
Data Structures for Task-based Priority Scheduling
Martin Wimmer 1 Daniel Cederman 2 Francesco Versaci 1 Jesper Larsson Träff 1 Philippas Tsigas 2

1 Vienna University of Technology, Institute of Information Systems
2 Chalmers University of Technology, Computer Science and Engineering

Single-Source Shortest Path

This work discusses trade-offs for three types of relaxed priority queues
using a simple parallelization of Dijkstra’s algorithm for the single-source
shortest path problem:

a

b

c

d

e
f

g h

9 3

2 8

4

5

7

7 8

2

11

1

5

3

In this label-correcting algorithm, each node is
assigned a distance label dt marking its distance to
the source. Nodes are greedily relaxed in parallel,
thereby atomically updating their neighbour’s
distance label if a shorter path is found. Nodes with
smaller distance labels are prioritized.

Priority Work-Stealing

We extend work-stealing to support priorities by using a priority queue per
thread instead of a deque. Good scalability due to localized nature of
algorithm, but no global guarantees on the priority of tasks.

ρ-relaxation

For improved scalability we adopt ρ-relaxation, a temporal property that
allows certain items in a data structure to be ignored. We say an item is
ignored whenever an item of lower priority is returned by a pop operation.

Centralized k-priority Queue

Provides strong guarantees on priorities due to semantics of a centralized,
global priority queue. To reduce congestion, we rely on ρ-relaxation as
follows: (i) a pop operation is allowed to ignore the items added by the
latest ρ = k push operations (which, in the worst case, might be the top
k by priority), (ii) each task is visible to at least one thread.

B1
k=1

A1
k=1

A2
k=5

B3
k=5

B2
k=5

...

...
A1

B1 A2

B3

B1 B2

A1

Global Array

Place A – Priority Queue Place B – Priority Queue

Implementation: Tasks stored in global array in order of creation, but
may be shifted by up to k positions to reduce congestion. Priorities
maintained locally using a serial priority queue per thread storing references
to the global array. Each thread is allowed to ignore the latest k tasks in
the global array created by other threads.

Hybrid k-priority Queue

We combine the priority work-stealing and k-priority ideas, which yields a
data structure with scalability close to work-stealing, but providing
ρ-relaxation guarantees. Guarantees that at most the latest k items added
by each thread to be ignored, which implies that, being P the number of
threads, up to ρ = Pk items might be ignored in total.

B1
k=1

B2
k=1

A1
k=10

A2
k=1

A3
k=1

C1
k=0

A4

C1 A2

A5 A1B2

B3
k=8

B4
k=8

B3

C1 B4

A1 A2A3

B2 B1A6B1 A3

A4
k=10

A5
k=10

A6
k=5

Local list – remaining_k=5

Priority Queue

Local list – remaining_k=7

Priority Queue

...

Global List

Place BPlace A

Each thread maintains its own list of tasks of length at most k. After k
tasks were added to the list, the list is linked to a global list, thus making it
public. Each thread maintains a serial priority queue with references to all
tasks in the global list and its local list. If both lists are empty, a thread will
spy tasks from another thread. Spying is similar to stealing in work-stealing
systems, with the main difference being that the original owner still has
access to a spied task.

Experiments

Sequential Work−Stealing Centralized Hybrid

0.00

0.25

0.50

0.75

1 2 3 5 10 20 40 80

Places/Threads (P)

To
ta

l e
xe

cu
tio

n 
tim

e 
(s

)

0

10000

20000

30000

1 2 3 5 10 20 40 80

Places/Threads (P)

N
od

es
 r

el
ax

ed

Large run-time system overhead in comparison with sequential Dijkstra
implementation, but good scalability. Hybrid k-priority queue can scale up
to 40 threads. Algorithm becomes memory bandwidth bound for more
threads. Amount of node relaxations close to optimal for all data structures
except work stealing. (Intel Xeon E7-8850, n = 10000, p = 50%)

Influence of Parameter k

0.0

0.2

0.4

0.6

0 1 2 4 8 16 32 64 12
8
25

6
51

2
10

24
20

48
40

96
81

92
16

38
4

32
76

8

k

To
ta

l e
xe

cu
tio

n 
tim

e 
(s

)

0

5000

10000

15000

20000

0 1 2 4 8 16 32 64 12
8
25

6
51

2
10

24
20

48
40

96
81

92
16

38
4

32
76

8

k

N
od

es
 r

el
ax

ed

High overhead with small k, but close to optimal useless work with k up to
512. Best compromise between scalability and priority guarantees at
k = 512 in this case. (Intel Xeon E7-8850, n = 10000, p = 50%)

Upper Bounds on Useless Work in SSSP

Analysis for Erdős-Rényi random graphs with parameters n and p: Let Wt

be the useless work performed at time t by our algorithm, using an ideal
priority queue, and let ht(i, j) = dt(j) − dt(i). We can bound Wt from
above as:

Wt ≤
P∑
j=1

1 −
j−1∏
i=1

n−1∏
L=1

(
1 −

(p ht(i, j))
L

L!

) (n−2)!
(n−1−L)!

 .

We adapt this bound to ρ-relaxed priority queues by appropriately changing
the range of the sum.

Simulation

0

20

40

60

80

0 50 100

Phase

N
um

be
r 

of
 s

et
tle

d 
no

de
s

Lower Bound

Simulation
0

20

40

60

80

0 50 100

Phase

N
um

be
ro

fs
et

tle
d

no
de

s

0

128

512

ρ

A simulation based on our theoretical model confirms the obtained upper
bounds on useless work. Throughout most of the execution the expected
useless work is very small. (n = 10000, P = 80, p = 50%)

Results

I Efficient parallel implementations of Dijkstra’s algorithm with ρ-relaxed
priority queues.

I Hybrid k-priority queue provides the best compromise between scalability
and priority guarantees for SSSP.

I Theoretical model relies on a weaker formulation of ρ-relaxation, thus
allowing for more relaxed priority queues in future work.

I Code is available as part of the open source task-scheduling framework
Pheet. (www.pheet.org)

www.pheet.org

