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Abstract
Identifying unsolicited email based on their network-level
behavior rather than their content have received huge inter-
est. In this study, we investigate the social network proper-
ties of large-scaleemail networks generated from real email
traffic to reveal the properties that are indicative of spam as
opposed to the expected legitimate behavior.

By analyzing the structural and temporal properties of the
email networks we confirm that legitimate email traffic gen-
erates a small-world, scale-free network similar to other so-
cial networks. However, email traffic as a whole contains un-
solicited email, thus the structure of email networks deviates
from that of social networks. Our study points out the dis-
tinctive characteristics of spam traffic and reveals that the
anomalies in the structural properties of email networks are
due to the unsocial behavior of spam.

Categories and Subject Descriptors C.2.3 [Network Oper-
ations]: Network Monitoring; C.2.2 [Network Protocols]:
Applications (SMTP, FTP, etc.)

General Terms Measurement

Keywords Email networks, social network properties, spam

1. Introduction
Eliminating the excessive amount of unsolicitedspam which
is consuming network and mail server resources is quite
challenging. These email communications are mostly orig-
inated from botnets of compromised machines [8, 15] that
are also likely the source of other malicious activities on
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the Internet. Although current anti-spam tools are efficient
in hiding spam from users’ mailboxes, there is a clear need
for moving the defense against spam as close to its source
as possible. Therefore, it is necessary to understand the
network-level behavior of spam and how it differs from le-
gitimate traffic in order to design anti-spam mechanisms that
can identify spamming bots on the network. In this paper, we
study the network-level behavior of email by examining real
email traffic captured on an Internet backbone link. From the
collected traffic, we have generatedemail networks in which
the nodes represent email addresses and the edges represent
email communications. To the best of our knowledge, this
is the largest email traffic dataset used to study the structure
of email networks which contain both legitimate (ham) and
unsolicited email traffic.

In this study, we show that the legitimate email traffic ex-
hibit the same structural properties that other social and in-
teraction networks (e.g., on-line social networks, the Internet
topology, the Web, and phone call graphs) typically exhibit,
therefore, it can be modeled as ascale-free, small-world net-
work. We also show that the email traffic containing spam
cannot be modeled similarly, and because the unsocial be-
havior of spam is not hidden behind the social behavior of
legitimate traffic, the structure of email networks contain-
ing both ham and spam differ from other social networks.
Moreover, we show that the temporal variations in the social
network properties of email traffic can reveal more distinct
properties of the behavior of spam.

In this study our goal is to identify the differences in
the social network properties of spam and ham traffic, and
leverage these differences to spot the abusive nodes in the
network.

The remainder of this paper is organized as follows.
Section 2 presents the related works. The collected email
datasets and their properties are discussed in Section 3.
Section 4 presents and discusses the observed structural
and temporal properties of our email networks. Section 5
presents a method to spot spam senders in the structure of
email networks. Finally, Section 6 concludes the paper.



Table 1. Summary of the datasets of related works in comparison to ourdatasets.
Reference Nodes|V | Edges|E| Email types Dataset

Ebel et al. [5] (2002) 59,812 86,130 ham log files of the mail server at Kiel University
Gomes et al. [7] (2005) 265,144 615,102 ham & spam log files of a university mail server in Brazil
Boykin et al. [2] (2005) - - ham & spam headers of emails in one user’s inbox
Lam et al. [10] (2007) 9,150 - ham & simulated spam Enron dataset and simulated spam
Tseng et al. [17] (2009) 637,064 2,865,633 ham & spam a mail server in National Taiwan University
Leskovec et al. [11] (2007) 35,756 123,254 ham emails of a EU research institution
Kossinets et al. [9] (2006) 43,553 ∗14,584,423 ham emails at a large university
This paper,dataset A 10,544,647 21,562,306 ham & spam Internet backbone SMTP traffic
This paper,dataset B 4,525,687 8,709,216 ham & spam Internet backbone SMTP traffic

∗ Total number of emails exchanged during 355 days (separate graphs within time windows of 60 days)

Table 2. Statistics of the collected data fordataset A.
Packets Flows Email Ham Spam Rejected Senders1 Receivers1 Domains2

Incoming 626.9M 34.9M 19,302,206 1,319,273 1,663,698 16,319,235 7,780,897 3,169,712 446,694
Outgoing 170.1M 11.9M 729,553 213,306 202,879 313,368 324,657 408,429 167,907

1 Distinct email addresses.2 Distinct domain names in email addresses.

2. Related Work
Social network analysis has been widely used in order to
study the structural properties of real-world networks such
as the Web graph [3], the Internet topology [6], phone call
and SMS networks [14], and online social networks [12].
The structure of email networks was first studied by Ebel.
et al. [5] showing that an email network generated from
mail server log files of a university is a scale-free, small-
world network. Leskovec et al. [11] studied the evolution of
a variety of real networks, including an email network of
a large institution, and observed that these social networks
densify over time and their diameter shrinks, while their
power law degree distribution exponent remains constant.

Deployment of social network analysis for discriminating
spammers and legitimate users was first proposed in Boykin
et al. [2]. They generated an email network from email head-
ers in one user’s mailbox and found distinguishing structural
properties of spam and ham messages. Gomes et al. [7] gen-
erated distinct graphs from ham and spam email collected
from mail server log files of their university department, and
found graph theoretical metrics that structurally and dynam-
ically differ for spam and ham. Lam et al. [10] and Tseng et
al. [17] extracted different structural features from email so-
cial networks and deployed them in building learning-based
spam detection systems.

Table 1 summarizes the properties of the email networks
studied in the related works. All of the above studies have
taken place on relatively limited email datasets. In addition
to previous studies, we perform an analysis of the structural
and temporal characteristics of email networks, reveal prop-
erties that distinguish ham from spam, compare our observa-
tions with previous studies, and show how our findings could
reveal the spam sending nodes in the email networks.

3. Data Collection and Pre-processing
In this study we have used two distinct email datasets to
generate email networks. The datasets were created from
passively captured SMTP packets on a 10 Gbps link of the

core-backbone of the SUNET1. Each dataset was collected
during 14 consecutive days with a year time span between
the collections. Throughout the paper, we refer to the larger
dataset asdataset A, and the smaller dataset asdataset B.

The unusable email flows, including those with no pay-
load or missing packets and encrypted communications were
pruned from the datasets. The remaining emails were first
classified as being eitheraccepted (delivered by the receiv-
ing mail server) orrejected (unfinished SMTP command
exchange phase and consequently not containing any email
headers and body). Rejection is generally the result of spam
pre-filtering strategies deployed by mail servers (e.g., black-
listing, greylisting, DNS lookups). Then, all accepted email
communications were classified to be eitherspam or ham
to establish a ground truth for our study. Similar to [7, 17],
the classification was done by a well-trained filtering tool2.
Finally, all email addresses were anonymized and email con-
tents were discarded in order to preserve privacy.

After data collection and pre-processing, a number of
email networks have been generated from the datasets. In an
email network the email addresses, which are extracted from
the SMTP commands (“MAIL FROM” and “RCPT TO”),
represent the nodes, and the exchanged emails represent the
edges. In order to study and compare the characteristics of
different categories of email, from each dataset we have
generated aham network, a spam network, and arejected
network, in addition to the completeemail network.

Table 2 summarizes the properties of the datasetA as an
example. More details on the measurement location, data
collection, and pre-processing can be found in [13].

1 Swedish University Network (http://www.sunet.se/) serves as a
backbone for university traffic, student dormitories, research institutes, etc.
exchanging large amount of traffic with commercial companies.
2 The SpamAssassin (http://spamassassin.apache.org) was in use
for a long time in our University mail server and it incurs a false positive
rate of less than 0.1%, and the detection rate of 91.4% after 94% of the
spam being rejected by blacklists.



4. Structural and Temporal Properties of
Email Networks

In this section we briefly introduce the most significant struc-
tural and temporal properties of social networks.

Degree distribution. The degree distribution of a net-
work is the probability that a randomly selected node has
k edges. In apower law distribution, the fraction of nodes
with degreek is n(k) ∝ k−γ , whereγ is a constant expo-
nent. Networks characterized by such degree distribution are
calledscale-free networks. Many real networks such as the
Internet topology [6], the Web [3], phone call graphs [14],
and on-line social networks [12] are scale free.

Average path length. In small-world networks any two
nodes in the network are likely to be connected through
a short sequence of intermediate nodes, and the network
diameter shrinks as the network grows [11].

Clustering coefficient. In addition to a short average path
length, small-world networks have high clustering coeffi-
cient values [18]. The clustering coefficient of a nodev is
defined asCv = 2Ev/(kv(kv − 1)), where,kv denotes the
number of neighbors ofv, kv(kv − 1)/2 the maximum num-
ber of edges that can exist between the neighbors, andEv

the number of the edges that actually exist. The averageCv

of a social network shows to what extent friends of a person
are also friends with each other and its value is independent
of the network size [16].

Connected components. A connected component (CC)
is a subset of nodes of the network where a path exists
between any pair of them. As social networks grow a giant
CC (GCC), which contains the vast majority of the nodes in
the network, emerges in the graph and its size increases over
time [16]. Moreover, the distribution of CC size for some
social networks follows a power law pattern [3, 14].

4.1 Measurement Results

In the following the observed structural and temporal prop-
erties of our email networks are presented. These properties
can be used in order to model the behavior of legitimate traf-
fic and to find the distinguishing properties of the unsocial
behavior of spam. Although the duration of our data collec-
tions is not long enough to study the evolution of email net-
works, it is still possible to track the changes in the structure
of email networks in order to better understand the distinct
characteristics of ham and spam traffic.

Degree distribution. Figures 1(a) and 1(e) show that
none of the email networks generated from datasetsA and
B exhibit a power law degree distribution in all points. How-
ever, the ham networks generated from each of the datasets
are scale free as their degree distribution closely follow the
distributionn(k) ∝ k−γ with γA = 2.7 andγA = 2.3,
respectively3. The in-degree (out-degree) distribution for

3 The power law fits were calculated using the Maximum Likelihood es-
timator for power law and Kolmogorov-Smirnov (KS) goodness-of-fit as
presented in [4].

ham networks, which are shown in Figures 1(b) and 1(f),
also follows a power-low distribution withγAin

= 3.2
(γAout

= 2.3) andγBin
= 3.2 (γBout

= 2.1 ), respectively.
Moreover, in contrast to previous studies [2, 7], neither the
spam, nor the rejected networks are completely scale free
(Figures 1(c), 1(g), 1(d), and 1(h)).

Figure 2(a) and 2(e) show that the shape of the degree
distributions of the complete email networks may change
over time as the networks grow. The shape of the degree
distribution of spam and rejected networks can also change
over time (Figures 2(c), 2(g), 2(d), and 2(h)). However, the
ham networks always follow a power law distribution with
an almost constant exponent (Figures 2(b) and 2(f)).

Clustering coefficient. The observed average clustering
coefficients for our ham (spam) networks generated from
both dataset are quite similar:CAham

= 9.92 × 10−3

(CAspam
= 1.59 × 10−3) and CBham

= 9.80 × 10−3

(CBspam
= 1.54 × 10−3). These values, similar to small-

world networks, are significantly greater than that of random
networks with the same number of nodes and average num-
ber of edges per node, and as Figures 3(b) and 3(f) show
they remain relatively constant as the networks grow.

Average path length. The ham and spam networks gen-
erated from both datasets have short average path lengths,
〈l〉, as expected in small-world networks:〈lhamA

〉 = 7.0,
〈lspamA

〉 = 8.5, 〈lhamB
〉 = 6.7, and〈lspamB

〉 = 7.8. Fig-
ures 3(a) and 3(e) show that〈l〉 decreases for all networks as
they grow, confirming the shrinking diameter phenomenon
observed in [11] for other social networks.

Connected components. Figure 4.2 shows the distribu-
tion of the size of the CCs for ham and spam networks. It
can be seen that the GCCs of the networks are orders of
magnitude larger than other CCs. The distribution of the CC
size for the ham network, similar to Web [3] and phone call
graphs [14], follows a power law pattern, but the spam net-
work can have outliers in their distribution. Figures 3(d) and
3(h) show that the number of CCs in all of the ham and the
spam networks increases over time, but this increase is much
faster for spam. Moreover, as shown in Figure 3(c), the re-
spective size of the GCC of the networks generated from
datasetA increases for the ham but does not change much
for the spam network. However, although the ham network
generated from datasetB shows exactly the same behavior
(Figure 3(g)), the spam network shows an increase in the
percentage of nodes in its GCC over time.

4.2 Discussion

In the following paragraphs we briefly discuss our observa-
tions regarding the structure of email networks and discuss
to what extent our dataset is representative for the structural
and temporal analysis of email networks.

Table 3 summarizes the observed similarities and differ-
ences in the structure of the ham and spam networks. Al-
though the studied datasets differ in size and collection time,
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10
0

10
5

10
1

10
2

10
3

10
4

10
0

10
−2

10
−4

10
−6

Degree

 

 

In−degree
Out−degree
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Figure 1. Only the ham network is scale free as the other networks have outliers in their degree distribution.
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Figure 2. Temporal variation of in the degree distribution of the email networks.

our observations reveal that legitimate email always exhibit
the structural properties that are similar to other social and
interaction networks. Previous studies on the structure of
legitimate email networks have also shown that these net-
works can be modeled as scale free, small-world networks
[2, 5, 7, 9, 11]. In contrast, a vast majority of spam are auto-
matically sent, typically from botnets, and it is expected that
they show unsocial behavior. We have shown that the struc-
tural and temporal properties of spam networks can reveal
their anomalous nature. Although spam networks show some
properties that are similar to ham (i.e., small-world network
properties), they can still be distinguished from ham net-
works as they have significantly smaller average clustering
coefficient and larger average path length, regardless of the
size of the networks. Overall, we have shown that although
the behavior of spam might change over time, its unsocial
behavior is not hidden in the mixture of email traffic, even
when the amount of spam is less than ham (datasetB).

The datasets used in this study to analyze the character-
istics of spam do not contain the email communications that
do not pass the measurement location. Due to asymmetric
routing and load-balancing policies deployed by the network

routers, not all traffic travels the link, and less traffic is seen
in the outgoing than the incoming direction of the link (Ta-
ble 2). However, our goal is to perform a comparative anal-
ysis of the distinguishing behavior of spam and ham traffic
that are observed over the link. Therefore, it is not required to
generate a complete email network of all exchanged emails
to be able to study the differences in the social network prop-
erties of legitimate and spam traffic.

In addition, the “missing past” problem, which is not
limited to our dataset, exists since it is not possible to gather
data reaching all the way back to a network’s birth. Leskovec
et al. [11] showed that the effect of missing past is minor as
we move away from the beginning of the data observation.
We investigated the effect of missing past by constructing
an email network which lacked the first week of data from
datasetA and comparing it with the network containing both
weeks. We have observed that the structural properties of
the email networks was relatively similar for both of the
networks particularly for the legitimate email.

Earlier studies [2, 5, 7, 9, 10, 17] have also used incom-
plete email networks to study the structure of email networks
or to deploy a social network-based approach to mitigate
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Figure 3. Both networks are small-world networks (a,b,e,f), however, ham has a higher average clustering coefficient. The
ham networks become more connected over time (c,g), and the number of CCs increases faster for the spam networks (d,h).

Table 3. Structural properties of the ham and the spam networks.
Dataset Network Nodes Edges C 〈l〉 relative GCC size No. CCs γ degree distribution

A
Ham 859,623 1,060,380 9.92× 10−3 7.0 72.90% 85,992 2.7
Spam 1,795,197 2,506,298 1.59× 10−3 8.5 53.53% 178,754 -

B
Ham 1,077,042 1,593,042 9.80× 10−3 6.7 84.24% 50,742 2.3
Spam 578,158 1,044,714 1.54× 10−3 7.8 79.21% 40,236 -
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Figure 4. The distribution of size of CCs. The GCCs of the
networks are orders of magnitude larger than other CCs.

spam. Even though our measurement duration was shorter
than previous studies [5, 7, 9, 11], we have generated the
largest and most general datasets used for this type of analy-
sis. The 14 days of data collection might not be large enough
to study the evolution of email networks, but our analysis of
the temporal variation in the structure of email networks pro-
vides us with evidence on how their structure might change
with longer periods of measurements.

Overall, this work has provided us with very large datasets
of real traffic traversing a high speed Internet backbone link.
These datasets allow us to model the behavior of email traf-
fic as observed from the vantage point of a network device
on the link and reveal the differences in the network-level
behavior of ham and spam traffic.

5. Anomalies in Email Network Structure
The structural properties of real networks that deviate from
the expected properties for social networks, suggest anoma-
lous behavior in the network [1]. In this section, we show
that the anomalies caused by the unsocial behavior of spam
can be detected in the email networks by using an outlier
detection mechanism.

We have shown in Section 4 that the ham networks ex-
hibit power law out-degree distributions withγAout=2.3 and
γBout=2.1 for datasetA andB respectively. The outliers in
the out-degree distribution of the email networks are of par-
ticular importance, as we are interested in finding the nodes
that send spam.

Procedure 1 presents the process of detecting outliers
from the out-degree distribution. First the ratio of the out-
degree distribution of the email network, containing both
ham and spam, and our model is calculated. Then the Me-
dian Absolute Deviation (MAD) method is deployed to cal-
culate the median of the absolute differences of the obtained
ratios from their median. The nodes in the network that have
an out-degree that deviates a lot (based on a threshold value)
from the median are marked as outliers.

Table 4 shows the percentage of spam that were sent in
different networks and the percentage of spam sent by the
identified outlier nodes. The nodes in the email networks
generated from datasetA (B) have sent in average around
70% (40%) spam and the identified outlier nodes have sent
just slightly more spam than the average node. The reason is
that the outlier detection method tends to mark both nodes
that have sent only one email and those that have sent a large
number of email as outliers. However, we have observed that
the nodes which have sent only one email had sent ham and
spam with the same probability, and the nodes with high out-
degree have mostly sent legitimate email (e.g., mailing lists).
By excluding the nodes that have a high out-degree (100 in
our experiments) from the outliers as well as the nodes that
have only sent one email during the collection period, we
can see that more than 95% (81%) of the email sent by the
identified outliers in datasetA (B) have actually been spam.



Procedure 1Finding out-degree distribution outliers
OUTLIERS DETECTION(G)

G odd← out-degree distribution for graphG
M odd← Ck−γ (the power law distribution model)
r ← the ratio betweenG odd andM odd
m←MAD(r)
for all nodesv ∈ G do

if r(kv) > m× threshold then
addv to the list ofoutliers

end if
end for

Table 4. Percentage of total spam, spam sent by all the
identified outlier nodes, and those with degree between one
and 100, in email networks containing both ham and spam.

Dataset Network Total spam
Spam sent by Spam sent by outliers

outliers with 1 < k < 100

A
1 day 68% 69.9% 95.5%
7 days 70% 74.0% 96.8%
14 days 70% 74.8% 96.9%

B
1 day 40% 43.6% 82.7%
7 days 35% 42.8 % 81.3%
14 days 39 % 46.7% 87.3%

Moreover, these nodes have actually sent around 25% (35%)
of the total spam in the network.

The outliers in the out-degree distribution of the complete
email network which in addition to ham and spam contains
rejected email can be identified similarly. As an example, the
nodes in the complete email network generated from one day
of email traffic in datasetA have sent in average 94.8% spam
and rejected email. The emails sent by the outlier nodes
detected by our method have been 99.3% spam or rejected.

6. Conclusions
In this study we have investigated the social network prop-
erties of email networks to study the characteristics of legit-
imate and unsolicited emails. The email networks were gen-
erated from real email traffic which was captured on an Inter-
net backbone link. We have analyzed the structural and tem-
poral properties of the email networks and have shown that
legitimate email traffic generates a small-world, scale-free
network that can be modeled similar to many other social
networks. Moreover, the unsocial behavior of spam, which
might change over time, is not hidden in the mixture of email
traffic. Therefore, email networks that contain spam do not
exhibit all properties commonly present in social networks.

Moreover, we have shown that by identifying the anoma-
lies in the structural properties of email networks, it is pos-
sible to reveal a number of abusive nodes in the network.
More specifically, we have shown that the outliers in the out-
degree distribution of email networks to a large extent rep-
resent the spamming nodes in the network. Therefore, the
social network properties of email networks can potentially
be used to detect malicious hosts on the network.
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