The Synchronization Power of Coalesced Memory Accesses

Phuong H. Ha (Univ. of Tromsø, Norway)
Philippas Tsigas (Chalmers Univ. of Tech., Sweden)
Otto J. Anshus (Univ. of Tromsø, Norway)
Problem

- Memory access mechanisms influence the system synchronization capability.

- Conventional wisdom: single-word assignment has consensus number 1
 ⇒ stronger synch. primitives (e.g. TAS, FAA, CAS) added.

- Can we make single-word assignment stronger?
 ⇒ transistors saved from strong synch. primitives can be used to enhance other functionality.

Transistor distribution

[These figures are from NVIDIA CUDA Programming Guide, version 2.0]
What is a memory word?

- A group of \(n \) bytes that can be stored or retrieved in a single, basic operation.
 - \(n \) is called word size
 (in byte-addressable memory)

- Words of size \(n \) must always start at addresses that are multiples of \(n \).
 (Alignment restriction)

[Hamacher et al. 2002, Hennessy et al. 2003]
Key idea 1

- **Word size** n can be any integer
 - instead of powers of 2 as in conventional architectures
 - Ex: solving 2-process consensus using 2-byte write and 3-byte write.

- **Feasibility**: NVIDIA CUDA
 - *int1, int2, int3, int4*

Size-varying word model (svword)

<table>
<thead>
<tr>
<th>bytes</th>
</tr>
</thead>
<tbody>
<tr>
<td>...</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>...</td>
</tr>
</tbody>
</table>

- p's 2-byte write: `1 2 3 4 5 6 ...`
- q's 3-byte write: `1 2 3 4 5 6 ...`

Ex: solving 2-process consensus using 2-byte write and 3-byte write.

- [2,3,4] ⇒ p wrote first ⇒ agree on red

Conventional architectures

<table>
<thead>
<tr>
<th>bytes</th>
</tr>
</thead>
<tbody>
<tr>
<td>...</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>7</td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td>...</td>
</tr>
</tbody>
</table>

- p's 2-byte write: `3 4 5 6 7 8 ...`
- q's 4-byte write: `3 4 5 6 7 8 ...`

- [4,5,6,7] ⇒ q cannot determine if p has written!
Key idea 2

- Some of the n bytes of a word may be left untouched in a single-word assignment.
 - Ex: solving 2-process consensus using 4-byte writes
 - Feasibility: NVIDIA CUDA
 - Coalesced memory accesses

Aligned-inconsecutive word model (aiword)

<table>
<thead>
<tr>
<th>bytes</th>
<th>...</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>p's 4-byte write</td>
<td>...</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>...</td>
</tr>
<tr>
<td>q's 4-byte write</td>
<td>...</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>...</td>
</tr>
</tbody>
</table>

$[4, 5, 6] \Rightarrow p$ wrote first \Rightarrow agree on red

- Feasibility: NVIDIA CUDA
Our main technical contributions

- Develop **general models** for coalesced memory accesses.
- Prove the **exact consensus numbers** of these models:
 - size-varying word model (svword)
 - aligned-inconsecutive word model (aiword)
 - the **combination** of these two models (asvword)
Road-map

- Size-varying word model (svword)
- Aligned-inconsecutive word model (aiword)
- The combination of these two models (asvword)
Size-varying word model (svword)

- A svword consists of b consecutive memory units, $b \in [1,B]$, B is a constant.
 - b-svword for short
 - b-svwrite = b-svword assignment

- Alignment restriction:
 - Svwords of size b must start at addresses that are multiples of b.

- Ex: 2-svwrite, 3-svwrite and 5-svwrite
Svword’s consensus no. ≥ 3

- **Idea:**
 - 5-svwrite can *partly overlap* both 2-svwrite and 3-svwrite
 - ⇒ can construct (binary) consensus objects for 3 processes

- **Ex:**
 - *Binary consensus (BC)* for 3 processes
 - *Consensus* for 3 processes

- **Diagram:**
 - p₁’s 2-svwrite...
 - p₂’s 3-svwrite...
 - p₃’s 5-svwrite...

- **Example:**
 - [17,18,20] ⇒ p₃’s write → p₂’s write
 - [14,15,16] ⇒ p₁’s write → p₃’s write ⇒ *red* wrote first ⇒ agree on red

DISC ’08
Svword’s consensus no. ≤ 3

- Idea
 - p’s critical assignment must
 - write to p’s private unit
 - partly overlap q’s critical assignment if p’s critical value ≠ q’s critical value (Bivalency argument)
 - b-svwrite accesses consecutive units ⇒ each b-svwrite can partly overlap at most 2 other b-svwrites.

Svword’s consensus number is exactly 3
Road-map

- Size-varying word model (svword)
- Aligned-inconsecutive word model (aiword)
- The combination of these two models (asvword)
Aligned-inconsecutive word (aiword)

- Memory is aligned to m-unit words, m is a constant.
 - m-aiword for short

- A read/write operation accesses an arbitrary non-empty subset of the m units of an aiword.
 - m-aiwrite = m-aiword assignment.

- Alignment restriction
 - m-aiwords must start at addresses that are multiples of m.

- Ex: 8-aiwrite
m-aiword's consensus no. ≥ ⌈(m+1)/2⌉

- **Idea:**
 - Construct a *binary* consensus object for $N=⌈(m+1)/2⌉$ processes in which $(N-1)$ processes propose the same value.
 - Construct a *multivalued* consensus object for N processes using the binary consensus object.

- **Ex: 9-aiword**

 Binary consensus (BC) for 4+1 processes

 Consensus for 5 processes

 - Writing schema:
 - p_0, p_1, p_2, p_3
 - $[0, 4, 8] \Rightarrow p_4 \rightarrow p_0$
 - $[1, 5, 8] \Rightarrow p_1 \rightarrow p_4$
 - $[2, 6, 8] \Rightarrow p_4 \rightarrow p_2$ \(\Rightarrow \text{red wrote first}\)
 - $[3, 7, 8] \Rightarrow p_4 \rightarrow p_3$

 - Time:
 - p_0, p_1, p_2, p_3, p_4
m-aiword's consensus no. \(\leq \lceil (m+1)/2 \rceil \)

Idea:
- Lemma: \(p_i \)'s critical assignment must atomically write to
 - \(p_i \)'s own unit \(u_i \)
 - shared units \(u_{i,j} \) written only by \(p_i \) and \(p_j \) where \(p_i \)'s critical value \(cv_i \neq p_j \)'s critical value \(cv_j \).
 (Bivalency argument)

\[\Rightarrow \text{solving consensus for 2 subsets } S_1 \text{ and } S_2, \text{ where } cv_1 \neq cv_2 \text{ and } n_1 + n_2 = N, \text{ needs to write atomically to } m \text{ units, where } m = N + n_1n_2 \geq 2N - 1 \Rightarrow N \leq (m+1)/2 \]

m-aiword's consensus number is exactly \(\lceil (m+1)/2 \rceil \)
Road-map

- Size-varying word model (svword)
- Aligned-inconsecutive word model (aiword)

The combination of these two models (asvword)
Asvword = aiword + svword

- An extension of aiword:
 - aiword’s m units are replaced by m svwords of the same size b, b ∈ \{1,B\}.
 - m.b-asvword for short
 - m.b-asvwrite = m.b-asvword assignment
 - m=t.B or B=t.m, t∈N*.

- Alignment restriction
 - m.b-asvwords must start at addresses that are multiples of (m.b).

- Ex: m=8, B=2:
 - 8.2-asvword vs. 8.1-asvword

DISC ’08
Asvword’s consensus no. when \(m \leq B \)

- Asvword’s consensus number is \(\lvert (m+1)/2 \rvert \), like aiword’s.
- Idea:
 - When \(B=t.m, t \in \mathbb{N}^* \), the combination of \(m.1\)-asvwrite and \(m.B\)-asvwrite does not provide any additional strength compared to \(m\)-aiwrite.
- Ex: \(B=m=4 \)
 - \(p \) and \(q \) write to \(u_p, u_q, u_{p,q} \) using 4.1-asvwrite and 4.4-asvwrite.

\[\text{4.1-asvword} \]
\[\text{p's 4.1-asvwrite} \]
\[\text{b=1} \]
\[\text{4.4-asvword} \]
\[\text{q's 4.4-asvwrite must} \]
\[\text{overwrites } u_p! \]
\[\text{DISC '08} \]
Asvword's consensus no. when \(m > B \)

- **Asvword's consensus number** \(N \)
 - \(\frac{mB}{2} \) if \(m = 2tB, t \in \mathbb{N}^* \)
 - \(\frac{(m-B)B}{2} \) if \(m = (2t+1)B \)

- **Idea**
 - Processes can atomically modify \(m.B \) units using \(m.B \)-asvwrite vs. \(m \) units using \(m \)-aiwrite.
 - Avoid overwriting unintended units:
 - Each B-svword contains either private units or shared units, but not both.

- **Ex**: \(m = 8, B = 2 \) \(\Rightarrow \) \(N = 8 \)

Binary consensus (BC) for 7+1 processes

8.1-asvw

- \(p_0, p_1, \ldots, p_6 \)
- \(p_0 \), \(p_3 \)
- \(p_6 \)'s 8.1-asvwrite

8.2-asvw

- \(p_7 \)
- \(p_7 \)'s 8.2-asvwrite

2-svword

DISC '08
Conclusions

- Develop new memory access models for coalesced memory accesses and prove their exact consensus numbers \(N\).
 - size-varying word model, \(b\)-svword, \(b \in [1,B]\).
 - \(N = 3, \forall B \geq 5\)
 - aligned-inconsecutive word model, \(m\)-aiword
 - \(N = |(m+1)/2|\)
 - the combination of these two models, \(m.b\)-asvword, \(b \in [1,B]\).

\[
N = \begin{cases}
\left\lfloor \frac{m+1}{2} \right\rfloor & \text{if } B = tm, t \in N^* \\
\frac{mB}{2} & \text{if } m = 2tB \\
\frac{(m-B)B}{2} & \text{if } m = (2t+1)B
\end{cases}
\]
Thanks for your attention!