
A Study of the Behavior of Synchronization Methods
in Commonly Used Languages and Systems

Daniel Cederman, Bapi Chatterjee, Nhan Nguyen, Yiannis Nikolakopoulos, Marina Papatriantafilou and Philippas Tsigas
Computer Science and Engineering

Chalmers University of Technology, Sweden
Email: {cederman, bapic, nhann, ioaniko, ptrianta, tsigas}@chalmers.se

Abstract—Synchronization is a central issue in concurrency
and plays an important role in the behavior and performance of
modern programmes. Programming languages and hardware
designers are trying to provide synchronization constructs and
primitives that can handle concurrency and synchronization
issues efficiently. Programmers have to find a way to select the
most appropriate constructs and primitives in order to gain the
desired behavior and performance under concurrency. Several
parameters and factors affect the choice, through complex
interactions among (i) the language and the language constructs
that it supports, (ii) the system architecture, (iii) possible
run-time environments, virtual machine options and memory
management support and (iv) applications.

We present a systematic study of synchronization strategies,
focusing on concurrent data structures. We have chosen con-
current data structures with different number of contention
spots. We consider both coarse-grain and fine-grain locking
strategies, as well as lock-free methods. We have investigated
synchronization-aware implementations in C++, C# (.NET
and Mono) and Java. Considering the machine architectures,
we have studied the behavior of the implementations on
both Intel’s Nehalem and AMD’s Bulldozer. The properties
that we study are throughput and fairness under different
workloads and multiprogramming execution environments. For
NUMA architectures fairness is becoming as important as the
typically considered throughput property. To the best of our
knowledge this is the first systematic and comprehensive study
of synchronization-aware implementations.

This paper takes steps towards capturing a number of
guiding principles and concerns for the selection of the
programming environment and synchronization methods in
connection to the application and the system characteristics.

I. INTRODUCTION

Synchronization has always been a core research problem
in parallel and concurrent programming. Synchronization is
required to assure the correctness of multi-threaded applica-
tions, but it can also become a bottleneck for performance. It
becomes even more crucial in the multi-core and many-core
era when multiprocessor computers are widely used.

Modern processors are provided with machine instruc-
tions for synchronization primitives such as test-and-set,
compare-and-swap and many more. Using them, several
synchronization methods have been proposed in the liter-
ature, ranging from traditional lock-based methods, such
as locks, semaphores and monitors, to non-blocking ap-
proaches, such as lock-free/wait-free synchronization and

software transactional memory [1], [2], [3], [4]. Building
on them, programming languages can now provide built-
in support for synchronization constructs as either an API
in the language (Java and C#) or as user-friendly libraries
(e.g. Intel TBB, NOBLE [5] or PEPPHER [6]). This means
that when selecting a language to write an application in,
a programmer has implicitly chosen the synchronization
constructs offered by the language API or language-specific
third-party libraries. In addition, selecting a programming
language to use also involves several other options, which
in turn have their own importance to the performance
of the concurrent applications. For example, C++ offers
basic memory management functionality, but also allows
the programmer to access low level memory. Java or C#,
on the other hand, offer automatic garbage collection, but
they limit direct access to the memory. Still, even after
selecting a language, the programmer has a wide range
of synchronization methods to choose from. We argue that
selecting the best synchronization constructs to achieve the
desired behavior is a non-trivial job, which requires thorough
consideration of different aspects. Besides languages and
their features, the selection is also governed by several other
parameters and factors, and the interplay among them, e.g.
the system architecture of the implementation platforms;
possible run-time environments, virtual machine options and
memory management support; and the characteristics of the
applications.

The implementation hardware platforms have their own
role to play in this context. Although the widely available
multi-core processors are mainly based on a cache-coherent
NUMA design, they differ in the way they have implemented
multi-threading to exploit instruction-level and thread-level
parallelism. These differences are not only in the size and
speed of the cache, but also in the number of threads that can
share resources simultaneously [7], the memory-controller
mechanism and the inter-processor connector designs that
are employed on and off the chip [8]. After selecting the
language, the subsequent selection of a virtual machine
and/or operating system, from a wide range of options,
increases the complexity of the problem even further.

There are several available synchronization methods to
select from. None of them is even close to be the silver



bullet which can solve all the synchronization issues that
the application developers have to address in all possible
hardware and software environments in the domain of con-
current programming. In the literature a number of efforts
have been made to evaluate such methods through micro
benchmarks [1], [9], [10] as well as macro benchmarks [11],
[12], [13]. These benchmarks try to rank synchronization
constructs by measuring their potential for high throughput
and also examine a subspace of the parameters that we ex-
amine in this paper. Evaluating synchronization mechanisms
exclusively for high throughput [14] could give misleading
results. For example, consider evaluating the throughput of
a simple concurrent data structure, with little or no inherent
potential for concurrency, using different synchronization
methods. Among the methods that give the best throughput,
methods that consistently favor the same set of threads to get
access to the data structure, while leaving others to starve,
have the potential to rank among the best. This underpins
the importance to measure fairness of the synchronization
methods for a particular application.

In this paper we evaluate different types of lock-based
(from fine-grained to coarse-grained), as well as lock-free,
synchronization methods with regard to their potential for
high throughput as well as fairness. We will focus the dis-
cussion on how these two measurements relate to each other.
The studied synchronization mechanisms are applied to two
different types of data structures, that have different potential
for concurrency. Considering the variation in contemporary
multi-core architectures, the experiments are performed on
two multiprocessor machines, one with two Intel (Nehalem)
processors and another with four AMD (Bulldozer) proces-
sors. Further, to explore the variation due to the choice of
language and runtime, as well as memory management, we
have implemented the algorithms in C++, Java and C#. To
the best of our knowledge this is the first head-to-head,
systematic evaluation that considers the interactions among
(i) the programming language and the language constructs
that it supports, (ii) the system architecture where the appli-
cation is running on, (iii) possible run-time environments,
virtual machine options and memory management support,
and (iv) characteristics of the applications.

Our experiments put forward an interesting observation
that the change in the multi-threading model at the level
of architecture brings a big difference in the behavior of
synchronization primitives, even though the processors have
comparable speed and inter-processor connection design.
Furthermore, our experiments show that high performing
synchronization methods may have very poor fairness, and
a wise selection is very important to make a good trade-
off between the two. We also show that the choice of
memory management, runtime and operating system may
significantly change the performance and behavior of a
concurrent application. This paper takes a step towards
improving methodologies for choosing the programming

environment and synchronization methods in connection to
the application and the system characteristics.

The structure of the paper is the following. In Section II
we go through the different synchronization mechanisms that
we have examined. In Section III we discuss the concepts of
fairness and throughput and how they relate to each other.
Here, we also give a new quantitative measure of fairness for
synchronization-aware implementations and give arguments
as to why the measurement we have selected is useful in this
context. In Section IV we present the algorithmic designs of
the data structures that were used in the experiments. Further
in Section V, we present the design and the setup of the
experiments, as well as the detailed architectures that we
have chosen for implementation. Analysis of the results is
presented in Section VI. Section VII concludes the paper.

II. SYNCHRONIZATION METHODS

There exists a multitude of common methods for syn-
chronization. These can be divided into different categories
depending on what kind of progress guarantees they provide.
If no progress guarantee can be provided, which is the most
common case and holds true for most locks, the synchro-
nization construct is said to be blocking. If a synchronization
construct can guarantee that at least one thread, out of the
contending set, can finish its operation in a finite number
of its own steps, the construct is said to be lock-free. What
lock-free synchronization means in practice is that a thread
does not need to wait for another thread to finish.

Of this great variety of synchronization methods, some
are quite popular and well established in the literature.
Many of them are available through the API specification
of some of the tested languages (Java, C#). Others can be
easily implemented by a programmer in many languages,
while some more complex ones are usually implemented in
standard or third party libraries. To allow for comparison, the
following synchronization methods have been implemented
in a similar manner for all the programming platforms that
we have examined:

• Test-And-Set-based lock (TAS) – Mutual exclusion is
achieved by repeatedly trying to set a flag using an
atomic exchange primitive. The thread that manages to
set the flag is given access to the critical section.

• Test-Test-And-Set-based lock (TTAS) – To lower the
number of expensive atomic operations, the value of
the flag is read before attempting to change it. If it is
already set, no atomic operation is needed.

• Array lock – The lock consists of an array of flags and
an index to the first flag. Initially only the first flag
is set. A thread trying to acquire the lock atomically
increments the index and spins on the flag in the array
that the old index was pointing to. When the flag is set,
the thread can enter the critical section. Upon exiting,
it sets its own flag to false and raises the flag for the
thread waiting at the next index [15], [16].



• Lock-free – The lock-free implementations used depend
on the specific data structures and for the cases of our
study they are described in Section IV.

Moreover, in today’s great need of concurrency, every
programming environment provides their own toolset of
internal libraries or implicit language constructs. They are
usually well integrated and easy to use, while they can also
be optimized by the underlying virtual machine or just-in-
time compiler. Below them the host operating system can
also provide valuable tools for synchronization. In detail,
the following are the common platform specific methods
for synchronization that we also consider in our study:

• Reentrant lock – The Reentrant lock, provided by
Java’s concurrent.locks package, comes in two
variations; a simple and a fair one. The Reentrant lock
is based on an internal waiting queue which is a variant
of the CLH lock [17], [18]. Specifically, the nodes of
the queue are used to block the competing threads,
while every node that releases the lock that it owned
signals its successor. However, an important design
difference is that being the first node in the queue does
not guarantee the lock acquisition, but only the right to
contend for the lock itself. A thread that tries to acquire
the lock first contends for it using a compare and swap
(CAS) operation. If it fails, it gets enqueued. This first
step is not performed when the fair version of the
Reentrant lock is used. An interesting observation here
is that this internal queue acts as a backoff mechanism
for the lock’s contention.

• Synchronized/Lock – In Java and C# every object is
associated with an intrinsic monitor. The use of a
synchronized or lock statement respectively, with
a specified object as an argument before a block of
code, assures that the execution of that critical section
will not take place unless the object’s monitor is locked.
The actual monitor implementation is platform and
virtual machine dependent [19].

• Mutex in C# – Compared to the lock keyword,
the Mutex construct in C# is a heavyweight imple-
mentation with a high overhead, as it is designed to
work across multiple processes. Mutex can be used to
synchronize threads across processes and requires inter-
process communications.

• Pthread Mutex (PMutex) in C++ – The Pthread mutex
construct is available in the Linux kernel from version
2.6.x and above. It is implemented using Fast Userlevel
Locking (Futex), created by Franke H. et al. [20].
A futex consists of a shared variable in user space
indicating the status of the lock and an associated
waiting queue in kernel space. In the uncontended case,
acquiring or releasing a futex involves only atomic
operations on its lock status word in user space. In the
contended case, a system call into the kernel is required

to add the calling thread to the waiting queue or to wake
up any waiting processes.

III. BEHAVIOR: THROUGHPUT AND FAIRNESS

One of the most desired properties of a synchronization
method is having high throughput. The more successful
operations that can be achieved in a unit of time, the more
efficient the method is. Throughput is one of the two main
properties that we consider in our study.

As NUMA architectures are becoming the standard in in-
dustry, and different ways of Simultaneous Multi-Threading
are being presented, fairness of synchronization constructs
is becoming important. Possible differences in the access
latencies of competing threads for a memory location may
even lead some of them to starvation. In preliminary ex-
periments we observed that between different architectures,
under identical conditions, different levels of fairness were
provided to threads that were competing for atomically
swapping a memory location.

A relevant definition of fairness was introduced into this
context by Ha et al. [21] comparing the minimum number
of operations a thread had with the average number of
operations of all threads. This helps distinguishing cases of
starving or less served threads. For identifying the opposite
cases we can compare the average number of operations with
the maximum ones among the threads. Since our goal is to
detect any unfair behavior, we use as a fairness measure the
minimum of the above values, formally:

fairness∆t = min

{
N ·min(ni∆t)∑

i ni∆t

,

∑
i ni∆t

N ·max(ni∆t
)

}
where ni∆t is the number of successfully performed op-
erations by the thread i, in the time interval ∆t. Fairness
index values close to 1 indicate fair behavior, while lower
values imply the existence of a set of threads being treated
differently from the rest. The fairness index achieves value
1 when all the threads perform equal number of operations,
i.e. perfect fairness. The fairness index is 0 when at least
one thread completely starves. For a critical analysis of
quantitative measures of fairness, one may refer to the paper
by Jain et al. [22].

IV. CASE STUDIES

A. Data Structures

We study the synchronization behavior of two types of
data structures: FIFO queues and hash tables. They are
both widely used and represent data structures with different
number of contention points. The queues we are using in our
case study are the lock-based and the lock-free linked list
based queues introduced by Michael and Scott [23]. The
lock-based queue uses locks to grant the enqueuer/dequeuer
mutually exclusive access to either the head or the tail
of the queue. Two locking strategies are applied to the
lock-based queue: coarse-grain and fine-grain locking. The



coarse-grained lock-based queue uses only one lock for both
the head and the tail, while the fine-grained one uses two
different locks, one for each of them. Hereafter, we refer
to them as coarse-grained queue and fine-grained queue,
respectively. The lock-free queue uses the CAS synchro-
nization primitive to atomically modify the head or the tail
without any locking mechanism.

The second case study is on the hash table data structure.
The hash table we used is implemented as an array of
buckets, each one pointing to a linked list that contains the
key-value pairs which are hashed to the same bucket. The
hash tables provide search, insert and remove operations.
Insertion, removal or search for a key operate only on the
linked list associated with the bucket to which the key is
hashed to. This is where the synchronization is required.
Both a lock-based and a lock-free hash table are imple-
mented. The lock-based version has one lock for each bucket
which, once locked, provide mutually exclusive access to
the associated linked list. The lock-free version uses the
implementation introduced by Maged Michael [24]. In this
implementation, insertion of an item, i.e a node between
two nodes in a linked list, is done with the help of a CAS
to atomically swap the next pointer of the previous node to
the new node. A thread which wants to remove a node first
marks the last bit of the pointer to that node, so that other
concurrent operations know its intention. Then the node is
removed by using CAS, to make the previous node point
to the next node. The design is proved to be correct and
lock-free [24]. The reader can refer to that paper for more
technical details.

B. Programming Environments

In our study of the behavior of synchronization methods,
we have examined three different programming environ-
ments, C++, Java and C#.

1) C++ with POSIX threads: C++, prior to the C++11
standard, does not contain built-in support for multi-threaded
applications. Instead it relies on libraries and the operating
system to provide such functionality. On Unix-like operating
systems, POSIX threads, a.k.a Pthreads, is widely used to
provide multithreaded programming support. The Pthreads
library provides mutex constructs as means of implementing
thread synchronization. In the C++ environment, it is pos-
sible for a programmer to pin a thread to a specific core,
This prevents the scheduler from moving the thread from
one core to another, thus avoiding unnecessary overhead.
As we observed that pinning threads to cores benefited the
throughput of the concurrent data structures, we applied it
to all experiments in C++. We pin the threads to fill up one
processor before assigning threads to the next one.

C++ provides very basic memory management function-
ality. Memory allocation/deallocation are done with the help
of new and delete. In concurrent programming, espe-
cially lock-free programming, allocating and de-allocating

memory is performed by multiple concurrent threads, which
might need to be synchronized very often at runtime. Many
implementations of lock-free data structures try to avoid that
by using their own lock-free memory manager on top of
C++ new/delete. In our context, we want to examine if
user level memory management plays a significant role as a
synchronization component.

Lock-free Memory Manager: We have implemented a
lock-free memory manager (MM) for allocating and de-
allocating memory for lock-free implementations in C++.
The scheme contains two parts: one main memory allocator
shared by all threads and per-thread allocators. The main al-
locator contains a number of blocks of pre-allocated memory
that it gets from the system memory. It provides blocks of
memory to the per-thread allocators. Every thread has one
per-thread allocator. Whenever a thread wants to allocate
memory for the data structure, it gets one from the per-
thread allocator. When this allocator runs out of memory, it
can request new blocks of memory from the main allocator.
When a block of memory is no longer used by the data
structure, it will be returned to the memory block where it
is allocated from, to be reused later.

This memory manager can provide fast allocation for
each thread since allocating new memory usually only
involves operation on its local block, which does not require
synchronization. Synchronization is only needed when the
thread uses up the block assigned to it and needs to allocate
a new block from the main allocator.

2) Java: Java offers an extensive API for concurrent
programming via its concurrent package. In addition to
several standard data structures, it also includes most of the
low level synchronization primitives needed, such as TAS,
CAS or Fetch-And-Add. However, whether these methods
actually implement the respective machine instructions or
include some implicit locks, depends entirely on the imple-
mentation of Java’s Virtual Machine for each architecture
and operating system [19]. Also, a well specified memory
model accompanies the implicit synchronization constructs
of the language. Memory management has been left to Java’s
implicit garbage collector.

3) C#: The native runtime environment for C# is the
.NET framework provided by Microsoft which runs exclu-
sively on Windows. To be able to perform our experiments
in the same Linux environment used for the other languages,
we have also used Mono. This is an open source runtime
for the .NET framework which allows programs written
in C# to be executed both on Windows and on Linux.
The System.Threading namespace provides classes –
Mutex, Monitor and Interlocked – for synchronizing thread
activities. Mutex and Monitor classes represent locking
synchronization whereas the Interlocked class comes with
atomic primitives which can be used to create various non-
blocking synchronization methods.



Languages C++ C# Java
Memory management malloc, customized implicit memory management
Synchronization constructs
and language features

PMutex, Lock-free MM Mutex, lock Reentrant, Synchronized
TAS, TTAS, Lock-free, Array lock

Contention Low, High
Number of Threads 2, 4, 6, 8, 12, 24, 48
Measurement intervals (sec) 0.2, 0.4, 0.6, 0.8, 1, 2, 3, 4, 5, 10

Table I: Experimental Setup

V. EXPERIMENTAL SETUP

Our purpose is to evaluate the throughput and fairness
values of the test cases in all the languages and for different
contention levels. For every data structure – as discussed in
Section IV – we ran a set of experiments consisting each
time of a different number of threads, that were concurrently
competing to access the data structure. Every such experi-
ment ran for a fixed amount of time and multiple different
time intervals were used. All the different parameters of
our experiments along with their values can be seen in
Table I. Every experiment was replicated 10 times resulting
in a sample satisfying normality with α = 0.05 level of
significance (Shapiro-Wilk test). The means of these values
are presented in our results. Furthermore, limited according
to time and resources, samples from cases where the means
were different but close were compared with ANOVA tests
in order to confirm their difference, with the same level of
significance.

In the queue case the operations were an enqueue or a
dequeue with equal probability. Each thread was assigned
the same probability distribution in all the experiment sets,
across the different parameters respectively. In order to
calculate the throughput value we used the 10 seconds
long tests. There we counted the total number of successful
operations for all the threads and divided by the exact
duration on each experiment. The shorter time intervals
were used for calculating the fairness index according to
our definition in Section III. The reason for this variety of
shorter intervals, is that fairness results can be deceiving
the longer an execution runs. In order to vary the contention
level in the queue experiments, dummy work was introduced
in every thread between the operations on the data structure.

The operations on the hash table were insert and delete
with 10% probability each and search with 80% probability.
Again the same probability distributions were assigned per
thread in all the experiments. The fairness index this time
was furthermore calculated per operation basis. The con-
tention level was varied by changing the number of buckets,
8 for the high contention and 32 for the low.

For the implementations in Java, the IcedTea6 version
1.11.3 of the OpenJDK6 Runtime Environment was used.
We ran the C# implementations using version 2.10.5 of
Mono. For the C++ case GCC 4.4.1 was used. The host
operating system for all of the above was based in version
3.0.0 of the Linux kernel. The C# implementation was also

tested in the .NET Framework version 4.0 on Windows 7.
We performed our experiments on an Intel based work-

station with 2 sockets of 6-core Xeon E5645 (Nehalem)
processors with Hyper Threading (24 logical cores in total).
In order to investigate how a different hardware architecture
can influence the fairness values of our case studies we
also performed the experiments on a second contemporary
workstation. That consists of 4 sockets with AMD Opteron
6238 (Bulldozer) 12-core processors (48 logical cores in to-
tal). The processors had comparable CPU clock speeds (2.4
and 2.6 GHz respectively) and both the machines had DDR3
at 1366 MHz main memory. The Intel machine is provided
with Quick-Path Interconnect for connectivity between chips
and I/O subsystem, whereas, the AMD machine had Hyper-
Transport for the same [25]. However, the implementation of
Simultaneous Multi-Threading [26] on the two architectures
differ. In an Intel (Nehalem) processor two threads can share
the resources on each physical core [27], making it appear
as two logical cores to the operating system. The AMD
(Bulldozer) processor follows a modular architecture [28].
Here inside each module, two threads share resources other
than their individual integer cores.

VI. ANALYSIS

In order to present, comprehend and describe the observa-
tions of the wide extent of experiments that were performed,
a summary of the main observations regarding each of the
test cases are available in Table II and III. There, they
are divided in common observations that stand for all the
programming environments tested and then per language
basis. In every type of measurement the observations are
also grouped according to the most influential parameters
(contention regarding throughput, architecture regarding fair-
ness). A third column in every case exists for observations
regarding the relation between throughput and fairness.

The discussion in the following subsections also follows
a similar structure, namely key comments on common
behavior for all the environments appear before comments
regarding specific environments.

A. Queue: General Discussion

The fine-grained queues achieve in most of the cases
higher throughput than their coarse-grained counterparts.
This is expected, as doubling the locks allows up to two
threads to operate in parallel, one enqueueing and one



0

2

4

6

8

10

12

14

2 4 6 8 12 24 48

Su
ce

ss
fu

l o
p

e
ra

ti
o

n
s 

p
e

r 
m

s 
(t

h
o

u
sa

n
d

s)
 

Threads 

C++ 

TAS TTAS Lock-free

Array lock PMutex Lock-free, MM

0

2

4

6

8

10

12

14

16

2 4 6 8 12 24 48

Threads 

Java 

TAS TTAS Lock-free

Array lock Synchronized Reentrant

0

2

4

6

8

10

12

14

16

18

20

2 4 6 8 12 24 48

Threads 

C# (.NET) 

TAS TTAS Lock-free

Array lock Lock keyword Mutex

0

1

2

3

4

5

6

7

8

9

2 4 6 8 12 24 48

Threads 

C# (Mono) 

TAS TTAS Lock-free

Array lock Lock keyword Mutex

Figure 1: Throughput of the lock-free and fine-grained queues on the Intel system under high contention

0

0.2

0.4

0.6

0.8

1

2 4 6 8 12 24 48

Fa
ir

n
e

ss
 

Threads 

C++ 

TAS TTAS Lock-free

Array lock PMutex Lock-free, MM

0

0.2

0.4

0.6

0.8

1

2 4 6 8 12 24 48

Threads 

Java 

TAS TTAS Lock-free
Array lock Synchronized Reentrant
ReentrantFair

0

0.2

0.4

0.6

0.8

1

2 4 6 8 12 24 48

Threads 

C# (.NET) 

TAS TTAS Lock-free

Array lock Lock keyword Mutex

0

0.2

0.4

0.6

0.8

1

2 4 6 8 12 24 48

Threads 

C# (Mono) 

TAS TTAS Lock-free

Array lock Lock keyword Mutex

Figure 2: Fairness of the lock-free and fine-grained queues on the Intel system (600 ms time interval)

0

0.2

0.4

0.6

0.8

1

400 600 800 1000 2000 3000 4000 5000 10000

Fa
ir

n
e

ss
 

Measurement interval (ms) 

C++ 

Intel - TAS AMD - TAS
Intel - TTAS AMD - TTAS
Intel - Lock-free AMD - Lock-free
Intel - Lock-free, MM AMD - Lock-free, MM

0

0.2

0.4

0.6

0.8

1

400 600 800 1000 2000 3000 4000 5000 10000

Measurement interval (ms) 

Java 

Intel - TAS AMD - TAS
Intel - TTAS AMD - TTAS
Intel - Synchronized AMD - Synchronized
Intel - Lock-free AMD - Lock-free

0

0.2

0.4

0.6

0.8

1

400 600 800 1000 2000 3000 4000 5000 10000

Measurement interval (ms) 

C# (.NET) 

Intel - Lock-free AMD - Lock-free

Intel - TAS AMD - TAS

Intel - Lock keyword AMD - Lock keyword

0

0.2

0.4

0.6

0.8

1

400 600 800 1000 2000 3000 4000 5000 10000

Measurement interval (ms) 

C# (Mono) 

Intel - Lock-free AMD - Lock-free

Intel - TAS AMD - TAS

Intel - Mutex AMD - Mutex

Figure 3: Fine-grained and lock-free queues which show major differences in fairness across platforms at 24 threads

dequeueing. The trends among the different lock types in
the coarse-grained queues are similar comparing to the re-
spective in the fine-grained ones. Therefore, unless explicitly
mentioned, from now on all references to lock based queues
will be based on the ones of the fine-grained kind.

The throughput results of lock-free and fine-grained
queues of the case are presented in Figure 1. The construc-
tions based on the array lock consistently achieve the worst
throughput value in the case of 48 threads in all the studied
programming environments. Since this is more than the
number of the system’s hardware threads, i.e. the hardware
limit, any thread waiting in the array might be swapped out
by the scheduler. This forces the remaining threads in the
array to wait, until the former is swapped back in. Of course
this also affects the fairness index of the method besides the
throughput value. Due to the above, the results are in fact

so low that we consider this solution inapplicable for this
number of threads.

At first, for low numbers of threads and/or low contention,
all methods show a high index of fairness. An interesting ob-
servation that occurs as the number of threads increases, and
particularly in the high contention setting, is the sensitivity
of the fairness values along the different time intervals. It is
quite reasonable that during a small time interval even the
slightest scheduling unfairness would affect the measured
value. This is even more visible the more the threads are,
since the one with the maximum or minimum number of
operations affects less the average fairness.

The fairness experiments are also studied for the AMD
system, to gain better understanding of the influence of the
hardware architecture. The methods where major differences
were observed are presented in Figure 3. We should also



0

5

10

15

20

25

30

2 4 6 8 12 24 48

Su
ce

ss
fu

l o
p

e
ra

ti
o

n
s 

p
e

r 
m

s 
(t

h
o

u
sa

n
d

s)
 

Threads 

C++ 

TAS TTAS Lock-free

Array Lock PMutex Lock-free, MM

0

1

2

3

4

5

6

2 4 6 8 12 24 48

Threads 

Java 

TAS TTAS Lock-free

Array Lock Reentrant Reentrant Fair

0

2

4

6

8

10

12

14

16

18

2 4 6 8 12 24 48

Threads 

C# (.NET) 

TAS TTAS Lock-free

Array Lock Lock keyword Mutex

0

1

2

3

4

5

6

2 4 6 8 12 24 48

Threads 

C# (Mono) 

TAS TTAS Lock-free

Array Lock Lock keyword Mutex

Figure 4: Throughput of all hash tables on the Intel system under high contention

0

0.2

0.4

0.6

0.8

1

2 4 6 8 12 24 48

Fa
ir

n
e

ss
 

Threads 

C++ 

TAS TTAS Lock-free

Array lock PMutex Lock-free, MM

0

0.2

0.4

0.6

0.8

1

2 4 6 8 12 24 48

Threads 

Java 

TAS TTAS Lock-free
Array lock Synchronized Reentrant
ReentrantFair

0

0.2

0.4

0.6

0.8

1

2 4 6 8 12 24 48

Threads 

C# (.NET) 

TAS TTAS Lock-free

Array lock Lock keyword Mutex

0

0.2

0.4

0.6

0.8

1

2 4 6 8 12 24 48

Threads 

C# (Mono) 

TAS TTAS Lock-free

Array lock Lock keyword Mutex

Figure 5: Fairness of all hash tables on the Intel system (600 ms time interval)

0

0.2

0.4

0.6

0.8

1

400 600 800 1000 2000 3000 4000 5000 10000

Fa
ir

n
e

ss
 

Measurement interval (ms) 

C++ 

Intel - TAS AMD - TAS
Intel - TTAS AMD - TTAS
Intel - Lock-free AMD - Lock-free
Intel - Lock-free, MM AMD - Lock-free, MM

0

0.2

0.4

0.6

0.8

1

400 600 800 1000 2000 3000 4000 5000 10000

Measurement interval (ms) 

Java 

Intel - TAS AMD - TAS
Intel - TTAS AMD - TTAS
Intel - Synchronized AMD - Synchronized
Intel - Lock-free AMD - Lock-free

0

0.2

0.4

0.6

0.8

1

400 600 800 1000 2000 3000 4000 5000 10000

Measurement interval (ms) 

C# (.NET) 

Intel - TAS AMD - TAS Intel - TTAS

AMD - TTAS Intel - Mutex AMD - Mutex

0

0.2

0.4

0.6

0.8

1

400 600 800 1000 2000 3000 4000 5000 10000

Measurement interval (ms) 

C# (Mono) 

Intel - TAS AMD - TAS

Intel - TTAS AMD - TTAS

Intel - Lock-free AMD - Lock-free

Figure 6: Hash tables which have major differences in fairness across platforms at 24 threads

point out that while the 48 threads exceed the hardware limit
on the Intel system, this is not the case on the AMD system,
which can support up to 48 hardware threads.

B. Queue: Environment Specific Discussion

As mentioned in Section IV-B1, in C++ the option to pin
specific threads to specific processors is used. That explains
the drop of throughput values showed in Table II. When
the number of competing threads is up to 12, our pinning
strategy schedules them in one processor in a socket. When
the number exceeds 12, the next 12 threads, i.e. threads
number 12 to 24, are scheduled on a second processor which
do not share the same L3 cache with the first one. This
increases the possibility of cache conflicts among threads,
which results in the throughput drop at 24 threads.

Continuing in the C++ case, the TAS based and TTAS
based queues are among the queues which achieve the high-

est throughput in the cases of up to 4 competing threads. This
advantage comes from the fact that the lock is constructed
from just one atomic operation. However, as the number of
threads increases, the two end points of the queue become
hot spots. The cost of dealing with high contention, such
as cache conflicts, becomes higher, making such simplicity
less important to the throughput results. As a result, the
difference in throughput between the TAS and TTAS based
queues, and the remaining queues, except for the PMutex
one, is relatively small when the number of threads is above
4 up to the hardware limit.

The trend of the PMutex based queue’s throughput when
increasing the number of threads differs from the other
implementations. It is lower than the other queues for
thread counts between 4 and 12, but keeps almost the
same throughput value in the case of 24 and 48 threads.



Throughput Fairness Throughput versus Fairness
All - Fine-grained queues perform better than the

coarse-grained ones in most of the cases.
- The array lock based constructions consis-
tently achieve the worst throughput values in
the multiprogramming case of 48 threads.

- Fairness deteriorates as the number of
threads increases.
- The fine-grained queues are almost always
fairer than their coarse-grained counterparts.
- When the threads are more than the hard-
ware limit, the results of the array lock are
so low that the solution can be considered as
inapplicable.
- In lower contention scenarios everything
is fair until the contention is practically in-
creased by the number of competing threads.
The trends there are similar to the high con-
tention cases, but with better absolute values.

- A trade-off must be made between through-
put and fairness in most of the synchroniza-
tion methods.
- The lock-free queues in general provide a
fair balance between throughput and fairness.

C++ High Contention
- Steep drop of throughput values when the
number of competing threads increases from
12 to 24.
- TAS and TTAS based queues are among the
queues which achieve the highest throughput
in the cases of up to 4 competing threads.
TTAS performs better as the number of
threads increases.
- Pmutex performs lower than the other
queues between 4 and 12 threads, but scales
better from 24 to 48 threads where it achieves
the higest throughput value.
Low Contention
- The lock-free queue with lock-free memory
management outperforms the others.

Intel
- Below the hardware limit, most of the imple-
mentations achieve very high fairness values.
- Lock-free and PMutex based queues main-
tain high fairness values at and above the
hardware limit.
- For most methods the fairness values at 8
threads are lower than those at 6 or 12.
AMD
- Fairness values deteriorate sooner than the
Intel case (12 vs 24 threads). In general, the
structures and locks on the AMD machine are
less fair than on the Intel machine.
- The array lock based queue is the most
fair, with the PMutex based queue usually
performing fairer than the remaining methods.

- Up to 24 threads, the TTAS lock has its
throughput among the highest and its fairness
among the lowest. TAS based and PMutex
have the exact opposite behavior.
- The inverse relation does not cover all
the methods. The array lock achieves high
throughput and fairness up to 24 threads and
the PMutex lock gives the highest throughput
and fairness at 24 and 48 threads.
- The lock-free queues achieve throughput
among the highest while maintaining a good,
though not top, fairness. Thus they manage
to provide a balance between throughput and
fairness.

C# - Throughput is consistently higher with the
.NET framework compared to Mono.
- The Mutex lock constructs has distinctively
lower throughput than the other synchroniza-
tion methods.
High Contention
- The TTAS locks has significantly higher
throughput.
Low Contention
- The lock-free implementation performs bet-
ter than all other methods.
- the TTAS locks display lower throughput
than the language provided lock keyword.

- The language provided lock constructs have
a very high fairness measure overall.
- For a low number of threads, all methods
show a high degree of fairness.
Intel
- In the 48 thread case the fairness drops
drastically.
AMD
- The variation of fairness values along dif-
ferent numbers of threads is higher.
- For more than 8 threads, the fairness drops
by 50% for the TAS and TTAS locks. The
lock-free version shows a similar trend.
- For more than 12 threads, the fairness of the
TAS lock drops close to zero.

- The TTAS locks provide high throughput,
but low fairness.
- Array locks and the language-provided lock
constructs are very fair, but with low through-
put.
- The lock-free implementation provides a
trade-off between throughput and fairness.

Java High Contention
- The constructions based on the simple Reen-
trant locks outperform all the rest in most of
the cases.
- The Synchronized based locks followed by
the lock-free implementation have a scalable
behavior and a relatively good throughput.
Low Contention
- The lock-free and the fine-grained queues
based on TAS, TTAS and Synchronized
blocks present the highest throughput.
- The fair version of the Reentrant lock is the
slowest except for the array lock that severely
drops in 48 threads.

Intel
- The absolute winners in most cases are the
fair Reentrant lock and the array lock.
- Also the TAS based queues follow closely,
especially in the case of 24 threads, while in
48 the differences are widened.
- The lock-free queue is the next to come with
a similar behavior except for the 48 thread
cases where it is slightly better than the TAS
based queues.
AMD
- Worse fairness values for lower thread cases.
- The Synchronized block, TAS and TTAS
based locks are always worse than the Intel
case (see also Figure 3).
- For up to 12 threads the lock-free queue
is fairer. After that it achieves lower values
but it is still the third in order after the fair
Reentrant and the array lock constructs.

- If fairness is a critical objective, then locking
methods which inherently have a queue wait-
ing structure (fair Reentrant or array lock), are
definitely the choice, sacrificing throughput
though.
- The unfair Reentrant lock and the syn-
chronized block give absolute throughput but
fairness is not guaranteed at all. On the same
side of the balance is TTAS.
- The lock-free queue manages to balance this
tradeoff with relatively good results in both
sides.

Table II: A summary of the main observations regarding the queue case study



The internal design of PMutex based is different from the
other locking methods. In contended cases, a thread goes
to sleep if it fails to acquire the lock. We can observe that
this mechanism, which is a form of backoff, penalizes the
throughput in the cases of lower number of threads, i.e.
below the hardware limit. However it helps the PMutex
based queue deal with extreme contention cases, i.e. 24 and
48 threads, better than other implementations. The results
show that both throughput and fairness benefit by this.

The thread pinning in specific processors also affects
fairness. We observe that the fairness values at 8 threads
are lower than those at 6 or 12 for most implementations.
The reason is that in the case of 6 or 12 threads, all cores
are scheduled to run either one or two threads, respectively.
While in the case of 8 threads, some cores run one and some
run two threads, which causes more fairness differences
among the threads.

In Java, the throughput of the Reentrant lock and its
difference from the rest is the most noticeable. This happens
due to the Reentrant lock’s inherent backoff mechanism –
described in Section II – similar of which are not inherent
in the other locks (e.g. exponential backoff). However, the
overhead of the Reentrant lock’s mechanism does not pay
off in lower contention conditions as both versions of the
lock are the lowest, with the fair one being by far the worst.

The C# implementations were tested in both Mono and
the .NET Framework. The throughput results were consis-
tently in favour of the latter. Furthermore, the low throughput
of the Mutex based constructions is justified by its design,
which is heavyweight due to the requirement that it should
also provide interprocess synchronization. However this low
throughput for Mutex, as well as for the lock construct,
come in benefit of fairness.

C. Hash table: General Discussion

The throughput of all hash table implementations in
different programming languages is presented in Figure 4. A
summary of the main observations for throughput, fairness
and their relation can be found in Table III.

The hash table is a data structure with many points where
operations can be performed independently – the different
buckets. Thus it allows more threads to be served concur-
rently and, since the keys that were used were uniformly
distributed, it also allows for fairer executions. In fact we
observe interesting variations of the fairness values between
the different synchronization mechanisms in the cases where
the number of competing threads is bigger than the number
of the available buckets. Still though, concerningly low
fairness values occur when the number of threads exceeds
the hardware limit.

Due to the different nature of the hash table’s methods, we
first checked the values of the fairness index per operation,
i.e. Insert, Remove, Search and also for the total number
of operations regardless their kind. Since the patterns are

similar, unless explicitly mentioned, the observations stand
for any kind of operation.

As it can be seen in Table III, different synchronization
mechanisms than in the queue case have to pay the tradeoff
between throughput and fairness.

In fact the pattern that can be observed is that all the
synchronization methods that achieved high throughput in
the low contention cases of the queue are the ones that
manage the best throughput performance in the hash table.
This is because the hash table consists of multiple linked
lists where the hashed values are stored, i.e. the same basic
component as the queue. And since the contention and
the requested operations of the competing threads is now
uniformly distributed along the different linked lists, the
contention is lowered in each of them. Therefore the best
performing solutions locally form the final result for the hash
table. Similarly we can see the local fairness behaviour of
the queues magnified in the total fairness index of the hash
table.

D. Hash table: Environment Specific Discussion

Again in the case of C++ we can see the advantages
and disadvantages of specific thread pinning to cores. While
generally when the number of competing threads is less than
the hardware limit, i.e. 24 threads, all the hash tables behave
very fair, this observation can not be applied for the case of 8
threads. The reason is that scheduling 8 threads into 6 cores
with hyperthreading causes unfairness when some cores run
only one thread and the other running two. In the case of 6
or 12 threads, they are scheduled evenly to cores.

We also observe that, as the TAS- and TTAS based hash
tables achieve very low throughput, even a small unfairness
in the scheduling of threads can cause a negative effect on
their fairness measures, especially at short time intervals. It
is interesting though that the values can recover in longer
time intervals.

The tradeoff between throughput and fairness appears
when the number of threads is over a threshold, at which
point we start to get contention at the sharing points in
the data structure, i.e. the behaviour associated with the
queue. These thresholds are usually at 8 and 24 threads
in high and low contention scenarios, respectively. This
result agrees with the fact that the hash tables have 8 or
32 buckets in each respective scenario. When the number
of threads goes beyond the threshold, we see that some
implementations, which achieve high throughput, might have
to sacrifice the fairness. TAS- and TTAS based (and array
lock based, to some extent) hash table represent this trend
with high fairness, but low throughput. Lock-free hash tables
also show a clear trend, but with high throughput and lower
fairness results. Between the lock-free implementations with
and without lock-free memory management, the former
achieves higher throughput, but also gets lower fairness
result than the latter, and vice versa. PMutex, the language



Throughput Fairness Throughput versus Fairness
All - The lock-free implementations perform bet-

ter than most of the lock based implemen-
tations, on average, and show scalability as
well.

- The fairness indices are generally quite high.
The differences become more visible when
the number of threads is greater than or equal
to the number of buckets.

- Different synchronization methods excel in
throughput or fairness than in the queue case.

C++ High Contention
- TTAS, TAS and array lock based hash
tables have similar throughput values with the
first one usually performing slightly better.
However they do not scale beyond 12 threads
where their values drop significantly.
- The PMutex based hash table achieves
higher throughput than the previous group
beyond 12 threads, but not before.
- The lock-free implementations scale all the
way up to 48 threads, achieving the highest
throughput values in 8 or more threads. The
one with the lock-free memory manager per-
formers better than the simple one in most of
the cases.
Low Contention
- All the implementations show higher values
and better scalability than in the high con-
tention case.

Intel
- Below the hardware limit (24 threads) all
the cases behave fair except for the 8 threads
case.
- At and above the hardware limit the val-
ues of lock-free implementations drop lower,
though still about 0.75.
- TAS and TTAS lock are very unfair in the
48 threads case. However they recover and
achieve high values for longer time inter-
vals. The PMutex construction maintains high
values consistently throughout all the time
intervals.
AMD
- TAS and TTAS locks are heavily influenced
by the change of the architecture.

- When the number of threads is larger than
the number of buckets, the lock free im-
plementations achieve high throughput but
moderate or low fairness.
- TAS, TTAS and to some extent array lock
based hash tables show the opposite trend
with high fairness and lower throughput val-
ues.
- The throughput of the PMutex based hash
table is usually the lowest and its fairness,
though decent, is not among the top. Never-
theless, it keeps steady performance at higher
numbers of threads in terms of both through-
put and fairness.

C# - The .NET implementations on Windows
perform significantly better (2x - 2.5x) than
the Mono implementations on Linux.
- The TTAS locks perform better than other
locking methods. The lock-free implementa-
tion is the one that follows.
- The Mutex based locking constructs gives
the lowest throughput.
- The methods scale up to 8 threads, the
number of buckets, and after 12 threads the
throughput starts decreasing. The exception is
the Mutex lock on Mono which does not scale
at all.
- The relative order, with respect to absolute
throughput, remains largely unchanged by the
change in runtime system.
Low Contention
- Increasing the number of buckets causes an
increase in throughput across the board.

- For up to 6 threads, all methods are highly
fair, regardless of architecture and environ-
ment.
Intel
- No single algorithm is always the most fair
one for thread counts ranging from 12 to 48.
AMD
- The TTAS locks drop in fairness after 8
threads.
- For more than 12 threads, the Mutex lock is
the most fair.

- The TTAS lock shows high throughput, but
poor fairness.
- The Mutex lock is very fair, but lacks in
throughput.
- The lock-free and the lock based hash table
provide a good tradeoff between throughput
and fairness.

Java Low Contention
- The highest throughput is usually achieved
by the hash tables based on Synchronized
blocks, array locks and the lock-free ones.
However in 48 threads specifically the lock-
free construction keeps increasing its perfor-
mance while the array lock severely drops.
- Both the Reentrant locks consistently show
low values.
High Contention
- The behavior is similar to the low con-
tention case except for the lock-free hash
tables which performs 20-30% lower. Despite
that, when the number of threads increases it
achieves the highest performance.

Intel
- The highest fairness values are achieved by
both the Reentrant locks based hash tables.
Closely follows the one built on the Synchro-
nized blocks.
- TAS and TTAS and the array lock are
relatively fair in most of the cases. In 48
threads they are the least fair, with TAS and
TTAS improving though their values in longer
time intervals.
- The lock-free hash table is the least fair.
AMD
- The fairness indices of TAS and TTAS
based hash tables are heavily influenced. The
change also hinders, in a smaller scale, the
Synchronized block construction and slightly
the lock-free one.

- The lock-free method sacrifices fairness for
higher throughput.
- The Reentrant locks provide high fairness
values without managing decent throughput.
- The implementations based on TAS, array
lock and the Synchronized block manage to
balance the tradeoff in a very efficient manner.

Table III: A summary of the main observations regarding the hash table case study



specific construct in C++ that we tested, surprisingly does
not perform well in this case study in the cases of less than
24 threads.

The different runtime systems for C# do not cause any
change in the relative order of the methods as of throughput
performance, but still the values in .NET are consistently
higher than the ones in Mono.

Regarding fairness, no single algorithm is always the
most fair for the higher numbers of threads on the Intel
machine. On the contrary, considerable differences occur
when changing to the AMD architecture, leaving the Mutex
construct as the most fair one.

Solutions with high overhead like the Reentrant locks do
not pay off for the hash table in Java either. The throughput
is the lowest, however their inherent queue structure benefits
fairness. More lightweight solutions manage to balance this
tradeoff.

VII. CONCLUSIONS

In this paper we evaluated different types of lock-based
(from fine-grained to coarse-grained), as well as lock-free,
synchronization methods with regard to their potential for
high throughput and fairness.

Selecting the best synchronization constructs to achieve
the desired behavior is a non-trivial task, which requires
thorough consideration of different aspects. Besides lan-
guages and their features, the selection is also governed
by several other parameters and factors, and the interplay
among them, e.g. the system architecture of the imple-
mentation platforms; possible run-time environments, virtual
machine options and memory management support; and the
characteristics of the applications.

Our results show that the implicit synchronization con-
structs provided at the language level, for the managed lan-
guages used in our experiments, provide decent throughput
and fairness for many scenarios. Much can however be
gained by using more complex designs and implementations
in C++, that does not rely on automatic garbage collection.
This is especially true for data structures with a fine-grained
design, where operations are not just simply serialized, but
can actually take place concurrently. In general, it is clear
that the more fine-grained the designs is, the higher the
potential to achieve a higher degree of throughput, because
of their high potential for parallelism. A fine-grained design
also leads to increased fairness between the actors involved,
as multiple operations can be performed in parallel without
conflicts.

We observed that most synchronization methods show
reasonable fairness and throughput when used by a low num-
ber of threads, or for scenarios with very little contention.
However, when the contention increases, and the number of
threads that are executed concurrently passes the number
that can be scheduled on a single socket, the behaviour
starts to deviate. This can be mitigated by having a data

structure design that supports more parallelism, allowing
for a wider choice of concurrency mechanisms. Some lock
constructs, that performed poorly in queues under high
contention, worked fine when used in hash tables under high
contention. The cause of this is the inherent distribution of
data accesses in a hash table. Methods that use backoff were
shown to work very well during high contention scenarios,
but the extra overhead lowered the throughput during lower
contention. Some constructs such as array locks are very fair,
but drops quickly in throughput when faced with increased
contention. In most cases, a trade-off between throughput
and fairness has to be made, no matter the language or
architecture. A reasonable such trade-off for many scenarios
could be made using lock-free algorithms, which in most
cases manages to pair good fairness with high throughput.

More knowledge about the specific execution environment
could lead to more fine-tuned decisions on which synchro-
nization mechanism to select. Our experimental observations
shed some light in this direction.

The results in this paper allows us to take a step towards
improving methodologies for choosing the programming
environment and synchronization methods in connection to
the application and the system characteristics.

ACKNOWLEDGMENT

This work was partially supported by the EU as part
of FP7 Project PEPPHER (www.peppher.eu) under grant
248481, the Swedish Foundation for Strategic Research as
part of the project RIT-10-0033 ”Software Abstractions for
Heterogeneous Multi-core Computer”, and by the Swedish
Research Council (Vetenskapsrådet) project ”Fine grain Syn-
chronization and Memory Consistency in Parallel Program-
ming” Contract nr. 621-2010-4801.

REFERENCES

[1] B. N. Bershad, “Practical Considerations for Non-Blocking
Concurrent Objects,” in Proceedings of the 13th International
Conference on Distributed Computing Systems, 1993, pp.
264–274.

[2] K. Fraser and T. L. Harris, “Concurrent programming without
locks,” ACM Transactions on Computer Systems (TOCS),
vol. 25, no. 2, 2007.

[3] C. A. R. Hoare, “Towards a theory of parallel programming,”
in The origin of concurrent programming, P. B. Hansen, Ed.
New York, NY, USA: Springer-Verlag New York, Inc., 2002,
pp. 231–244.

[4] J. M. Mellor-Crummey and M. L. Scott, “Algorithms for Scal-
able Synchronization on Shared-Memory Multiprocessors,”
ACM Transactions on Computer Systems, vol. 9, pp. 21–65,
1991.

[5] H. Sundell and P. Tsigas, “NOBLE: A Non-Blocking Inter-
Process Communication Library,” in Proceedings of the 6th
Workshop on Languages, Compilers and Run-time Systems for
Scalable Computers, ser. Lecture Notes in Computer Science.
Springer Verlag, 2002.



[6] S. Benkner, S. Pllana, J. Träff, P. Tsigas, U. Dolinsky,
C. Augonnet, B. Bachmayer, C. Kessler, D. Moloney, and
V. Osipov, “PEPPHER: Efficient and Productive Usage of
Hybrid Computing Systems,” IEEE Micro, vol. 31, no. 5, pp.
28–41, sept.-oct. 2011.

[7] H. Inoue and T. Nakatani, “Performance of multi-process and
multi-thread processing on multi-core SMT processors,” in
2010 IEEE International Symposium on Workload Charac-
terization (IISWC), dec. 2010, pp. 1–10.

[8] M. Awasthi, D. W. Nellans, K. Sudan, R. Balasubramonian,
and A. Davis, “Handling the problems and opportunities
posed by multiple on-chip memory controllers,” in Pro-
ceedings of the 19th international conference on Parallel
architectures and compilation techniques (PACT). New York,
NY, USA: ACM, 2010, pp. 319–330.

[9] V. Nazaruk and P. Rusakov, “Blocking and non-blocking
process synchronization: Analysis of implementation,” Scien-
tific Journal of Riga Technical University, Computer Science.
Applied Computer Systems, vol. 44, pp. 145–150, 2011.

[10] A. Lamarca, “A performance evaluation of lock-free synchro-
nization protocols,” in Proceedings of the 13th Annual ACM
Symposium on Principles of Distributed Computing (PODC).
ACM Press, 1994, pp. 130–140.

[11] M. M. Michael and M. L. Scott, “Relative Performance of
Preemption-Safe Locking and Non-Blocking Synchronization
on Multiprogrammed Shared Memory Multiprocessors,” in
Proceedings of the 11th International Parallel Processing
Symposium (IPPS), 1997.

[12] P. Tsigas and Y. Zhang, “Integrating Non-Blocking Synchro-
nisation in Parallel Applications: Performance Advantages
and Methodologies,” in Proceedings of the 3rd international
workshop on Software and performance. New York, NY,
USA: ACM, 2002, pp. 55–67.

[13] ——, “Evaluating the Performance of Non-Blocking Syn-
chronization on Shared-Memory Multiprocessors,” ACM SIG-
METRICS Performance Evaluation Review, vol. 29, no. 1, pp.
320–321, 2001.

[14] J. Chen and W. W. III, “Multi-Threading Performance on
Commodity Multi-core Processors,” in Proceedings of 9th
International Conference on High Performance Computing
in Asia Pacific Region (HPC Asia), 2007.

[15] T. Anderson, “The performance of spin lock alternatives
for shared-money multiprocessors,” IEEE Transactions on
Parallel and Distributed Systems, vol. 1, no. 1, pp. 6–16, jan
1990.

[16] M. Herlihy and N. Shavit, The Art of Multiprocessor Pro-
gramming. Morgan Kaufmann, 2008.

[17] P. Magnusson, A. Landin, and E. Hagersten, “Queue locks on
cache coherent multiprocessors,” in Proceedings of the Eighth
International Parallel Processing Symposium, apr 1994, pp.
165–171.

[18] T. Craig, “Building FIFO and Priority-Queuing Spin Locks
from Atomic Swap,” University of Washington, Technical
Report 93-02-02, Tech. Rep., 1993.

[19] Oracle. Java standard edition documentation. [Online]. Avail-
able: http://docs.oracle.com/javase/7/docs/technotes/guides/
concurrency/index.html

[20] K. M. Franke Hu., Russell R., “Futexes and furwocks: Fast
userlevel locking in Linux,” in Proceedings of the 2002
Ottawa Linux Summit, 2002.

[21] P. H. Ha, M. Papatriantafilou, and P. Tsigas, “Efficient self-
tuning spin-locks using competitive analysis,” Journal of
Systems and Software, vol. 80, no. 7, pp. 1077–1090, Jul.
2007.

[22] R. Jain, D.-M. Chiu, and W. Hawe, “A quantitative measure of
fairness and discrimination for resource allocation in shared
computer systems,” CoRR, vol. cs.NI/9809099, 1998.

[23] M. Michael and M. Scott, “Simple, fast, and practical non-
blocking and blocking concurrent queue algorithms,” in Pro-
ceedings of the fifteenth annual ACM symposium on Princi-
ples of distributed computing. ACM, 1996, pp. 267–275.

[24] M. Michael, “High performance dynamic lock-free hash
tables and list-based sets,” in Proceedings of the fourteenth
annual ACM symposium on Parallel algorithms and architec-
tures. ACM, 2002, pp. 73–82.

[25] D. Hackenberg, D. Molka, and W. E. Nagel, “Comparing
cache architectures and coherency protocols on x86-64 mul-
ticore SMP systems,” in Proceedings of the 42nd Annual
IEEE/ACM International Symposium on Microarchitecture,
ser. MICRO 42. New York, NY, USA: ACM, 2009, pp.
413–422.

[26] D. M. Tullsen, S. J. Eggers, and H. M. Levy, “Simultaneous
multithreading: Maximizing on-chip parallelism,” in ISCA,
1995, pp. 392–403.

[27] M. E. Thomadakis, “The Architecture of the Nehalem Pro-
cessor and Nehalem-EP SMP Platforms,” A research report
of Texas A&M University, Tech. Rep., 2011.

[28] M. Butler, L. Barnes, D. Sarma, and B. Gelinas, “Bulldozer:
An Approach to Multithreaded Compute Performance,” IEEE
Micro, vol. 31, no. 2, pp. 6–15, march-april 2011.


