
Work-stealing with Configurable Scheduling Strategies
Martin Wimmer 1 Daniel Cederman 2 Jesper Larsson Träff 1 Philippas Tsigas 2

1 Vienna University of Technology, Institute of Information Systems
2 Chalmers University of Technology, Computer Science and Engineering

Scheduling Strategies

We propose scheduling strategies, as a way to inform a scheduling system
about properties of individual tasks.

class SsspStrategy : public BaseStrategy {
public :

SsspStrategy(int distance , int & node distance)

: distance (distance), node distance(node distance) {}
inline bool prioritize (SsspStrategy& other) const {

return distance < other. distance ;

}
inline bool dead task() {

return node distance < distance;

}
private :

int distance ;

int & node distance;

};

Scheduling strategies can use application-specific information to influence
scheduler decisions. The scheduling system stays generic.

Spawn-to-Call Conversion

With small task granularity the overhead of spawning tasks has a major
impact on performance, but only a small fraction of spawned tasks is stolen
by other threads. Strategies allow to convert task spawns to function calls
at run-time. The decision is made depending on task granularity, available
parallelism and number of tasks in the queues.

Example: Unbalanced Tree Search

Benchmark to evaluate programmability and performance
for applications requiring dynamic load balancing.
A task is created for each node. Tasks are extremely
lightweight, so the scheduling overhead is significant.
Spawn-to-call conversion allows to reduce this overhead.Sheet1

Page 1

1 2 3 6 12 24 48
0

1

2

3

4

5

6

7

Specialized Strategy

LIFO/FIFO Strategy

Standard Work-stealing

Threads

E
xe

cu
tio

n
 T

im
e

 (
s)

Prioritization of Tasks

Using a simple comparison operator for two strategies of the same type, a
priority ordering between tasks is established.

a

b

c

d

e
f

g h

9 3

2 8

4

5

7

7 8

2

11

1

5

3

Example: Single-Source Shortest Path

Edges are greedily explored by multiple threads.
A task is created for each node when the
distance label for this node is updated. With
prioritization due to strategies, the scheduling
system can take the role of the priority
data-structure.

Steal Half the Work, not Half the Tasks

Stealing half the work typically leads to better results in work-stealing. The
amount of work per task is not known in classical work-stealing, it is
approximated by stealing half the tasks. Strategies allow for a more
accurate stealing behaviour by providing the scheduling system with a rough
estimate of task granularity.

28 27 26 25 24 23 22 21

12
W

ork 1
2

Tasks

Example:

In divide-and-conquer
algorithms, stealing a single
task may already yield half the
work.

Elimination of Dead Tasks

Strategies allow the scheduling system to
recognize dead tasks, which are tasks that have
become obsolete.

Example: Cutting off branches in
branch-and-bound algorithms.

Locality

Together with the notion of a place, which denotes an execution unit
together with its supporting data-structures, the prioritization mechanism
can be used to implement per task locality optimizations.

bool LocalityStrategy :: prioritize (LocalityStrategy & other) {
Place∗ p = Pheet:: get place ();

int distance = p−>get distance(last owner);

int distance other = p−>get distance(other.last owner);

return distance > distance other ;

}

Composability

Composability of algorithms is achieved by
organizing strategies in a hierarchy. Tasks with
different strategies are composed by the strategy
of their common ancestor.

LIFO/FIFO

PrefixSum UTS
Sheet1

Page 1

1 2 3 6 12 24 48
0

1

2

3

4

5

6

UTS

Prefix sum

Prefix sum + UTS

Threads

E
xe

cu
tio

n
 T

im
e

 (
s)

Composed execution
more efficient than
separate execution.

Other Benchmarks

I Graph Bipartitioning Promising branches are explored first due to
prioritization. Tasks with high uncertainty are preferably stolen. When a
new bound is found, some tasks are marked as dead. Spawn-to-call
conversion is used on high load.

I Prefix Sum Parallel algorithm performs a factor two more operations
than sequential. It adapts towards sequential performance when little
parallelism is available.

I Triangle Strip Generation Improvement on performance and result
quality due to prioritization.

I Quicksort Improvements mainly due to spawn-to-call conversion.

Pheet

Scheduling strategies and the corresponding schedulers will be released as
part of the Pheet task-scheduling framework. (www.pheet.org)
Public release planned Summer/Fall 2013 under the Boost Software License.

www.pheet.org

