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Motivation Introduction

Modeling Energy Consumption of Lock-Free Queue Implementations

» FIFO (First In, First Out) queues:
> Key components in applications, algorithms, run-time and operating
systems
> Producer/consumer pattern: common approach to parallelizing
applications
> Lock-freedom:
» High concurrency
> Immunity to deadlocks and convoying
» Major optimization criterion (Exascale, battery lifetime, etc.).
Decomposed into:
> Power
» Throughput
» Large number of lock-free (and wait-free) queue implementations in
the literature
~» need of a framework to rank the different implementations,
according to throughput, power, energy per operation
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Approach Introduction

Head Tail
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|m)uinln

Socket 1 Socket 2

Processor:

» Different though constant access rates for enqueuers and dequeuers
» Steady-state: queue either mostly empty or constantly growing

» Domain of study:
(i) nb. of threads accessing the queue  (iii) range of dequeue access rates

(if) CPU frequencies (iv) range of enqueue access rates
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Algorithm Skeletons Introduction

while ! done do while ! done do
el < Parallel_Work(pw,); el + Dequeue();
Enqueue(el); Parallel_Work(pw);
end end
Procedure EnqueuerThread Procedure DequeuerThread

» Parallel sections (Parallel_Work): processing activity implemented
by sequences of bunches of pause instructions in the benchmark

» Enqueue and Dequeue: retry loop pattern

repeat repeat
Try to Enqueue Try to Dequeue
until Succesful; until Succesful;
Procedure Enqueue Procedure Dequeue
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Notations Introduction
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Notations Introduction

» n: number of threads that call the same type of operation

» f: clock frequency

pw, . ) an enqueuer
> amount of work in the parallel section of

pw 4 a dequeuer

w, ) Enqueue
> amount of work in one retry of the retry loop of

wy Dequeue
> 7T.: throughput of enqueuers

v

T4: throughput of dequeuers

» For operation o € {d, e}:

nxf

7:):

pw, + rw, X Repeat,
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Throughput Estimation
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Impacting factors Throughput Estimation

» Operations behavior depends on the state of the queue (empty or
not empty).
» Contention is twofold:
> intra-contention: competition between threads executing the same
operation

> inter-contention: competition between threads executing different
operations. Occurs when mostly empty queue.

» Impact of state of the queue on Enqueue negligible: same
instructions.

» Impact of inter-contention on Dequeue negligible: only a single
Enqueuer can interfere, since after a success, the queue is not empty.
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Impacting factors Throughput Estimation

Highlight Impacting Factors

» For operation o € {d, e}:

nxf

7:):

pw, + rw, X Repeat,

> Intra-contention:
> Repeat, increases due to interferences
> rwy, rw, increases/expands due to serialization of atomic
instructions
> Inter-operation effects:
> Inter-contention: rw, increases
> State of the queue: rw, variates between NULL and not NULL cost
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Approach Throughput Estimation
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Decomposition Principles Throughput Estimation

7;(+): under minimum inter-contention
Te
7;(_): under maximum inter-contention

T = min ,

7;,(+): Dequeue NULL element
T4

7:,(_): Dequeue not NULL element

For operation o € {d, e}, T, barycenter between 7}(+) and 7;(_)

T(pwy, pw.) = (1 — ae(pwy, pw,)) TS (pw,) + ae(pw g, pw ) T8 (pw,)
To(pwy, pwe) = (1 — ag(pwy, pw.)) T (pwy) + aa(pwy, pw,) T3 (pwy)

~+ decorrelation of dependencies.

Expressions of the four basic throughputs 77,(1’), for o € {e,d} and
b € {+,-}, and weights a,, for o € {e,d}?
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Basic Throughputs Throughput Estimation

Handle Intra-Contention
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Approach Throughput Estimation
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Combining throughputs Throughput Estimation

Combination is based on the two possible states of the queue:
» Mostly empty

» Growing
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Combining throughputs Throughput Estimation

Combination is based on the two possible states of the queue:

» Mostly empty

» Growing

If the queue is growing,

» No inter-contention ~» 7, = Te(+)

> All dequeued element is not NULL ~» T, = 7:,(_)
If the queue is mostly empty,

» Inter-contention occurs

» Both NULL and not NULL elements are dequeued

~ T, between 7;(+) and 72(-), and 7, between Td(_) and Td(J').
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Power Estimation
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General Power Model Power Estimation

Power split into:
» Static part: cost of turning the machine on
» Activation part: fixed cost for each socket and each core in use
» Dynamic part: supplementary cost depending on the running
application
In accordance with the RAPL energy counters, each part further
decomposed per-component:
» Memory
» CPU

» Uncore

Finally,
P — Z (P(stat,X) + P(active,X) + P(dyn,X))
Xe{M,C,U}
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Memory Power Estimation

» Dynamic memory power is proportional to the intensity (number of
units of memory accessed per unit of time) of main memory accesses
and inter-socket communication

» Communications only in the retry loop

» Assumption: for a given implementation, constant intensity in the
retry loop

» ~» Dynamic memory power dissipated in the retry loop proportional
to r, (times a constant intensity)
PM) = 1o x pM) 4 ry x pE,M),

where pe ) and pd ) are constants
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Memory Power Estimation

» Dynamic memory power is proportional to the intensity (number of
units of memory accessed per unit of time) of main memory accesses
and inter-socket communication

» Communications only in the retry loop

» Assumption: for a given implementation, constant intensity in the
retry loop

» ~» Dynamic memory power dissipated in the retry loop proportional
to r, (times a constant intensity)

PM) = r, x ng) + rg X pE,M),

where pe ) and pd ) are constants

» Uncore and CPU power computed with similar principles
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Results

Modeling Energy Consumption of Lock-Free Queue Implementations 20|25 Aras Atalar



Queue implementations Results

(1

[2]
3]

[4]

5]
[6]

Maged M. Michael and Michael L. Scott. “Simple, Fast, and Practical Non-Blocking and
Blocking Concurrent Queue Algorithms”. In: PoDC. 1996, pp. 267-275.

J. D. Valois. “Implementing Lock-Free Queues”. In: ICPADS. 1994, pp. 64—69.

Philippas Tsigas and Yi Zhang. “A Simple, Fast and Scalable Non-Blocking Concurrent
FIFO queue for Shared Memory Multiprocessor Systems”. In: SPAA. 2001, pp. 134-143.

Anders Gidenstam, Hakan Sundell, and Philippas Tsigas. “Cache-Aware Lock-Free Queues
for Multiple Producers/Consumers and Weak Memory Consistency”. In: OPODIS.
Vol. 6490. 2010, pp. 302-317.

Moshe Hoffman, Ori Shalev, and Nir Shavit. “The Baskets Queue”. In: OPODIS. 2007,
pp. 401-414.

Mark Moir, Daniel Nussbaum, Ori Shalev, and Nir Shavit. “Using elimination to
implement scalable and lock-free FIFO queues”. In: SPAA. 2005, pp. 253—-262. ISBN:
1-58113-986-1. DOIL: http://doi.acm.org/10.1145/1073970.1074013.

Val [2] MS [1] st TZ [3]
Moi [6] Hof [5]  setpuss Gid [4] ‘ ® Actual — Prediction

Figure : Key legend of the graphs

Modeling Energy Consumption of Lock-Free Queue Implementations 21|25 Aras Atalar


http://dx.doi.org/http://doi.acm.org/10.1145/1073970.1074013

Enqueue Throughput Results
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Dequeue Throughput Results
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Dynamic Memory Power Results
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Conclusion Results

» Model of power, throughput and energy per operation of lock-free
queues
» Validation on several widely-used implementations
» Decomposition into basic throughputs thanks to two impacting
factors
> Inter- and intra-contention
» State of the queue
» ~- better understanding and reduction of the number of
measurement points
» Generalization to slowly changing parallel sections on Mandelbrot
application
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