
Lock-Free and Practical
Doubly Linked List-Based
Deques using Single-Word
Compare-And-Swap

Håkan Sundell
Philippas Tsigas

OPODIS 2004:
The 8th International Conference on Principles of Distributed Systems

2

Sundell Jr.

http://www.cs.chalmers.se/~phs/Bebis/IMG_0011.JPG

3

Outline

Synchronization Methods
Deques (Double-Ended Queues)
Doubly Linked Lists
Concurrent Deques

Previous results
New Lock-Free Algorithm

Experimental Evaluation
Conclusions

4

Synchronization

Shared data structures needs
synchronization

Synchronization using Locks
Mutually exclusive access to whole or parts
of the data structure

P1
P2

P3

P1
P2

P3

5

Blocking Synchronization

Drawbacks
Blocking
Priority Inversion
Risk of deadlock

Locks: Semaphores, spinning,
disabling interrupts etc.

Reduced efficiency because of
reduced parallelism

6

Non-blocking Synchronization

Lock-Free Synchronization
Optimistic approach (i.e. assumes no
interference)

1. The operation is prepared to later take effect
(unless interfered) using hardware atomic
primitives

2. Possible interference is detected via the atomic
primitives, and causes a retry
• Can cause starvation

Wait-Free Synchronization
Always finishes in a finite number of its
own steps.

7

Deques (Double-Ended Queues)

Fundamental data structure
Stores values that can be removed
depending on the store order.

Incorporates the functionality of both
stacks and queues

Four basic operations:
PushRight/Left(v): Adds a new item
v=PopRight/Left(): Removes an item

8

Doubly Linked Lists

Fundamental data structure
Can be used to implement various abstract data
types (e.g. deques)

Unordered List, i.e. the nodes are ordered only
relatively to each other.
Supports Traversals
Supports Inserts/Deletes at arbitrary positions

H T

9

Previous Non-blocking Deques
(Doubly Linked Lists)

M. Greenwald, “Two-handed emulation: how
to build non-blocking implementations of
complex data structures using DCAS”,
PODC 2002
O. Agesen et al., “DCAS-based concurrent
deques”, SPAA 2000

D. Detlefs et al., “Even better DCAS-based
concurrent deques”, DISC 2000
P. Martin et al. “DCAS-based concurrent
deques supporting bulk allocation”, TR, 2002
Errata: S. Doherty et al. “DCAS is not a silver
bullet for nonblocking algorithm design”,
SPAA 2004

10

Previous Non-blocking
Deques

N. Arora et al., “Thread scheduling for
multiprogrammed multiprocessors”,
SPAA 1998

Not full deque semantics
Limited concurrency

M. Michael, “CAS-based lock-free
algorithm for shared deques”, EuroPar
2003

Requires double-width CAS
Not disjoint-access-parallel

11

New Lock-Free Concurrent
Doubly Linked List

Treat the doubly linked list as a singly linked
list with auxiliary information in each node
about its predecessor!

Singly Linked Lists
T. Harris, “A pragmatic implementation of
non-blocking linked lists”, DISC 2001

• Marks pointers using spare bit
• Needs only standard CAS

H T

12

Lock-Free Doubly Linked
Lists - INSERT

13

Lock-Free Doubly Linked
Lists - DELETE

14

Lock-Free Doubly Linked List
- Memory Management

The information about neighbor nodes
should also be accessible in partially
deleted nodes!

Enables helping operations to find
Enables continuous traversals

M. Michael, “Safe memory
reclamation for dynamic lock-free
objects using atomic read and writes”,
PODC 2002

Does not allow pointers from nodes

15

Lock-Free Doubly Linked List
- Memory Management

D. Detlefs et al., “Lock-Free
Reference Counting”, PODC 2001

Uses DCAS, which is not available
J. Valois, “Lock-Free Data Structures”,
1995

M. Michael and M. Scott, “Correction
of a memory management method for
lock-free data structures”, 1995

• Uses standard CAS
• Uses free-list style of memory pool

16

Lock-Free Doubly Linked List
- Cyclic Garbage Avoidance

Lock-Free Reference Counting is
sufficient for our algorithm.
Reference Counting can not handle
cyclic garbage!

We break the symmetry directly
before possible reclaiming a node,
such that helping operations still can
utilize the information in the node.
We make sure that next and prev
pointers from a deleted node, only
points to active nodes.

17

New Lock-Free Doubly Linked List
- Techniques Summary

General Doubly Linked List Structure
Treated as singly linked lists with extra info

Uses CAS atomic primitive
Lock-Free memory management

IBM Freelists
Reference counting (Valois+Michael&Scott)

Avoids cyclic garbage
Helping scheme
All together proved to be linearizable

18

Experimental Evaluation

Experiment with 1-28 threads performed on
systems with 2, 4 respective 29 cpu’s.

Each thread performs 1000 operations,
randomly distributed over PushRight,
PushLeft, PopRight and PopLeft’s.

Compare with implementation by Michael
and Martin et al., using same scenarios.
For Martin et al. DCAS implemented by
software CASN by Harris et al. or by mutex.
Averaged execution time of 50 experiments.

19

Linux Pentium II, 2 cpu’s

 1

 10

 100

 1000

 0 5 10 15 20 25 30

E
xe

cu
tio

n
T

im
e

(m
s)

Threads

Deque with High Contention - Linux, 2 Processors

NEW ALGORITHM
MICHAEL

HAT-TRICK MUTEX
HAT-TRICK CASN

20

SGI Origin 2000, 29 cpu’s.

 1

 10

 100

 1000

 10000

 100000

 0 5 10 15 20 25 30

E
xe

cu
tio

n
T

im
e

(m
s)

Threads

Deque with High Contention - SGI Mips, 29 Processors

NEW ALGORITHM
MICHAEL

HAT-TRICK MUTEX
HAT-TRICK CASN

21

Conclusions

A first lock-free Deque using single word CAS.
The new algorithm is more scalable than
Michael’s, because of its disjoint-access-
parallel property.
Also implements a general doubly linked list,
the first using CAS.
Our lock-free algorithm is suitable for both
pre-emptive as well as systems with full
concurrency.

Will be available as part of NOBLE software
library, http://www.noble-library.org

See Håkan Sundell’s PhD Thesis for an
extended version of the paper.

22

Questions?

Contact Information:
Address:

Håkan Sundell or Philippas Tsigas
Computing Science
Chalmers University of Technology

Email:
<phs , tsigas> @ cs.chalmers.se

Web:
http://www.cs.chalmers.se/~noble

23

Lock-Free Doubly Linked
Lists

24

Lock-Free Doubly Linked
Lists

25

Lock-Free Doubly Linked
Lists

26

Lock-Free Doubly Linked
Lists

27

Lock-Free Doubly Linked
Lists

28

Lock-Free Doubly Linked
Lists

29

Lock-Free Doubly Linked
Lists

30

Lock-Free Doubly Linked
Lists

31

Lock-Free Doubly Linked
Lists

32

Lock-Free Doubly Linked
Lists

33

Lock-Free Doubly Linked
Lists

34

Lock-Free Doubly Linked
Lists

35

Lock-Free Doubly Linked
Lists

36

Lock-Free Doubly Linked
Lists

37

Lock-Free Doubly Linked
Lists

Is really PopLeft linarizable?
We can not guarantee that the node is
the first, at the same time as we
logically delete it!
No problem: we can safely assume
that the node was deleted at the time
we verified that the node was the first,
as this operation was the only one to
delete it and no other operation cares
about the deletion state of that node
for its result.

38

Lock-Free Doubly Linked
Lists

How can we traverse through nodes
that are logically (and maybe even
”physically”) deleted?

We interpret the ”cursor” position as
the node itself, or if its get deleted, the
position will be inherited to its next
node (interpreted as directly before
that one)

• Applied recursively, if next node is also
deleted

39

Lock-Free Doubly Linked
Lists

40

Lock-Free Doubly Linked
Lists

41

Lock-Free Doubly Linked
Lists

42

Lock-Free Doubly Linked
Lists

43

Lock-Free Doubly Linked
Lists

44

Dynamic Memory Management

Problem: System memory allocation
functionality is blocking!
Solution (lock-free), IBM freelists:

Pre-allocate a number of nodes, link
them into a dynamic stack structure,
and allocate/reclaim using CAS

Head Mem 1 Mem 2 Mem n…

Used 1
Reclaim

Allocate

45

The ABA problem

Problem: Because of concurrency
(pre-emption in particular), same
pointer value does not always mean
same node (i.e. CAS succeeds)!!!

1 76
4

2 73
4

Step 1:

Step 2:

46

The ABA problem

Solution: (Valois et al) Add reference
counting to each node, in order to prevent
nodes that are of interest to some thread to
be reclaimed until all threads have left the
node

1 * 6 *

2 73
4

1 1

? ? ?

1

CAS Failes!

New Step 2:

47

Helping Scheme

Threads need to traverse safely

Need to remove marked-to-be-deleted
nodes while traversing – Help!
Finds previous node, finish deletion and
continues traversing from previous node

1 42 *1 42 * or

? ?

1 42 *

48

Back-Off Strategy

For pre-emptive systems, helping is
necessary for efficiency and lock-freeness
For really concurrent systems, overlapping
CAS operations (caused by helping and
others) on the same node can cause
heavy contention
Solution: For every failed CAS attempt,
back-off (i.e. sleep) for a certain duration,
which increases exponentially

49

Non-blocking Synchronization

Lock-Free Synchronization
Avoids problems with locks
Simple algorithms
Fast when having low contention

Wait-Free Synchronization
Always finishes in a finite number of
its own steps.

• Complex algorithms
• Memory consuming
• Less efficient in average than lock-free

50

Correctness

Linearizability (Herlihy 1991)
In order for an implementation to be
linearizable, for every concurrent
execution, there should exist an equal
sequential execution that respects the
partial order of the operations in the
concurrent execution

51

Correctness

Define precise sequential semantics
Define abstract state and its interpretation

Show that state is atomically updated
Define linearizability points

Show that operations take effect atomically
at these points with respect to sequential
semantics

Creates a total order using the linearizability
points that respects the partial order

The algorithm is linearizable

52

Correctness

Lock-freeness
At least one operation should always
make progress

There are no cyclic loop depencies,
and all potentially unbounded loops
are ”gate-keeped” by CAS operations

The CAS operation guarantees that at
least one CAS will always succeed

• The algorithm is lock-free

	Lock-Free and Practical Doubly Linked List-Based Deques using Single-Word Compare-And-Swap
	Sundell Jr.
	Outline
	Synchronization
	Blocking Synchronization
	Non-blocking Synchronization
	Deques (Double-Ended Queues)
	Doubly Linked Lists
	Previous Non-blocking Deques (Doubly Linked Lists)
	Previous Non-blocking Deques
	New Lock-Free Concurrent Doubly Linked List
	Lock-Free Doubly Linked Lists - INSERT
	Lock-Free Doubly Linked Lists - DELETE
	Lock-Free Doubly Linked List�- Memory Management
	Lock-Free Doubly Linked List�- Memory Management
	Lock-Free Doubly Linked List�- Cyclic Garbage Avoidance
	New Lock-Free Doubly Linked List - Techniques Summary
	Experimental Evaluation
	Linux Pentium II, 2 cpu’s
	SGI Origin 2000, 29 cpu’s.
	Conclusions
	Questions?
	Lock-Free Doubly Linked Lists
	Lock-Free Doubly Linked Lists
	Lock-Free Doubly Linked Lists
	Lock-Free Doubly Linked Lists
	Lock-Free Doubly Linked Lists
	Lock-Free Doubly Linked Lists
	Lock-Free Doubly Linked Lists
	Lock-Free Doubly Linked Lists
	Lock-Free Doubly Linked Lists
	Lock-Free Doubly Linked Lists
	Lock-Free Doubly Linked Lists
	Lock-Free Doubly Linked Lists
	Lock-Free Doubly Linked Lists
	Lock-Free Doubly Linked Lists
	Lock-Free Doubly Linked Lists
	Lock-Free Doubly Linked Lists
	Lock-Free Doubly Linked Lists
	Lock-Free Doubly Linked Lists
	Lock-Free Doubly Linked Lists
	Lock-Free Doubly Linked Lists
	Lock-Free Doubly Linked Lists
	Dynamic Memory Management
	The ABA problem
	The ABA problem
	Helping Scheme
	Back-Off Strategy
	Non-blocking Synchronization
	Correctness
	Correctness
	Correctness

