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Abstract—The constantly increasing computational power of 

the embedded systems is based on the integration of a large 
number of cores on a single chip. In such complex platforms, the 
synchronization of the accesses of the shared memory data is 
becoming a major issue, since it affects the performance of the 
whole system. This problem, which is currently a challenge in the 
embedded systems, has been  studied  in the High Performance 
Computing domain, where several message passing algorithms 
have been designed  to efficiently  avoid  the limitations coming 
from locking. In this work, inspired from the work on message 
passing synchronization algorithms in the High Performance 
Computing domain we design and evaluate a set of 
synchronization algorithms for multi-core embedded platforms. 
We compare them with the corresponding lock-based 
implementations and prove that message passing synchronization 
algorithms can be efficiently utilized in multi-core embedded 
systems. By using message passing synchronization instead of 
lock-based, we managed to reduce the execution time of our 
benchmark up to 29.6%. 

Keywords— message passing; multi-core embedded systems; 
lock-free; 

I.  INTRODUCTION  
In the last years, we experience the constantly increasing 

computational power of the embedded systems. There exist a 
large number of multi-core embedded platforms running 
complex applications like 3D-games and databases and 
performing computational demanding tasks, such as video 
processing and image rendering. According to Bell's Law [22], 
roughly every decade evolves a new lower priced computer 
class (i.e. a category of computer systems) that replaces the 
existing one. This class creates a new market and establishes a 
new industry. Nowadays, the new class can be considered the 
embedded systems. Indeed, we experience the trend of porting 
computational demanding applications from general purpose 
computers and High Performance Computing (HPC) systems 
to embedded platforms. Such platforms are utilized in high-end 
consumer embedded devices, such as smartphones and game 
consoles.  

The constantly increasing computational power of 
embedded systems is a result of the integration of more and 

more cores on a single chip. However, it has been proven that 
the integration of multiple cores does not necessarily increases 
the performance of real-world applications [19]. The shared 
memory data synchronization issue is critical in multithreading 
programming, since it can greatly affect the performance of the 
whole system. The synchronization techniques developed so 
far can be generally categorized as lock-based (e.g. locks, 
semaphores) and lock-free [1]. These techniques have been 
developed mainly for high performance computing platforms. 
Multi-core embedded systems rely so far mostly on mutual 
exclusion and interrupt handling to achieve synchronization. 

Regardless the well-known disadvantages of the lock-based 
approaches (e.g. limited scalability, starvation and blocking), 
extensive research on the HPC domain shows that lock-based 
mechanisms are efficient in cases of low contention [2]. 
Therefore, they can provide adequate performance in the case 
of embedded systems with a relative small number of 
processing cores and low contention. Lock implementation 
primitives can be found in many single-core and multi-core 
embedded systems [3]. 

However, the number of cores integrated on a single 
embedded chip will increase further over the next years. The 
term High Performance Embedded Computing (HPEC) has 
been recently used to describe embedded devices with very 
large processing power, used mostly in aerospace and military 
applications [4]. For instance, Wandboard Quad multimedia 
board integrates 4 ARM Cortex-A9 cores [5], while the 
embedded processor AMD Opteron 6200 integrates 16 x86 
cores [6]. The trend of integrating more and more cores on a 
single chip will continue over the next years, since embedded 
systems are expected to process large amounts of data in 
embedded servers or perform computational intensive 
operations, such as high resolution rendering, image 
processing, etc.  

In embedded systems with large number of cores accessing 
shared data, the scalability can be a major issue. Scalability 
refers to how system throughput is affected by the increasing 
number of contending threads. Lock-based techniques, such as 
mutexes are not expected to be efficient in embedded systems 
with such a high number of cores, since they do not scale in 
case of high contention and become a bottleneck leading to 
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performance decline. This has been adequately proven in 
experiments on the HPC domain [2]. Additionally, locks can 
cause unpredictable blocking times, making them unattractive 
in real-time embedded systems. Therefore, other scalable 
synchronization algorithms should also be evaluated to 
overcome the limitations of locks.  

It has been argued, during the last years, that the embedded 
system and HPC domains are gradually converging [7]. The 
shared data accessing synchronization issues that appeared on 
the HPC domain in the past are now a major issue on the multi-
core embedded systems. Therefore, the adoption of techniques 
from the HPC to the embedded systems domain is likely to 
lead to efficient solutions. Lock-free mechanisms have been 
developed in the HPC domain as alternatives to locks, aiming 
to avoid the lock disadvantages and retain scaling under high 
contention.  In this work we evaluate a number of lock-free 
solutions in the embedded systems domain.   

To summarize our motivation, we argue that embedded 
platforms tend to integrate an ever-increasing number of cores 
on a single chip. For instance, Myriad1 embedded platform 
integrates 8 cores and newer versions of the platform are 
expected to integrate even more cores [18]. Therefore, 
synchronization of accessing shared data is becoming a critical 
issue in such platforms. The same issues apply to the HPC 
domain, where it is proven that lock-based synchronization is 
becoming inefficient, as the number of cores (and therefore the 
contention) increases. A proposed solution in the HPC domain 
is the message-passing synchronization. In this work we 
transfer this solution to the embedded systems domain.  

More specifically, in this paper we evaluate four 
synchronization algorithms that can be used as alternatives to 
locks in embedded platforms with a large number of cores, 
where contention is relatively high and locks become 
inefficient. These algorithms are inspired by designs from the 
HPC domain and are based on the message passing, which 
seems to be an efficient solution under high contention [14]. 
The general idea is to dedicate cores that do not contribute to 
improving the performance of the application to handle the 
synchronization. The four algorithms we evaluated can be 
divided in two categories: Two of them use a Client-Server 
model, where a core plays the role of the server, synchronizing 
the access to shared data. The second category is an adaptation 
of the Remote Core Locking, (initially proposed in the HPC 
domain), to embedded systems: A core which is not utilized by 
the application, not only synchronizes the access requests to the 
critical sections, but also executes them [14][20]. We 
implemented the aforementioned algorithms in a multi-core 
embedded platform and tuned them to the platform 
specifications. As a shared data structure case study, we chose 
the queue, which is one of the most widely used data structures 
in embedded applications (used, for instance, in path-finding 
and work-stealing algorithms). 

The rest of the paper is organized as follows: Section II 
discusses the related work. Next, we provide a summary of the 
technical details of the embedded platform used to evaluate our 
implementations. Section IV is the description of the proposed 
algorithms. The experimental results are presented and 

discussed on Section V. Finally, we draw our conclusions in 
Section VI. 

II. RELATED WORK 
The main synchronization paradigm used in embedded systems 
is based on mutual exclusion and more specifically on locks. 
The instruction set of many modern embedded processors 
supports specific atomic instructions that can be used as 
primitives for implementing mutual exclusion. For instance, 
the latest ARM processors provide atomic load and store (load 
exclusive and store exclusive) instructions used to implement 
mutexes [3].  Another common way of achieving 
synchronization, used mainly in simple embedded platforms is 
based on the utilization of disabling interrupts for preventing 
task preemption inside a critical section [8].  

Various lock-based synchronization techniques have been 
proposed in embedded systems. The C-Lock approach tries to 
combine the advantages of both locks and Transactional 
Memory, by detecting conflicts and avoiding a roll-back 
overhead [9]. Also, disabling the clock of blocked cores 
minimizes power consumption. Synchronization-operation 
Buffer is a hardware block targeting the minimization of 
polling operations [10]. Speculative Lock Elision allows the 
concurrent execution of non-conflicting critical sections [11]. 
All the aforementioned techniques try to improve the efficiency 
of locks. However, as previously stated, locks are expected to 
be a performance bottleneck in case of high contention, caused 
by a large number of cores trying to access shared data.  

Another proposed approach is the Embedded Transactional 
Memory (Embedded TM) that tries to search a compromise 
between the simplicity and the energy efficiency required by 
embedded systems [12]. An evaluation of a lock-free 
synchronization approach in single processor dynamic real-
time embedded systems can be found in [13]. 

Message passing techniques have been extensively 
researched in the HPC domain. For instance, Remote Core 
Locking (RCL) is based on the utilization of a dedicated server 
core which executes the critical sections [14][20]. Flat 
combining technique is an entirely software solution: the role 
of the server which serves the access requests to the critical 
sections is played by client threads in a periodical manner [21]. 
Intel SCC [15] experimental processor utilizes hardware 
message passing. Other works from the HPC domain focus on 
Hardware Transactional Memory [16] and in mutual exclusion 
techniques, like the token-based messaging [17].  

In this paper we propose four message passing algorithms 
from the HPC domain, similar to the one proposed in [14] and 
evaluate them on a multi-core embedded platform. 

III. PLATFORM DESCRIPTION 
Myriad1 is a 65nm heterogeneous Multi-Processor System-

on-Chip (MPSoC) designed by Movidius Ltd [18] to provide 
high throughput coupled with large memory bandwidth. The 
design of the platform is tailored to satisfy the ever-increasing 
demand for high computational capabilities at a low energy 
footprint on mobile devices such as smartphones, tablets and 
wearable devices. 
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Fig. 1. Myriad1 architecture diagram: The RISC processor (LEON) and the 8 
SHAVE cores. In each core a CMX memory slice is attached. (TMU is the 
Texture Management Unit). The 64MB SDRAM memory is depicted at the 
bottom of the diagram.  

A. General Description of Myriad1 Platform 
The recommended use case of the Myriad chip is as a co-

processor connected between a sensor system such as a set of 
cameras and the host application processor. Myriad platform is 
designed to perform the heavy processing on the data stream 
coming from the sensor system and feed the application 
processor with metadata and processed content from the sensor 
system. 

The heterogeneous multi-processor system integrates a 32-
bit SPARC V8 RISC processor core (LEON) utilized for 
managing functions such as setting up process executions, 
controlling the data flow and interrupt handling. Computational 
processing is performed by the Movidius Streaming Hybrid 
Architecture Vector Engine (SHAVE) cores with an instruction 
set tailored for streaming multimedia applications. The 
Myriad1 SoC integrates 8 SHAVE processors as depicted in 
Fig. 1. 

Regarding the memory specifications, the platform contains 
1MB on-chip SRAM memory (named Connection Matrix – 
CMX) with 128KB directly linked to each SHAVE processor 
providing local storage for data and instruction code. 
Therefore, the CMX memory can be seen as a group of 8 
memory “slices”, with each slice being connected to each one 
of the 8 SHAVEs. The Stacked SDRAM memory of 64MB is 
accessible through the DDR interface. (Stacked SDRAM will 
be referred as DDR in the rest of the paper). Finally, LEON has 
32KB dedicated RAM (LRAM). 

Table I shows the access costs of LEON and SHAVES for 
accessing LRAM, CMX and DDR memories. Access cost 
refers to the cycles needed to access each memory. We notice 
that LEON has low access cost on CMX and potentially on 
DDR. The same applies to the SHAVEs. However, SHAVE 
access time to the DDR is much higher in comparison with the 
access time to CMX for random accesses. DDR is designed to 
be accessed by SHAVEs efficiently only through DMA. It is 
important to mention that each SHAVE accesses its own CMX 
slice at higher bandwidth and lower power consumption.  

 

TABLE I.  ACCESS COSTS FOR LEON AND SHAVES ACCESSING 
DIFFERENT MEMORIES 

Memory Size LEON  
access cost 

SHAVE  
access cost 

LRAM 32KB Low High 

CMX 1MB Low Low 

DDR 64MB 
• High 
• Low when data 

cache hit 

• Low via DMA 
• Low for L1 cache hit 
• Moderate when L2 hit 
• High for random access 

 

Myriad platform avails a set of registers that can be used 
for fast SHAVEs arbitration. Each SHAVE has its own copy of 
these registers and its size is 4x64 bit words. An important 
characteristic is that they are accessed in a FIFO pattern, so 
each one of them is called “SHAVE’s FIFO”. Each SHAVE 
can push data to the FIFO of any other SHAVE, but can read 
data only from its own FIFO. A SHAVE writes to the tail of 
another FIFO and the owner of the FIFO reads from the front. 
If a SHAVE attempts to write to a full FIFO, it stalls. Finally, 
LEON cannot access SHAVE FIFOs.  

SHAVE FIFOs can be utilized for achieving efficient 
synchronization between the SHAVEs. Also, they provide an 
easy and fast way for exchanging data directly between the 
SHAVEs (up to 64 bits per message), without the need of using 
shared memory variables.   

B. Mutexes on Myriad1Platform 
The chip supports basic synchronization primitives 

implemented in hardware. It avails Test-and-Set registers that 
can be used to create spin locks, which are commonly referred 
as “mutexes”. Spin-locks are used to create busy-waiting 
synchronization techniques: a thread spins to acquire the lock 
so as to have access to a shared resource. As mentioned in 
Section I, busy-waiting techniques can result in high contention 
on the interconnect buses and could result in starvation of 
threads trying to acquire the lock. Additionally the busy-
waiting technique has very aggressive energy demands. 

However, analysis of experiments on the Myriad1 platform 
shows that the mutex implementation is a fair lock with round-
robin arbitration. Therefore, there is enough time available for 
each SHAVE to acquire the lock, so we observed that the locks 
have very low latency. Myriad1 platform provides 8 hardware 
implemented mutexes.  

As mentioned before, synchronization techniques based on 
locks have been observed not to scale well with increasing 
thread count [2]. We anticipate that the thread count on the 
Myriad platform is bound to increase with increase demand 
and interest in multi-core embedded processors. To this effect, 
it is paramount that we develop synchronization techniques that 
can scale fairly on these embedded platforms with respect to 
both system throughput and energy consumption. 

In contrast to synchronization under the HPC domain, the 
embedded systems pose very stringent constraints on energy, 
memory and resource management prerequisites.  Considering 
the hardware restrictions, we apply synchronization techniques  
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Fig. 2. Client-Server Implementations. Notice that the server remains idle 
(spinning on a local variable or on a mutex register value) while it is waiting 
for the client to exit the critical section.  

evaluated so far only in the HPC domain, to the embedded 
systems domain.  

IV. DESCRIPTION OF SYNCHRONIZATION ALGORITHMS 
In this section, we describe the synchronization algorithms 

we implemented in the context of this work.  All the algorithms 
were evaluated using a concurrent queue data structure, which 
is implemented as an array [23]. Elements are inserted to the 
tail of the queue and removed from the head, by decreasing or 
increasing the head and the tail pointer, respectively.  

The concurrent queue is shared by all the SHAVE cores. In 
other words, all SHAVEs try to access the queue by 
enqueueing and / or dequeueing elements. Therefore, the 
critical sections of the concurrent queue are obviously inside 
the enqueue() and dequeue() functions. The queue array was 
placed in the CMX memory. Although the CMX is much 
smaller in comparison with the DDR memory, it provides 
much smaller access time for the SHAVEs, than the DDR.  

The synchronization algorithms we implemented can be 
divided in three categories: The Lock-based, the Client-Server 
and the Remote Core Locking (RCL) implementations. 

A. Lock-based Implementations 
The lock-based implementations of the concurrent queue 

utilize the mutexes provided by the Myriad architecture. We 
designed two different lock-based implementations: In the first 
one, a single lock is used to protect the critical section of the 
enqueue() function and a second one to protect the critical 
section of the dequeue() [24]. Therefore, simultaneous access 
to both ends of the queue can be achieved.  The second 
implementation utilizes only one lock to protect the whole data 
structure.  

B. Client-Server Implementations 
In the Client-Server implementations one of the cores is 

utilized as a server to arbitrate the clients’ access to the shared 
data. We implemented two different versions of the algorithm: 
In the first one, the clients and the server communicate through 
shared variables, while in the second one they utilize the 
mutexes for achieving faster communication. 

Both implementations are based on the idea of using LEON 
as an arbitrator (server), which will accept requests from 
SHAVEs (clients) for accessing the shared data structure. The 
communication is based on message passing. It is important to 
mention that the Myriad1 platform is ideal for such kind of 
synchronization algorithms. LEON is indeed designed to be 
utilized for controlling the data flow on the platform and 
SHAVEs for playing the role of the workers, responsible for 
performing computational intensive operations assigned to 
them by LEON. So, the utilization of LEON as an arbitrator is 
not expected to degrade the application’s performance, since 
this is the kind of tasks LEON is expected to perform in 
Myriad1.  

The Client-Server implementation is relatively simple. 
There are 3 kinds of messages exchanged between the server 
and the clients: acc_req (sent from a client to the server to 
request access to the shared data structure), acc_resp (sent 
from the server to a client to grant access) and oper_fin (sent 
from a client to the server to notify the server that the client has 
left the critical section).  

Each client requests access to the shared queue by sending 
to the server an acc_req message. The client waits until it 
receives an acc_resp message from the server. When such a 
message is received, the client has exclusive access to the 
critical section and completes one operation (enqueue or 
dequeue). As soon as the operation is completed, the server is 
notified by receiving an oper_fin message from the client. 
Then, the server is ready to handle the next request, issued 
from another (or the same) client. Therefore, clients are served 
in a cyclical fashion.  

To illustrate further the algorithm, Fig. 2 shows an 
example: Client0 requests access to the queue by sending an 
acc_req message to the server. It spins on the buffer until it 
receives an acc_resp message. Then, it accesses the queue in 
the CMX memory and performs an enqueue. Upon the 
completion of the operation, Client0 notifies the server with an 
oper_fin message. Client1 requests access to perform a 
dequeue. Its request is handled by the server immediately after 
receiving the oper_fin from Client0 and is served in a similar 
manner.  

As previously stated, the first variation of the algorithm utilizes 
buffers implemented as shared variables between the LEON 
and the SHAVEs, which are placed in the CMX local slices of 
each SHAVE. The second variation utilizes mutexes in the 
following manner: when a client receives an acc_resp message 
and enters the critical section acquires one the 8 mutexes 
provided by the Myriad1 architecture. The client releases the 
mutex as soon as it exits the critical section. At the same time, 
LEON spins on the mutex status register and when the mutex 
get released, LEON is ready to serve another request. Thus, the 
oper_fin message is implemented though mutexes, instead of 
using a shared variable. It is important to underline again that 
mutexes in this algorithm are not used for protecting shared 
data (as happens with the lock-based implementations). 
Instead, they are utilized for achieving efficient 
communication.  
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Fig. 3. Remote Core Locking (RCL) implementation. Each SHAVE stores its 
elements in its dedicated CMX memory. Notice the the queue contains the 
addresses of the elements. The server executes the critical sections, by 
enqueuing or dequeuing the addresses of the elements.  

The Client-Server algorithms do not utilize much space in 
the CMX. Also, they allow the direct access of the data 
structure by the SHAVEs. LEON is responsible only for 
arbitrating the access requests to the queue, so it is actually 
replacing the lock. More specifically, it loops over the acc_req 
buffer slots to identify the clients that request access. 
Therefore, clients access the critical sections of the data 
structure in a cyclical fashion. 

The motivation of using mutexes for communication lies in 
the assumption that the accessing of mutex registers by the 
LEON should be faster than spinning on shared variables. 
Mutexes are implemented on hardware and low-level assembly 
code and therefore are expected to provide increased 
communication performance.  

The Client-Server implementations move the 
synchronization from the mutexes of the lock-based 
implementations, to a core that has the role of the arbitrator. 
They are relatively simple and the Client-Server 
implementation using mutexes for communication is expected 
to perform relatively fast. Client-Server designs can be 
considered as relatively platform independent, since they do 
not utilize any specific platform characteristics. Another 
advantage of this category of algorithms is that it provides fair 
utilization of the data structure by all clients, since they are 
served in a cyclical fashion. However, the main disadvantage is 
that the core having the role of the server is underutilized, since 
it performs only very limited amount of work. In this design, it 
is restricted in sending and receiving messages to the client 
cores and does not execute any part of the actual application 
workload.  

C. Remote Core Locking Implementations 
We optimized the Client-Server implementations by 

upgrading the role of the server. Instead of using the server 
only for arbitrating the access to the shared data structure, we 
moved the execution of the critical sections from the clients to 
the server. We implemented two different versions of the 
algorithm. In both of them we took advantage of the Myriad1 
platform specifications. As mentioned before, Myriad1 
platform provides 128KB of local CMX memory for each 

SHAVE. Taking advantage of the relatively large CMX 
memory, we optimized the queue by allowing the SHAVEs to 
access only their local CMX slice, instead of granting access 
directly to the queue. The first implementation uses shared 
variables for communication between the LEON and the 
SHAVEs, while the second one utilizes the SHAVEs' FIFO for 
achieving fast arbitration to the shared data.  

The differences between the Client-Server and the Remote 
Core Locking (RCL) implementations can be summarized as 
follows: 

• LEON (server) is responsible not only for arbitrating, 
but also for enqueuing / dequeuing elements to / from 
the queue. Therefore, the server executes the critical 
sections.  

• Queue entries are not the allocated elements, but 
pointers to the elements that are physically allocated in 
local CMX memory slices. Therefore, RCL 
implementations occupy more memory space that the 
Client-Server ones, where the clients access the queue 
directly for storing and retrieving elements to / from the 
queue. This memory overhead of the RCL is obviously 
application specific.  

• While in the Client-Server implementations the server 
remains idle while waiting for a client to exit the critical 
section, in the RCL implementations the server executes 
the critical section. At the same time, the client may 
remain idle or continue with the application execution, 
if possible, or even issue more requests to the server for 
accessing the shared data.  

More specifically, when a client requests access to the data 
structure to enqueue an element allocated in its local CMX 
slice, it sends the address of the element to the server. Then, the 
server enqueues the address and replies with an enq_fin 
message to notify the client that the operation is completed. In 
the case of dequeueing, the client sends a deq() message to the 
server and waits for the address of the dequeued element. 

Fig. 3 shows an example: Client0 allocates the new element 
e6 to its local CMX slice. Then, it sends the address of element 
(&e6) to the server. The server enqueues the address to the 
queue (which in this example is placed in the CMX1) and it 
responds with an enq_fin message. Client1 requests to dequeue, 
so it sends a deq() message and spins on the buffer waiting for 
an element address. The server responds by sending the address 
of e0 (&e0). Client1 accesses the dequeued element in the 
CMX0 memory slice, where it is allocated.  

We implemented two versions of the RCL on the Myriad1 
platform. The first one uses shared variables for the 
communication between the clients and the server. The second 
one utilizes the SHAVE FIFOs. More specifically, the element 
addresses, the enq_fin and the deq() messages are sent and 
received between the  SHAVEs through the FIFO of each one. 
It is important to mention that, in contrast with all the other 
message passing implementations, in this case (i.e. the second 
version of the RCL implementations) the server is not the 
LEON, but one of the 8 SHAVE cores, since LEON does not 
have access to the SHAVE FIFOs.  
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Fig. 4. Performance when half SHAVEs perform enqueue and half dequeue 
operations. In the RCL-SHV_FIFO implementation there are only 6 clients 
and one SHAVE is used as a server.  

The implementations are an adaptation of the RCL 
algorithm presented in [20]. The main characteristic of the 
algorithm is that the arbitrator executes the critical section of 
the application (in the case of concurrent queue the enqueing 
and dequeing). The clients send requests to the server and the 
arbitrator is responsible for serving them. Therefore, in case of 
enqueueing there is no reason for SHAVEs to stall, while 
waiting for server to complete the enqueue. Instead, they can 
continue with other computations or even issue more enqueue 
requests. SHAVEs stall only in dequeue operations, while 
waiting for server to send the address of the dequeued element.  
The RCL implementations are more platform dependent in 
comparison with the Client-Server. They require a relatively 
large local memory (since they allocate new objects only in 
their local CMX slice) and in the case of the SHAVE's FIFO 
implementation the necessary hardware support.  

V. EXPERIMENTAL RESULTS 
The algorithms described in the previous section were 

evaluated using a concurrent array-based queue. The queue is 
shared between the 8 SHAVE cores of the Myriad1 platform. 
The synthetic benchmark we used is composed by a fixed 
workload of 20,000 operations and it is equally divided 
between the running SHAVEs. In other words, in an 
experiment with 4 SHAVEs each one completes 5,000 
operations, while in an experiment with 8 SHAVEs, each one 
completes 2,500 operations.  

All algorithms were evaluated in terms of time 
performance, for the given fixed workload, which is expressed 
in number of execution cycles. More specifically, in Myriad1 
platform the data flow is controlled by LEON. SHAVEs start 
their execution when instructed so by LEON and then LEON 
waits for them to finish. The number of cycles measured is 
actually LEON cycles from the point that SHAVEs start their 
execution until they all finish. This number represents 
accurately the execution time.  

 
Fig. 5. Performance when the SHAVEs perform randomly enqueue and 
dequeue operations. In the RCL-SHV_FIFO implementation there are only 6 
clients and one SHAVE is used as a server. 

A. Experimental Results 
We performed two sets of experiments for evaluating the 

behavior of the designs: dedicated  SHAVEs and random 
operations. In the “dedicated SHAVEs” experiment each 
SHAVE performs only one kind of operations. In other words, 
half of the SHAVEs enqueue and half dequeue elements to / 
from the data structure.  “Random operations” means that each 
SHAVE has equal probability to perform either an enqueue or 
a dequeue each time it prepares its next operation.  

In the rest of the subsection we present the performance 
experimental results. mtx-(2-locks) is the lock-based queue 
implementation with 2 locks, while mtx-(1 lock) is the same 
implementation with a single lock. C-S refers to the Client-
Server implementation using shared variables, while C-S-mtx is 
the Client-Server implementation using mutexes for 
communication. RCL refers to the Remote Core Locking 
implementation using shared variables for passing messages 
between the clients and server. Finally, RCL-SHV_FIFO is the 
RCL implementation using SHAVEs’ FIFOs for 
communication.  

The execution time is displayed in Fig. 4 and Fig. 5 for 
dedicated SHAVEs and random operations respectively.  mtx-
(2 locks) performs better in both dedicated SHAVEs and 
random operations for 8 SHAVES, (up to 51% in comparison 
with the RCL), since it is the only implementation that provides 
the maximum possible concurrency for the queue data 
structure. All other implementations serialize the accesses to 
the shared data. mtx-(1 lock) doubles the execution time in 
comparison with the mtx-(2 locks).  

In respect with the message passing implementations, the 
C-S leads to poor performance, due to the extensive utilization 
of shared variables. However, C-S-mtx performs much better. 
We noticed that the bottleneck of C-S is the spinning of the 
server to the shared variable, while waiting for the oper_fin 
message from the client. In the C-S-mtx implementation the 
message is transferred through a mutex, which leads to much 
lower communication overhead in comparison with the shared 
memory variables. RCL-SHV_FIFO is another implementation 
with very low communication overhead, with only 12% more 
execution time than the mtx-(2 locks) in the experiment with 6  
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TABLE II.  QUALITATIVE COMPARISON OF THE SYNCHRONIZATION 
ALGORITHMS 

Algorithm Pros Cons 

Lock-based 
using 

mutexes 

• Hardware 
implemented, so it is 
quite fast.  

• Performs well in low 
contention. 

• Becomes a bottleneck in 
high contention 

• Danger of deadlocks, in 
the case of complex 
synchronization. 

C-S • Platform independent 
• Low memory size. 

• Low performance due to 
spinning in non-local 
shared variables. 

• Server is underutilized. 

C-S-mtx 
Communication using 
mutexes is fast and 
reliable. 

Server is underutilized. 

RCL-
SHV_FIFO 

FIFOs are hardware 
implemented, so 
communication has very 
low overhead. 

Consumes more memory 
than the other 
implementations, since 
SHAVEs store elements in 
their dedicated memory. 
Pointers to the elements are 
stored in the concurrent 
queue.   

RCL 

SHAVEs spin only in 
variables stored in their 
dedicated memories, and 
LEON does not spin at 
all, so it is fast.  

Same as RCL-SHV_FIFO 

 

SHAVEs. Finally, the RCL implementation scales well and its 
performance is very close to the mtx-(1 lock) (it reaches 14.5% 
more execution cycles in comparison with mtx-(1 locks)). In 
this algorithm, we utilize shared variables in a very careful 
way: each SHAVE spins only on a variable that is stored in its 
local CMX slice (mostly when a SHAVE is waiting for the 
server to respond with the address of a dequeued element). In 
contrast with the C-S implementation, the spinning on a 
variable in a local CMX slice does not lead to performance 
degradation.  

In both experiments, we notice in some implementations a 
high increase in performance from two to four SHAVEs 
(especially in RCL, mtx-(2 locks)). The reason is that in the 
case of two SHAVEs there are many small time intervals 
where no SHAVE accesses the data structure (because it 
prepares to the next operation to be performed). However, as 
the number of SHAVEs increases, there is always one SHAVE 
(or two in case of mtx-(2 locks)) that makes progress by 
accessing a critical section. On the other hand, in the case of 
the mtx-(1 lock) the performance remains almost flat in all 
experiments. This is because all operations are serialized, so 
even when there are only two SHAVEs, there is always one 
making progress. In C-S and C-S-mtx, however, even the small 
communication overhead between LEON and SHAVEs results 
in lower performance for two SHAVEs, in comparison with 
four.  

B. Discussion of the Experimental Results 
One important observation from the experimental results is 

that RCL-SHV_FIFO performs very close (or even better for 
small number of SHAVEs) in comparison with the mtx-(2 
locks), although it serializes the accesses to the critical section. 

Due to the very low communication overhead it provides, since 
no memory is utilized for synchronization, it outperforms the 
mtx-(1 lock) by up to 39%. Also, it provides very low 
execution time in the case of small number of cores (29.6% 
reduced execution time compared with the mtx-(2 locks) for 2 
SHAVEs). This proves that message passing implementations 
can be a feasible solution, not only in the HPC, but also in the 
multi-core embedded systems domain. Platforms like Myriad1 
that integrate a RISC core for controlling the chip data flow can 
favor the usage of synchronization algorithms based on the 
server-client model.  

In all experiments, we stored the shared data structure in 
CMX memory. Although, CMX size limits the maximum 
memory size that the queue can occupy, it provides higher 
performance for all the evaluated implementations. However, if 
an application utilizes a larger shared queue, then it should be 
placed in DDR memory, with cost in execution time.  

The utilization of shared variables for synchronization, 
although it is relatively platform independent, usually leads to 
poor performance. A core spinning in shared variables causes 
bus saturation and performance degradation. According to our 
experiments, the only case that shared variables do not lead to 
poor performance is when the spinning takes place to a core 
dedicated memory (as in the RCL case, which performs quite 
close to mtx-(1 lock) for 8 SHAVEs). However, this implies 
that the multi-core embedded platform avails dedicated 
memories, so the RCL cannot be considered entirely platform 
independent. On the other hand, the platform dependent 
implementations and especially the RCL-SHV_FIFO lead 
generally to high performance. Taking advantage of the 
hardware specifications for achieving fast communication is an 
important factor leading to efficient synchronization.  

Table II summarizes the advantages and disadvantages of 
each algorithm we evaluated in this paper. Our goal was to 
transfer message passing synchronization algorithms from the 
HPC domain in multi-core embedded systems. All algorithms 
implemented and adapted to the hardware characteristics of the 
embedded platform. This tuning led to very satisfactory 
performance results, since some message passing algorithms 
perform close, or even better than the single lock queue 
implementation. Therefore, since in the near future the 
embedded systems will integrate even more cores and mutexes 
will become a bottleneck (as happened in HPC), message 
passing synchronization can be a feasible solution.  

VI. CONCLUSION AND FUTURE WORK 
In this work we evaluated a number of message-passing 

synchronization algorithms in an embedded platform and 
proved that message passing implementations are an efficient 
solution to the shared data synchronization issue. We intent to 
extend our work in three directions: First, we plan to evaluate 
the message passing implementations in terms of power 
consumption, which is a very important evaluation metric in 
the embedded systems domain. We can also evaluate more 
synchronization algorithms which are proven to perform well 
in the HPC domain (e.g. the Flat Combining [21]). Finally, in 
this work we tuned the synchronization algorithms to take 
advantage of the hardware characteristics of the Myriad1 
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platform. We consider very interesting the evaluation of the 
algorithms in other embedded platforms as well, with different 
specifications and identify the hardware metadata that affect 
the synchronization algorithms implementation. 
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