
Allocating memory in a
lock-free manner

Anders Gidenstam, Marina Papatriantafilou
and Philippas Tsigas

Distributed Computing and Systems group,
Department of Computer Science and Engineering,

Chalmers University of Technology

2005 Anders Gidenstam, Distributed Computing and
Systems, Chalmers

2

Outline

Introduction
Lock-free synchronization
Memory allocators

NBmalloc
Architecture
Data structures

Experiments
Conclusions

2005 Anders Gidenstam, Distributed Computing and
Systems, Chalmers

3

Synchronization on a shared object

Lock-free and wait-free synchronization
Concurrent operations without enforcing mutual exclusion
Avoids:

• blocking and priority inversion

Lock-free
• At least one operation always makes progress

Wait-free
• All operations finish in a bounded number of their own steps

Synchronization primitives
Built into CPU and memory system

• Atomic read-modify-write (i.e. a critical section of one instruction)

Examples
• Test-and-set, Compare-and-Swap, Load-Linked / Store-Conditional

2005 Anders Gidenstam, Distributed Computing and
Systems, Chalmers

4

Synchronization on a shared object

Desired semantics of a shared data
object

Linearizability [Herlihy & Wing, 1990]

• For each operation invocation there must
be one single time instant during its
duration where the operation appears to
take effect.

O2

O3

O1

O1 O2 O3

2005 Anders Gidenstam, Distributed Computing and
Systems, Chalmers

5

Memory management and lock-free
synchronization

Concurrent memory management
Concurrent applications

• Memory is a shared resource
• Concurrent memory requests
• Potential problems: contention, blocking, etc

Why lock-free?
• Scalability/fault-tolerance potential
• Prevents a delayed thread from blocking other threads

• Scheduler decisions
• Page faults etc

• Many non-blocking algorithms uses dynamic memory allocation
• => non-blocking memory allocator needed

2005 Anders Gidenstam, Distributed Computing and
Systems, Chalmers

6

Memory Allocators

Provide dynamic memory to the application
Allocate / Deallocate interface

Maintains a pool of memory (a.k.a. heap)
Online problem – requests are handled in order
Performance

Fragmentation
Runtime overhead

Memory address

2005 Anders Gidenstam, Distributed Computing and
Systems, Chalmers

7

Concurrent Memory Allocators

Goals
Scalability
Avoiding

• False-sharing
• Threads use data in the same cache-line

• Heap blowup
• Memory freed on one CPU is not made available to the others

• Fragmentation
• Runtime overhead

Cache line

CPUs

2005 Anders Gidenstam, Distributed Computing and
Systems, Chalmers

8

The Hoard architecture [Berger et al, 2000]

size-classes

Processor heap

SB

SB

SB

SB

Processor heap

SB

SB

SB

SB

Processor heap

SB

SB SB

Processor heap

SB

SB

SB

SB

Processor heap

SB

SB

SB

SB

Processor heap

SB

SB SB

Processor heap

SB

SB

SB

SB

Processor heap

SB

SB

SB

SB

Processor heap

SB

SB SB

Processor heap

SB

SB

SB

SB

Processor heap

SB

SB

SB

SB

Processor heap

SB

SB SB

SB header

Per-processor heaps
Threads running on different CPUs allocate
from different places
Avoids false-sharing and limits contention

Fixed set of size classes/allocatable sizes
Handled separately
Pros: Simple
Cons: Increases internal fragmentation

Superblocks
Contains blocks of one size class
Pros: Easy to transfer and reuse
memory, prevents heap blowup
Cons: External fragmentation

2005 Anders Gidenstam, Distributed Computing and
Systems, Chalmers

9

The lock-free challenges

1. The superblock internal freelist

2. Moving and finding superblocks within a per-
processor heap

3. Returning superblocks to the global heap for reuse

Lock-free stack (a.k.a. IBM freelist [IBM, 1983])

New lock-free data structure: The flat-set.
• Find an item in a set
• Move an item between sets atomically

2005 Anders Gidenstam, Distributed Computing and
Systems, Chalmers

10

Lock-free flat-sets

Lock-free container data structure
Properties

Items can be moved from one
set to another atomically
An item can only be in one
“set” at a time

Operations
Insert
Get_any
Insert atomically removes the item from
its old location

L-F Set L-F Set

Remove Insert

Unless “Remove + Insert” appears atomic
an item may get stuck in “limbo”.

Current

Flat-set

Superblock

SB header

2005 Anders Gidenstam, Distributed Computing and
Systems, Chalmers

11

Moving a shared pointer

Goal:
Move a pointer value between two shared pointer locations

Requirements
The pointer target must stay accessible
The same # of shared pointers to the target after the move
as before
Lock-free behaviour

Issues
One atomic CAS is not enough! We’ll need several steps.
Interfering threads need to help unfinished operations

2005 Anders Gidenstam, Distributed Computing and
Systems, Chalmers

12

From

Moving a shared pointer

To

New_pos From

Old_pos -

New_pos To

Old_pos From

New_pos To

Old_pos -

From

Note that some extra details are needed to prevent ABA problems.

2005 Anders Gidenstam, Distributed Computing and
Systems, Chalmers

13

Experimental results

Benchmark applications
Larson

• Scalability
• False-sharing

Active-false/Passive-false
• Active false-sharing
• Passive false-sharing

2005 Anders Gidenstam, Distributed Computing and
Systems, Chalmers

14

Experimental results

Larson benchmark. Sun 4xUltraSPARC III

Speed-up Memory usage

2005 Anders Gidenstam, Distributed Computing and
Systems, Chalmers

15

Experimental results

Larson benchmark. SGI Origin 3800 32(/128)xMIPS

Speed-up Memory usage

2005 Anders Gidenstam, Distributed Computing and
Systems, Chalmers

16

Conclusions

Lock-free memory allocator
Scalable
Behaves well on both UMA and NUMA architectures

Lock-free flat-sets
New lock-free data structure
Allows lock-free inter-object operations

Implementation
Freely available (GPL)

2005 Anders Gidenstam, Distributed Computing and
Systems, Chalmers

17

Future Work

Further development of the memory
allocator

Reclaiming superblocks for reuse in a
different size class
Improve search strategies for flat-sets

Evaluate the memory allocator with real
applications
How to make lock-free composite objects
from “smaller” lock-free objects

2005 Anders Gidenstam, Distributed Computing and
Systems, Chalmers

18

Questions?

Contact Information:
Address:

Anders Gidenstam,
Computer Science & Engineering,
Chalmers University of Technology,
SE-412 96 Göteborg, Sweden

Email:
andersg @ cs.chalmers.se

Web:
http://www.cs.chalmers.se/~dcs
http://www.cs.chalmers.se/~andersg

Implementation
http://www.cs.chalmers.se/~dcs/nbmalloc.html

http://www.cs.chalmers.se/~dcs
http://www.cs.chalmers.se/~andersg
http://www.cs.chalmers.se/~andersg

2005 Anders Gidenstam, Distributed Computing and
Systems, Chalmers

19
#CPUs

#Threads

Traditional desktop
applications

Traditional multi-
threaded desktop
applications

Multi-threaded applications on
new multicore CPU(s)

High performance multi-
threaded applications on
multiprocessors

Concurrent applications

1 5

	Allocating memory in a lock-free manner
	Outline
	Synchronization on a shared object
	Synchronization on a shared object
	Memory management and lock-free synchronization
	Memory Allocators
	Concurrent Memory Allocators
	 The Hoard architecture [Berger et al, 2000]
	The lock-free challenges
	Lock-free flat-sets
	Moving a shared pointer
	Moving a shared pointer
	Experimental results
	Experimental results
	Experimental results
	Conclusions
	Future Work
	Questions?

