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ARTICLE INFO ABSTRACT

Keywords: In sensor networks, correct clocks have arbitrary starting offsets and nondeterministic
Secure and resilient computer systems fluctuating skews. We consider an adversary that aims at tampering with the clock
Sensor-network systems . . . . .
Clock-synchronization synchrom'zatlon. by intercepting messages, replaylr}g mtercepted messages (after the
Self-Stabilization gdversarys_chmce of delay), and capturlqg nodes (i.e., re_vealmg t_he1r secr.et keys and
impersonating them). We present an efficient clock sampling algorithm which tolerates
attacks by this adversary, collisions, a bounded amount of losses due to ambient noise,
and a bounded number of captured nodes that can jam, intercept, and send fake messages.
The algorithm is self-stabilizing, so if these bounds are temporarily violated, the system
can efficiently stabilize back to a correct state. Using this clock sampling algorithm, we
construct the first self-stabilizing algorithm for secure clock synchronization in sensor
networks that is resilient to the aforementioned adversarial attacks.
© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Accurate clock synchronization is imperative for many applications in sensor networks, such as mobile object tracking,
detection of duplicates, and TDMA radio scheduling. Broadly speaking, existing clock synchronization protocols are too
expensive for sensor networks because of the nature of the hardware and the limited resources that sensor nodes have.
The unattended environment, in which sensor nodes typically reside, necessitates secure solutions and autonomous system
design criteria that are self-defensive against a malicious adversary.

To illustrate an example of clock synchronization importance, consider a mobile object tracking application that monitors
objects that pass through the network area (see [3]). Nodes detect the passing objects, record the time of detection, and
send the estimated trajectory. Inaccurate clock synchronization would result in an estimated trajectory that could differ
significantly from the actual one.

We propose the first self-stabilizing algorithm for clock synchronization in sensor networks with security concerns. We
consider an adversary that capture nodes and intercepts messages that it later replays. Our algorithm guarantees automatic
recovery after the occurrence of arbitrary failures. Moreover, the algorithm tolerates message omission failures that might
occur, say, due to the algorithm’s message collisions or due to ambient noise.

The core of our clock synchronization algorithm is a mechanism for sampling the clocks of neighboring nodes in the
network. Of especial importance is the sampling of clocks at reception of broadcasts called beacons. A beacon acts as a shared
reference point because nodes receive it at approximately the same time (propagation delay is negligible for these radio
transmissions). Elson et al. [9] use such samples to approximate the clocks of neighboring nodes. They use linear regression
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to deal with differences in clock rates. The basic algorithm synchronizes a cluster. Overlapping clusters with shared gateway
nodes can be used to convert timestamps among clusters. Karp et al. [15,16] input clock samples of beacon receipts into an
iterative algorithm, based on resistance networks, to converge to an estimated global time. RGmer et al. [24] give an overview
of methods that use samples from other nodes to approximate their clocks. They present phase-locked looping (PLL) as an
alternative to linear regression and present methods for estimating lower and upper bounds of neighbors’ clocks. Note that
none of these articles takes security or self-stabilization into account.

As mentioned above, the short propagation delay of messages in close range wireless communications allows nodes to
use broadcast transmissions to approximate pulses that mark the time of real physical events (i.e., beacon messages). In the
pulse-delay attack, the adversary snoops messages, jams the synchronization pulses, and replays them at the adversary’s
choice of time (see [11,12,28] and Section 2.3.1). We are interested in fine-grained clock synchronization, where there are
no cryptographic countermeasures for such pulse-delay attacks. For example, the nonce techniques strive to verify the
freshness of a message by issuing pseudo-random numbers for ensuring that old communications could not be reused in
replay attacks (see [26]). Unfortunately, the lack of fine-grained clock synchronization implies that the round-trip time of
message exchange cannot be efficiently estimated. Therefore, it is not clear how the nonce technique could detect pulse-
delay attacks.

The system strives to synchronize its clocks while forever monitoring the adversary. We assume that the adversary cannot
break existing cryptographic primitives for sensor networks by eavesdropping (e.g., [26,31]). However, we assume that the
adversary can capture nodes, reveal their entire state (including private variables), stop their execution, and impersonate
them. The adversary can also lead them to send erroneous information and launch jamming (or collision) attacks.

We assume that, at any time, the adversary has a distinct location in space and a bounded influence radius, uses
omnidirectional broadcasts from that distinct location, and cannot intercept broadcasts for an arbitrarily long period.
(Namely, we consider system settings that are comparable to the settings of Gilbert et al. [ 13], which consider the minimal
requirements for message delivery under broadcast interception attacks.) We explain how to sift out responses to delayed
beacons by following the above assumptions that consider many practical issues.

A secure synchronization protocol should mask attacks by an adversary that aims to make the protocol give an erroneous
output. Unfortunately, due to the unattended environment and the limited resources, it is unlikely that all the designer’s
assumptions hold forever. We consider systems that have the capability of monitoring the adversary, and then stopping it
by external intervention. In this case, the nodes start executing their program from an arbitrary state. From that point on,
we require rapid system recovery. Self-stabilizing algorithms [4,5] cope with the occurrence of transient faults in an elegant
way. Bad configurations might occur due to the occurrence of an arbitrary combination of failures. Self-stabilizing systems
can be started in any configuration. From that arbitrary starting point, the algorithm must ensure that it accomplishes its
task if the system obeys the designer’s assumptions for a sufficiently long period.

We focus on the fault-tolerance aspects of secure clock synchronization protocols in sensor networks. Uncaptured nodes
behave correctly at all times. Furthermore, the communication model is fair. It resembles that of [2] and does not consider
Byzantine behavior in the communication medium. However, captured nodes can behave in a Byzantine manner at the
processor level. We design a distributed algorithm for sampling the clocks of g neighboring nodes in the presence of f
captured and/or pulse-delay attacked nodes. Although captured nodes remain captured, a node whose pulse-delay attacked
messages are no longer in the buffer of any uncaptured node will not count toward f anymore. We focus on captured nodes
and delay attacks, but f can be extended to include nodes with timing failures and other ways of not following protocol.

The clock sampling algorithm facilitates clock synchronization using a variety of existing masking techniques to
overcome pulse-delay attacks in the presence of captured nodes. For example, [ 12] uses Byzantine agreement (this requires
3f +1 < g),and [28] considers the statistical outliers (this requires 2f +0(1) < g).(See Section 7 for details on the masking
techniques.) Although Byzantine agreement is one possible filtering technique, we do not consider Byzantine faults, as stated
above.

The execution of a clock synchronization protocol can be classified between two extremes: on demand and continuous.
Nodes that wish to synchronize their clocks can invoke a distributed procedure for clock synchronization on demand. The
procedure terminates as soon as the nodes reach their target precision. An execution of a clock synchronization program is
classified as continuous if no node ever stops invoking the clock synchronization procedure. Our generic design facilitates a
trade-off between energy conservation (i.e., on-demand operation) and fine-grained clock synchronization (i.e., continuous
operation). The trade-off allows budget policies to balance between application requirements and energy constraints (more
details appear in [23]).

1.1. Our contribution

We present the first design for secure and self-stabilizing clock synchronization in sensor networks resilient to an
adversary that can capture nodes and launch pulse-delay attacks. The core is a secure and self-stabilizing algorithm for
sampling clocks of neighboring nodes.

The algorithm secures, with high probability, sets of complete neighborhood clock samples with a period that is
0((log n)?) times the optimum. The optimum requires, in the worst case, the communication of at least O(n?) timestamps.
Here n is a bound on the number of sensor nodes that can interfere with a node (potentially the number of nodes within
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transmission range of the node). It is of high importance for high-precision clock synchronization that the clock sampling
period is small since the offsets and frequencies of the nodes’ clocks change over time.

Our design tolerates transient failures that may occur due to temporary violation of the designer’s assumption. For
example, the number of captured and/or pulse-delay attacked nodes could exceed more than f and then sink below
f (delayed messages eventually vanish from queues). After the system resumes operation according to the designer’s
assumption, the system will stabilize within one communication timeslot (that is of size O(n log n)). We assume that (before
and after the system’s recovery) there are message omission failures, say, due to ambient noise, attacks or the algorithm'’s
message collisions.

The correct node sends beacons and responds to the other nodes’ beacons. We use a randomized strategy for beacon
scheduling that guarantees regular message delivery with high probability.

1.2. Document structure

We start by describing the system settings (Section 2) and formally present the algorithm (Section 3). A description of
our execution system model (Section 4) and a proof of the algorithm correctness (Section 5) are followed by a performance
evaluation (Section 6). Then we review the literature and draw our conclusions (Section 7).

2. System settings

We model the system as one that consists of a set of communicating entities, which we call processors (or nodes). We
denote the set of processors by P. In addition, we assume that every processor p; € P has a unique identifier, i. A processor
identifier can be represented by a known and fixed number of bits in memory. In that respect there is a known upper bound
on the number of processors.

2.1. Time, clocks, and their notation

We follow settings that are compatible with those of Herman and Zhang [ 14]. We consider three notations of time: real
time is the usual physical notion of continuous time, used for definition and analysis only; native time is obtained from
a native clock, implemented by the operating system from hardware counters; logical time builds on native time with an
additive adjustment factor. This factor is adjusted to approximate a shared clock, whether local to a neighborhood or global
to the entire network.'

We consider applications that require the clock interface to include the read operation, which returns a timestamp with
T possible states.? Let C'(t) denote the value p; € P gets from a read of the native clock at real time t.

Clock counters do not increment at ideal rates, because the hardware oscillators have manufacturing variations and the
rates are affected by voltage and temperature. The clock synchronization algorithm adjusts the logical clock in order to
achieve synchronization, but never adjusts the native clock. We define the native clock offset between any two processors p;
and p;as §;j(t) =C i(t) — CI(t). We assume that, at any given time, the native clock offset is arbitrary. Moreover, the skew of
pi’s native clock, p, is the first derivative of the clock value with respect to real time. Thus p; = lim,_,o(C'(t +1) — C'(t))/7.
We assume that p; € [Omin, Pmax] fOr any processor p;, where pnin = 1 — k and pmax = 1+ « are known constants, 1 is
the real time unit and ¥ > 0. The second derivative of the clock’s offset is called drift. We allow non-zero drift as long as

Pi € [Pmins Pmax]-
2.2. Communications

Wireless transmissions are subject to collisions and noise. The processors communicate among themselves using local
broadcast primitives, LBcast and LBrecv, with a transmission radius of at most R;,. We consider the potential of any pair of
processors to communicate directly, or to interfere with each other’s communications.

We associate every processor, p;, with a fixed and unknown location in space, L;. We denote the potential set of processors
that processor p; € P can directly communicate with by G; € {p; € P | Ry > |L; — L;|}. Furthermore, we denote the set

of processors that can interfere with the communications of p; by a C {pj € P | 2Ry > |L; — L;|}. We note that G; is not
something processor p; needs to know in advance, but something it discovers as it receives messages from other processors.

A successful broadcast by a processor p; occurs when the message is received by all other processors in G;. A successful
broadcast to a set K C G; occurs when the message is received by all other processors in K.

%
We assume that n > | G;| for any processor p;. In other words, n is a known upper bound on the number of nodes that
é
can interfere with any one node’s communication (including that node itself). In the worst-case scenario G; = G; and thus

1 Lenzenetal. [19,18] and Sommer and Wattenhofer [27] also refer to the term of logical time as “logical clock values”. Herman and Zhang [14] refer to
it as local time and build global time on top of the local time. See Section 7.

2 In footnote 6 we show what the minimal size of T is.



5634 J.-H. Hoepman et al. / Theoretical Computer Science 412 (2011) 5631-5647

potentially |G;| = n. Furthermore, a node will receive information from neighbors about their neighbors, so in the worst-
case scenario a node needs to keep track of data about n nodes. For simplicity we therefore use n as a bound of the number
of neighbors (including the node itself) as well. This does not mean that we only consider a cluster of n nodes.

2.2.1. Communication operations

We model the communication channel, queue; ;, from processor p; to processor p; € G; as a FIFO queue of the messages
that p; has sent to p; and p; is about to receive. When p; broadcasts message m, the operation LBcast inserts a copy of m
to every queue; j, such that p; € G;. Every message m € queue;; is associated with a particular time at which m arrives at
pj- Once m arrives, p; executes LBrecv. We require that the period between the time at which m enters the communication
channel and the time at which m leaves it is at most a constant, d. We assume that d is a known and efficient upper bound on
the communication delay between two neighboring processors. It includes both transmission delay and propagation delay,
even though the propagation delay is negligible in comparison with the transmission delay.

We associate each LBcast and LBrecv operation with a native clock timestamp for the moment of sending and receiving.
We assume the existence of an efficient algorithm for timestamping a message in transfer and a message being received as
close to the physical layer as possible (see [31]).

2.2.2. The environment

Messages might be lost to ambient noise as well as collisions of the nodes’ transmissions. Collisions due to attacks made
by the adversary or by captured nodes are called adversarial collisions. Message collisions due to concurrent transmissions
of nodes that follow the message scheduling of the algorithm are called non-adversarial collisions. A broadcast that is not
lost due to ambient noise or adversarial collisions is said to be fair. We note that a fair broadcast can still be lost due to
non-adversarial collisions.

The environment can execute the operation omission(m;) (which is associated with a particular message, m;, sent by
processor p;) immediately after LBcast;(m;). The environment selects a (possibly empty) subset of p;’s neighbors (K; C G;)
and removes any message m; from their queues queue; j (such that p; € K;).

Below we talk about what “the environment” selects when it comes to message omission. Here we see the environment
as a global adversary, separate and independent from the “regular” malicious and locally bound adversary of Section 2.3.
The term “adversary” is only used for that “regular” malicious adversary.

When a processor p; and a processor p; € a do concurrent broadcasts of messages m; and m; we assume that the
environment arbitrarily selects K; € G; N G; when invoking omission(m;) due to the collision (and vice versa for m;).
For details on what it means in our execution system model see Section 4.3. In other words, when two processors with
overlapping communication ranges broadcast concurrently, there are no guarantees of delivery, for those messages, within
the overlap (regardless of noise). This is a simple and general model for message collisions. It is possible to let a more
specialized physical layer model resolve the subset K;.

The environment selects messages to omit due to ambient noise as described at the end of Section 2.2.3. The adversary
selects messages to omit due to omission attacks as described at the end of Section 2.3.1.

2.2.3. Ambient noise

The parameter £ > 1 denotes the maximal number of repeated transmissions required (by any particular processor) to
get at least one fair broadcast. Such a broadcast can still be lost due to non-adversarial collisions. These assumptions model
the ambient noise of the communication channel, as well as omission attacks by the adversary and by captured nodes (see
Section 2.3.2). Furthermore, we assume that all processors know &.

The environment selects messages to remove due to ambient noise, but is limited by £ as described above. We assume
that the choice of messages omitted due to ambient noise is independent from the choice of messages omitted due to non-
adversarial collisions.

2.3. The adversary

We assume that there is a single adversary. The goal of the adversary is to disturb the clock synchronization algorithm
so that clock samplings become erroneous, or even misleading. At the same time, the adversary does not want to let its
presence be known by launching obvious attacks.

2.3.1. Omission attacks and delay attacks

The adversary can launch omission and delay attacks against a message sent by another processor. We assume that at any
time the adversary, just like all processors, has a distinct (unknown) location in space. We assume that the adversary’s radio
transmitter sends omnidirectional broadcasts (using antennas that radiate equally in space). Therefore, the adversary cannot
arbitrarily control the distribution in space of the set of recipients for which a beacon’s broadcast is omitted or delayed.

Consider amessage, m;, broadcast by a processor, p;, and attacked by the adversary. We assume that the adversary chooses
a sphere with its own location in the center. We denote the set of processors within the sphere S. The nodes in S N G; will
be affected by the attack against m;.
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The adversary launches message omission attacks (also known as interception attacks) by jamming the medium. The
environment invokes omission(m;) for all processors in S N G;. This selection is limited by the assumptions regarding &, as
described in Section 2.3.2.

For delay attacks, we follow the model of Ganeriwal et al. [11,12]. The adversary can receive (at least part of) a message,
jam the medium for a set of nodes before they receive it in whole, and then replay the message slightly later. The adversary
resends the message to the processors in S N G; after a chosen delay. The resent message is potentially lost due to ambient
noise or collisions, like any other message. The processors in S N G; that receive m; thus receive it later than they normally
would have.

Other ways to do delay attacks include considering an adversary with directional antennas (which we do not consider)
sending the same message at slightly different times in different directions, or having a captured node sending a message
within a smaller radius and having the adversary repeating that within an area that was left out (see [28] for details). Both
these delay attacks require the delayed message to originate from the adversary impersonating a captured node or from
a captured node. We make the weaker assumption that a message from any processor can, potentially, be delayed by the
adversary.

2.3.2. Omission attack limitations

We let £ (see Section 2.2.3) include ambient noise as well as collisions deliberately produced by the adversary and by
captured nodes. The adversary or the captured nodes could jam the medium such that the assumption of £ does not hold.
If too many messages are lost, however, that can act as an alarm that an adversary is present. This is something that the
adversary, who wants to go undetected, wants to avoid. Furthermore, if the adversary totally jams the communication
medium, clock synchronization will not take place. As a result, the adversary has no possibility to directly influence the
logical clock. Thus, this is not an option for an adversary that wants to manipulate tracking algorithms to present a misleading
view of its whereabouts and movements.

We note that the adversary cannot predict the broadcasting schedule of uncaptured nodes. Thus, adversarial collisions,
covered by & (together with ambient noise), are independent from non-adversarial collisions.

Gilbert et al. [13] consider the minimal requirements for message delivery under broadcast interception attacks. They
assume that the adversary intercepts no more than § broadcasts of the algorithm, where § is an unknown constant that
reflects the maximum amount of energy an adversary wants to use for disruption of communications. We note that the result
of Gilbert et al. is applicable in a model in which, in every period, the algorithm is able to broadcast at most « messages and
the adversary can intercept at most § of the algorithm’s messages. Our system settings are comparable to the assumptions
made by Gilbert et al. [ 13] on the ratio of 8 /«. However, in contrast to the unknown 8, we assume that the maximum ratio is
a known constant that reflects the maximum amount of disruption the adversary can get away with, without being detected.

2.3.3. Captured nodes

The adversary can capture nodes by moving to their location and accessing them physically. For any processor p;, we
assume that the number of captured and/or pulse-delay attacked nodes is no more than f, within its neighborhood, G;. Here,
f depends on |G;| and the filtering mechanism that is being used. (For example, 3f 4+ 1 < |G;| for the Byzantine agreement
masking technique as in [12] and 2f + € < |G;| for the outlier masking technique as in [28]; see Section 7 for more details.)

When the adversary captures a processor p;, the adversary gains all information contained in the processor’s memory,
like secret keys, seeds for pseudorandom generators, etc. The adversary can lead a captured processor p; to send incorrect
data to processors in G;. It can also lead the captured node to jam the communication media with noise or with collisions

—

among processors in G; . The set of target processors are further limited to a sphere with the captured node in the center (cf.
the sphere limitation for attacks launched directly by the adversary, in Section 2.3.1.) These noise and collision attacks are
also limited by & as described in Section 2.3.2, just like attacks launched directly by the adversary.

2.3.4. Security primitives

The existing literature describes many elements of the secure implementation of the broadcast primitives LBcast and
LBrecv using symmetric key encryption and message authentication (e.g., [26,31]). We assume that neighboring processors
store predefined pairwise secret keys. In other words, p;,p; € P : p; € G; store keys s;; : s;j = sj,i. The adversary
cannot efficiently guess s; ;. Confidentiality and integrity are guaranteed by encrypting the messages and adding a message
authentication code. We can guarantee messages’ freshness by adding a message counter (coupled with the beacon’s
timestamp) to the message before applying these cryptographic operations, and by letting receivers reject old messages,
say, from the clock’s previous incarnation. Note that this requires maintaining, for each sender, the index of the last
properly received message. As explained above, the freshness criterion is not a suitable alternative to fine-grained clock
synchronization in the presence of pulse-delay attacks.

3. Secure and self-stabilizing clock synchronization

In order to explain better the scope of the algorithm, we present a generic organization of secure clock synchronization
protocols. The objective of the clock synchronization protocol is (1) to sample the clocks of its neighbors by periodically
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broadcast beacons, (2) respond to beacons, and (3) aggregate beacons with their responses in records and deliver them to
the upper layer. Every node estimates the logical clock after sifting out responses to delayed beacons. Unlike objectives (1)
to (3), the clock estimation task is not a hard real-time task. Therefore, the algorithm outputs records to the upper layer that
synchronizes the logical clock after neutralizing the effect of pulse-delay attacks (see Section 7 for details on techniques for
filtering out delayed messages). The algorithm focuses on the following two tasks.

o Beacon scheduling: The nodes sample clock values by broadcasting beacons and waiting for their response. The task is to
guarantee round-trip message exchange.

e Beacon and response aggregation: Once a beacon completes the round-trip exchange, the nodes can deliver to the upper
layer the records of the beacon and its set of responses.

We present a design for an algorithm that samples clocks of neighboring processors by continuously sending beacons
and responses. Without synchronized clocks, the nodes cannot efficiently follow a predefined schedule. Moreover, assuring
reliable communication becomes hard in the presence of noise and message collisions. The celebrated Aloha protocol [1]
(which does not consider nondeterministic fluctuating skews) inspires us to take a randomized strategy for scheduling
broadcasts. We overcome the difficulties above and show that, with high probability, the neighboring processors are able to
exchange beacons and responses within a short period. Our scheduling strategy is simple; the processors choose a random
time to broadcast from a predefined period D. We use a redundant number of broadcasting timeslots in order to overcome
the clocks’ asynchrony. Moreover, we use a parameter, £, used to trade off between the minimal size of D and the probability
of having a collision-free schedule.

3.1. Beacon and response aggregation

The algorithm allows the use of clock synchronization techniques such as round-trip synchronization [11,12] and reference
broadcasting [9]. For example, in the round-trip synchronization technique, the sender p; sends a timestamped message ()
to receivers, pr € G;j, which receive the message at time t,. The receiver py responds with the message (4, t,, t3), which
Pk sends at time t3 and p; receives at time t,. Thus, the output records are in the form of (j, t1, {(k, (t2, t3, t4))}), where
{(k, (t3, t3, t4))} is the set of all received responses sent by nodes py.

We piggyback beacon and response messages. For the sake of presentation simplicity, let us start by assuming that all
beacon schedules are in a (deterministic) Round Robin fashion. Given a particular node p; and a particular beacon that p;
sends at time t!, we define t”’s round as the set of responses, (tl, t/), that p; sends to node p; € G; for p;’s previous beacon, t},
where ¢! is the time in which p; received pj’s beacon tl. Node p; piggybacks its beacon with the responses to nodes, pj» and

the beacon message, (v;), is of the form (¢!, (e, d"y, (d2, ¢2), . ..), which includes all processors pj, € Gi.

Now, suppose that the schedules are not done in a Round Robin fashion. We denote p;'s sequence of up to BLog most
recently sent beacons with [té(k)]of,KBL,,g, among which t/(k) is the kth oldest and BLog is a predefined constant.> We assume
that, in every schedule, p; receives at least one beacon from p; € G; before broadcasting BLog beacons. Therefore, p;’s beacon

message, (v;), can include a response to p;'s most recently received beacon, r§ (k), where 0 < k < BLog.

Since not every round includes a response to the last beacon that p; sends, p; stores its last BLog beacon messages in a
FIFO queue, g;[k] = [tﬁ]ofkmg. Moreover, every beacon message includes all responses to the BLog most recently received
beacons from all nodes. Let q; = qj[klo<k<prog b€ pi’'s FIFO queue of the last BLog records of the form (d(k), t{(k)), among

which (k) is p;’s kth oldest beacon from Pj» t} (k) is the time at which it was received and i # j. The new form of the beacon
message is (i, qj;, G, , - - -)» which includes all processors p;, € G;. In the round-trip synchronization, the nodes take the
role of a synchronizer that sends the beacon and waits for responses from the other nodes. The program of node p; considers
both cases in which p; is, and is not, respectively, the synchronizer.

3.2. The Algorithm’s pseudo-code

The pseudo-code, in Fig. 2, includes two procedures: (1) a do-forever loop that schedules and broadcasts beacon messages
(lines 66 to 80) and (2) an upon message arrival procedure (lines 82 to 87).

3.2.1. The do-forever loop

The do-forever loop periodically tests whether the “timer” has expired (in lines 67 to 74).# In case the beacon’s next
schedule is “too far in the past” or “too far in the future”, then processor p; “forces” the “timer” to expire (line 69). The
algorithm then removes data, gathered by p; itself, that are too old (lines 70 to 71). (Note that under normal circumstances,

3 We note that BLog depends on the safety parameter, ¢, for assuring that nodes successfully broadcast and other parameters such as the bound on
number of interfering processors, 1, and the bound on clock skews ppin and pmax (see Section 2).

4 Recall that by our assumptions on the system settings (Section 2), the do-forever loop’s timer will go off within any period of u/2. Moreover, since the
actual time cannot be predicted, we assume that the actual schedule has a uniform distribution over the period u. (A straightforward random scheduler
can assist, if needed, to enforce the last assumption.)
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the data never become too old before they are pushed out by new data at line 77 or line 86). The algorithm then tests that all
the stored data (including data received from others) are ordered and timely (line 72). Timely here means that timestamps
collected by a processor p; is not too old or in the future compared to the latest time of p;’s native clock, that p; has received. In
the case where the recorded information about beacon messages is incorrect, the algorithm flushes the queues (line 73). The
datareceived by others are tested at line 72 in the same way as at reception (line 83). Data that do not pass the test at line 83
are never stored. Therefore, if the buffers are flushed it is due to internal data corruption (in the starting configuration),
and not due to receipt of bad data (during execution). We note that transient faults can be the source of such internal data
corruption. However, bad data may be received (and therefore rejected) at any time during the execution, say, from captured
nodes.

When the timeslot arrives, the processor outputs a synchronizer case record for the oldest beacon, in the queue with its
own beacons (line 76). It contains for each of the other processors, p; € G;, the receive time of that beacon. Moreover, it
contains, for processor p;, the send and receive times for a later message back from p; to p;. These data can be used for the
round-trip synchronization and delay detection in the upper layer. Then, p; enqueues the timestamp of the beacon it is about
to send during this schedule (line 77). The next schedule for processor p; is set (lines 78 and 79) just before it broadcasts the
beacon message (line 80).

3.2.2. The message arrival

When a beacon message arrives (line 82), processor p; gets j, the id of the sender of the beacon, r, p;’s native time at the
receipt of the beacon, and v, the message of the beacon. The algorithm sanity checks the received data (line 83). If they are
ordered and timely (not too old or in the future compared to the latest timestamp from p;) the data are processed (lines 84
to 87). Otherwise the message is ignored.

Passing the sanity check, processor p; then outputs a record of the non-synchronizer case (lines 84 to 85). These data can
be used for the reference broadcast technique in the upper layer. It finds the oldest beacon in the queue with data on beacons
received by p;. The record contains responses from processors py € G; that refer to this beacon. Furthermore, it contains data
about later messages back, from the receiving processors py to processor p;. Now that the information connected to the oldest
beacon from p; has been output, processor p; can store the arrival time of newly received message (line 86) and the message
itself (line 87).

4. Execution system model

4.1. The interleaving model

Every processor, p;, executes a program that is a sequence of (atomic) steps. For ease of description, we assume the
interleaving model where steps are executed atomically, a single step at any given time. An input event, which can be either
the receipt of a message or a timer going off, triggers each step of p;. Only steps that start from a timer going off may include
(at most once) an LBcast operation. We note that there could be steps that read the clock and decide not to broadcast.

Since no self-stabilizing algorithm terminates (see [5]), the program of a processor consists of a do-forever loop. An
iteration is said to be complete if it starts in the loop’s first line and ends at the last (regardless of whether it enters conditional
branches). A processor executes other parts of the program (and other programs) and activates the loop upon a time-out.
We assume that every processor triggers the loop’s time-out within every period of u/2, where u > w + d is the (operation)
timeslot, where w < u/2 is the time it takes to execute a complete iteration of the do-forever loop. Since processors execute
programs other than the clock synchronization, the actual time, ¢, in which the timer goes off, is hard to predict. Therefore,
for the sake of simplicity, we assume that time t is uniformly distributed.?

The state s; of a processor p; consists of the value of all the variables of the processor (including the set of all incoming
communication channels, {queue; ;|p; € G;}). The execution of a step in the algorithm can change the state of a processor.
The term system configuration is used for a tuple of the form (s1, s, . . .), where each s; is the state of processor p; (including
messages in transit for p;). We define an execution E = ¢[0], a[0], c[1], a[1], ... as an alternating sequence of system
configurations c[x] and steps a[x], such that each configuration c[x 4 1] (except the initial configuration c[0]) is obtained
from the preceding configuration c[x] by the execution of the step a[x]. We often associate the notation of a step with its
executing processor p; using a subscript, e.g., a; (see Fig. 1).

4.2. Tracing timestamps and communications

As stated in Section 2.2.1, we associate each LBcast and LBrecv operation with a timestamp for the moment of sending
and receiving. The timestamp of an LBcast operation is the native time at which message m is sent, and this information is
included in the sent message. When processor p; executes the LBrecv operation, an event is triggered with the arguments
Jj.t,and (m): p; € G; is the sending processor of message (m), which p; receives when p;’s native clock is t. We note that

5 We note thata simple random scheduler can be used for the case in which time t does not follow a uniform distribution.
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Constants: { = tuning parameter (see Corollary 1)
P . £{+log max in | +1 i
2 i = id of executing processor BLog = 2[6—2 2(7( l[ci?gg (1/fin/l:)] )n) 1. backlog size

n = bound on # of interfering processors (incl. itself)
4w = compensation time between lines 67 and 80

d = upper bound on message communication delay
6 u = size of a timeslot in time units (u > d + w)

D =3 n([pmaz/pmin| + 1), the broadcast timeslots
10 T = number of possible states of a timestamp

Pmin = lower bound on clock skew
12 pmax = upper bound on clock skew

14 Variables:

m[n] = all received messages and timestamp 20 native_clock : immutable storage of the native clock

16 each entry is an array v[n] cslot : [0, D-1] = current timeslot in use
each entry is a queue q[BLog) 22 next: [0, T -1] = schedule of next broadcast
18 each entry is a pair (s, r) cT = last do-forever loop's timestamp
External functions: 32 first(Q) : least recently enqueued element in Q, number 0

26 output(R) : delivers record R to the upper layer last(Q) : most recently enqueued element in Q

choose(S) : uniform selection of an item from the set S 34 full(Q) : whether queue Q is full
28 keys(v) : the set of id:s that indexes v flush(Q) : empties the queue Q

enqueue(Q) : adds an element to the end of the queue Q 36 get_s(Q) : list elements of field s in Q
30 dequeue(Q) : removes the front element of the queue Q get.r(Q) : list elements of field r in Q

size(Q) : size of the queue Q

Macros and inlines:
40 border(r) : (D-cslot)u+t mod T
schedule(?) : cslot-u+t mod T
42 leq(x,y):(3b:0<b<2BLogDuAy mod T=x+b mod T)
enq(q, m) : {while full(q) do dequeue(q); enqueue(m) }
44 G(j) : keys(mlj].v)

46 expire_s(q.r): (x Expires data based on send times x)
while size(q) > 0 A = leq(first(q).s, 1) do
48 dequeue(q)
expire_r(gq.t): (x Expires data based on receive times — as €xpire_s but with .r instead of .s *)
s0 check() : A {checkdata(m[j].v,j) : j € keys(m[i].v)}
checkdata(vy) : (x Coherency test for data from processor j *)
52 A {checklist(get_-s(v[k].q), Iclock(v,j)) A (j = k Vv checklist(get-r(v[k].q), Iclock(vy))) : k € keys(v)}
checklist(g,t) : (* Checks that all elements of a list are chronologically ordered and not in the future )
54 size(q) =0V (leq(first(q).r) Aleq(last(q).r) A{lea(q[b1 ].q[b2]) : b1 < b2, {b1,b2} C [1,size(q)]})
Iclock(vy) : last(v[j].q).s
56
(* Get response-record for py, for pj as the synchronizer *)
8 18(s, ), k) : {if (3 b7, bd, bk, bh:
s = mlj1vlj Ll Ls = mlk]vlj gl )s A
60 mk].v[k].q[bh 1.s = m[j].v[k].q[bd ].s A
leq(m[j].v[j].q[b] |.s, m[j].v[k].q[b3 ].r) A
62 leq(m[k].v[j].q[b% |.r, mk].v[k].q[b5 ].5)) .
then return (m[k].v[].q[b¥ .r, m[k].v[k].q[b5 |5, m[j].v[k].q[b3 ].r)
64 else return |}

Fig. 1. Constants, variables, external functions, and macros for the secure and self-stabilizing native clock sampling algorithm in Fig. 2.

66 Do forever, every u/2 82 Upon LBrecv(j, 7, v) (ki #£jx*)
let ¢T = read(native_clock) + w if checkdata(v,j) then
68 if - (leq(next-2Du, cT) Aleq(cT, next+u)) then 84 let s = first(m[i].v]j].q).s
next — cT output (j, 5, {(k, ts(s, j, k) : k € G\ {7}})
70 expires(m[i].v[i].q, ¢T) 86 enq(m[i].v[j].q, (last(v[j].q).s, 1))
V j € G(4)\{3} do expire_r(m[i].v[j].q, cT) mjl.v — v

72 if = check() then
Y 4,k € P do flush(m[j].v[k].q)

74 if leq(neat, cT) Aleq(cT, next + w) then
let s = first(m[i].v[i].q).s

76 output (i, s, {(j, ts(s, i, 7)) : j € G()\{i}})
enq(m[i).v[i].q, (T, 1))

78 (next, cslot) «— (border(next), choose([0, D-1]))
next < schedule(next)

80 LBcast(m][i])

Fig. 2. Secure and self-stabilizing native clock sampling algorithm (code for p; € P).
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every step can be associated with at most one communication operation. Therefore it is sufficient to access the native clock
counter only once during or at the end of the operation. We denote by C'(q;) the native clock value associated with the
communication operation in step a;, which processor p; takes.

4.3. Concurrent versus independent broadcasts

We say that processor p; € P performs an independent broadcast in a step a; € E if there is no processor p; € a that
broadcasts in a step a; € E, such that either (1) g; is performed after g; and before step aj, that receives the message that
was sent in a; (where p, € G;), or (2) g; is performed after a; and before step a;, that receives the message that was sent in
a; (where py € Gj). We say that processor p; € P performs a concurrent broadcast in a step a; if g; is dependent (i.e., “not
independent”). Concurrent broadcasts can cause message collisions, as described in Section 2.2.2.

4.4, Fair executions

We say that execution E has fair communications, if, whenever processor p; broadcasts £ successive messages (successive
in terms of the algorithm’s messages sent by p;), at least one of these broadcasts is fair, i.e., not lost to noise or adversarial
collisions. We note that fair communication does not imply reliable communication even for £ = 1, because a message
can still be lost due to non-adversarial collisions. An execution E is fair if the communications are fair and every correct
processor, p;, executes steps in a timely manner (by letting the loop’s timer go off in the manner that we explain above).

4.5. The task

We define the system’s task by a set of executions called legal executions (LE) in which the task’s requirements hold. A
configuration c is a safe configuration for an algorithm and the task of LE provided that any execution that starts in c is a
legal execution (belongs to LE). An algorithm is self-stabilizing with relation to the task of LE if every infinite execution of
the algorithm reaches a safe configuration with relation to the algorithm and the task.

5. Correctness

In this section we demonstrate that the task of random broadcast scheduling is achieved by the algorithm that is
presented in Fig. 2. Namely, with high probability, the scheduler allows the exchange of beacons and responses within a
short time. The objectives of the random broadcast scheduling task are defined in Definition 1 and consider broadcasting
rounds. To consider a number of broadcasting rounds from a point in time (such as the time associated with a step a), is to
consider the time needed for every processor to fit in that many partitions, i.e., broadcast that many times.

Definition 1 (Nice Executions). Let us consider the executions of the algorithm presented in Fig. 2. Furthermore, let us
consider a processor p; and let I be the set of all execution prefixes, E,, such that, within the first & broadcasting rounds
of Er;, (1) every processor p; € G; (including p;) successfully broadcasts at least one beacon to all processors p; € G; N G;j and
(2) every such processor p; gets at least one response from all such processors p,. We say that execution E is nice in relation
to processor p; if E has a prefix in I;.

The proof of Theorem 1 (Section 5.3, page 30) demonstrates that, when considering R = 2R, for any processor p;, the
algorithm reaches a nice execution in relation to p; with probability of at least 1 — 27¢*1 where ¢ is a predefined constant

andR = [& Hlogz_((l[o‘ga("]/_" ;“/“e‘;H)”)l is the expected time it takes all processors p; € G; (when considering the neighborhood

of any processor p;) to each broadcast at least one message that is received by all other processors in G; N G;.5

Once the system reaches a nice execution in relation to a processor p;, and the exchange of beacons and responses occurs,
the following holds. There is a set, S;, of beacon records that are in the queues of m; and the records that were delivered to
the upper layer. The set S; includes a subset, S; C S;, of records for beacons that were sent during the last R (Definition 1)
broadcasting rounds. In S/, it holds that every processor p; € G; — {i} has a beacon record, rec;, such that every processor
Pk € G; N Gj — {j} has a beacon record, reci, which includes a response to rec;. In other words, R is a bound on the length
of periods for which processor p; needs to store beacon records. Moreover, with high probability, within R broadcasting
rounds, p; gathers beacons from all processors p; € G;. Furthermore, for each such beacon from a processor p; € G, p;
gathers responses to those beacons from all processors py € G; N G;. For this reason, we set BLog to be R.

5.1. Scenarios in which balls are thrown into bins

We simplify the presentation of the analysis by depicting different system settings in which the message transmissions
are described by a set of scenarios in which balls are thrown into bins. The sending of a message by processor p; corresponds
to a player p; throwing a ball. Time is discretized into timeslots that are long enough for a message to be sent and received

6 1o distinguish between timestamps that should be regarded as being in the past and timestamps that should be regarded as being in the future, we
require that T > 4.R. In other words, we want to be able to consider at least 2 round-trips in the past and 2 round-trips in the future.
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within. The timeslots are represented by an unbounded sequence of bins, [by ]xen. Transmitting a message during a timeslot
corresponds to throwing a ball towards and aiming a ball at the corresponding bin.

ﬁ
Messages from processor p; can collide with messages from up to n — 1 other processors if | G;| = n. Furthermore,

in the worst-case scenario |G;| = |a| = n for processor p;. We want to guarantee with high probability that within
G; everyone exchanges messages. Therefore, we look at n players throwing balls into bins when analyzing the message
scheduling algorithm. Our results will also hold for cases when |G;| < n and when |a| < n, as the probability of collisions
in those cases is equal to or lower than that for the worst-case scenario.

Before analyzing the general system settings, we demonstrate simpler settings to acquaint the reader with the problem.
Concretely, we look at the settings in which the clocks of the processors are perfectly synchronized and the communication
channels have no noise (or omission attacks). We ask the following question: How many bins are needed for every player to
get at least one ball, that is not lost due to collisions, in a bin (Lemmas 1 and 2)? We then relax the assumptions on the system
settings by considering different clock offsets (Claim 2) and by considering different clock skews (Claim 3). We continue
by considering noisy communication channels (and omission attacks) (Claim 4) and conclude the analysis by considering
general system settings (Corollary 1).

5.1.1. Collisions

A message collision corresponds to two or more balls aimed at the same bin. We take the pessimistic assumption that,
when balls are aimed at neighboring bins, they collide as well. This is to take non-discrete time (and later on, different clock
offsets) into account. Broadcasts that “cross the borders” between timeslots are assumed to collide with messages that are
broadcast in either bordering timeslot. Therefore, in the scenario in which balls are thrown into bins, two or more balls
aimed at the same bin or bordering bins will bounce out, i.e., not end up in the bin.

Definition 2. When aiming balls at bins in a sequence of bins, a successful ball is a ball that is aimed at a bin b. Moreover, it is
required that no other ball is aimed at b or a neighboring bin of b. A neighboring bin of b is the bin directly before or directly
after b. An unsuccessful ball is a ball that is not successful.

5.1.2. Synchronous timeslots and communication channels that have no noise
We prove a claim that is needed for the proof of Lemma 1.

Claim 1. For all x > 2 it holds that

N\ o1

Proof. It is well known that

(1—1—1) <e (2)
X

for any x > 1. From this it follows that

) ()

forx>2. O

Lemmas 1 and 2 consider an unbounded sequence of bins that are divided into “circular” subsequences that we call
partitions. We simplify the presentation of the analysis by assuming that the partitions are independent. Namely, a ball that
is aimed at the last bin of one partition normally counts as a collision with a ball in the first bin of the next partition. With
this assumption, a ball aimed at the last bin and a ball aimed at the first bin in the same partition count as a collision instead.
These assumptions do not cause a loss of generality, because the probability for balls to collide does not change. It does not
change because the probability for having a certain number of balls in a bin is symmetric for all bins.

We continue by proving properties of scenarios in which balls are thrown into bins. Lemma 1 states the probability of a
single ball being unsuccessful.

Lemma 1. Let n balls be, independently and uniformly at random, aimed at partitions of 3n bins. For a specific ball, the probability
that it is not successful is smaller than 1 — 1/e.
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Proof. Let b be the bin that the specific ball is aimed at. For the ball to be successful, there are 3 out of the 3n bins that no
other ball should be aimed at, b and the two neighboring bins of b. The probability that no other (specific) ball is aimed at
any of these three bins is

3

3n
The different balls are aimed independently, so the probability that none of the other n — 1 balls are aimed at bin b or a
neighboring bin of b is

3 n—1 1 n—1
(1—5) :<]_E> . (5)

With the help of Claim 1, the probability that at least one other ball is aimed at b or a neighboring bin of b is

1\"! 1
1_(1_7) <1-1 g (6)
n e

Lemma 2 states the probability of any player not having any successful balls after a number of throws.

(4)

Lemma 2. Consider R independent partitions of D = 3n bins. For each partition, let n players aim one ball each, uniformly and
at random, at one of the bins in the partition. Let R > (¢ + log, n)/(—log, p), where p = 1 — 1/e is an upper bound on the
probability of a specific ball being unsuccessful in a partition. The probability that any player gets no successful ball is smaller than
274

Proof. By Lemma 1, the probability that a specific ball is unsuccessful is upper bounded by p = 1 — 1/e. The probability
that a player does not get any successful ball in any of R independent partitions is therefore upper bounded by pF.
LetX;,i € [1, n] be Bernoulli random variables with the probability of a ball being successful that is upper bounded by pf:

(7)

|1 ifplayer i gets no successful ball in R partitions
"7 |0 ifplayeri gets at least one successful ball in R partitions.

Let X be the number of players that get no successful ball in R partitions:

X = Xn:xi. (8)
i=1

The different X; are a finite collection of discrete random variables with finite expectations. Therefore we can use the
Theorem of Linearity of Expectations [21]:

EIX] =E [ZX} = anE[x,-] < Z p* = np". (9)
i=1 i=1 i=1

The random variables assume only non-negative values. Markov’s Inequality [21], Pr(X > a) < E[X]/aq, therefore gives us
E[X] R
Pr(X;éO):Pr(le)ngnp . (10)

For np® < 27¢ we get that Pr(X # 0) < 27¢, which gives us
npf <27t =
log,(np®) < —t =
log,(n) + Rlog,(p) < —¢ =
- —¢—log,n  £+log;n
log, p —log,p -

(11)

We now turn to relaxing the simplifying assumptions of synchronized clocks and communication channels with no noise.
We start by considering clock offsets and skews. We then consider noisy communication channels.

5.1.3. Clock offsets

The clocks of the processors have different offsets, and therefore the timeslot boundaries are not aligned. We consider
a scenario that is comparable to system settings in which clocks have offsets. In the scenario of balls that are thrown into
bins, offsets are depicted as throwing a ball that hits the boundary between bins and perhaps hits the boundary between
partitions.
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Claim 2 considers players that have individual sequences of bins. Each sequence has its own alignment of the bin
boundaries. Namely, a bin of one player may “overlap” with more than one bin of another player. Thus, the different bin
sequences that have different alignments correspond to system settings in which clocks have different offsets.

The proof of Claim 2 describes a variation of the scenario in which balls are thrown into bins. In the new variation, balls
aimed at overlapping bins will bounce out. For example, consider two balls aimed at bin bﬁ‘ and bj’.‘,, respectively. If bins bi.‘

and bj’-‘/ overlap, the balls will cause each other to bounce out.

Claim 2. Consider the scenario in which balls might hit the bin boundaries and take R and D as defined in Lemma 2. Then, we
have that the probability that any player gets no successful ball is smaller than 2~¢.

Proof. The proof is demonstrated by the following two arguments.

Hitting the boundaries between bins. From the point of view of processor p;, a timeslot might be the time interval [t, t + u),
whereas for processor p; the timeslot interval might be different and partly belong to two different timeslots of p;. When
considering the scenario in which balls are thrown into bins, we note that a bin of one player might be seen as parts of two
bins of another player.

In other words, every player, p;, has its own view, [b};]keN, of the bin sequence [by]xen. The sequence [by Jxey corresponds
to an ideal discretization of the real time into timeslots, whereas the sequence [b;'c]keN, corresponds to a discretization of
processor p;’s native time into timeslots. We say that the bins [b};] and [bﬁc,] overlap when the corresponding real time periods
of [b}] and [b},] overlap.

Lemma 2 regards balls aimed at neighboring bins as collisions. We recall the requirements that are made for ball collisions
(see Section 5.1.1). These requirements say that balls aimed at neighboring bins in [by]xeny Will bounce out. The proof is
completed by relaxing the requirements that are made for ball collisions in [by]xen. Let us consider the scenario in which
players p; and p; aim their balls at bins b} and b, respectively, such that both bj, and b, overlap. The bin b}, can either

' and b’,;, or (exclusively) overlap with the bins b’,;, and b

y v K41
_p b;(, and b;<'+1) are regarded as colliding with the ball of player p;. The same argument

applies to bin by, overlapping with bins bi_,. b} and b}, ;. In other words, the scenario of Lemma 2, without offset and
neighboring bins leading to collision, is a superset in terms of bin overlap to the scenario in which offsets are introduced.
Hitting the boundaries between partitions. Even if the timeslot boundaries are synchronized, processor p; might regard the
time interval [t, t 4- Du) as a partition, whereas processor p; might regard the interval [t, t 4 Du) as partly belonging to two
different partitions. When considering the scenario in which balls are thrown into bins, this means that the players’ view
on which bins are part of a partition can differ.

For each bin, the probability that a specific player chooses to aim a ball at that bin is 1/D, where D is the number of bins
in the partition. Therefore the probability for a ball being successful does not depend on how other players partition the
bins. O

overlap with the bins bL/_]

overlapping with b}; (namely b,

Balls aimed at any of the bins possibly

5.1.4. Clock skews

The clocks of the processors have different skews. Therefore, we consider a scenario that is comparable to system settings
in which clocks have skews.

In Claim 3, we consider players that have individual sequences of bins. Each sequence has its own bin size. The size of
player p;'s bins is inversely proportional to processor p;'s clock skew, say 1/p;. We assume that the balls that are thrown
by any player can fit into the bins of any other player. (Say the ball size is less than 1/pmax.) Thus, the different bin sizes
correspond to system settings in which clocks have different skews.

Let us consider the number of balls that player p; may aim at bins that overlap with bins in a partition of another player.
Suppose that player p; has bins of size 1/pmax and that player p; has bins of size 1/pmin. Then player p; may aim up to
P = [ Pmax/Pmin] + 1balls in one partition of player p;.

Claim 3. Consider the scenario with clock skews and take R and D as defined in Lemma 2. Let p = 1 — 1/e be an upper bound on
the probability of a specific ball being unsuccessful in a partition. By taking Rge,, = R > (£+log, pn)/(— log, p) € 0(¢+log(n)),
we have that the probability that any player gets no successful ball is smaller than 2~¢.

Proof. By taking the pessimistic assumption that all players see the others, as well as themselves, as throwing o balls each

in every partition we have an upper bound on how many balls can interfere with each other in a partition. Thus by taking

partitions of D = 3pn bins instead of the 3n bins of Lemma 2, and substituting n for pn in the R of Lemma 2,

R (E+10spm)
—log, p

the guarantees of Lemma 2 hold. O

€ 0(¢ + log(n)), (12)
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5.1.5. Communication channels with noise

In our system settings, message loss occurs due to noise and omission attacks and not only due to the algorithm’s message
collisions. Recall that & defines the number of broadcasts required in order to guarantee at least one fair broadcast (not lost
to noise or adversarial collisions; see Section 2.2.3). In the scenario in which balls are thrown into bins, this correspondingly
means that at most £ — 1 balls are lost to the player’s trembling hand for any of its & consecutive throws. Omission attacks
are incorporated into the & assumption and are thus not seen as a ball being thrown.

Claim 4. Consider the communication channels with noise and take R and D as defined in Lemma 2. By taking Rnoise > &R, we
have that the probability that any player gets no successful ball is smaller than 2~¢.

Proof. By the system settings (Section 2), the noise in the communication channels is independent of collisions. We take the
pessimistic approach and assume that, when a ball is lost to noise, it can still cause other balls to be unsuccessful (just as if it
was not lost to noise). In order to fulfill the requirements of Lemma 2, we can take &R partitions instead of R partitions. This
will guarantee that each player gets at least R “fair” balls. That is, each player gets at least R balls that are either successful
or that bounce out due to collision with another ball. Thus, the asymptotic number of bins is unchanged and the guarantees
of Lemma 2 still hold. O

5.1.6. General system settings
The results gained from studying the scenario in which balls are thrown into bins are concluded by Corollary 1, which is
demonstrated by Lemma 2 and Claims 2-4.

Corollary 1. Suppose that every processor broadcasts once in every partition of D timeslots. Consider any processor p;. The
probability that every processor p; € G; successfully broadcasts at least one beacon to every processor p, € G; N G; within R

partitions is at least 1 — 2~¢ when

D = 3pn € O(n) (13)

R = 11080000 64 jogn) (14)
—log, p

/A) = {pmax/pminw +1 (15)

p=1-— 1 (16)
e

Corollary 1 shows that, within a logarithmic number of broadcasting rounds, for any processor p;, all processors in G;
exchange at least one beacon with their neighbors in G;, with high probability. (See the beginning of Section 5.1 for the

discussion on the n balls versus a processor p; for which | G; | < n.)

5.2. The task of random broadcast scheduling

So far, we have analyzed a general scenario in which balls are thrown into bins. We now turn to showing that the scenario
indeed depicts the implementation of the algorithm (which is presented in Fig. 2).

As stated earlier, when we talk about the execution of, or complete iteration of, lines 67 to 80, we do not imply that the
branch in lines 75 to 80 necessarily is entered.

Definition 3 (Safe Configurations). Let E be a fair execution of the algorithm presented in Fig. 2 and ¢ € E a configuration
in which «; = (leq(next; — 2Du, cT;) A leq(cT;, next;) holds for every processor p;. We say that c is safe with respect to LE.

We show that cT; follows the native clock of processor p;. Namely, the value of ¢T; — w is in [C! — u, C'].

Lemma 3. Let E be a fair execution of the algorithm presented in Fig. 2, and ¢ a configuration that is at least u after the starting
configuration. Then, it holds that (leq(C' — u, cT; — w) A leq(cT; — w, C')) inc.

Proof. Since E is fair, the do-forever loop’s timer goes off in every period of u/2. Hence, within a period of u, processor p;
performs a complete iteration of the do-forever loop in an atomic step a;.

Suppose that c immediately follows a;. According to line 67, the value of cT; — w is the value of Clinc. Let t = cT;—w = C’.
It is easy to see that leq(t — u, t) A leq(t, t) inc.

Let a] be an atomic step that includes the execution of lines 83 to 87 (whether entering the branch or not), follows c,
and immediately precedes ¢’ € E. Let t' = C'in c’. Then, within a period of at most u/2, processor p; executes step a; € E,
which includes a complete iteration of the do-forever loop. Since the period between g; and ] is at most u/2, we have that
t' —t < u/2. Therefore leq(C' — u, cT; — w) holds in ¢’ as leq(C!, cT; — w) holds in c. It also follows that leq(cT; — w, C'))
holdsinc’as C' = ¢T; — winc. O

We show that when a processor p; executes lines 75 to 80 of the algorithm presented in Fig. 2 it reaches a configuration
in which «; holds. This claim is used in Lemma 4 and Lemma 5.
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Claim 5. Let E be a fair execution of the algorithm presented in Fig. 2. Moreover, let a; € E a step that includes a complete iteration
of lines 67 to 80 and c the configuration that immediately follows a;. Suppose that processor p; executes lines 75 to 80 in a;; then
«; holds in c.

Proof. Among the lines 75 to 80, only lines 78 to 79 can change the values of «;. Let t; = next; immediately after line 74
and let t; = next; immediately after the execution of line 79. We denote by A = t, — t; the value that lines 78 to 79 add to
next;, i.e, A = (y + D — x)u, where 0 < x,y < D — 1. Note that x is the value of cslot; before line 78 and y is the value of
cslot; after line 78. Therefore, A € [u, 2D — 1)u].

By the claim'’s assertion, we have that leq(cT;, t; + u) holds before line 78. Since u < A, it holds that leq(cT;, t; + A), and
therefore leq(cT;, t;) holds.

Moreover, by the claim assertion we have that leq(ty, cT;) holds. Since A < (2D — 1)u, it holds that A — 2Du < —u. This
implies that leq(t; — 2Du + A, cT;). Therefore leq(t, — 2Du, cT;) holds. O

We show that, starting from an arbitrary configuration, any fair execution researches a safe configuration.
Lemma 4. Let E be a fair execution of the algorithm presented in Fig. 2. Then, within a period of u, a safe configuration is reached.

Proof. Let p; be a processor for which ¢; does not hold in the starting configuration of E. We show that, within the first
complete iteration of lines 67 to 80, the predicate «; holds. According to Lemma 3, all processors, p;, complete at least one
iteration of lines 67 to 80, within a period of u.

Let a; € E be the first step in which processor p; completes the first iteration. If o; does not hold in the configuration that
immediately precedes a;, then either (1) the predicate in line 68 holds and processor p; executes line 69 or (2) the predicate
of line 74 holds at line 68.

For case (2), immediately after the execution of line 69, the predicate —(leq(next; — 2Du, cT;) A leq(cT;, next;)) does not
hold, because —(leq(t — 2Du, t) A leq(t, t)) is false for any t. Moreover, the predicate in line 74 holds, since leq(t, t + u)
holds for any t.

In other words, the predicate in line 74 holds for both cases (1) and (2). Therefore, p; executes lines 75 to 80 in a;. By
Claim 5, ¢; holds for the configuration that immediately follows a;. By repeating this argument for all processors p;, we show
that a safe configuration is reached within a period of u. O

We demonstrate the closure property of safe configurations.

Lemma 5. Let E be a fair execution of the algorithm presented in Fig. 2 that starts in a safe configuration c, i.e., a configuration
in which «; holds for every processor p; (Definition 3). Then, every configuration in E is safe with respect to LE.

Proof. Let t; be the value of p;’s native clock in configuration c and a; € E be the first step of processor p;.

We show that «; holds in configuration ¢’ that immediately follows q;. Lines 83 to 87 do not change the value of «;. By
Claim 5, if a; executes lines 75 to 80 within one complete iteration, then «; holds in c’. Therefore, we look at step a; that
includes the execution of lines 67 to 74, but does not include the execution of lines 75 to 80.

Let t; = cT;jinc and t; = cT; in ¢’. According to Lemma 3, and by the fairness of E, we have thatt, — t; mod T < u.
Furthermore, let A = next; — Du and B = next; in c. The values of next; — Du and B = next; do not change in ¢’. Since
o is true in c, it holds that leq(A, t1) A leq(t1, B). We claim that leq(A, t;) A leq(tz, B). Since leq(t1, B) in ¢, we have that
leq(ty, B + t; — t1) while p; executes line 74 in a;. As a; does not execute lines 75 to 80, the predicate in line 74 does not
hold in a;. As leq(t;, B) and t; — t; mod T < u the predicate in line 74 does not hold iff /eq(t,, B). Furthermore, we have that
leq(A, t1), leq(ty, B), and leq(t;, B). AsO < t, — t; mod T < u we have that leq(A, t;). Thus, ¢’ is safe as ; holdsin¢’. O

5.3. Nice executions

We claim that the algorithm (presented in Fig. 2) implements nice executions with high probability. We show that, for
any processor p;, every execution (for which the safe configuration requirements hold) is a nice execution in relation to p;
with high probability.

Theorem 1. Let E be a legal execution of the algorithm presented in Fig. 2. Then, for any processor p;, E is nice in relation to p;
with high probability.

Proof. Recall thatin a legal execution all configurations are safe (Section 2). Let g; be a step in which processor p; broadcasts,

a; be the first step after a; in which processor p; broadcasts, and a; be the first step after a; in which processor p; broadcasts.
Letr,r’, and r” be the values of next; between lines 78 and 79 in a;, a;, and a/’, respectively. The only changes done to next;

from line 79 in g; to lines 78 and 79 in a; are those two lines, which taken together change next; to next; + Du mod T.

The period of length Du that begins at r and ends at ’ mod T is divided in D timeslots of length u. A timeslot begins
attime r + xu mod T and ends at time r 4+ (x + 1)u mod T for a unique integer x € [0, D — 1]. The timeslot in which
a; broadcasts is cslot in c. In other words, processor p; broadcasts within a timeframe of r to r’, which is of length Du. By
the same arguments, we can show that processor p; broadcasts within a timeframe of 1’ to r”, which is of length Du. These
arguments can be used to show that, after a;, processor p; broadcasts once per period of length Du.



J.-H. Hoepman et al. / Theoretical Computer Science 412 (2011) 5631-5647 5645

Corollary 1 considers processor p;, and its set G;, which includes itself and its neighbors. The processors in a broadcast
once in every period of D timeslots. The timeslots are of length u, a period that each processor estimates using its native
clock. Let us consider a processor p; and R timeframes of length Du. By Corollary 1, the probability that all processors
pj € G; successfully broadcast at least one beacon to all processors p, € G; N Gj is at least 1 — 27¢. Now, let us
consider 2R timeframes of length Du. Consider the probability that each of the processors p; € G; successfully broadcasts
to all processors pr € G; N Gj and get a response from all such processors py. By Corollary 1, that probability is at least
(1-2792=1—-2"%14272¢ 5 1 — 271 Therefore, by Definition 1, for any processor p;, E is nice in relation to p; with
high probability. O

6. Performances of the algorithm

Several elements determine the precision of the clock synchronization. The clock sampling technique is one of them. Elson
et al. [9] show that the reference broadcast technique can be more precise than the round-trip synchronization technique.
We allow the use of both techniques. Another important precision factor is the quality of the approximation of the native
clocks of neighboring nodes. Our extensive clock sample records allows for both linear regression and phase-locked looping
(see Romer et al. [24]). Moreover, the clock synchronization precision improves as neighboring processors are able to sample
each other’s clocks more frequently. However, due to the limited energy reserves in sensor networks, careful considerations
are required.

Let us consider the continuous operation mode. If the period of the clock samples is too long, the clock precision suffers,
as the skews of the native clocks are not constant. Thus, an important measure is round;, where round; is the time it takes a
processor p; and its neighbors in G; to exchange beacons and responses. In other words, round; is the time it takes (1) every
processor p; € G; (including p;) to successfully broadcast at least one beacon to all processors p; € G; N G; and (2) every such
processor p; to get at least one response from all such processors py.

Let us consider ideal system settings in which broadcasts never collide. In the worst case, |G;| = |a| = n. Sending
n beacons and getting n responses to each of these beacons requires the communication of at least O(n®) samples. By
Corollary 1 and Theorem 1, we get that 2R timeframes of length Du are needed. We also get that R € O(logn) and D € O(n).
The timeslot size u is needed to fit a message with BLog = 2R responses to up to n processors. Hence, u € O(nlogn).
Therefore round; € O(n?(logn)?). Moreover, with a probability of at least 1 — 27¢+1, the algorithm can secure a clock
sampling period that is O((log n)?) times the optimum.

We note that the required storage is in O(n? log nlog T). By Lemma 4, starting in an arbitrary configuration, our system
stabilizes within u time, and as we have seen above u € O(nlog n).

6.1. Optimizations

We can use the following optimization, which is part of many existing implementations. Before accessing the
communication media, a processor p; waits for a period d and broadcasts only if there was no message transmitted during
that period. Thus, processor p; does not intercept broadcasts, from a processor p; € G;, that it started receiving (and did not
finish) before time t — d, where t is the time of the broadcast by p;. In that case it aborts its message. For p;, and for the sake
of the worst-case analysis, this counts as a collision. However, for p; it is a successful broadcast (assuming that the message
is not lost to noise or to collision with another message).

7. Discussion

Sensor networks are particularly vulnerable to interference, whether as a result of hardware malfunction, environmental
anomalies, or malicious intervention. When dealing with message collisions, message delays and noise, it is hard to separate
malicious from non-malicious causes. For instance, it is hard to distinguish between a pulse-delay attack and a combination
of failures, e.g., a node that suffers from a hidden terminal failure, but receives an echo of a beacon. Recent studies consider
more and more implementations that take security, failures and interference into account when protecting sensor networks
(e.g.,[6,8,7], which consider multi-channel radio networks). We note that many of the existing implementations assume the
existence of a fine-grained synchronized clock, which we implement.

Message scheduling is important for clock synchronization. Moradi et al. [22] compare clock synchronization algorithms
for wireless sensor networks considering precision, cost and fault tolerance. They show that, without a message scheduling
algorithm of some sort, the Reference Broadcast algorithm of [9] suffers heavily from collisions.

Ganeriwal et al. [12] overcome the challenge of delayed beacons using the round-trip synchronization technique. With
this technique the average delay of a message from processor p; to processor p; € G;, and a message back from p; to p;, can
be calculated using the send and receive times of those messages. Thus, a delay attack can be detected if the delay is larger
than some known upper bound on message delay. They use the Byzantine agreement protocol [17] for a cluster of g nodes
where all g nodes are within transmission range of each other. Thus, Ganeriwal et al. require 3f 4+ 1 < g. Song et al. [28]
consider a different approach that uses the reference broadcasting synchronization technique. Existing statistics models
refer to malicious time offsets as outliers. The statistical outlier approach is numerically stable for 2f +¢ < g, where g is the
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number of neighbors and where € is a safety constant (see [28]). We note that both approaches are applicable to our work.
We further note that a processor px € G; N G; can detect delay attacks against beacons that nodes p; and p; have sent to each
other, by the mechanisms of calculating average message delay and comparing with a known upper bound. This is possible
because py gets send and receive times of messages back and forth between p; and p;.

Based on our practical assumptions, we are able to avoid the Byzantine agreement overheads and follow the approach
of Song et al. [28]. We can construct a self-stabilizing version of their strategy, by using our sampling algorithm and by
detecting outliers using the generalized extreme studentized deviate (GESD) algorithm [25]. Let B be the set of delivered
beacon records within a period of R and test the set B for outliers using the GESD algorithm.

Existing implementations of secure clock synchronization protocols [31,30,11,10,20,12,28] are not self-stabilizing.
Thus, their specifications are not compatible with security requirements for autonomous systems. In autonomous
systems, the self-stabilization design criteria are imperative for secure clock synchronization. For example, many existing
implementations require initial clock synchronization prior to the first pulse-delay attack (during the protocol set up). This
assumption implies that the system uses global restart for self-defense management, say, using an external intervention. We
note that the adversary is capable of intercepting messages continually. Thus, the adversary can risk detection and intercept
all pulses for a long period. Assume that the system detects the adversary’s location and stops it. Nevertheless, the system
cannot synchronize its clocks without a global restart.

Sun et al. [29] describe a cluster-wise synchronization algorithm that is based on synchronous broadcasting rounds.
The authors assume that a Byzantine agreement algorithm [17] synchronizes the clocks before the system executes the
algorithm. Our algorithm is comparable with the requirements of autonomous systems and makes no assumptions on
synchronous broadcasting rounds or start.

Manzo et al. [20] describe several possible attacks on an (unsecured) clock synchronization algorithm and suggest
countermeasures. For single hop synchronization, the authors suggest using a randomly selected “core” of nodes to minimize
the effect of captured nodes. The authors do not consider the cases in which the adversary captures nodes after the core
selection. In this work, we make no assumption regarding the distribution of the captured nodes. Farrugia and Simon [10]
consider a cross-network spanning tree in which the clock values propagate for global clock synchronization. However,
no pulse-delay attacks are considered. Sun et al. [30] investigate how to use multiple clocks from external source nodes
(e.g., base stations) to increase the resilience against an attack that captures source nodes. In this work, there are no source
nodes.

In [31], the authors explain how to implement a secure clock synchronization protocol. Although the protocol is not self-
stabilizing, we believe that some of their security primitives could be used in a self-stabilizing manner when implementing
our self-stabilizing algorithm.

Herman and Zhang [14] present a self-stabilizing clock synchronization algorithm for sensor networks. The authors
present a model for proving the correctness of synchronization algorithms and show that the converge-to-max approach
is stabilizing. However, the converge-to-max approach is prone to attacks with a single captured node that introduces the
maximal clock value whenever the adversary decides to attack. Thus, the adversary can at once set the clock values “far into
the future”, preventing the nodes from implementing a continuous time approximation function. This work is the first in
the context of self-stabilization to provide security solutions for clock synchronization in sensor networks.

7.1. Conclusions

Designing secure and self-stabilizing infrastructure for sensor networks narrows the gap between traditional networks
and sensor networks by simplifying the design of future systems. In this work, we use system settings that consider
many practical issues, and take a clean-slate approach in designing a fundamental component: a clock synchronization
protocol.

The designers of sensor networks often implement clock synchronization protocols that assume the system settings of
traditional networks. However, sensor networks often require fine-grained clock synchronization for which the traditional
protocols are inappropriate.

Alternatively, when the designers do not assume traditional system settings, they turn to reinforcing the protocols
with masking techniques. Thus, the designers assume that the adversary never violates the assumptions of the masking
techniques, e.g., there are at most f captured and/or pulse-delay attacked nodes in a neighborhood at all times, for a setting
where 3f + 1 < n must hold in the neighborhood. Since sensor networks reside in an unattended environment, the last
assumption is unrealistic when considering long timespans.

Our design promotes self-defense capabilities once the system returns to following the original designer’s assumptions.
Interestingly, the self-stabilization design criteria provide an elegant way for designing secure autonomous systems.
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