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MotivationPp Pp

I Lock-free Data Structures:
I Literature and industrial applications (Intel’s Threading Building

Blocks Framework, Java concurrency package)
I Limitations of their lock-based counterparts: deadlocks, convoying

and programming flexibility
I Provide high scalability

I Framework to characterize the scalability:

I Facilitate the lock-free designs
I Rank implementations within a fair framework
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SettingsPp Pp

Output: Data structure throughput, i.e. number of successful operations
per unit of time

Procedure AbstractAlgorithm
1 Initialization();
2 while ! done do
3 Parallel_Work(); /* Application specific code, conflict-free */
4 while ! success do
5 current ← Read(AP);
6 new ← Critical_Work(current);
7 success ← CAS(AP, current, new);

Inputs of the analysis:
I Platform parameters: CAS and Read Latencies, in clock cycles
I Algorithm parameters:

I Critical Work and Parallel Work Latencies, in clock cycles
I Total number of threads
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OverviewPp Pp

cw = 50, threads = 8
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Executions Under Contention LevelsPp Pp

parallel work

successful retry
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Impacting FactorsPp Pp

I Logical Conflicts

I Hardware Conflicts

CAS
Expansion

Aras AtalarAnalyzing the Performance of Lock-Free Data Structures: A Conflict-based Model 6 13



Logical Conflicts: (f )-Cyclic ExecutionsPp Pp

I Periodic: every thread is in the same state as one period before
I Shortest period contains exactly 1 successful attempt and

exactly f fails per thread
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Inevitable and Wasted FailuresPp Pp
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Hardware Conflicts: CAS ExpansionPp Pp

Read & Critical Work Previously
expanded CASExpansion

CAS

I Input: Prl threads already in the retry loop
I A new thread attempts to CAS during the retry

(Read + Critical_Work + e (Prl) + CAS), within a probability h:

 e (Prl + h) = e (Prl) + h ×
∫ retry

0

cost(t)
retry dt.
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Throughput: Combining Impacting FactorsPp Pp

I Input: Prl (Average number of threads inside retry loop)
1. Calculate expansion: e (Prl)

2. Compute amount of work in a retry:

Retry = Read + Critical_Work + e (Prl) + CAS

3. Estimate number of logical conflicts:

LogicalConflicts(Retry ,Parallel_Work,Threads)

 Average number of threads inside the retry loop

I Convergence via fixed point iteration
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Results: Synthetic TestsPp Pp
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Back-off Optimization: Michael-Scott QueuePp Pp

cw = 225, threads = 8
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ConclusionPp Pp

I Focus on the cases where parallel work is constant

I An approach based on the estimation of logical and hardware
conflicts

I Validate our model using synthetic tests and several reference data
structures

I Linear combination of retry loops
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Results: Treiber’s StackPp Pp

cw = 50, threads = 6
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DiscussionPp Pp

cw = 4000, threads = 6
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