
Modeling Energy Consumption of
Lock-Free Queue Implementations

Aras Atalar, Anders Gidenstam,
Paul Renaud-Goud and Philippas Tsigas

Chalmers University of Technology

qwwe



Outline

I Motivation and Setting

I Enqueue/Dequeue Throughput Estimation

I Power Estimation

I Results

Aras AtalarModeling Energy Consumption of Lock-Free Queue Implementations 2 25



Introduction

Aras AtalarModeling Energy Consumption of Lock-Free Queue Implementations 3 25



MotivationPp Pp Introduction

Modeling Energy Consumption of Lock-Free Queue Implementations

I FIFO (First In, First Out) queues:
I Key components in applications, algorithms, run-time and operating

systems
I Producer/consumer pattern: common approach to parallelizing

applications
I Lock-freedom:

I High concurrency
I Immunity to deadlocks and convoying

I Major optimization criterion (Exascale, battery lifetime, etc.).
Decomposed into:

I Power
I Throughput

I Large number of lock-free (and wait-free) queue implementations in
the literature
 need of a framework to rank the different implementations,
according to throughput, power, energy per operation

Aras AtalarModeling Energy Consumption of Lock-Free Queue Implementations 4 25



MotivationPp Pp Introduction

Modeling Energy Consumption of Lock-Free Queue Implementations
I FIFO (First In, First Out) queues:

I Key components in applications, algorithms, run-time and operating
systems

I Producer/consumer pattern: common approach to parallelizing
applications

I Lock-freedom:
I High concurrency
I Immunity to deadlocks and convoying

I Major optimization criterion (Exascale, battery lifetime, etc.).
Decomposed into:

I Power
I Throughput

I Large number of lock-free (and wait-free) queue implementations in
the literature
 need of a framework to rank the different implementations,
according to throughput, power, energy per operation

Aras AtalarModeling Energy Consumption of Lock-Free Queue Implementations 4 25



MotivationPp Pp Introduction

Modeling Energy Consumption of Lock-Free Queue Implementations
I FIFO (First In, First Out) queues:

I Key components in applications, algorithms, run-time and operating
systems

I Producer/consumer pattern: common approach to parallelizing
applications

I Lock-freedom:
I High concurrency
I Immunity to deadlocks and convoying

I Major optimization criterion (Exascale, battery lifetime, etc.).
Decomposed into:

I Power
I Throughput

I Large number of lock-free (and wait-free) queue implementations in
the literature
 need of a framework to rank the different implementations,
according to throughput, power, energy per operation

Aras AtalarModeling Energy Consumption of Lock-Free Queue Implementations 4 25



MotivationPp Pp Introduction

Modeling Energy Consumption of Lock-Free Queue Implementations
I FIFO (First In, First Out) queues:

I Key components in applications, algorithms, run-time and operating
systems

I Producer/consumer pattern: common approach to parallelizing
applications

I Lock-freedom:
I High concurrency
I Immunity to deadlocks and convoying

I Major optimization criterion (Exascale, battery lifetime, etc.).
Decomposed into:

I Power
I Throughput

I Large number of lock-free (and wait-free) queue implementations in
the literature
 need of a framework to rank the different implementations,
according to throughput, power, energy per operation

Aras AtalarModeling Energy Consumption of Lock-Free Queue Implementations 4 25



MotivationPp Pp Introduction

Modeling Energy Consumption of Lock-Free Queue Implementations
I FIFO (First In, First Out) queues:

I Key components in applications, algorithms, run-time and operating
systems

I Producer/consumer pattern: common approach to parallelizing
applications

I Lock-freedom:
I High concurrency
I Immunity to deadlocks and convoying

I Major optimization criterion (Exascale, battery lifetime, etc.).
Decomposed into:

I Power
I Throughput

I Large number of lock-free (and wait-free) queue implementations in
the literature
 need of a framework to rank the different implementations,
according to throughput, power, energy per operation

Aras AtalarModeling Energy Consumption of Lock-Free Queue Implementations 4 25



ApproachPp Pp Introduction

Processor:

Socket 1 Socket 2

Head Tail
Queue:

I Different though constant access rates for enqueuers and dequeuers
I Steady-state: queue either mostly empty or constantly growing
I Domain of study:

(i) nb. of threads accessing the queue
(ii) CPU frequencies

(iii) range of dequeue access rates
(iv) range of enqueue access rates

Aras AtalarModeling Energy Consumption of Lock-Free Queue Implementations 5 25



ApproachPp Pp Introduction

Processor:

Socket 1 Socket 2

Head Tail
Queue:

I Different though constant access rates for enqueuers and dequeuers
I Steady-state: queue either mostly empty or constantly growing
I Domain of study:

(i) nb. of threads accessing the queue
(ii) CPU frequencies

(iii) range of dequeue access rates
(iv) range of enqueue access rates

Aras AtalarModeling Energy Consumption of Lock-Free Queue Implementations 5 25



ApproachPp Pp Introduction

Processor:

Socket 1 Socket 2

Head Tail
Queue:

I Different though constant access rates for enqueuers and dequeuers
I Steady-state: queue either mostly empty or constantly growing

I Domain of study:
(i) nb. of threads accessing the queue
(ii) CPU frequencies

(iii) range of dequeue access rates
(iv) range of enqueue access rates

Aras AtalarModeling Energy Consumption of Lock-Free Queue Implementations 5 25



ApproachPp Pp Introduction

Processor:

Socket 1 Socket 2

Head Tail
Queue:

I Different though constant access rates for enqueuers and dequeuers
I Steady-state: queue either mostly empty or constantly growing
I Domain of study:

(i) nb. of threads accessing the queue
(ii) CPU frequencies

(iii) range of dequeue access rates
(iv) range of enqueue access rates

Aras AtalarModeling Energy Consumption of Lock-Free Queue Implementations 5 25



Algorithm SkeletonsPp Pp Introduction

while ! done do
el ← Parallel_Work(pw e);
Enqueue(el);

end
Procedure EnqueuerThread

while ! done do
el ← Dequeue();
Parallel_Work(pwd );

end
Procedure DequeuerThread

I Parallel sections (Parallel_Work): processing activity implemented
by sequences of bunches of pause instructions in the benchmark

I Enqueue and Dequeue: retry loop pattern

repeat
Try to Enqueue

until Succesful;
Procedure Enqueue

repeat
Try to Dequeue

until Succesful;
Procedure Dequeue

Aras AtalarModeling Energy Consumption of Lock-Free Queue Implementations 6 25



NotationsPp Pp Introduction

I n: number of threads that call the same type of operation
I f : clock frequency

I
pw e
pwd

}
amount of work in the parallel section of

{
an enqueuer
a dequeuer

I
rw e
rwd

}
amount of work in one retry of the retry loop of

{
Enqueue
Dequeue

I Te : throughput of enqueuers
I Td : throughput of dequeuers

I For operation o ∈ {d , e}:

To =
n × f

pwo + rwo × Repeato

Aras AtalarModeling Energy Consumption of Lock-Free Queue Implementations 7 25



NotationsPp Pp Introduction

I n: number of threads that call the same type of operation
I f : clock frequency

I
pw e
pwd

}
amount of work in the parallel section of

{
an enqueuer
a dequeuer

I
rw e
rwd

}
amount of work in one retry of the retry loop of

{
Enqueue
Dequeue

I Te : throughput of enqueuers
I Td : throughput of dequeuers

I For operation o ∈ {d , e}:

To =
n × f

pwo + rwo × Repeato

Aras AtalarModeling Energy Consumption of Lock-Free Queue Implementations 7 25



NotationsPp Pp Introduction

I n: number of threads that call the same type of operation
I f : clock frequency

I
pw e
pwd

}
amount of work in the parallel section of

{
an enqueuer
a dequeuer

I
rw e
rwd

}
amount of work in one retry of the retry loop of

{
Enqueue
Dequeue

I Te : throughput of enqueuers
I Td : throughput of dequeuers

I For operation o ∈ {d , e}:

To =
n × f

pwo + rwo × Repeato

Aras AtalarModeling Energy Consumption of Lock-Free Queue Implementations 7 25



NotationsPp Pp Introduction

I n: number of threads that call the same type of operation
I f : clock frequency

I
pw e
pwd

}
amount of work in the parallel section of

{
an enqueuer
a dequeuer

I
rw e
rwd

}
amount of work in one retry of the retry loop of

{
Enqueue
Dequeue

I Te : throughput of enqueuers
I Td : throughput of dequeuers

I For operation o ∈ {d , e}:

To =
n × f

pwo + rwo × Repeato

Aras AtalarModeling Energy Consumption of Lock-Free Queue Implementations 7 25



Throughput Estimation

Aras AtalarModeling Energy Consumption of Lock-Free Queue Implementations 8 25



Impacting factorsPp Pp Throughput Estimation

I Operations behavior depends on the state of the queue (empty or
not empty).

I Contention

is twofold:
I intra-contention: competition between threads executing the same

operation
I inter-contention: competition between threads executing different

operations. Occurs when mostly empty queue.
I Impact of state of the queue on Enqueue negligible: same

instructions.
I Impact of inter-contention on Dequeue negligible: only a single

Enqueuer can interfere, since after a success, the queue is not empty.

Aras AtalarModeling Energy Consumption of Lock-Free Queue Implementations 9 25



Impacting factorsPp Pp Throughput Estimation

I Operations behavior depends on the state of the queue (empty or
not empty).

I Contention is twofold:
I intra-contention: competition between threads executing the same

operation
I inter-contention: competition between threads executing different

operations. Occurs when mostly empty queue.

I Impact of state of the queue on Enqueue negligible: same
instructions.

I Impact of inter-contention on Dequeue negligible: only a single
Enqueuer can interfere, since after a success, the queue is not empty.

Aras AtalarModeling Energy Consumption of Lock-Free Queue Implementations 9 25



Impacting factorsPp Pp Throughput Estimation

I Operations behavior depends on the state of the queue (empty or
not empty).

I Contention is twofold:
I intra-contention: competition between threads executing the same

operation
I inter-contention: competition between threads executing different

operations. Occurs when mostly empty queue.
I Impact of state of the queue on Enqueue negligible: same

instructions.
I Impact of inter-contention on Dequeue negligible: only a single

Enqueuer can interfere, since after a success, the queue is not empty.

Aras AtalarModeling Energy Consumption of Lock-Free Queue Implementations 9 25



Impacting factorsPp Pp Throughput Estimation

Highlight Impacting Factors

I For operation o ∈ {d , e}:

To =
n × f

pwo + rwo × Repeato

I Intra-contention:
I Repeato increases due to interferences
I rwd , rw e increases/expands due to serialization of atomic

instructions
I Inter-operation effects:

I Inter-contention: rw e increases
I State of the queue: rwd variates between Null and not Null cost

Aras AtalarModeling Energy Consumption of Lock-Free Queue Implementations 10 25



ApproachPp Pp Throughput Estimation

(Td , Te)
on D-

(
T (-)

d , T (+)
d , T (+)

e , T (-)
e

)
on D-

Parameters

(
T (-)

d , T (+)
d , T (+)

e , T (-)
e

)
on D

(Td , Te)
on D

D- ⊂ D: Domain of measurement

D: Domain of study

Aras AtalarModeling Energy Consumption of Lock-Free Queue Implementations 11 25



ApproachPp Pp Throughput Estimation

(Td , Te)
on D-

(
T (-)

d , T (+)
d , T (+)

e , T (-)
e

)
on D-

Parameters

(
T (-)

d , T (+)
d , T (+)

e , T (-)
e

)
on D

(Td , Te)
on D

D- ⊂ D: Domain of measurement

D: Domain of study

Aras AtalarModeling Energy Consumption of Lock-Free Queue Implementations 11 25



ApproachPp Pp Throughput Estimation

(Td , Te)
on D-

(
T (-)

d , T (+)
d , T (+)

e , T (-)
e

)
on D-

Parameters

(
T (-)

d , T (+)
d , T (+)

e , T (-)
e

)
on D

(Td , Te)
on D

D- ⊂ D: Domain of measurement

D: Domain of study

Aras AtalarModeling Energy Consumption of Lock-Free Queue Implementations 11 25



Decomposition PrinciplesPp Pp Throughput Estimation

T = min


Te

,

Td


T (+)

e : under minimum inter-contention

T (-)
e : under maximum inter-contention

T (+)
d : Dequeue Null element

T (-)
d : Dequeue not Null element

For operation o ∈ {d , e}, To barycenter between T (+)
o and T (-)

o{
Te(pwd , pw e) = (1− αe(pwd , pw e))T

(+)
e (pw e) + αe(pwd , pw e)T

(-)
e (pw e)

Td(pwd , pw e) = (1− αd(pwd , pw e))T
(+)

d (pwd) + αd(pwd , pw e)T
(-)

d (pwd)

 decorrelation of dependencies.
Expressions of the four basic throughputs T (b)

o , for o ∈ {e, d} and
b ∈ {+, -}, and weights αo , for o ∈ {e, d}?

Aras AtalarModeling Energy Consumption of Lock-Free Queue Implementations 12 25



ApproachPp Pp Throughput Estimation

(Td , Te)
on D-

(
T (-)

d , T (+)
d , T (+)

e , T (-)
e

)
on D-

Parameters

(
T (-)

d , T (+)
d , T (+)

e , T (-)
e

)
on D

(Td , Te)
on D

D- ⊂ D: Domain of measurement

D: Domain of study

Aras AtalarModeling Energy Consumption of Lock-Free Queue Implementations 13 25



Basic ThroughputsPp Pp Throughput Estimation

Handle Intra-Contention

pwo

T (b)
o Frontier

(n − 1)× rw (b)
o

f
rw (b)

o

High
intra-

contention

Low
intra-

contention

T (b)
o =

n × f
pwo + rw (b)

o × Repeat(b)o

Aras AtalarModeling Energy Consumption of Lock-Free Queue Implementations 14 25



ApproachPp Pp Throughput Estimation

(Td , Te)
on D-

(
T (-)

d , T (+)
d , T (+)

e , T (-)
e

)
on D-

Parameters

(
T (-)

d , T (+)
d , T (+)

e , T (-)
e

)
on D

(Td , Te)
on D

D- ⊂ D: Domain of measurement

D: Domain of study

Aras AtalarModeling Energy Consumption of Lock-Free Queue Implementations 15 25



Combining throughputsPp Pp Throughput Estimation

Combination is based on the two possible states of the queue:
I Mostly empty
I Growing

If the queue is growing,
I No inter-contention

 Te = T (+)
e

I All dequeued element is not Null

 Td = T (-)
d

If the queue is mostly empty,
I Inter-contention occurs
I Both Null and not Null elements are dequeued
 Te between T (+)

e and T (-)
e , and Td between T (-)

d and T (+)
d .

Aras AtalarModeling Energy Consumption of Lock-Free Queue Implementations 16 25



Combining throughputsPp Pp Throughput Estimation

Combination is based on the two possible states of the queue:
I Mostly empty
I Growing

If the queue is growing,
I No inter-contention

 Te = T (+)
e

I All dequeued element is not Null

 Td = T (-)
d

If the queue is mostly empty,
I Inter-contention occurs
I Both Null and not Null elements are dequeued
 Te between T (+)

e and T (-)
e , and Td between T (-)

d and T (+)
d .

Aras AtalarModeling Energy Consumption of Lock-Free Queue Implementations 16 25



Combining throughputsPp Pp Throughput Estimation

Combination is based on the two possible states of the queue:
I Mostly empty
I Growing

If the queue is growing,
I No inter-contention  Te = T (+)

e

I All dequeued element is not Null  Td = T (-)
d

If the queue is mostly empty,
I Inter-contention occurs
I Both Null and not Null elements are dequeued
 Te between T (+)

e and T (-)
e , and Td between T (-)

d and T (+)
d .

Aras AtalarModeling Energy Consumption of Lock-Free Queue Implementations 16 25



Combining throughputsPp Pp Throughput Estimation

Combination is based on the two possible states of the queue:
I Mostly empty
I Growing

If the queue is growing,
I No inter-contention  Te = T (+)

e

I All dequeued element is not Null  Td = T (-)
d

If the queue is mostly empty,
I Inter-contention occurs
I Both Null and not Null elements are dequeued
 Te between T (+)

e and T (-)
e , and Td between T (-)

d and T (+)
d .

Aras AtalarModeling Energy Consumption of Lock-Free Queue Implementations 16 25



Power Estimation

Aras AtalarModeling Energy Consumption of Lock-Free Queue Implementations 17 25



General Power ModelPp Pp Power Estimation

Power split into:
I Static part: cost of turning the machine on
I Activation part: fixed cost for each socket and each core in use
I Dynamic part: supplementary cost depending on the running

application

In accordance with the RAPL energy counters, each part further
decomposed per-component:

I Memory
I CPU
I Uncore

Finally,
P =

∑
X∈{M,C ,U}

(
P(stat,X) + P(active,X) + P(dyn,X)

)

Aras AtalarModeling Energy Consumption of Lock-Free Queue Implementations 18 25



MemoryPp Pp Power Estimation

I Dynamic memory power is proportional to the intensity (number of
units of memory accessed per unit of time) of main memory accesses
and inter-socket communication

I Communications only in the retry loop
I Assumption: for a given implementation, constant intensity in the

retry loop

I  Dynamic memory power dissipated in the retry loop proportional
to ro (times a constant intensity)

P(M) = re × ρ(M)
e + rd × ρ(M)

d ,

where ρ(M)
e and ρ(M)

d are constants

I Uncore and CPU power computed with similar principles

Aras AtalarModeling Energy Consumption of Lock-Free Queue Implementations 19 25



MemoryPp Pp Power Estimation

I Dynamic memory power is proportional to the intensity (number of
units of memory accessed per unit of time) of main memory accesses
and inter-socket communication

I Communications only in the retry loop
I Assumption: for a given implementation, constant intensity in the

retry loop

I  Dynamic memory power dissipated in the retry loop proportional
to ro (times a constant intensity)

P(M) = re × ρ(M)
e + rd × ρ(M)

d ,

where ρ(M)
e and ρ(M)

d are constants

I Uncore and CPU power computed with similar principles

Aras AtalarModeling Energy Consumption of Lock-Free Queue Implementations 19 25



Results

Aras AtalarModeling Energy Consumption of Lock-Free Queue Implementations 20 25



Queue implementationsPp Pp Results

[1] Maged M. Michael and Michael L. Scott. “Simple, Fast, and Practical Non-Blocking and
Blocking Concurrent Queue Algorithms”. In: PoDC. 1996, pp. 267–275.

[2] J. D. Valois. “Implementing Lock-Free Queues”. In: ICPADS. 1994, pp. 64–69.
[3] Philippas Tsigas and Yi Zhang. “A Simple, Fast and Scalable Non-Blocking Concurrent

FIFO queue for Shared Memory Multiprocessor Systems”. In: SPAA. 2001, pp. 134–143.
[4] Anders Gidenstam, Håkan Sundell, and Philippas Tsigas. “Cache-Aware Lock-Free Queues

for Multiple Producers/Consumers and Weak Memory Consistency”. In: OPODIS.
Vol. 6490. 2010, pp. 302–317.

[5] Moshe Hoffman, Ori Shalev, and Nir Shavit. “The Baskets Queue”. In: OPODIS. 2007,
pp. 401–414.

[6] Mark Moir, Daniel Nussbaum, Ori Shalev, and Nir Shavit. “Using elimination to
implement scalable and lock-free FIFO queues”. In: SPAA. 2005, pp. 253–262. isbn:
1-58113-986-1. doi: http://doi.acm.org/10.1145/1073970.1074013.

● Val [2] ● MS [1] ● TZ [3]

● Moi [6] ● Hof [5] ● Gid [4] ● Actual Prediction

Figure : Key legend of the graphs

Aras AtalarModeling Energy Consumption of Lock-Free Queue Implementations 21 25

http://dx.doi.org/http://doi.acm.org/10.1145/1073970.1074013


Enqueue ThroughputPp Pp Results

Aras AtalarModeling Energy Consumption of Lock-Free Queue Implementations 22 25



Dequeue ThroughputPp Pp Results

Aras AtalarModeling Energy Consumption of Lock-Free Queue Implementations 23 25



Dynamic Memory PowerPp Pp Results

pwe=2 pwe=50

0

1

2

3

4

0

1

2

3

4

pw
d=

2
pw

d=
50

2 4 6 8 2 4 6 8
Number of threads

D
yn

am
ic

 m
em

or
y 

po
w

er
 (

W
at

t)

Dynamic memory power at f = 3.4GHz

Aras AtalarModeling Energy Consumption of Lock-Free Queue Implementations 24 25



ConclusionPp Pp Results

I Model of power, throughput and energy per operation of lock-free
queues

I Validation on several widely-used implementations
I Decomposition into basic throughputs thanks to two impacting

factors
I Inter- and intra-contention
I State of the queue

I  better understanding and reduction of the number of
measurement points

I Generalization to slowly changing parallel sections on Mandelbrot
application

Aras AtalarModeling Energy Consumption of Lock-Free Queue Implementations 25 25


	Introduction
	Throughput Estimation
	Power Estimation
	Results
	Extra

	0: 
	0: 
	1: 
	2: 
	3: 
	4: 
	5: 
	6: 
	7: 
	8: 
	9: 
	10: 
	11: 
	EndLeft: 
	StepLeft: 
	PauseLeft: 
	PlayLeft: 
	PlayPauseLeft: 
	PauseRight: 
	PlayRight: 
	PlayPauseRight: 
	StepRight: 
	EndRight: 
	Minus: 
	Reset: 
	Plus: 

	anm0: 
	1: 
	0: 
	1: 
	2: 
	3: 
	4: 
	5: 
	6: 
	7: 
	8: 
	9: 
	10: 
	11: 
	EndLeft: 
	StepLeft: 
	PauseLeft: 
	PlayLeft: 
	PlayPauseLeft: 
	PauseRight: 
	PlayRight: 
	PlayPauseRight: 
	StepRight: 
	EndRight: 
	Minus: 
	Reset: 
	Plus: 

	anm1: 


