
Allocating memory in a 
lock-free manner

Anders Gidenstam, Marina Papatriantafilou
and Philippas Tsigas

Distributed Computing and Systems group,
Department of Computer Science and Engineering,

Chalmers University of Technology



2005 Anders Gidenstam, Distributed Computing and 
Systems, Chalmers

2

Outline

Introduction
Lock-free synchronization
Memory allocators

NBmalloc
Architecture
Data structures

Experiments
Conclusions



2005 Anders Gidenstam, Distributed Computing and 
Systems, Chalmers

3

Synchronization on a shared object

Lock-free and wait-free synchronization
Concurrent operations without enforcing mutual exclusion
Avoids:

• blocking and priority inversion

Lock-free
• At least one operation always makes progress

Wait-free
• All operations finish in a bounded number of their own steps

Synchronization primitives
Built into CPU and memory system

• Atomic read-modify-write (i.e. a critical section of one instruction)

Examples
• Test-and-set, Compare-and-Swap, Load-Linked / Store-Conditional
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Synchronization on a shared object

Desired semantics of a shared data 
object

Linearizability [Herlihy & Wing, 1990]

• For each operation invocation there must 
be one single time instant during its 
duration where the operation appears to 
take effect.
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Memory management and lock-free 
synchronization

Concurrent memory management
Concurrent applications

• Memory is a shared resource
• Concurrent memory requests
• Potential problems: contention, blocking, etc

Why lock-free?
• Scalability/fault-tolerance potential
• Prevents a delayed thread from blocking other threads

• Scheduler decisions
• Page faults etc

• Many non-blocking algorithms uses dynamic memory allocation
• => non-blocking memory allocator needed
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Memory Allocators

Provide dynamic memory to the application
Allocate / Deallocate interface

Maintains a pool of memory (a.k.a. heap)
Online problem – requests are handled in order
Performance

Fragmentation
Runtime overhead

Memory address
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Concurrent Memory Allocators

Goals
Scalability
Avoiding

• False-sharing
• Threads use data in the same cache-line

• Heap blowup
• Memory freed on one CPU is not made available to the others

• Fragmentation
• Runtime overhead

Cache line

CPUs
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The Hoard architecture [Berger et al, 2000]
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Per-processor heaps
Threads running on different CPUs allocate 
from different places
Avoids false-sharing and limits contention

Fixed set of size classes/allocatable sizes
Handled separately
Pros: Simple
Cons: Increases internal fragmentation

Superblocks
Contains blocks of one size class
Pros: Easy to transfer and reuse 
memory, prevents heap blowup
Cons: External fragmentation
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The lock-free challenges

1. The superblock internal freelist

2. Moving and finding superblocks within a per-
processor heap

3. Returning superblocks to the global heap for reuse

Lock-free stack (a.k.a. IBM freelist [IBM, 1983])

New lock-free data structure: The flat-set.
• Find an item in a set
• Move an item between sets atomically



2005 Anders Gidenstam, Distributed Computing and 
Systems, Chalmers

10

Lock-free flat-sets

Lock-free container data structure
Properties

Items can be moved from one 
set to another atomically 
An item can only be in one 
“set” at a time

Operations
Insert
Get_any
Insert atomically removes the item from 
its old location

L-F Set L-F Set

Remove Insert

Unless “Remove + Insert” appears atomic
an item may get stuck in “limbo”.

Current

Flat-set

Superblock

SB header
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Moving a shared pointer

Goal: 
Move a pointer value between two shared pointer locations

Requirements
The pointer target must stay accessible
The same # of shared pointers to the target after the move 
as before
Lock-free behaviour

Issues
One atomic CAS is not enough! We’ll need several steps.
Interfering threads need to help unfinished operations
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From

Moving a shared pointer

To

New_pos From

Old_pos -

New_pos To

Old_pos From

New_pos To

Old_pos -

From

Note that some extra details are needed to prevent ABA problems.
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Experimental results

Benchmark applications
Larson

• Scalability
• False-sharing

Active-false/Passive-false
• Active false-sharing
• Passive false-sharing
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Experimental results

Larson benchmark. Sun 4xUltraSPARC III

Speed-up Memory usage
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Experimental results

Larson benchmark. SGI Origin 3800 32(/128)xMIPS

Speed-up Memory usage
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Conclusions

Lock-free memory allocator
Scalable
Behaves well on both UMA and NUMA architectures

Lock-free flat-sets
New lock-free data structure
Allows lock-free inter-object operations

Implementation
Freely available (GPL)
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Future Work

Further development of the memory 
allocator

Reclaiming superblocks for reuse in a 
different size class
Improve search strategies for flat-sets

Evaluate the memory allocator with real 
applications
How to make lock-free composite objects 
from “smaller” lock-free objects
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Questions?

Contact Information:
Address:

Anders Gidenstam,
Computer Science & Engineering,
Chalmers University of Technology,
SE-412 96 Göteborg, Sweden

Email:
andersg @ cs.chalmers.se

Web:
http://www.cs.chalmers.se/~dcs
http://www.cs.chalmers.se/~andersg

Implementation
http://www.cs.chalmers.se/~dcs/nbmalloc.html

http://www.cs.chalmers.se/~dcs
http://www.cs.chalmers.se/~andersg
http://www.cs.chalmers.se/~andersg
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#CPUs

#Threads

Traditional desktop 
applications

Traditional multi-
threaded desktop 
applications

Multi-threaded applications on 
new multicore CPU(s)

High performance multi-
threaded applications on  
multiprocessors

Concurrent applications
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