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MotivationPp Pp Introduction

Modeling Energy Consumption of Lock-Free Queue Implementations

I FIFO (First In, First Out) queues:
I Key components in applications, algorithms, run-time and operating

systems
I Producer/consumer pattern: common approach to parallelizing

applications
I Lock-freedom:

I High concurrency
I Immunity to deadlocks and convoying

I Major optimization criterion (Exascale, battery lifetime, etc.).
Decomposed into:

I Power
I Throughput

I Large number of lock-free (and wait-free) queue implementations in
the literature
 need of a framework to rank the different implementations,
according to throughput, power, energy per operation
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ApproachPp Pp Introduction

Processor:

Socket 1 Socket 2

Head Tail
Queue:

I Different though constant access rates for enqueuers and dequeuers
I Steady-state: queue either mostly empty or constantly growing
I Domain of study:

(i) nb. of threads accessing the queue
(ii) CPU frequencies

(iii) range of dequeue access rates
(iv) range of enqueue access rates
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Algorithm SkeletonsPp Pp Introduction

while ! done do
el ← Parallel_Work(pw e);
Enqueue(el);

end
Procedure EnqueuerThread

while ! done do
el ← Dequeue();
Parallel_Work(pwd );

end
Procedure DequeuerThread

I Parallel sections (Parallel_Work): processing activity implemented
by sequences of bunches of pause instructions in the benchmark

I Enqueue and Dequeue: retry loop pattern

repeat
Try to Enqueue

until Succesful;
Procedure Enqueue

repeat
Try to Dequeue

until Succesful;
Procedure Dequeue
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NotationsPp Pp Introduction

I n: number of threads that call the same type of operation
I f : clock frequency

I
pw e
pwd

}
amount of work in the parallel section of

{
an enqueuer
a dequeuer

I
rw e
rwd

}
amount of work in one retry of the retry loop of

{
Enqueue
Dequeue

I Te : throughput of enqueuers
I Td : throughput of dequeuers

I For operation o ∈ {d , e}:

To =
n × f

pwo + rwo × Repeato
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Throughput Estimation
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Impacting factorsPp Pp Throughput Estimation

I Operations behavior depends on the state of the queue (empty or
not empty).

I Contention

is twofold:
I intra-contention: competition between threads executing the same

operation
I inter-contention: competition between threads executing different

operations. Occurs when mostly empty queue.
I Impact of state of the queue on Enqueue negligible: same

instructions.
I Impact of inter-contention on Dequeue negligible: only a single

Enqueuer can interfere, since after a success, the queue is not empty.
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Impacting factorsPp Pp Throughput Estimation

Highlight Impacting Factors

I For operation o ∈ {d , e}:

To =
n × f

pwo + rwo × Repeato

I Intra-contention:
I Repeato increases due to interferences
I rwd , rw e increases/expands due to serialization of atomic

instructions
I Inter-operation effects:

I Inter-contention: rw e increases
I State of the queue: rwd variates between Null and not Null cost
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ApproachPp Pp Throughput Estimation

(Td , Te)
on D-

(
T (-)

d , T (+)
d , T (+)

e , T (-)
e

)
on D-

Parameters

(
T (-)

d , T (+)
d , T (+)

e , T (-)
e

)
on D

(Td , Te)
on D

D- ⊂ D: Domain of measurement

D: Domain of study
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Decomposition PrinciplesPp Pp Throughput Estimation

T = min


Te

,

Td


T (+)

e : under minimum inter-contention

T (-)
e : under maximum inter-contention

T (+)
d : Dequeue Null element

T (-)
d : Dequeue not Null element

For operation o ∈ {d , e}, To barycenter between T (+)
o and T (-)

o{
Te(pwd , pw e) = (1− αe(pwd , pw e))T

(+)
e (pw e) + αe(pwd , pw e)T

(-)
e (pw e)

Td(pwd , pw e) = (1− αd(pwd , pw e))T
(+)

d (pwd) + αd(pwd , pw e)T
(-)

d (pwd)

 decorrelation of dependencies.
Expressions of the four basic throughputs T (b)

o , for o ∈ {e, d} and
b ∈ {+, -}, and weights αo , for o ∈ {e, d}?
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ApproachPp Pp Throughput Estimation
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Basic ThroughputsPp Pp Throughput Estimation

Handle Intra-Contention

pwo

T (b)
o Frontier

(n − 1)× rw (b)
o

f
rw (b)

o

High
intra-

contention

Low
intra-

contention

T (b)
o =

n × f
pwo + rw (b)

o × Repeat(b)o
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ApproachPp Pp Throughput Estimation
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Combining throughputsPp Pp Throughput Estimation

Combination is based on the two possible states of the queue:
I Mostly empty
I Growing

If the queue is growing,
I No inter-contention

 Te = T (+)
e

I All dequeued element is not Null

 Td = T (-)
d

If the queue is mostly empty,
I Inter-contention occurs
I Both Null and not Null elements are dequeued
 Te between T (+)

e and T (-)
e , and Td between T (-)

d and T (+)
d .
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Power Estimation
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General Power ModelPp Pp Power Estimation

Power split into:
I Static part: cost of turning the machine on
I Activation part: fixed cost for each socket and each core in use
I Dynamic part: supplementary cost depending on the running

application

In accordance with the RAPL energy counters, each part further
decomposed per-component:

I Memory
I CPU
I Uncore

Finally,
P =

∑
X∈{M,C ,U}

(
P(stat,X) + P(active,X) + P(dyn,X)

)
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MemoryPp Pp Power Estimation

I Dynamic memory power is proportional to the intensity (number of
units of memory accessed per unit of time) of main memory accesses
and inter-socket communication

I Communications only in the retry loop
I Assumption: for a given implementation, constant intensity in the

retry loop

I  Dynamic memory power dissipated in the retry loop proportional
to ro (times a constant intensity)

P(M) = re × ρ(M)
e + rd × ρ(M)

d ,

where ρ(M)
e and ρ(M)

d are constants

I Uncore and CPU power computed with similar principles
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Results
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Queue implementationsPp Pp Results
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Figure : Key legend of the graphs
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Enqueue ThroughputPp Pp Results
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Dequeue ThroughputPp Pp Results
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Dynamic Memory PowerPp Pp Results
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ConclusionPp Pp Results

I Model of power, throughput and energy per operation of lock-free
queues

I Validation on several widely-used implementations
I Decomposition into basic throughputs thanks to two impacting

factors
I Inter- and intra-contention
I State of the queue

I  better understanding and reduction of the number of
measurement points

I Generalization to slowly changing parallel sections on Mandelbrot
application
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