = k, 1wrk.round ≥ 1wrfirstj .round
holds (otherwise, ORDERING(firstj , k, gId) returned
earlier at line 5O). In all cases, 1wrfirstj+1

.round(≥
1wrfirstj .round) ≥ ri. Note that pfirstj+1

’s round
number only increases (cf. Requirement 1, item 1)
(and thus 1WR[firstj+1][gId].round only increases)
and pi’s round ri is unchanged while pi is executing
LONGLIVEDCONSENSUS.

Therefore, from line 4O, 1wrfirst.round = ri and thus
1wrk.round ≤ (ri =) 1wrfirst.round (otherwise, the pro-
cedure returned early at line 3O). It follows that from
line 7O, 1wrk.round = 1wrfirst.round = ri (otherwise,
the procedure returned early at line 5O).

Lemma 3.4: The ORDERING procedure returns

• {⊥,⊥} iff a newer round than pi’s round ri has started
(which implies that ri had finished), or
• a pair {index, proposal} in which proposal is pindex’s

proposal in round ri and index is either i) the pre-
ceding process between pfirst and pk in the case that
both 1wrfirst and 1wrk belong to pi’s round ri, or
ii) first in the case that 1wrk.round has finished and
1wrfirst.round = ri.

Proof: The first part of this lemma is clear from the
ORDERING pseudocode. The procedure returns {⊥,⊥} iff
a newer round than ri has started (line 3O).

We now prove that proposal returned belongs to pi’s
round ri. The procedure returns a pair {index, proposal}
only at lines 5O, 8O and 10O, where proposal is pindex’s
proposal. Since 1wrfirst.round = ri from line 4O (cf.
Lemma 3.3), 1wrfirst.value returned at lines 5O and 8O
belongs to ri. Since 1wrk.round = ri from line 7O (cf.
Lemma 3.3), 1wrk.value returned at line 10O belongs to
ri.

We prove the last part of the lemma. It is clear
from the ORDERING pseudocodes that the ORDERING
procedure returns first at line 5O only if 1wrk.round
has finished and 1wrfirst.round = ri. In the case
1wrfirst.round = 1wrk.round = ri (i.e from line 7O),

both processes pfirst and pk have executed their corre-
sponding M ASSIGNMENT (line 1F in Algorithm 2 or
1S in Algorithm 3) in round ri, which means 2wrfirst,k
is either 1wrfirst.value or 1wrk.value. Note that equa-
tion 1wrk.round = ri implies that process pk has ex-
ecuted its corresponding M ASSIGNMENT with round
ri before process pi reads 1WR[k][gId] at line 1O (Al-
gorithm 4). According to the proof of Lemma 3.3,
process pfirst has written its round rfirst ≥ ri to
1WR[first][gId] (using M ASSIGNMENT) before pi in-
vokes ORDERING(first, k, gId). That means, in the case
1wrfirst.round = 1wrk.round = ri, both processes pk and
pfirst have executed their corresponding M ASSIGNMENT
with round ri before process pi reads 1WR[k][gId] (as well
as 2WR[first][k] and 1WR[first][gId]) at line 1O (Algo-
rithm 4). Therefore, if 2wrfirst,k = 1wrk.value, process
k has come after the process first and has overwritten
2wrfirst,k. As a result, process first is the preceding and
is returned (line 8O). Otherwise, k is the preceding and
is returned (line 10O). Note that the proposal data are
unique for each process.

Lemma 3.5: The time complexity of the LONGLIVED-
CONSENSUS procedure is O(N).

Proof: The time complexity of ORDERING is O(1).
Since FIRSTAGREEMENT scans (M − 1) processes of pi’s
group to find the earliest one, its time complexity is O(M)
(or O(N)). Since SECONDAGREEMENT checks at most N
processes in the repeat-until loop (cf. Fig. 3), its time
complexity is also O(N) (cf. Lemma 3.2). Therefore, the
time complexity of LONGLIVEDCONSENSUS is O(N).

Lemma 3.6: The new object (cf. Algorithm 1) is long-
lived and solves wait-free consensus for processes within
the latest round in a system of N = 2M − 2 processes.

Proof: Since the shared data structures in the object
are reused during the object lifetime, the new object is
long-lived. We now prove that the new object satisfies
consensus properties agreement, validity and wait-freedom
for processes within the latest round.

• Agreement: Since processes winner 6=⊥ whose proposals
are returned from SECONDAGREEMENT invoked by
processes pi with the latest round r, precede all pro-
cesses of the other group (cf. Lemma 3.1), the processes
winner in round r must belong to the same group
gId. Therefore, their proposals first 6=⊥ for SECONDA-
GREEMENT in round r are the same, which are the
result of their FIRSTAGREEMENT (line 2L). Note that
FIRSTAGREEMENT and SECONDAGREEMENT invoked
by processes pi with the latest round r never return
⊥ (cf. Lemma 3.4). That means the values returned
by LONGLIVEDCONSENSUS to all processes within the
latest round (line 10L) are the same.

• Validity: Since ORDERING(first, k, gId) invoked by a
process pi with the latest round r returns the pro-
posal of either first or k (Lemma 3.4), the value first
returned from FIRSTAGREEMENT invoked by pi (line
2L in Algorithm 1) is an original proposal of some
process of pi’s group in round r (cf. the for-loop 3F-8F
in Algorithm 2). Similarly, the value winner returned
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from SECONDAGREEMENT invoked by pi (line 6L in
Algorithm 1) is either first or an original proposal of
some process of pi’s opposite group in round r (cf. the
repeat-until loop 7S-17S in Algorithm 3). Therefore, the
value winner returned from LONGLIVEDCONSENSUS
invoked by pi with the latest round r is an original
proposal of some process in round r.
• Wait-freedom: Since LONGLIVEDCONSENSUS has time

complexity O(N) (Lemma 3.5), each process invoking
LONGLIVEDCONSENSUS will get a value after a finite
number of steps.

Lemma 3.7: For any wait-free consensus protocols us-
ing only the M ASSIGNMENT operation and read/write
registers, the space complexity is Ω(N2).

Proof: It has been proven that in any wait-free consen-
sus protocols using only the M ASSIGNMENT operation
and read/write registers, each pair of processes having
different proposal values must have a register that is
written only by those two processes (cf. the proof of
Theorem 13 in [6]). Therefore, for N processes there must
be at least N(N−1)

2 registers, which means that the space
complexity is Ω(N2).

Lemma 3.8: The space complexity of the LLC object is
O(N2), the optimal.

Proof: From the set of variables used to construct the
LLC object (cf. Algorithm 1), the space complexity of the
LLC object is obviously O(N2) due to array REG. Due
to Lemma 3.7, the space complexity of the LLC object is
optimal.

4 WAIT-FREE READ-MODIFY-WRITE OBJECTS
FOR N = 2M − 2
In this section, we present a wait-free read-modify-
write (RMW) object for N = (2M − 2) processes using
M ASSIGNMENT operations. Since the M ASSIGNMENT
operation has consensus number (2M − 2), we cannot
construct any wait-free objects for more than (2M − 2)
processes using only this operation and read/write regis-
ters [6].

The idea is to divide the execution of the RMW ob-
ject by processes pi into consecutive rounds based on
pi’s rounds. Each process pi is associated with a round
number r before trying to execute a function f on the
RMW object. If pi fails to execute its function f in round
r, pi will retry to execute its function again with a new
round number r′ > r (cf. Lemma 4.6). Processes with
the same round number (or in the same round) each
suggests an order of these processes’ functions to be
executed on the object in that round, and then invokes
the LONGLIVEDCONSENSUS procedure in Section 3 to
achieve an agreement among these processes. Since each
process executes one function on the RMW object at a
time, functions are ordered according to both the round
in which their matching processes participate, and the
agreed order among processes in the same round.

Definition 4.1: A function is considered executed in a
round iff its result is made within that round.

Algorithm 5 Data structures and variables used in Algo-
rithm 6
Proposal: record owner, round, response[1..N ], toggle[1..N ], value
end. Initially, toggle[]← {0}.
Proposalref : reference to Proposal;
Buffer: record curBuf, PRO[0..1] of Proposal end; Initially,
curBuf ← 0.
BUF [1...N ] of Buffer: In BUF [i], PRO[curBuf ] is the current
buffer for pi’s proposed data, which is called PROi[curBuf ] for short.
PROi[¬curBuf ] is pi’s currently shared (read-only) buffer. Only pi
can write to BUF [i]
WINNER[1...N ] of Proposalref : WINNER[i] contains the
reference/address of the buffer containing the agreed proposal in
the latest round in which pi participates. Only pi can write to
WINNER[i]. Initially, WINNER[i]←⊥.
Function: record func, toggle end. Initially, toggle← 0.
FUN [1...N ] of Function: FUN [i] contains the function most recently
suggested by process pi. Only pi can write to FUN [i].
COU [1...N ]: COU [i] contains the latest round pi has finished. Only pi
can write to COU [i]. Initially, COU []← 0.
FASTSCAN(): scans a set of size less than 2M using the M -register
read/write operations. Its time complexity and space complexity are
Θ(1) [27]

Definition 4.2: A process is considered participating in a
round iff its function is executed in that round.

Definition 4.3: A function f is executed by a process p in
a round r iff f is included in p’s proposal and p is the
winner of the long-lived consensus protocol among the
participating processes of the round r.

Particularly, a process pi, which wants to execute a
function f on the RMW object, invokes the RMW pro-
cedure (Algorithm 6) with function f as its parameter.
The function, together with a toggle bit, is written to a
shared variable FUN [i] so as to inform other processes
(line 2). FUN [i] is read-only for other processes pj , j 6= i.
Processes, when making a proposal, will scan all N ele-
ments of FUN to extract the functions that have not been
executed yet based on their toggle bit (lines 19 and 21)
and apply the functions on their local copies of the RMW
object in the order imposed by process ids (line 23). Since
each process executes one function on the RMW object at
a time, the toggle bit is sufficient to check if a process’
current function has been executed (cf. Lemma 4.7). A
local copy LCi of the RMW object by some process pi will
become the actual RMW object when processes agree on
pi’s proposal using LONGLIVEDCONSENSUS from Section
3. Processes pj then keep the reference to LCi (or pi’s
proposal) in WINNER[j] (line 38). The functions that
are applied at each round are those read in FUN by the
winner pi of the round.

In order to use the LONGLIVEDCONSENSUS procedure,
each process needs to manage its own round number,
which is increasing. For the sake of simplicity, round
numbers are assumed to be unbounded 6. A process pi
records the latest round it has finished in variable COU [i],
which is read-only to other processes pj , j 6= i (line 38).

Definition 4.4: A round r starts with the first process
that obtains round number r (line 4). A round r is
considered finished as soon as r is recorded in a variable

6. General solutions to bounding round numbers have been reported
in [25], [26].
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COU [i] by a process pi (line 38).
The process pi, when invoking RMW, first scans all N

elements of COU to find the most recent round number
roundi, the round it will belong to (line 4). This ensures
that a process gets a round number r only if the round
(r − 1) has finished (cf. Lemma 4.1). The round number
then is written to a shared data PROi (lines 16 and
17), where the data structure of PROi is described in
Algorithm 5. These make the RMW procedure satisfy
the requirement for using the LONGLIVEDCONSENSUS
procedure (cf. Requirement 1).

After getting a round number roundi, pi creates its own
proposal for the long-lived consensus protocol in roundi.
It finds one of the participating processes of the latest
round (e.g pk) and reads its result (e.g. WINNER[k])
(lines 4-9). The read value is checked to ensure that it is
the result of round (roundi − 1) (lines 10-14) (cf. Lemma
4.4). The result, which contains responses to functions that
have been executed up to round (roundi − 1), is copied
to pi’s proposal PROi so that if PROi.response[j] =
resk.response[j],∀j, the field PROi.response[j] is kept
unchanged. The same approach is used for the toggle field
of PROi (cf. the Proposal data structure in Algorithm
5). Only responses/toggle-bits corresponding to the pro-
cesses that have submitted a new function to FUN , are
updated to new values (lines 19-23). This approach results
in an important property of our RMW procedure:

Property 4.1: For any process pi, if its current function
f has been executed in a round r, the response to f in
any process’ buffer is kept unchanged until pi submit a
new function to FUN [i].

Since pi submits a new function only when making
another invocation of the RMW procedure (line 2), this
property implies that if a process pi obtains a reference
to a buffer containing the response to pi’s function f in a
round r, it can later use this reference to get the correct
response to its function f even if that buffer has been
re-used for a proposal of later rounds r′ > r.

After creating a proposal bufi, an order of functions to
be executed on the RMW object in round roundi, pi uses
the long-lived consensus object developed in Section 3
to achieve an agreement among processes in roundi (line
26). If pi’s function has been executed in the agreement,
pi atomically writes the agreement winner and its round
roundi to WINNER[i] and COU [i] (line 38) before re-
turning the response winner.response[i] (line 42).

Each process pi has two buffers in order to achieve
recycling: the working buffer PROi[curBuf ] is used to
create proposal data and the shared buffer PROi[¬curBuf ]
is used to share the proposal data that has been chosen
by the consensus protocol. If processes agree on pi’s
proposal, pi prepares the working buffer for the next
round by triggering its curBuf bit (line 40).

One of the biggest challenges in designing the RMW
object using M ASSIGNMENT operations is that pro-
posal data cannot be stored in one register whereas the
M ASSIGNMENT operation can atomically write M values
to M memory locations only if the values each can be
stored in one register. Our RMW object overcomes the

Algorithm 6 RMW(f: function) invoked by process pi
1: togglei ← ¬FUN [i].toggle;
2: FUN [i]← {f, togglei};
3: for l in 1...2 do
4: coui ← FASTSCAN(COU); roundi ← max1≤j≤N coui[j]+1; Let

k be an index such that coui[k] = max1≤j≤N coui[j].
5: if WINNER[k] =⊥ then // Initial round, no previous winner

⇒ Compute pi’s proposal data
6: bufi ← &PROi[curBuf ]; // use bufi as the refer-

ence/address of pi’s working buffer PROi[curBuf ]
7: bufi.round ← roundi; bufi.owner ← i; // Update fields

round and owner of PROi[curBuf ].
8: else // There is a winner in the previous round.
9: resk ← copy(WINNER[k]); // Copy (non-atomically) the

RMW object to a local buffer resk .
10: action ← CHECKRESULT(resk, coui[k]); // Check the result

resk .
11: if action = Done then
12: return resk.response[i]; // roundi has finished ⇒ pi

returns.
13: else if action = Retry then
14: continue; // roundi has finished but FUN [i] of roundi

hasn’t been executed. Retry.
15: end if

// roundi = resk.round+ 1⇒ Compute pi’s proposal data
16: bufi ← &PROi[curBuf ]; // use bufi as the refer-

ence/address of pi’s working buffer PROi[curBuf ]
17: bufi ← copy(resk); bufi.round ← roundi; bufi.owner ←

i; // Copy (non-atomically) the local buffer resk to
PROi[curBuf ] and update fields round and owner of the
copy.

18: end if
// Apply proposed functions on the local copy.

19: funi ← FASTSCAN(FUN);
20: for j in 1...N do
21: if funi[j].toggle 6= bufi.toggle[j] then
22: bufi.toggle[j]← funi[j].toggle;
23: bufi.response[j] ← bufi.value; bufi.value ←

funi[j](bufi.value);
24: end if
25: end for

// long-lived consensus
26: winner ← LONGLIVEDCONSENSUS(bufi); // pi’s round number

is stored in bufi.round.
27: if winner =⊥ then // roundi had finished and a new round

has started
28: if l = 2 then // pi’s 2nd try and roundi finished⇒ responsei

must be ready
29: coui ← FASTSCAN(COU); Let k be an index such that

coui[k] = max1≤j≤N coui[j].
30: resk ← WINNER[k];
31: return resk.response[i];
32: else
33: continue;
34: end if
35: else if winner.toggle[i] 6= togglei then
36: continue; // winner didn’t execute FUN [i] ⇒ Retry one

more round
37: else
38: M ASSIGNMENT({WINNER[i], COU [i]}, {winner, roundi});

// Atomic 2-register assignment
39: if winner.owner = i then
40: BUF [i].curBuf ← ¬BUF [i].curBuf ; // pi is the winner

⇒ prepare a buffer for the next round
41: end if
42: return winner.response[i];
43: end if
44: end for

problem by ensuring Property 4.1 and using references
to proposal data, instead of proposal data, as inputs for
the LONGLIVEDCONSENSUS procedure. The consensus
procedure returns an agreed reference of a buffer con-
taining a proposal. If the proposal contains a response
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to pi’s function, the response will be kept unchanged
until pi gets the response and returns from the RMW
procedure according to Property 4.1. Therefore, processes
still achieve an agreed order of their functions executed
on the RMW object although the buffer may be re-used
for later rounds.

4.1 Correctness proofs

Lemma 4.1: If no process has finished a round r, no
process can obtain a round number r′ ≥ (r + 1).

Proof: Since roundi finishes as soon as a process pi
writes roundi to COU [i] (cf. Definition 4.4), a process pn
obtain a round number roundn = max1≤k≤N COU [k] + 1
(Algorithm 6, line 4) only if the round roundn − 1 has
finished.

Lemma 4.2: In the CHECKRESULT procedure, the value
resk used from line 7C is a correct copy of presk.owner’s
shared buffer.

Proof: It may happen that when pi makes a copy
resk of buffer WINNER[k] (line 9 in RMW), the buffer
has been re-used (or has become the working buffer)
for a later round since pi found k (line 4). Note that
WINNER[k] contains only a reference to the buffer con-
taining proposal data due to M ASSIGNMENT’s register-
size restriction. We prove the lemma by contradiction.

Assume that this scenario happens. Let rounda be the
round at which WINNER[k] is updated with a reference
to rounda’s winning buffer Buffer1 that is being copied by
pi at line 9. Since i) WINNER[k] and COU [k] are updated
in one atomic step using M ASSIGNMENT (line 38), ii)
COU [k] is read to coui[k] (line 4) before WINNER[k]
is read (line 9) and iii) COU [k] is always increasing,
coui[k] ≤ rounda (or roundk ≤ rounda)

Let po be the owner of Buffer1. Let roundowner be the
value of COU [o] read by pi at line 1C in CHECKRESULT.
Since Buffer1 has been re-used as a working buffer due
to the hypothesis, there exists a smallest round rounde,
rounda < rounde ≤ roundowner, in which po was again the
winner (line 40 is the only place po switches its working
and shared buffers). It follows that roundowner ≥ rounde >
rounda ≥ roundk, which makes the CHECKRESULT pro-
cedure return earlier (lines 3C and 5C), a contradiction to
the hypothesis that this resk value is used from line 7C.

Lemma 4.3: The CHECKRESULT procedure returns OK
only if resk.round = roundi − 1.

Proof: Due to Lemma 4.2, resk from line 7C is the
result of the latest round that pk has finished at the
time pi reads that value (line 9 in RMW). That round
number is recorded in resk.round (line 17 in RMW). Since
i) at line 12C in CHECKRESULT, roundi > resk.round
(otherwise, the procedure returned at line 8C or 10C)
and ii) resk.round ≥ coui[k] ( since resk is read af-
ter coui and the round number is always increasing)
and iii) coui[k] = (roundi − 1) (line 4 in RMW), we
have roundi > resk.round ≥ (roundi − 1). Therefore,
resk.round = (roundi − 1) at line 12C.

Algorithm 7 CheckResult(resk: reference; roundk: integer)
invoked by process pi
Output: OK, Done or Retry.
1C: roundwinner ← COU [resk.owner];
2C: if roundwinner 6= roundk and resk.toggle[i] = togglei then
3C: return Done; // The winner has started a new round⇒ roundi

had finished
4C: else if roundwinner 6= roundk and resk.toggle[i] 6= togglei then
5C: return Retry; // roundi has finished but FUN [i] of roundi

hasn’t been executed. Retry.
6C: end if

// resk is a correct copy of presk.owner ’s shared buffer.
7C: if roundi ≤ resk.round and resk.toggle[i] = togglei then
8C: return Done; // roundi has finished and FUN [i] of roundi has

been executed. Done.
9C: else if roundi ≤ resk.round and resk.toggle[i] 6= toggle then
10C: return Retry; // roundi has finished, but FUN [i] of roundi

hasn’t been executed. Retry.
11C: end if
12C: return OK;

Lemma 4.4: The value resk used to make pi’s proposal
in round roundi (line 17, Algorithm 6) is the result of
round (roundi − 1).

Proof: Since the CHECKRESULT procedure does not
returned Done nor Retry only if resk.round = (roundi−1)
(Lemma 4.3), the value resk used from line 17 in RMW
satisfies resk.round = (roundi − 1) (otherwise the RMW
procedure returned or retried earlier at line 12 or line 14,
respectively). That means resk used from line 17 is the
result of round (roundi − 1).

Lemma 4.5: After a process pi retries at line 14, 33 or 36
in Algorithm 6, pi’s function FUN [i] will be executed by
the winner of the next round at the latest.

Proof: Since i) pi declares its latest function in FUN [i]
before roundi finishes (lines 2 and 4) and ii) processes
obtain the round number (roundi + 1) only if roundi has
finished (cf. Lemma 4.1), processes participating in round
(roundi + 1) will definitely observe pi’s function when
scanning FUN at line 19. The winner of round (roundi+1)
will realize that FUN [i] has not been executed (line 21)
since resk is the result of round roundi due to Lemma 4.4.
Hence, FUN [i] will be definitely executed by the winner
of round roundi + 1.

Therefore, if pi’s function has not been executed by
the winner of roundi and subsequently pi retries and
participates in a round roundj ≥ roundi + 1, pi will get
the response to its function in roundj .

Lemma 4.6: Every process pi will return with the re-
sponse to its function after at most 2 iterations (line 3,
Algorithm 6).

Proof: From Lemma 4.5, pi’s function will be executed
at the latest in the round roundj in which pi participates
during its second try. If pi returns at line 12 or 42, the
returned value is the response to its function due to Prop-
erty 4.1. However, it may happens that roundj has fin-
ished just before the invocation of the LONGLIVEDCON-
SENSUS procedure (line 26), making the procedure returns
⊥ (line 27). In this case, pi scans COU to get the result
resk of a round roundr ≥ roundj , and resk.response[i]
contains the response to pi’s function due to Property 4.1
(lines 29-31). Therefore, pi will return with the response
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to its function after executing at most 2 iterations.
Lemma 4.7: The RMW procedure is linearizable.

Proof: Assume that RMW(fi) is invoked by process
pi. Within each round, participating processes achieve an
agreement on the order of their functions to be executed
using the LONGLIVEDCONSENSUS procedure and thus
the functions of the participating processes each takes
effect at one point within the execution of that round.

On the other hand, a function fi that has been exe-
cuted in a round will never be executed in later rounds
during RMW(fi). Indeed, assume that a function fi is
executed twice at round ra by process pj and at round
rb, b > a, by process pl. Since fi is executed at round
ra by pj , pj records FUN [i].toggle in its proposal bufj
(i.e. bufj .toggle[i] = FUN [i].toggle, line 22), which is
the result of round ra. Since fi is executed again at
round rb, b > a, by pl, pl’s variable resk.toggle[i] must
be different from FUN [i].toggle (lines 17, 19 and 21).
Note that FUN [i] is updated to {fi, togglei} only once
in RMW(fi) by its unique owner/process pi (line 2).
However, since pl’s resk is the result of round rb− 1 (due
to Lemma 4.4) and (rb − 1) ≥ ra (due to hypothesis), it
follows that resk.toggle[i] = bufj .toggle[i] (due to Prop-
erty 4.1). Since bufj .toggle[i] = FUN [i].toggle, it follows
that resk.toggle[i] = FUN [i].toggle, a contradiction.

Therefore, there is a unique point in the whole exe-
cution (including many rounds) at which the function f
takes effect. Since pi doesn’t invoke another RMW(f ′)
before its previous RMW(f) has been completed, the
unique point is the linearization point of the RMW(f).

Lemma 4.8: The RMW procedure is a wait-free read-
modify-write operation with the time complexity of O(N).

Proof: Since the time complexity of LONGLIVEDCON-
SENSUS is O(N) (Lemma 3.5) and RMW returns after at
most two iterations of its for-loop (Lemma 4.6), the time
complexity of RMW is O(N). This also implies that RMW
is wait-free.

Lemma 4.9: The space complexity of the wait-free RMW
object is O(N2), the optimal.

Proof: From the set of variables used to construct the
RMW object (cf. Algorithm 5), we see that the Proposal
record has space complexity O(N) and thus the space
complexity of the BUF array is O(N2). Since the space
complexity of the LONGLIVEDCONSENSUS procedure,
which is used in the RMW procedure (line 26, Algorithm
6), is also O(N2) (cf. Lemma 3.8), the space complexity of
the RMW object is O(N2).

On the other hand, any general wait-free RMW object
(i.e. there is no restriction on function f ) for N processes
can be used as a building block to construct a wait-
free (short-lived) consensus protocol for N processes with
space complexity O(1) (cf. the corresponding function f
for the consensus protocol in Algorithm 8). Therefore,
the space complexity of general wait-free RMW objects
using only the M ASSIGNMENT operation and read/write
registers is Ω(N2) due to Lemma 3.7. This means the
space complexity O(N2) of the new wait-free RMW object
(Algorithm 6) is optimal.

Algorithm 8 Function F(agreement) invoked by process
pi
Input: agreement must be initialized to ⊥ before the consensus proto-

col starts.
1: if agreement =⊥ then
2: agreement← pi’s proposal;
3: return pi’s proposal;
4: else
5: return agreement;
6: end if

5 (2M − 3)-RESILIENT READ-MODIFY-WRITE
OBJECTS FOR ARBITRARY N

In this section, we present a (2M − 3)-resilient RMW
object for an arbitrary number N of processes using
M ASSIGNMENT operations. Since the operation has con-
sensus number (2M −2), we cannot construct any objects
that tolerate more than (2M − 3) faulty processes using
only the M ASSIGNMENT operation and read/write reg-
isters [19].

Let D = (2M − 2) and, without loss of generality,
assume that N = DK, where K is an integer. The idea is to
construct a balanced tree with degree of D. Processes start
from the leaves at level K and climb up to the first level
of the tree, the level just below the root. When visiting a
node at level i, 2 ≤ i ≤ K, a process pi calls the wait-free
LONGLIVEDCONSENSUS procedure (cf. Section 3) for its
D sibling processes/nodes to find an agreement on which
process will be their representative that will climb up to
the next higher level.

The representative process of pi’s D siblings at level l
will invoke the wait-free LONGLIVEDCONSENSUS proce-
dure for its D siblings at level (l+ 1) and so on until the
representative reaches level 1 of the tree at which there
are exact D nodes. At this level, the D processes/nodes
invoke the wait-free RMW procedure for D processes (cf.
Section 4).

Fig. 4 illustrates the structure of the (2M − 3)-resilient
object. Each ellipse with label (2M−2) represents a group
of (2M − 2) processes/nodes and each edge with label
WF LLC represents the representative of a group, which
is chosen using the wait-free LONGLIVEDCONSENSUS
procedure. The ellipse with label WF RMW at level 1
represents the group of (2M − 2) representatives that
invoke the wait-free RMW procedure.

Processes that are not chosen to be the representative
stop climbing the tree and repeatedly check the final result
until their function is executed. After that they return with
the corresponding response.

Particularly, a process pi that wants to execute a func-
tion f on the resilient RMW object invokes the RESILIEN-
TRMW procedure with f as its parameter (cf. Algorithm
9). The process checks whether it successfully climbs up
to level 1 by calling the CANDIDATE procedure (line
3R and Algorithm 10) and if so, it invokes the wait-
free RMW procedure for (2M − 2) siblings at level 1
(line 4R). Otherwise, pi repeatedly reads the result to
check if its function has been executed as in the RMW
procedure (lines 8R, 9R and 13R). In order to reduce
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Fig. 4. The structure of (2M −3)-resilient RMW objects for
arbitrary N

Algorithm 9 RESILIENTRMW(f : function) invoked by
process pi
1R: togglei ← ¬FUN [i].toggle
2R: FUN [i]← {f, togglei}
3R: if CANDIDATE(i) = true then
4R: return RMW(f); // Wait-free read-modify-write object for 2M−

2 candidate processes
5R: else
6R: // Repeatedly check results with exponential backoff
7R: repeat
8R: coui ← M SCAN(COU); Let k be an index such that coui[k] =

max1≤j≤N coui[j];
9R: result← copy(WINNER[k]);
10R: if result.toggle[i] 6= togglei then
11R: Backoff before checking again;
12R: end if
13R: until result.toggle[i] = togglei
14R: return result.response[i];
15R: end if

the contention level on the shared variables COU and
WINNER, RESILIENTRMW delays for a while between
two consecutive reads using the backoff mechanism [28].

Similar to invoking the RMW procedure, when invok-
ing the CANDIDATE procedure, a process pi first scans all
N elements of COU to find the most recent round number
roundi, the round it will belong to (line 1C). Since a round
r finishes when r is recorded in a variable COU [j] by a
process pj executing the RMW procedure at level 1 (cf.
Definition 4.4), pi gets a round number r only if the round
(r− 1) has finished. The round number then is written to
bufi (or PROi[currBuf ]) (line 2C). These make the CAN-
DIDATE procedure satisfy the requirement for using the
LONGLIVEDCONSENSUS procedure (cf. Requirement 1).
At each intermediate level l on the path to the first level, pi
invokes LONGLIVEDCONSENSUS to achieve an agreement
among its (2M−2) siblings on their representative for the
next higher level (line 4C). Process pi will stop climbing
up as soon as it is not chosen as a representative (line 6C).

The RMW procedure used in the RESILIENTRMW pro-
cedure is the same as the RMW procedure in previous
section except that i) RMW doesn’t initialize FUN [i] since
FUN [i] is initialized at line 2R and ii) the FASTSCAN
function, which takes a snapshot of 2M registers us-
ing M READ and M ASSIGNMENT operations with time
complexity O(1), is replaced by M SCAN that takes a
snapshot of arbitrary N registers using M READ and
M ASSIGNMENT operations with time complexity of
O(( N

M )2) [27]. This leads to the following lemma:

Algorithm 10 CANDIDATE(i: index) invoked by process
pi
1C: coui ← M SCAN(COU); roundi ← max1≤j≤N coui[j] + 1;
2C: bufi.round← roundi; bufi.owner ← i;
3C: for l = K to 2 do
4C: winner ← LONGLIVEDCONSENSUSl(bufi); // Achieve an

agreement among pi’s D siblings at level l on who is their
representative. Return the ID of the winning process

5C: if winner =⊥ or winner 6= i then
6C: return false;
7C: end if
8C: end for
9C: return true;

Lemma 5.1: For the correct processes7 that execute
RMW (line 4R in Algorithm 9), the time complexity of
their RESILIENTRMW is O(N2) if M is a constant and is
O(N) if the ratio N

M is a constant.
Proof: The time complexity of RMW (for D pro-

cesses) using M SCAN with time complexity O(( N
M )2) is

O(( N
M )2 + D), where D = 2M − 2. Since CANDIDATE

uses M SCAN (line 1C) and invokes LONGLIVEDCON-
SENSUS (for D processes) with time complexity O(D) at
each of logDN levels (line 4C), the time complexity of
CANDIDATE is O(( N

M )2 + D logDN). Therefore, the time
complexity of RESILIENTRMW in this case is O(( N

M )2 +
D + D logDN). If M is a constant, the time complexity
becomes O(N2). If N

M = α, where α is a constant, the
time complexity becomes O(N).

Lemma 5.2: The ResilientRMW object is (2M − 3) re-
silient for an arbitrary number N of processes.

Proof: We will prove that correct processes always
return with a response to its function if at most (2M − 3)
processes, which are accessing the object, fail (cf. the t-
resilient model in Section 2).

Since at most (2M − 3) processes fail, at least one of
(2M − 2) processes at level 1 is correct and successfully
executes the RMW procedure, ensuring that the final re-
sult exists. Due to Property 4.1, the responses to processes
functions in the final result are kept unchanged until
the processes submit their new function. Therefore, the
response returned at line 4R or 14R is the response to pi’s
function. That means every correct process pi will even-
tually get its response and return via either repeatedly
checking the final result (line 14R) or executing the wait-
free RMW procedure at level 1 (line 4R).

6 CONCLUSIONS

In this paper, based on the intrinsic features of emerging
media/graphics processing unit (GPU) architectures we
have generalized the architectures to an abstract model
of an MIMD chip with multiple SIMD cores sharing
a memory. For this general model, which makes no
assumption on the existence of strong synchronization
primitives such as test-and-set and compare-and-swap, we
have developed a wait-free long-lived consensus (LLC)
object for N = (2M − 2) cores, where M is at most

7. Correct processes are processes that do not crash in the object
execution.
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the number of hardware threads on each core. The time
complexity of the new consensus algorithm is O(N),
which is better than the time complexity O(N2) of the
well-known short-lived consensus algorithm on the same
setting [6]. Using the long-lived consensus object, we have
developed a wait-free long-lived read-modify-write (RMW)
object for N = (2M−2) with time complexity O(N). Both
the LLC object and the RMW object have the optimal
space complexity O(N2). In the case N > (2M − 2), we
have developed a (2M − 3)-resilient RMW object for an
arbitrary number N of cores.

The results presented in this paper provide a starting
point to bridge the gap between the lack of strong syn-
chronization primitives in several GPUs and the need
for strong synchronization mechanisms in parallel ap-
plications. The results show that wait-free programming
is possible for GPUs without hardware synchronization
primitives such as test-and-set and compare-and-swap, ex-
tending the set of parallel applications that can utilize the
ubiquitous and powerful computational hardware.
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