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Abstract

In this paper we present a large-scale measurement study and analysis of e-mail traffic
collected on an Internet backbone link. To the best of our knowledge this is one of the
largest studies of network-wide behavior of e-mail traffic. We consider e-mail networks
connecting senders and receivers that have communicated via e-mail, capturing their
social interactions. Our study focuses on temporal and structural properties of these
e-mail networks.

By analyzing the structural properties of e-mail networks, first we confirm that le-
gitimate e-mail traffic generates a small-world, scale-free network that can be modeled
similarly to many other social networks, but we also show that, contrary to previous
work, e-mail traffic as a whole does not exhibit a scale-free behavior. We show that this
deviation is caused by the unsocial behavior of unsolicited e-mail traffic. We also ana-
lyze how various structural properties of e-mail networks change over time and reveal the
structural properties that are indicative of the unsocial behavior of spam traffic. Finally,
we show that our findings can be used to identify spam traffic in regular e-mail traffic
without inspecting the e-mail contents.

Keywords: E-mail characterization, social networks, spam detection,
measurement, statistical properties of e-mail networks





1 Introduction

In this paper, the behavior of e-mail traffic has been studied and analyzed by examining
network traffic captured on an Internet backbone link of a national university network. From
the collected packet level data, we have generated an e-mail network, i.e. a social network
with e-mail sender and receiver addresses as vertices and edges that connect vertices that have
communicated via e-mail. We have studied both the structural and the temporal properties
of the generated e-mail network and compared them with properties previously observed for
other types of interaction networks such as on-line social networks, the Internet topology, the
web, and phone call graphs. We show that the existing models for the structure of e-mail and
social networks cannot accurately model the behavior of e-mail traffic containing unsolicited
e-mail (spam). To the best of our knowledge, this is the largest e-mail traffic dataset ever
used to study the structure of e-mail networks.

We show in this paper that the difference between the structure of e-mail networks and
the structure of other social and interaction networks is caused by the spam traffic. The
legitimate e-mail (ham) traffic exhibits the same structural statistical properties that other
social networks typically exhibit, therefore, a ham network can be modeled as a scale-free,
small-world network. We also show that the unsocial behavior of spam cannot be hidden
behind the social behavior of legitimate traffic and that spam networks cannot be modeled
similar to other social networks.

We have also studied how the structure of e-mail networks change over time. Although a
study of a single snapshot provides useful information about its structural properties, metrics
describing the temporal variations in the structure of the networks provide us with a better
understanding of the behavior of e-mail traffic. We show that a variety of structural metrics
exists that can distinguish between ham and spam traffic.

Finally, we show that these distinctive structural properties can be used to detect misbe-
having nodes on the network as opposed to the methods that inspect content of e-mails.

The purpose of this study is not to generate a real social network that captures the friend-
ship relation between e-mail senders and receivers. Rather, the aim is to use existing social
network-based analysis methods to understand the characteristics of e-mail communications
and how they can be deployed to combat spam. Our contributions in this paper are as follows.

• We have generated e-mail networks from SMTP packets captured on a high-speed In-
ternet backbone link.

• We have performed a structural and temporal analysis of the generated e-mail networks
in order to understand their topological characteristics.

• We have (surprisingly) found that although e-mail networks are considered scale free in
the literature, this is not the case, implying the need for development of new models for
this type of traffic.

• We have analyzed and compared the structural and temporal properties of ham and
spam networks, and have identified network-wide properties that are indicative of the
unsocial behavior of spam traffic.

• We have presented and tested a novel approach to spam detection on the network level
by deploying the distinguishing structural properties of ham and spam without a need
to inspect and classify e-mail contents.
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Table 1: Summary of datasets of related works
Reference Year Nodes |V | Edges |E| Dataset

Ebel et al. [10] 2002 59,812 86,130 log files of the mail server at
Kiel University

Gomes et al. [12] 2005 265,144 615,102 log files of the mail server in a
university in Brazil

Gomes et al. [13] 2009 279,504 562,664 emails arriving at a depart-
mental mail server

Boykin et al. [6] 2005 - - headers of e-mail messages in
one user’s inbox

Lam et al. [19] 2007 9,150 - Enron dataset∗ and simulated
spam accounts and e-mails

Kong et al. [16] 2006 56,969 84,190 the GSCC of the dataset used
in [10]

Tseng et al. [29] 2009 637,064 2,865,633 mail server of the computer
center in National Taiwan
University

Leskovec et al. [21] 2007 35,756 123,254 e-mails from a large European
research institution

Kossinets et al. [17] 2006 43,553 ∗∗14,584,423 e-mails exchanged at a large
university

This paper 2010 10,544,647 21,537,314 SMTP traffic captured on an
Internet backbone link

∗ http://www.cs.cmu.edu/~enron/
∗∗ Total number of e-mails exchanged during 355 days, used to generate separate graphs within time windows of 60 days

The remainder of this paper is organized as follows. Section 2 describes the related
work. The methodology for data collection and generation of e-mail networks is described in
Section 3. Section 4 presents the structural properties of the e-mail networks and in Section 5
temporal variations in the structure of e-mail networks are studied. In Section 6 the possibility
of deploying our findings for spam detection is evaluated and Section 7 provides a discussion
of the dataset used for this study. Finally, Section 8 concludes the paper.

2 Related Work

The problem of understanding the structure of social and interaction networks such as the
Internet topology [11,22], the web [1,3,7], phone call graphs [25], e-mail networks [10,17,21],
and on-line social networks [23], has received huge interest. Studies of structural properties
such as the small-world phenomenon and the scale-free behavior of networks, have revealed
that social and interaction networks are fundamentally different from random networks [26].

The structure of e-mail networks was first studied by Ebel. et al. [10]. They studied a
network generated from mail server log files of a university and showed that this network
is scale-free and exhibits properties of small-world networks. Leskovec et al. [21] studied
the evolution of a variety of real networks including an e-mail network of a large research
institution. They observed that e-mail networks similar to other social networks densify over
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time and their diameter shrink, while their power law degree distribution exponent remain
constant.

Deployment of social networks for discriminating spammers and legitimate e-mail senders
was first proposed in Boykin et al. [6] and gained a lot of interest afterwards. They gener-
ated an e-mail network from e-mail headers in one user’s mailbox and found distinguishing
structural properties of spam and legitimate e-mail messages. Gomes et al. [12,13] generated
two distinct graphs from ham and spam e-mails collected from mail server log files of their
university department, and found graph theoretical metrics that structurally and dynamically
differ for spam and ham. Kong et al. [16] suggested using the topological properties of e-mail
social networks to generate efficient distributed collaborative spam filters. Lam et al. [19]
extracted different structural features from e-mail social networks generated from the Enron
dataset and deployed them in building a learning-based spam detection method. A similar
set of features was studied in Tseng et al. [29] to construct a spammer detection system based
on an incremental SVM model.

Table 1 summarizes the properties of the e-mail networks studied in the previous works.
All of the above studies have taken place on relatively limited e-mail datasets. To the best
of our knowledge, our study is the first study of the social structure of e-mail networks on
the Internet on a large scale. In this study we also perform an analysis of the structural and
temporal characteristics of our e-mail networks, reveal properties that distinguish ham from
spam, compare our observations with previous studies, and discuss how our findings could be
deployed as a complement to existing anti-spam strategies.

3 Data Collection Methodology

In this section we describe the methodology used to collect data and generate e-mail networks.

3.1 Collection and Pre-processing

The dataset used in this paper was generated from SMTP packets captured passively on an
10 Gbps link of the core-backbone of the Swedish University Network (SUNET)1. During
a period of 14 consecutive days in March 2010, we captured more than 797 million SMTP
packets (filtered on port 25) in both directions. Then, we aggregated these packets into more
than 46.8 million flows.2 Finally, we extracted around 24.4 million e-mails and 12 million
mail server replies from these flows.

The unusable e-mail flows including those with no payload (mainly due to port scanning),
encrypted SMTP communications, delivery notifications, and flows missing proper SMTP
commands were pruned from the dataset. Moreover, e-mail transactions missing intermediate
packets were considered as incomplete since further classification of them was not possible.

The remaining e-mail transactions were first classified as being either accepted or rejected.
An accepted e-mail is an e-mail delivered by the receiving mail server and contains the basic
SMTP commands, e-mail headers and an e-mail body. A rejected e-mail is one that does not

1SUNET http://www.sunet.se/ serves as a backbone for university traffic, a substantial number of student
dormitories, research institutes, as well as some museums and government agencies and it contains a large
amount of exchange traffic with commercial companies.

2We used the tcpflow program (http://www.circlemud.org/~jelson/software/tcpflow/) which under-
stands sequence numbers and correctly handles out-of-order and retransmitted packets to reconstruct data
streams.
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Table 2: Dataset statistics.
Incoming Outgoing

Packets 626.9× 106 170.1× 106

Flows 34.9× 106 11.9× 106

Emails (Emails per recipient) 19,302,206 (25,279,555) 729,553 (1,434,159)
Ham (Ham per recipient) 1,319,273 (1,328,545) 213,306 (288,363)
Spam (Spam per recipient) 1,663,698 (2,291,813) 202,879 (574,608)
Rejected (Rejected per recipient) 16,319,235 (21,659,197) 313,368 (571,188)

Distinct sender (receiver) e-mail addresses 7,780,897 (3,169,712) 324,657 (408,429)
Distinct domains in email addresses 446,694 167,907

finish the SMTP command exchange phase and consequently does not contain any content.
Rejection is generally the result of spam pre-filtering strategies deployed by mail servers
including blacklisting, greylisting, DNS lookups, and user database checks.

Finally, we have classified all accepted e-mails to be either spam or ham. This allows us
to establish a ground truth for our study. Similar to [12,13,29], the classification was done by
a well-trained SpamAssassin filtering tool.3 After classification, all IP and e-mail addresses
were anonymized and e-mail contents were discarded in order to preserve privacy.

The SMTP replies from rejected e-mails could be used to further classify rejected traffic
based on the rejection reasons. However, due to asymmetric routing4 only approximately
10% of the collected flows contain both the e-mail and the corresponding mail server reply.
Therefore, we decided to not further classify rejected e-mail transactions.

Table 2 summarizes the collected dataset. More details on the measurement location, data
collection procedure, and pre-processing steps can be found in [24].

3.2 E-mail Networks

After data collection and pre-processing, an e-mail network was generated from e-mail ad-
dresses extracted from the SMTP commands (i.e. “MAIL FROM” and “RCPT TO”) as
vertices and exchanged e-mails between them as edges. In order to study the structural and
temporal characteristics of the e-mail networks and to compare different categories of e-mail,
we generated different types of e-mail networks, namely a complete e-mail network, a ham
network, a spam network, and a rejected network. Only vertices participating in e-mail ex-
change and the edges between them were included in each network. The complete e-mail
network contains all the communications including ham, spam, and rejected.

To the best of our knowledge, the complete e-mail network with 10,544,647 vertices and
21,537,314 edges, is the largest dataset used so far for structural analysis of e-mail networks.

3The SpamAssassin http://spamassassin.apache.org was in use for a long time in our University mail
server and it incurs approximately a false positive rate of less than 0.1%, and the detection rate of 91.4% after
94% of the spam being rejected by blacklists, leading to 99.5% detection rate in total. This high detection rate
allows us to use it as a ground truth for our analysis.

4The traffic is load balanced between alternative links which introduces routing asymmetry, as we can
sometimes only see the traffic going in one direction of a TCP connection.
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(f) Directed complete e-mail
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(g) Directed ham
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(h) Directed spam
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Figure 1: Degree distribution of e-mail networks. Only the ham network is scale-free.

4 Structural Characteristics of e-mail Networks

In this section we study the most significant structural properties of social networks, namely
the small-world effect and the scale-free degree distributions. Our main focus is on the ham
and spam networks and the characteristics that can differentiate them.

4.1 Small-World Networks

A network exhibits the small-world phenomenon, often referred to as “six degree of separa-
tion”, if any two vertices in the network are likely to be connected through a short sequence
of intermediate vertices [15]. In real networks, the small-world property is often associated
with the presence of clustering [5]. Thus, Watts and Strogatz [30] proposed that in addition
to a short average path length, small-world networks have high clustering coefficient values.

5



Table 3: Structural properties of the ham and spam networks.
Ham Spam

Number of vertices (|V |) 859,623 1,795,197
Number of edges (|E|) 1,060,380 2,506,298
Average clustering coefficient (C) 9.92× 10−3 1.59× 10−3

Percentage of vertices in GSCC 72.90% 53.53%
Number of SCCs 85,992 178,754
Average path length (〈l〉) 7.03 8.49
Power law exponent (γ) 2.7 -

4.1.1 Average Path Length

We have calculated the average shortest path length over the ham and the spam networks.5

The calculations were done on the giant strongly connected component of each of the networks
(see Section 4.3) where a path exists between any pair of vertices of the component [30].
Although the number of vertices in the connected components of the studied ham and spam
networks are different, it is still clear that they both have short path lengths similar to small-
world networks: 〈lham〉 = 7.03 and 〈lspam〉 = 8.49.

4.1.2 Clustering Coefficient

The clustering coefficient Cv of a vertex v is given by Cv = 2Ev/(kv(kv − 1)), where, kv
denotes the number of neighbors of v, kv(kv − 1)/2 denotes the maximum number of edges
that can exist between the neighbors of v, and Ev the number of the edges that actually exist.

The clustering coefficient in a social network shows to what extent friends of a person
are also friends with each other. Therefore, the legitimate vertices are expected to have
a larger clustering coefficient than the spamming vertices [6, 12, 29]. The observed average
clustering coefficients for our ham and the spam networks which are Cham = 9.92 × 10−3

and Cspam = 1.59 × 10−3, respectively, confirm this assumption. These observed values are
also significantly greater than that of random networks with the same number of vertices and
average number of edges per vertex.

4.2 Degree Distribution

The most fundamental structural property of a network is its degree distribution. The degree
distribution of a network is the probability that a randomly selected vertex has k edges. In
a power law distribution, the fraction of vertices with degree k, n(k) ∝ k−γ , where γ is a
constant. Networks characterized by a power law degree distribution are also known as scale-
free networks [2,11], since power laws have the property of having the same functional form at
all scales [5]. Many real social and interaction networks such as the Internet topology [11,22],
the web [1, 7], phone call graphs [25], and on-line social networks [23] exhibit a power law
degree distribution. Ebel et al. showed for the first time that e-mail networks are scale-free

5Since the calculation of average shortest path length over all pairs of vertices is computationally prohibitive,
similar to [23], 10,000 vertices were selected randomly in the networks and the average shortest path from these
vertices to all other vertices in the networks were calculated.
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with the power law degree distribution n(k) ∝ k−1.81 [10]. Others have also observed a power
law degree distribution in their e-mail networks [6, 8, 12, 17, 21].

Surprisingly, in contrast with previous studies the degree distribution of the e-mail net-
work studied here does not exhibit a power law distribution. Figure 1(a) reveals that e-mail
networks are not scale-free since the connectivity of the vertices do not follow a power law
distribution in all points. The figure is plotted in logarithmic scale and the x-axis denotes
the degree of a vertex and the y-axis the fraction of vertices in the network with that degree.

We can also show that this deviation from power law distribution is due to the excessive
amount of unsolicited e-mail communications. Figure 1(b) shows that the degree distribution
for the ham network closely follows the distribution n(k) ∝ k−2.72, making the ham network
scale-free.6 However, Fitting a power law distribution for example to the node degrees of
the spam network is only possible for nodes with degrees higher than 55 (with γ = 3.4
and Kolmogorov-Smirnov goodness-of-fit of 0.0274 compared to 0.0075 for the ham network)
which are less than 0.4% of the total nodes in that network. Figures 1(c) and 1(d) also show
that neither the spam, nor the rejected e-mail network is a scale-free network.

The observation that legitimate e-mails obey the statistical structural properties similar
to other social networks is not unexpected. However, a vast majority of spam e-mails are
automatically sent, typically from botnets of compromised machines [14, 27], and therefore
spam traffic do not exhibit a normal social behavior. Consequently, in mixed e-mail traffic,
this unsocial behavior of unsolicited e-mail is clearly visible.

The degree distribution can also be analyzed on directed e-mail networks where the di-
rection of the e-mail communication is also considered. For the directed network we have to
consider the distribution of both the in-degree and the out-degree of the vertices. For the
ham network, both in- and out-degree distributions are a power law distribution (Figure 1(g))
and for the spam (Figure 1(h)), the rejected (Figure 1(i)), and the complete e-mail network
(Figure 1(f)) the deviation from power law distribution is even more clear than what can be
observed for the corresponding undirected networks.

Finally, it is also possible to consider e-mail networks as multigraphs where multiple edges
can exist between any two vertices (capturing multiple e-mail communications between two
users). Figure 1(e) shows that the degree distribution of the multigraph networks exhibits the
same properties as we have observed for undirected and directed networks; the ham network
is scale-free, but not the spam and the complete e-mail networks.

4.3 Strongly Connected Components

Another important structural property of complex networks, which quantifies the connectivity
of a network, is the size of the giant strongly connected component of the network [10, 25].
A strongly connected component (SCC ) is a subset of vertices of the network where a path
exists between any pair of them in the same set. A giant SCC (GSCC ) contains a significant
fraction of the vertices in the network.

The ham network studied in this paper has 85,992 separate components with a GSCC
containing 72.9% of the total vertices in the network. The second largest SCC of this network
contains only 0.26% of the total vertices, so is orders of magnitudes smaller than the GSCC.
The spam network has 178,754 disconnected components with a GSCC containing 53.5% and
a second largest SCC with 0.15% of the total number of the vertices in this network. This

6We have used the maximum likelihood method and Kolmogorov-Smirnov goodness-of-fit [9] to calculate
the best power law fit.
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property can also be analyzed on a directed e-mail network, where an SCC is a subset of ver-
tices that can both reach and be reached from any other vertex in the same set. The GSCC of
the directed ham network is much smaller than that of the corresponding undirected network,
but still is dramatically larger than the GSCC of the directed spam network.

The distribution of the size of the SCCs for the ham and spam networks is plotted in
Figure 2 in logarithmic scale. The x-axis denotes the size of each SCC (in number of vertices),
and the y-axis the fraction of SCCs in the network with that number of vertices. It can be
seen that the GSCCs of the networks are orders of magnitude larger than other SCCs of the
corresponding networks. The distribution of the SCC size for the ham network is similar to
web [7] and phone call graphs [25] and follows a power law pattern. However, for the spam
network many outliers are clearly visible in the distribution.
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Figure 2: Distribution of size of the strongly connected components. The GSCCs of the
networks are orders of magnitude larger than other SCCs. The distribution for the spam
network compared to the ham network has many outliers.

4.4 Summary

The high clustering together with the short path length between vertices of the networks
confirms that both the ham and the spam networks are small-world networks. However,
these properties on their own are not enough to conclude that e-mail networks in general are
structurally similar to social networks.

The non-power law degree distribution of e-mail networks has not previously been ob-
served. In [21] spam e-mails were removed from the dataset before the analysis of the e-mail
network. The e-mail network used in [10] was limited to log files of a university mail server,
and probably only contained delivered e-mails with no or little spam. Although the network
studied in [12] contained rejected and accepted spam, they also did not observe a non-power
law behavior in the degree distributions. We conjecture that it was due to their limited
dataset and that the method they used to generate their spam networks was based on spam
vertices (in contrast to our method that uses spam e-mails as edges). It was also observed
in [16] that their spam network had a power law degree distribution with an exponent larger
than that of legitimate e-mails. However, their e-mail network was limited to e-mail commu-
nications of a single user. Our e-mail network which is based on real e-mail traffic seen on an
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Figure 3: Temporal variation in the small world properties of the networks. Both ham and
spam are small world networks, but ham has a larger average clustering coefficient.

Internet backbone link, in contrast, is not limited to a single domain and is significantly larger
than all previous studies and contains a large amount of unsolicited traffic. Therefore, it has
allowed us to clearly observe the unsocial behavior of spam and its effect on the structure of
the complete e-mail network.

Overall, the longer average path length value, the lower average clustering coefficient value,
the non-power law degree distribution, and the smaller GSCC in the spam network compared
to the ham network, has the potential to be used for detection of unsolicited e-mail traffic
(see Table 3).

5 Temporal Characteristics of E-mail Networks

E-mail networks have an inherently evolving dynamic structure. In this section we show how
the structural properties of our e-mail networks changes over time. Tracking these changes
can lead to some insights into how the e-mail networks evolve. A similar study was done
in [25] where they studied the evolution of phone call graphs using one week of data. Our
observations are based on two weeks of data collection.

5.1 Densification Power Laws

As time progress, new vertices and edges are added to the e-mail network. The number of
vertices in our undirected complete e-mail network increased from 1,688,020 vertices in the
first day, to 10,544,647 vertices after 14 days, and the number of edges from 2,239,560 to
21,537,314. Both the ham and the spam networks have also grown in terms of number of
vertices and edges, but the growth was faster for the spam network. The number of edges was
growing faster than the number of vertices; consequently the average degree of the networks
also increased over time. Leskovec et al. [21] also observed that in many real networks such
as the Internet AS graph and citation graphs, the networks become denser over time and this
densification follows a power law pattern.

The number of edges E(t) versus the number of vertices N(t) in our ham and spam
networks follow the densification law E(t) ∝ N(t)α, where the exponent α corresponds to
the slope of the line. The slopes for the ham and spam networks are αham = 1.33 and
αspam = 1.42 respectively, indicating a large deviation from linear growth.
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(b) Degree distribution of ham network
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(c) Degree distribution of spam network
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Figure 4: Temporal variation in the degree distribution of the networks. The ham network is
always scale-free and its power law exponent remains almost constant.
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Figure 5: Evidence of preferential attachment in the ham and the spam networks.
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Figure 6: Temporal variation in the strongly connected components of the networks. The
ham network becomes more connected over time.

5.2 Shrinking Diameter

As networks grow and become denser, their diameter decrease.7 This property was first
observed by Leskovec et al. [20, 21] who calculated the effective diameter of different real
networks over time. Figure 3(a) provides the evidence that the average shortest path length
decreases in both the ham and the spam networks.

5.3 Clustering Coefficient

In small-world networks the value of the average clustering coefficient C is independent of
the network size [28]. Figure 3(b) shows that C remains relatively constant as the networks
grow, and that it is always significantly larger for the ham network than for the spam network.

5.4 Degree Distribution

Leskovec et al. [21] observed that the power law degree distribution of their e-mail network has
a constant exponent γ = 1.76 which doesn’t change much as the network evolves. Kossinets
et al. [17] also observed that the shape of the degree distribution of their e-mail networks is
relatively constant across the duration of their measurements.

The shape of the degree distribution of our e-mail network changes from the first day to
the 14th day as the network grows (Figure 4(a)). The spam network (Figure 4(c)), and the
rejected e-mail network (Figure 4(d)) also have changing shapes of their degree distributions
over time. The ham network, however, always follows a power law distribution with an almost
constant exponent γ = 2.7 (Figure 4(b)). Similar properties also hold for the in- and out-
degree distributions of the directed networks and the degree distribution of the multigraph
network.

7This decrease is bounded from below
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5.5 Preferential Attachment

Many evolving network models are based on preferential attachment [2]. This model states
that the probability of getting new edges by a vertex increases with its degree [28]. This
property which is also known as “the rich get richer” rule is associated with the power law
degree distribution of social networks.

To find out if preferential attachment is coming into play in the evolution of e-mail net-
works, we used the same method as described in [28] to calculate the evidence of preferential
attachment. First, we considered the network generated after 13 days of measurement and
recorded the vertices existing in that network and their degrees. Then, we measured the
increase in the degree of these vertices after one day. Finally, we calculated the relative
increase in the degree of each vertex ki to get Π(ki). Plotting the cumulative distribution
κ(k) =

∑k
ki=0Π(ki) as in Figure 5 shows that evidence of preferential attachment is present

in both the ham and the spam networks.

5.6 Strongly Connected Components

As social networks grow, a giant cluster emerges in the graph and its size increases [28]. This
property is not specific to social networks; random networks have the same property, as well.

As shown in Figure 6(a), the percentage of the vertices in the GSCC of the ham network
increases as the network grows, but the size of the GSCC of the spam network does not
change significantly. The same property holds for the directed ham and spam networks.
Figure 6(b) shows that the number of disconnected SCCs in both the ham and the spam
networks increase over time. However, this increase is much faster for spam meaning that
there are more disconnected components in the spam network.

5.7 Summary

By analyzing the static structure of ham and spam networks we have revealed that both these
networks can be modeled as small-world networks. Analyzing the temporal variation in the
structure of these networks also confirms this observation. The average shortest path length
of both networks decrease with similar pace, and their average clustering coefficient does not
change with the increase in the number of vertices in the networks. However, the values of
these metrics dramatically differ for ham and spam networks, and thus can potentially be
used for discriminating them.

The analysis of the temporal variation of the degree distribution of the ham and the spam
network proves that a spam network is not a scale-free network. In a scale-free network,
the power law exponent of the degree distribution does not change with the growth of the
network. This is not the case for the spam network, the rejected network, and the complete
e-mail network containing massive amount of unsolicited e-mail traffic. Although it seems
that preferential attachment is associated with the growth of both ham and spam networks,
the structure of these networks differ significantly. Finally, the size and the distribution of
the SCCs of the ham network are similar to other social networks, but this is not true for the
spam network.

In conclusion, temporal analysis of the e-mail networks gives us a better insight into
the structure of these types of networks and reveals characteristics that can potentially be
deployed for discriminating ham and spam traffic.
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Table 4: Detection rate (DR) and the false positives (FP) incurred by the proposed detection
methods

Spamming nodes Spam e-mails

Method DR FP DR FP

Out-degree distribution outliers 7.70% 4.04% 25.3% 4.17%
SCC size distribution outliers 21.33% 9.19% 21.5% 7.38%
Combined 25.5% 8.78% 34.4% 6.58%

6 Social Network-Based Spam Mitigation

Our main goal with analyzing the social structure of e-mail networks is to produce realistic
models for legitimate e-mail traffic, models that can be deployed to distinguish unsolicited
traffic from a mixture of real e-mail traffic on the network level.

Although current anti-spam tools are efficient in hiding spam from users’ mailboxes, there
is a clear need for moving the defense against spam as close to its source as possible to reduce
the amount of unwanted traffic and the waste of mail server resources. In addition, it has
been observed [18, 27] that spam mainly originates from botnets that are also likely active
in other malicious activities on the Internet. Therefore, detecting spamming nodes may also
help to detect other malicious traffic from the same origin. In this section we investigate the
possibility of early spam detection using the observed differences in the structural properties
of ham and spam networks. The goal is to solely use the e-mail-sending patterns that are
characteristic of spamming behavior rather than having to inspect and classify the e-mail
contents.

6.1 Outlier detection

As we have previously shown in Section 4, an e-mail network is not scale-free since the degree
distribution of the network contains many outliers. To verify that these outliers are caused
by the unsocial behavior of spamming nodes, we have inspected the outliers in the out-degree
distribution of an e-mail network containing both ham and spam.

To find the outliers, we first calculate the ratio between the out-degree distribution of
the network and the power law distribution of the ham network (n(k) ∝ k−2.33), which is
our model for the expected social behavior. Then we deploy the Median Absolute Deviation
(MAD) method, which calculates the distance from the median of the obtained ratios to mark
the outliers. Other methods to find outliers in the distribution can also be used.

Using this method we have detected more than 97,320 outlier nodes in the e-mail network
generated from 14 days of collected ham and spam data. The detected outliers had sent
906,976 e-mails of which 96% were actually spam, confirming that the outliers were mostly
spamming nodes.

We have also shown in Section 4 that the distribution of the size of the SCCs of the
ham network follows a power law distribution with γ = 2.38, but not the spam network. By
using the same method we have detected 73,324 outlier SCCs in the network. These outlier
components contained 469,803 edges of which 97% were actually spam e-mails.
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6.2 Spam detection

Knowing that nodes deviating from social behavior are sending spam, we have conducted a
number of tests to investigate the possibility of using our social network-based analysis to
detect spam e-mails. Our tests were designed to address the following three questions: “Is it
possible to detect spamming nodes solely based on the outliers in the structural properties of
e-mail networks?”, “Is it necessary to construct a complete e-mail network capturing all the
communications between users during a long period of time to detect spam, or is it enough to
construct a partial e-mail network based on shorter traffic snapshots?”, and “Is it possible to
perform the spam detection in real-time?”

To be able to answer the above questions, we have split the captured e-mail traffic into
snapshots of one hour which allows us to generate the e-mail networks and test the effect of a
shorter time window. The generated e-mail networks contained only accepted spam and ham
e-mails since the rejected e-mails are already detected by existing pre-filtering mechanisms
(e.g. IP blacklisting). We have then evaluated our outlier detection method using the first
32 hours of our dataset by finding degree distribution and SCC size distribution outliers for
each one-hour e-mail network.

The one-hour time window was arbitrarily chosen to verify the applicability of our ap-
proach on smaller networks. Smaller time windows might also be possible as we discuss later.
The window size together with the model parameters (i.e. the out-degree distribution ex-
ponent and the SCC size distribution exponent) should be fine-tuned based on the vantage
point of the tool deploying it and the volume of traffic passing through it. This is outside the
scope of this paper and left for future work.

In order to evaluate the results, we have calculated the detection rate and the number of
false positives incurred by the outlier detection mechanisms. Similar to Intrusion Detection
Systems (IDS) the detection rate is calculated as the percentage of correctly identified true
spam by the system and the false positive rate as the number of legitimate e-mails incorrectly
classified as spam. We have calculated the number of false positives and the detection rates
based on our classification using SpamAssassin.

Table 4 shows the average detection rate (DR) and the number of false positives (FP)
using two of the proposed methods with a window size of one hour. As can be seen, the
degree distribution outliers detected as spamming nodes are just 7.7% of the total number of
spamming nodes in the network (a node is called a spamming node if it has sent at least one
spam e-mail during the collection time window). However, by combining the output of both
the degree distribution and the SCC size distribution outliers, we achieve a detection rate of
25.5% of all spamming nodes, however with the cost of more false positives.

Furthermore, by inspecting the e-mails transmitted by the detected outlier nodes (using
a combination of both methods), we have observed that more than 93.4% of the e-mails sent
by these nodes were actually spam e-mails. As Table 4 shows, these nodes in average have
sent more than 34.4% of the total spam in the network.

To be able to use our spam detection method incrementally in real-time (i.e. without the
use of any time window), each newly arriving e-mail should be added to an incrementally
generated e-mail network and then be verified whether the sender is part of the outliers or
not. To test the effectiveness, first, prior the start of the detection, we have generated an
e-mail network from a one-hour traffic snapshot as the base. Then we have classified the
e-mails collected during the following hour. The arrival of a new email could only affect the
out-degree of the sending node, so there is no need to re-calculate the out-degree of other
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nodes in the network to re-generate the degree distribution. The results show that using only
outliers of the degree distribution, on average the detection rate for newly arriving e-mails has
slightly decreased (from 25.3% to 23.0%) and the false positive rate has increased (from 4.17%
to 6.39%) compared to the non-incremental approach that delays the detection until the end
of the one-hour time window. Therefore, the proposed detection method is also effective if
deployed in real-time.

6.3 Incorporating with existing systems

We have shown that it is possible to detect spamming nodes by using the distinguishing prop-
erties obtained from social-network based analysis of e-mail traffic. In the following we discuss
two possibilities for deploying our spam mitigation strategy: (1) on the wire deployment as a
small network device and (2) integration with existing spam detection techniques.

We can deploy a network device that can examine traffic on the wire by inspecting the
SMTP headers and generating e-mail networks on the fly. Such a device can be placed any-
where on the Internet that has a vantage point similar to the one we had in our measurements.
So it is not necessary to place it on the receiving mail servers. The proposed collection and
analysis strategies introduced in this paper could be used by such a device. The advantage is
that such a system implementation will allow us to detect and stop spam solely by inspecting
e-mail senders and receivers.

We can also incorporate our approach into existing spam filtering tools (e.g. SpamAssas-
sin) on the receiving mail servers to contribute to the spam scores generated by these tools.
The advantage is the easy deployment in existing infrastructure.

Regardless of where the system is located, our method is a pre-acceptance strategy that
can be implemented either as a reputation based system, or as a spam detection tool.

A reputation-based system assigns a spamming score to the detected spamming nodes.
These scores can be used for example to populate existing IP blacklists with the IP addresses
of the detected spammers. They can also be used in conjunction with existing greylisting
strategies, i.e. e-mails sent by nodes that are detected as outliers are greylisted (temporarily
rejected) and are accepted only after being re-transmitted by the sender in appropriate time.

A spam detection tool marks each arriving e-mail as spam or ham on the fly. Our in-
cremental detection approach performs the same task and marks e-mails sent by detected
spamming nodes as spam.

Overall, our system is a pre-acceptance strategy that can complement existing systems
including IP blacklists. Assuming that all the rejected e-mail traffic observed in our dataset
were stopped by existing pre-acceptance strategies, more than 84% of the spam traffic has
already been detected. By deploying our approach, approximately 34% of the remaining spam
e-mails would also be detected, increasing the detection rate to more than 89% before any
content is being transmitted.

6.4 Summary

In this section we have proposed a novel method to exploit structural properties of ham and
spam networks to detect spamming nodes from a mixture of traffic. We show that by using
only two basic structural properties, we can still detect a significant number of spamming
nodes that were not detected by existing pre-acceptance strategies like IP blacklisting, im-
proving the overall detection rate. The advantage of our method is that it can be deployed
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as a stand-alone system on the wire or incorporated into existing tools and detect spam e-
mails in real-time as they pass through the link. Our study shows that it is not necessary to
capture all the e-mails communications between users over long periods of time to be able to
take advantage of the distinguishing properties of legitimate and unsolicited traffic for spam
detection. By introducing the rest of the studied structural and temporal metrics into the
system, and fine-tuning the parameters (e.g. time window size), it is most likely that the
number of false positives and the detection rates improve.

7 Discussion

In this section we discuss to what degree the dataset we have collected and used in our study
is representative for the purpose of structural and temporal analysis of e-mail networks.

The e-mail dataset used in this paper is based on real SMTP traffic captured on a high
speed Internet backbone link. This dataset has provided us with a better understanding
of the characteristics and behavior of e-mail and spam traffic. The captured traffic does
not, for obvious reasons, include e-mail communications not traversing the link, i.e. e-mail
communications between “inside” users and communication between external users. Due to
asymmetric routing and the use of parallel load-balanced links, we were not always able to
see all traffic. In the rest of this section, we discuss the possible effects the data collection
procedure and network structure may have on the studied metrics.

7.1 Asymmetric Routing and Missing Data

Due to asymmetric routing and load-balancing policies deployed by the network routers, not
all traffic was captured and less traffic was also traveling in the outgoing than the incoming
direction of the link (Table 2). This has limited the possibility to analyze graph metrics that
are specific to the direction of the edges. However, this limitation is not that important since
the goal of this work is to find methods to analyze network traces using social network-based
techniques in order to detect misbehaving (spamming) nodes. We want to find distinguishing
parameters of spam and ham traffic, preferably with observing as little traffic as possible.
Earlier studies [6, 10, 12, 17, 19, 29] have also shown that it is not required to generate a
complete e-mail network of all e-mails exchanged between all users during long periods of
time to be able to study the structure of e-mail networks or to deploy a social network-based
approach to mitigate spam. It is also reasonable to assume that similar limitations will be
present in real-life scenarios when traffic is analyzed in the search for spammers.

Boas et al. [4] studied the effect of perturbations on the structure of complex networks,
and their results can help us to understand what possible effects missing e-mails in our
datasets may have had and how they might have affected the structure of the studied e-
mail networks. They showed that scale-free networks are highly robust to edge additions or
deletions. Therefore, working with snapshots of communications should have not affected
our findings regarding the degree distribution of the e-mail networks. They also showed that
the average shortest path length in complex networks is sensitive to addition of edges to the
network, since a new edge can connect vertices that are far away, resulting in a decrease in this
value. However, the values for the average shortest path length of our ham and spam networks
are already very small despite missing the internal/external traffic. Boas et al. also showed
that the average clustering coefficient is a robust metric that does not change by adding new
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edges to a complex network. In our study, this value similarly remained unchanged for both
of the ham and the spam network.

7.2 Missing Past

A source of missing data, which is not limited to our dataset, is the “missing past” problem.
This problem appears since there is no possibility to gather data reaching all the way back to
a network’s birth. Leskovec et al. [21] showed that the effect of missing past is minor as we
move away from the beginning of the data observation. We have also investigated the effect
of missing past in our analysis by constructing an e-mail network which lacked the first week
of data to see if it would affect our results. The value of the average clustering coefficient
of the ham and spam networks with missing past was similar to that of the corresponding
complete networks. The average shortest path value became slightly higher, however it was
still small enough to support our observation that both ham and spam network are small-
world networks. The size of the GSCC of the ham and the spam networks with missing past
were smaller but still contained a large fraction of nodes of the network, and still the GSCC
size of the ham network was substantially larger than that of the spam network.

Finally, the degree distribution of the ham network with missing past was identical to the
complete one indicating that missing past had no major effect on this property. However the
degree distribution of spam had a different shape when the past was missing, indicating that
structure of the spam network is not robust against perturbations, hence it further strengthens
our findings that a spam network is not scale-free.

7.3 Measurement Duration

Another limitation that could have affected our analysis is the data collection duration. Al-
though our measurement duration was shorter than previous studies [10, 12, 17, 20], we have
generated the largest and most general dataset used for this type of analysis. Our analysis
of the temporal variation in structural properties of e-mail networks have provided us with
evidence for how the structure of different e-mail networks changes with longer periods of
measurements.

As shown in Figures 4, 3, and 6, for most of the structural properties of ham and spam
networks, i.e. the average path length, the average clustering coefficient, and the degree
distribution, even one day of data could have discriminated ham from spam traffic. After
one week of data collection, all the observed properties were applicable to differentiate spam
from ham. With more data, the difference between ham and spam gets even more obvious.
However, there is a trade-off between analyzing less data for faster detection and the number
of false positives. Our tests in Section 6 have shown that even by using a snapshot of one
hour of the data, it is still possible to detect spam senders based on the structural differences
of spam and ham networks.

Overall, this work has provided us with a large dataset containing real traffic between
regular users, spammers and receiving mail servers. Although a full and complete e-mail
network cannot be generated from this data, we can model the behavior of e-mail traffic as
observed from the vantage point of a network device that can be placed on a link to stop
spam as close to its source as possible.
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8 Conclusions

In this paper we have performed a large scale data collection and analysis of e-mail traffic
captured on an Internet backbone link. To the best of our knowledge this is the largest study
on the social behavior of e-mail traffic that has been performed so far. We have analyzed the
structural and temporal properties of e-mail networks. Our study shows that:

• legitimate e-mail traffic generates a small-world, scale-free network that can be modeled
similar to many other social networks.

• contrary to previous studies, e-mail traffic in general does not exhibit all of the struc-
tural and temporal properties common in social networks due to spam traffic which is
unsolicited.

• structural and temporal properties of e-mail networks can distinguish between ham and
spam, and spamming nodes can be detected based on their unsocial behavior.

Moreover, we have proposed and tested a method for detection of spamming nodes by
using two of these distinguishing structural properties. Our results suggest that it is possible
to implement this method on a network device to classify e-mail traffic based on simple
operations in real-time without having to inspect the e-mail contents. By incorporating our
method with existing pre-acceptance strategies used in mail systems today, an extra 34% of
spam can be stopped on the network level, bringing it up to 89% stopped unsolicited traffic.

We are currently incorporating all distinguishing structural characteristics into the pro-
posed spam detection approach, and also examining how and in what way buffering and
timing parameters (e.g. time window size) can improve the effectiveness of spam mitigation
on the network level.
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