
Brief Announcement: Concurrent Data Structures for
Efficient Streaming Aggregation

Daniel Cederman
Chalmers University of

Technology
cederman@chalmers.se

Vincenzo Gulisano
Chalmers University of

Technology
vinmas@chalmers.se

Yiannis Nikolakopoulos
Chalmers University of

Technology
ioaniko@chalmers.se

Marina Papatriantafilou
Chalmers University of

Technology
ptrianta@chalmers.se

Philippas Tsigas
Chalmers University of

Technology
tsigas@chalmers.se

ABSTRACT
We briefly describe our study on the problem of streaming
multiway aggregation [5], where large data volumes are re-
ceived from multiple input streams. Multiway aggregation
is a fundamental computational component in data stream
management systems, requiring low-latency and high through-
put solutions. We focus on the problem of designing con-
current data structures enabling for low-latency and high-
throughput multiway aggregation; an issue that has been
overlooked in the literature. We propose two new concurrent
data structures and their lock-free linearizable implementa-
tions, supporting both order-sensitive and order-insensitive
aggregate functions. Results from an extensive evaluation
show significant improvement in the aggregation performance,
in terms of both processing throughput and latency over the
commonly-used techniques based on queues.

Categories and Subject Descriptors
E.1 [Data Structures]: Lists, stacks, and queues; H.2.4
[Database Management]: Systems—Concurrency ; D.1.3
[Programming Techniques]: Concurrent Programming

Keywords
data streaming; data structures; lock-free synchronization

1. INTRODUCTION
Data streaming [13, 1, 6] emerged as an alternative to

store-then-process computing. In data streaming, continu-
ous queries (defined as directed acyclic graphs of intercon-
nected operators) are executed by Stream Processing En-
gines (SPEs) that process incoming data in a real-time fash-
ion, producing results on an on-going basis. As emphasized
in [7], the low-latency and high-throughput requirements of

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the Owner/Author. Copyright is held by the owner/author(s).
SPAA’14, June 23–25, 2014, Prague, Czech Republic.
ACM 978-1-4503-2821-0/14/06.
http://dx.doi.org/10.1145/2612669.2612701.

the real-time complex processing of increasingly large data
volumes makes parallelism a necessity. A good portion of
the research has so far focused on leveraging the processing
capacity of clusters of nodes and originally centralized SPEs
[1] evolved rapidly to distributed [3] and parallel [8, 10] ones.

A data streaming application can be seen as a pipeline
where data is continuously produced, processed and con-
sumed. In a parallel environment the underlying data struc-
tures should provide the means for organizing the data so
that the communication and the work imbalance between
the concurrent threads of the computation are minimized
while the pipeline parallelism is maximized. Although pro-
viding the appropriate data structures that best fit the needs
of the application in a concurrent environment is a key re-
search issue [11], providing the data structures that best fit
data streaming applications has been overlooked. Existing
SPEs such as [3, 8] still rely on basic data structures such
as queues; similar is the case with work focusing on the im-
provement of SPEs’ architectures [2] or continuous queries
accessing the same stream of data [12].

Contributions. The shared access to the data by the collab-
orating threads defines new synchronization needs that can
be integrated in the functionality provided by the shared
data structures. By studying the use and limitations of ex-
isting aggregate designs and the data structures they use, we
motivate the need for a new approach. We propose concur-
rent, linearizable and lock-free data structures (T-Gate and
W-Hive) upon which we build enhanced multiway aggregate
operators that outperform existing implementations in both
order-sensitive and order-insensitive functions. We include
indicative results from a study we conducted using two large
datasets extracted from the SoundCloud1 social media and
from a smart grid metering network. For both datasets the
enhanced aggregation resulted in large improvements, up to
one order of magnitude, both in terms of processing through-
put and latency. The full study is presented in the technical
report [5].

1.1 Problem Description
A stream is defined as an unbounded sequence of tuples

t0, t1, . . . sharing the same schema of attributes. Given a tu-
ple t, attribute t.ts represents its creation timestamp at the

1https://soundcloud.com/



data source. Following the data streaming literature (e.g.,
[3, 8]), we assume that each stream contains timestamp-
sorted tuples. In the presence of multiple streams, tuples
from different streams may arrive out of timestamp-order,
posing a need to merge and synchronize them before pro-
cessing. Data streaming continuous queries are defined as
directed acyclic graphs. Nodes represent operators that con-
sume and produce tuples, while edges specify how tuples flow
among operators. Operators can be divided into stateless or
stateful, depending on whether they keep any state while
processing tuples. Due to the unbounded nature of streams,
stateful operations are computed over a sliding window, de-
fined by parameters size and advance (e.g., to group tuples
received during periods of 5 minutes every 2 minutes, or the
last 10 received tuples every 3 incoming tuples).

The multiway aggregate operator is defined by its win-
dow’s size and advance parameters, by a function F ap-
plied to the tuples and by an optional group-by parameter
K (a subset of the input tuple’s attributes), which speci-
fies if F is applied independently on tuples with different K
value. We focus on deterministic functions, which can be
order-sensitive (e.g., forward only the first received tuple)
or order-insensitive (e.g., count the number of tuples) with
respect to the processing order of the tuples that contribute
to the same window. If the group-by parameter K is de-
fined, the operator needs to keep separate windows not only
for different time intervals, but also for different values of
K. We define a winset as the set of windows covering the
same time interval for different values of K.

In scenarios such as parallel-distributed SPEs [8, 4] and
replica-based fault tolerant SPEs [3], it is desirable to pro-
vide deterministic processing of input tuples (i.e., to produce
the same sequence of output tuples given the same sequences
of input tuples). When dealing with multiple input streams,
processing is not deterministic if tuples are simply processed
in the order they are received (i.e., if the processing order de-
pends on the input streams’ inter-arrival times). To ensure
deterministic processing, tuples from multiple input streams
need to be merged into one sequence and sorted in times-
tamp order [8], an operation we refer to as S-Merge. A tuple
is ready to be processed if at least one tuple with an equal or
higher timestamp has been received at each input stream.

We consider systems of concurrent threads. Communi-
cation and information exchange relies on shared data and
concurrent shared data structures provide common means
for that. Concurrent shared data structures can be imple-
mented in a lock-free way, i.e. guaranteeing that at least one
of the threads operating on it is guaranteed to finish its op-
eration in a bounded number of its own steps. The correct-
ness of such implementations is commonly shown through
linearizability [9], which guarantees that, given a history of
concurrent operations, there exists a sequential ordering of
them, consistent with their real-time ordering and with the
sequential semantics of the data structure.

2. AGGREGATION’S PARALLELISM AND
THE ROLE OF DATA STRUCTURES

Widely used SPEs such as Borealis [3] or StreamCloud
[8] perform multiway aggregation by relying on per-input
queues to store incoming tuples. Distinct threads insert and
remove tuples from such queues and concurrent accesses are
synchronized with the help of locks. Figure 1 presents this

t t t t t t

t t t t t t

In

In

Out

...

Queue

List

Add

Add

S-Merge

Update

Output

Queue

wink1

winkn

...

Winset

It

It

Ot

Figure 1: Baseline Multi-Queue based aggregate design.

design, which we refer to as Multi-Queue (MQ). The output
thread Ot peeks the first tuple in each queue to determine
which one is ready to be processed (input threads and output
threads are denoted by It and Ot respectively). The same
thread is also responsible for updating the windows a tuple
contributes to, as well as producing and forwarding the out-
put tuples when they are ready. Since Ot is the only thread
in charge of updating windows, no synchronization mecha-
nism is required to access the winsets, usually implemented
as hash tables to easily support arbitrary numbers of win-
dows and to locate them quickly given the tuple’s group-by
parameter K.

Parallelization challenges. In existing implementations,
S-Merge usually relies on simple sorting techniques, whose
cost is linear to the number of inputs. Examples include the
Input Merger operator [8] or the SUnion operator [3]. For
this reason, the first challenge relies on the parallelization
of the S-Merge operation. To this end, extra inter-thread
synchronization is needed to ensure deterministic process-
ing. Another challenge is on the parallelization of the Up-
date stage. Again, to guarantee deterministic processing,
the result of a window should be outputted only after all its
contributing tuples have been processed. For order-sensitive
functions, Update cannot be invoked in parallel on tuples
sharing the same K value or when no group-by parameter is
defined. This restriction can be relaxed for order-insensitive
functions, since the result of a window would not be af-
fected by the order in which concurrent threads update it.
In both cases, parallelism can be enhanced by a concurrent
data structure that coordinates the access to the windows.

Utilizing concurrent data structures. We are looking for
concurrent data structures that are capable of sorting input
tuples at insertion time. In principle, tree-like data struc-
tures could provide concurrent logarithmic-time insertion
operations. The need for extracting such tuples in times-
tamp order though, made us expect that a lock-free con-
current skip list [14] would be the right candidate due to its
nodes’ structure. Nevertheless, a skip list would not differen-
tiate between tuples that are ready and tuples that are not.
Because of that, checking whether a tuple is ready or not
would still be penalized by a cost that is linear to the num-
ber of inputs as for the multi-queue implementations. Fur-
thermore, it would provide unnecessary functionality (i.e., a
more complex implementation) such as deletion of elements
at arbitrary positions (only head elements need to be re-
moved in our scenario). Similar considerations hold for a
lock-free concurrent skip list that could potentially be used
to maintain the operator’s winsets.



Order−Sensitive Order−Insensitive
0

50

100

150

200

250

300

350

400
T

h
ro

u
g

h
p

u
t 

(1
0

3
 t

/s
)

 

 

MQ

Enhanced

Order−Sensitive Order−Insensitive
0

10

20

30

40

50

60

L
a

te
n

c
y
 (

m
s
)

 

 

MQ

Enhanced

Figure 2: Throughput and latency for a fixed input rate.

New data structures and aggregate designs. We propose
two concurrent, linearizable and lock-free data structures, T-
Gate for managing tuples and W-Hive for managing winsets,
which we use to build our enhanced multiway aggregate op-
erators. T-Gate is used in a first step to efficiently store the
incoming data in a concurrent manner and to offer proper
synchronization on when the data will be accessed in or-
der to provide a deterministic aggregate operator. In order
to further parallelize the computation of the aggregate val-
ues with the use of multiple threads that produce output
data, W-Hive takes care of synchronizing the output of the
data according to the streaming model requirements (e.g.
sorted). In another design we use only the W-Hive to focus
on order insensitive aggregate functions (i.e. the processing
order of tuples within a window does not affect the result
- e.g.average - but still the order of characterizing tuples
ready or inserting tuples in the windows is important for
the determinism). Figure 2 shows how the respective en-
hanced aggregate designs perform against the baseline MQ
implementation, for both the cases of order sensitive and in-
sensitive functions, in terms of throughput and latency, for
a fixed input rate of equal numbers of incoming streams.

3. CONCLUSIONS
We give an overview on how the parallelism of stream-

ing multiway aggregation can be enhanced by leveraging
application-tailored concurrent data structures. We pro-
pose new data structures for managing tuples and windows.
Their operations and their lock-free implementations en-
able better interleaving and hence improve the balancing
and the parallelism of the aggregate operator’s processing
stages. As shown in an extensive evaluation based on real-
world datasets [5], our enhanced aggregate implementations
outperform existing ones both in terms of throughput and
latency, and are able to handle heavier streams, increasing
the processing capacity up to one order of magnitude.

4. ACKNOWLEDGMENTS
The research leading to these results has been partially

supported by the European Union Seventh Framework Pro-
gramme (FP7/2007-2013) through the EXCESS Project (ww
w.excess-project.eu) under grant agreement 611183, through
the SysSec Project, under grant agreement 257007, through
the FP7-SEC-285477-CRISALIS project, by the collabora-
tion framework of Chalmers Energy Area of Advance and
by the Chalmers Center for E-science.

5. REFERENCES
[1] D. J. Abadi, D. Carney, U. Çetintemel, M. Cherniack,

C. Convey, S. Lee, M. Stonebraker, N. Tatbul, and
S. Zdonik. Aurora: a new model and architecture for
data stream management. The International Journal
on Very Large Data Bases, 2003.

[2] S. Akram, M. Marazakis, and A. Bilas. Understanding
and improving the cost of scaling distributed event
processing. In Proceedings of the 6th ACM
International Conference on Distributed Event-Based
Systems, 2012.

[3] M. Balazinska, H. Balakrishnan, S. R. Madden, and
M. Stonebraker. Fault-tolerance in the Borealis
distributed stream processing system. ACM
Transactions on Database Systems (TODS), 2008.

[4] C. Balkesen, N. Tatbul, and M. T. Özsu. Adaptive
input admission and management for parallel stream
processing. In Proceedings of the 7th ACM
international conference on Distributed event-based
systems, DEBS ’13, pages 15–26. ACM, 2013.

[5] D. Cederman, V. Gulisano, Y. Nikolakopoulos,
M. Papatriantafilou, and P. Tsigas. Concurrent data
structures for efficient streaming aggregation. Report,
Chalmers University of Technology, 2013.

[6] A. Dobra, M. Garofalakis, J. Gehrke, and R. Rastogi.
Processing complex aggregate queries over data
streams. In Proceedings of the 2002 ACM SIGMOD
International Conference on Management of Data,
2002.

[7] B. Gedik, R. R. Bordawekar, and S. Y. Philip.
Celljoin: a parallel stream join operator for the cell
processor. The VLDB Journal, 2009.

[8] V. Gulisano, R. Jimenez-Peris, M. Patino-Martinez,
C. Soriente, and P. Valduriez. Streamcloud: An elastic
and scalable data streaming system. IEEE
Transactions on Parallel and Distributed Systems,
2012.

[9] M. P. Herlihy and J. M. Wing. Linearizability: a
Correctness Condition for Concurrent Objects. ACM
Transactions on Programming Languages and
Systems, 1990.

[10] S. Loesing, M. Hentschel, T. Kraska, and
D. Kossmann. Stormy: an elastic and highly available
streaming service in the cloud. In Proceedings of the
2012 Joint EDBT/ICDT Workshops, 2012.

[11] M. M. Michael. The balancing act of choosing
nonblocking features. Commun. ACM, 2013.

[12] A. L. Shenoda Guirguis, Panos K. Chrysanthis and
M. A. Sharaf. Three-level processing of multiple
aggregate continuous queries. Proc. of the 28th IEEE
International Conference on Data Engineering, 2012.

[13] M. Stonebraker, U. Çetintemel, and S. Zdonik. The 8
requirements of real-time stream processing. ACM
SIGMOD Record, 2005.

[14] H. Sundell and P. Tsigas. Fast and lock-free
concurrent priority queues for multi-thread systems.
Journal of Parallel and Distributed Computing, 2005.


