
Analyzing the Performance of Lock-Free
Data Structures: A Conflict-based Model

Aras Atalar, Paul Renaud-Goud
and Philippas Tsigas

Chalmers University of Technology

qwwe



MotivationPp Pp

I Lock-free Data Structures:
I Literature and industrial applications (Intel’s Threading Building

Blocks Framework, Java concurrency package)
I Limitations of their lock-based counterparts: deadlocks, convoying

and programming flexibility
I Provide high scalability

I Framework to characterize the scalability:

I Facilitate the lock-free designs
I Rank implementations within a fair framework

Aras AtalarAnalyzing the Performance of Lock-Free Data Structures: A Conflict-based Model 2 13



MotivationPp Pp

I Lock-free Data Structures:
I Literature and industrial applications (Intel’s Threading Building

Blocks Framework, Java concurrency package)
I Limitations of their lock-based counterparts: deadlocks, convoying

and programming flexibility
I Provide high scalability

I Framework to characterize the scalability:
I Facilitate the lock-free designs
I Rank implementations within a fair framework

Aras AtalarAnalyzing the Performance of Lock-Free Data Structures: A Conflict-based Model 2 13



SettingsPp Pp

Output: Data structure throughput, i.e. number of successful operations
per unit of time

Procedure AbstractAlgorithm
1 Initialization();
2 while ! done do
3 Parallel_Work(); /* Application specific code, conflict-free */
4 while ! success do
5 current ← Read(AP);
6 new ← Critical_Work(current);
7 success ← CAS(AP, current, new);

Inputs of the analysis:
I Platform parameters: CAS and Read Latencies, in clock cycles
I Algorithm parameters:

I Critical Work and Parallel Work Latencies, in clock cycles
I Total number of threads

Aras AtalarAnalyzing the Performance of Lock-Free Data Structures: A Conflict-based Model 3 13



SettingsPp Pp

Output: Data structure throughput, i.e. number of successful operations
per unit of time

Procedure AbstractAlgorithm
1 Initialization();
2 while ! done do
3 Parallel_Work(); /* Application specific code, conflict-free */
4 while ! success do
5 current ← Read(AP);
6 new ← Critical_Work(current);
7 success ← CAS(AP, current, new);

Inputs of the analysis:
I Platform parameters: CAS and Read Latencies, in clock cycles
I Algorithm parameters:

I Critical Work and Parallel Work Latencies, in clock cycles
I Total number of threads

Aras AtalarAnalyzing the Performance of Lock-Free Data Structures: A Conflict-based Model 3 13



SettingsPp Pp

Output: Data structure throughput, i.e. number of successful operations
per unit of time

Procedure AbstractAlgorithm
1 Initialization();
2 while ! done do
3 Parallel_Work(); /* Application specific code, conflict-free */
4 while ! success do
5 current ← Read(AP);
6 new ← Critical_Work(current);
7 success ← CAS(AP, current, new);

Inputs of the analysis:
I Platform parameters: CAS and Read Latencies, in clock cycles
I Algorithm parameters:

I Critical Work and Parallel Work Latencies, in clock cycles
I Total number of threads

Aras AtalarAnalyzing the Performance of Lock-Free Data Structures: A Conflict-based Model 3 13



SettingsPp Pp

Output: Data structure throughput, i.e. number of successful operations
per unit of time

Procedure AbstractAlgorithm
1 Initialization();
2 while ! done do
3 Parallel_Work(); /* Application specific code, conflict-free */
4 while ! success do
5 current ← Read(AP);
6 new ← Critical_Work(current);
7 success ← CAS(AP, current, new);

Inputs of the analysis:
I Platform parameters: CAS and Read Latencies, in clock cycles
I Algorithm parameters:

I Critical Work and Parallel Work Latencies, in clock cycles
I Total number of threads

Aras AtalarAnalyzing the Performance of Lock-Free Data Structures: A Conflict-based Model 3 13



SettingsPp Pp

Output: Data structure throughput, i.e. number of successful operations
per unit of time

Procedure AbstractAlgorithm
1 Initialization();
2 while ! done do
3 Parallel_Work(); /* Application specific code, conflict-free */
4 while ! success do
5 current ← Read(AP);
6 new ← Critical_Work(current);
7 success ← CAS(AP, current, new);

Inputs of the analysis:
I Platform parameters: CAS and Read Latencies, in clock cycles
I Algorithm parameters:

I Critical Work and Parallel Work Latencies, in clock cycles
I Total number of threads

Aras AtalarAnalyzing the Performance of Lock-Free Data Structures: A Conflict-based Model 3 13



SettingsPp Pp

Output: Data structure throughput, i.e. number of successful operations
per unit of time

Procedure AbstractAlgorithm
1 Initialization();
2 while ! done do
3 Parallel_Work(); /* Application specific code, conflict-free */
4 while ! success do
5 current ← Read(AP);
6 new ← Critical_Work(current);
7 success ← CAS(AP, current, new);

Inputs of the analysis:
I Platform parameters: CAS and Read Latencies, in clock cycles
I Algorithm parameters:

I Critical Work and Parallel Work Latencies, in clock cycles
I Total number of threads

Aras AtalarAnalyzing the Performance of Lock-Free Data Structures: A Conflict-based Model 3 13



OverviewPp Pp

cw = 50, threads = 8

4000

6000

8000

10000

12000

0 2000 4000 6000
Parallel Work (cycles)

T
hr

ou
gh

pu
t (

op
s/

m
se

c)

Case Constant Exponential Poisson

Aras AtalarAnalyzing the Performance of Lock-Free Data Structures: A Conflict-based Model 4 13



Executions Under Contention LevelsPp Pp

parallel work

successful retry

failed retry

Parallel work

Throughput

T0

T1

T2

T3

System

Aras AtalarAnalyzing the Performance of Lock-Free Data Structures: A Conflict-based Model 5 13



Executions Under Contention LevelsPp Pp parallel work

successful retry

failed retry

Parallel work

Throughput

T0

T1

T2

T3

System

Low contention

Aras AtalarAnalyzing the Performance of Lock-Free Data Structures: A Conflict-based Model 5 13



Executions Under Contention LevelsPp Pp parallel work

successful retry

failed retry

Parallel work

Throughput

T0

T1

T2

T3

System

T0

T1

T2

T3

System

Peak performance

Aras AtalarAnalyzing the Performance of Lock-Free Data Structures: A Conflict-based Model 5 13



Executions Under Contention LevelsPp Pp parallel work

successful retry

failed retry

Parallel work

Throughput

T0

T1

T2

T3

System

T0

T1

T2

T3

System

High contention

Aras AtalarAnalyzing the Performance of Lock-Free Data Structures: A Conflict-based Model 5 13



Impacting FactorsPp Pp

I Logical Conflicts

I Hardware Conflicts

CAS
Expansion

Aras AtalarAnalyzing the Performance of Lock-Free Data Structures: A Conflict-based Model 6 13



Logical Conflicts: (f )-Cyclic ExecutionsPp Pp

I Periodic: every thread is in the same state as one period before
I Shortest period contains exactly 1 successful attempt and

exactly f fails per thread

Aras AtalarAnalyzing the Performance of Lock-Free Data Structures: A Conflict-based Model 7 13



Inevitable and Wasted FailuresPp Pp
T0

T1

T2

T3

System

vs.

T0

T1

T2

T3

System

Aras AtalarAnalyzing the Performance of Lock-Free Data Structures: A Conflict-based Model 8 13



Hardware Conflicts: CAS ExpansionPp Pp

Read & Critical Work Previously
expanded CASExpansion

CAS

I Input: Prl threads already in the retry loop
I A new thread attempts to CAS during the retry

(Read + Critical_Work + e (Prl) + CAS), within a probability h:

 e (Prl + h) = e (Prl) + h ×
∫ retry

0

cost(t)
retry dt.

Aras AtalarAnalyzing the Performance of Lock-Free Data Structures: A Conflict-based Model 9 13



Throughput: Combining Impacting FactorsPp Pp

I Input: Prl (Average number of threads inside retry loop)
1. Calculate expansion: e (Prl)

2. Compute amount of work in a retry:

Retry = Read + Critical_Work + e (Prl) + CAS

3. Estimate number of logical conflicts:

LogicalConflicts(Retry ,Parallel_Work,Threads)

 Average number of threads inside the retry loop

I Convergence via fixed point iteration

Aras AtalarAnalyzing the Performance of Lock-Free Data Structures: A Conflict-based Model 10 13



Throughput: Combining Impacting FactorsPp Pp

I Input: Prl (Average number of threads inside retry loop)
1. Calculate expansion: e (Prl)

2. Compute amount of work in a retry:

Retry = Read + Critical_Work + e (Prl) + CAS

3. Estimate number of logical conflicts:

LogicalConflicts(Retry ,Parallel_Work,Threads)

 Average number of threads inside the retry loop

I Convergence via fixed point iteration

Aras AtalarAnalyzing the Performance of Lock-Free Data Structures: A Conflict-based Model 10 13



Results: Synthetic TestsPp Pp

cw = 50, threads = 4 cw = 50, threads = 8

cw = 1600, threads = 4 cw = 1600, threads = 8

4000

6000

8000

10000

12000

4000

6000

8000

10000

12000

1000

1500

1000

1500

1000 2000 3000 0 2000 4000 6000

0 5000 10000 15000 20000 0 10000 20000 30000 40000
Parallel Work (cycles)

T
hr

ou
gh

pu
t (

op
s/

m
se

c)
Case Low High Average Real

Aras AtalarAnalyzing the Performance of Lock-Free Data Structures: A Conflict-based Model 11 13



Back-off Optimization: Michael-Scott QueuePp Pp

cw = 225, threads = 8

3000

4000

5000

6000

7000

0 2500 5000 7500
Parallel Work (cycles)

T
hr

ou
gh

pu
t (

op
s/

m
se

c)

Type Exponential Linear New None

Value 0 1 2 4 8 16 32

Aras AtalarAnalyzing the Performance of Lock-Free Data Structures: A Conflict-based Model 12 13



ConclusionPp Pp

I Focus on the cases where parallel work is constant

I An approach based on the estimation of logical and hardware
conflicts

I Validate our model using synthetic tests and several reference data
structures

I Linear combination of retry loops

Aras AtalarAnalyzing the Performance of Lock-Free Data Structures: A Conflict-based Model 13 13



Results: Treiber’s StackPp Pp

cw = 50, threads = 6

cw = 1500, threads = 6

4000

6000

8000

10000

12000

1000

1500

2000

0 1000 2000 3000 4000

0 10000 20000 30000
Parallel Work (cycles)

T
hr

ou
gh

pu
t (

op
s/

m
se

c)
Case Low High Average Real

cw = 50, threads = 8

cw = 1500, threads = 8

4000

6000

8000

10000

12000

1000

1500

2000

0 2000 4000 6000

0 10000 20000 30000 40000
Parallel Work (cycles)

T
hr

ou
gh

pu
t (

op
s/

m
se

c)

Case Low High Average Real

Aras AtalarAnalyzing the Performance of Lock-Free Data Structures: A Conflict-based Model 14 13



DiscussionPp Pp

cw = 4000, threads = 6

0

2

4

6

8

0 10000 20000 30000 40000
Parallel Work (cycles)

0.25 0.50 0.75
Consecutive Fail Frequency

Case Av. Fails per Success Model Average Normalized Throughput

Aras AtalarAnalyzing the Performance of Lock-Free Data Structures: A Conflict-based Model 15 13


	Appendix



