
Evaluation of Message Passing Synchronization
Algorithms in Embedded Systems

Lazaros Papadopoulos1, Ivan Walulya2, Philippas Tsigas2, Dimitrios Soudris1 and Brendan Barry3
1 School of Electrical and Computer Engineering, National Technical University of Athens, Greece.

{lpapadop, dsoudris}@microlab.ntua.gr
2 Computer Science and Engineering, Chalmers University of Technology, Gothenburg, Sweden.

{ivanw, philippas.tsigas}@chalmers.se
3 Movidius Ltd., Dublin, Ireland. brendan.barry@movidius.com

Abstract—The constantly increasing computational power of

the embedded systems is based on the integration of a large
number of cores on a single chip. In such complex platforms, the
synchronization of the accesses of the shared memory data is
becoming a major issue, since it affects the performance of the
whole system. This problem, which is currently a challenge in the
embedded systems, has been studied in the High Performance
Computing domain, where several message passing algorithms
have been designed to efficiently avoid the limitations coming
from locking. In this work, inspired from the work on message
passing synchronization algorithms in the High Performance
Computing domain we design and evaluate a set of
synchronization algorithms for multi-core embedded platforms.
We compare them with the corresponding lock-based
implementations and prove that message passing synchronization
algorithms can be efficiently utilized in multi-core embedded
systems. By using message passing synchronization instead of
lock-based, we managed to reduce the execution time of our
benchmark up to 29.6%.

Keywords— message passing; multi-core embedded systems;
lock-free;

I. INTRODUCTION
In the last years, we experience the constantly increasing

computational power of the embedded systems. There exist a
large number of multi-core embedded platforms running
complex applications like 3D-games and databases and
performing computational demanding tasks, such as video
processing and image rendering. According to Bell's Law [22],
roughly every decade evolves a new lower priced computer
class (i.e. a category of computer systems) that replaces the
existing one. This class creates a new market and establishes a
new industry. Nowadays, the new class can be considered the
embedded systems. Indeed, we experience the trend of porting
computational demanding applications from general purpose
computers and High Performance Computing (HPC) systems
to embedded platforms. Such platforms are utilized in high-end
consumer embedded devices, such as smartphones and game
consoles.

The constantly increasing computational power of
embedded systems is a result of the integration of more and

more cores on a single chip. However, it has been proven that
the integration of multiple cores does not necessarily increases
the performance of real-world applications [19]. The shared
memory data synchronization issue is critical in multithreading
programming, since it can greatly affect the performance of the
whole system. The synchronization techniques developed so
far can be generally categorized as lock-based (e.g. locks,
semaphores) and lock-free [1]. These techniques have been
developed mainly for high performance computing platforms.
Multi-core embedded systems rely so far mostly on mutual
exclusion and interrupt handling to achieve synchronization.

Regardless the well-known disadvantages of the lock-based
approaches (e.g. limited scalability, starvation and blocking),
extensive research on the HPC domain shows that lock-based
mechanisms are efficient in cases of low contention [2].
Therefore, they can provide adequate performance in the case
of embedded systems with a relative small number of
processing cores and low contention. Lock implementation
primitives can be found in many single-core and multi-core
embedded systems [3].

However, the number of cores integrated on a single
embedded chip will increase further over the next years. The
term High Performance Embedded Computing (HPEC) has
been recently used to describe embedded devices with very
large processing power, used mostly in aerospace and military
applications [4]. For instance, Wandboard Quad multimedia
board integrates 4 ARM Cortex-A9 cores [5], while the
embedded processor AMD Opteron 6200 integrates 16 x86
cores [6]. The trend of integrating more and more cores on a
single chip will continue over the next years, since embedded
systems are expected to process large amounts of data in
embedded servers or perform computational intensive
operations, such as high resolution rendering, image
processing, etc.

In embedded systems with large number of cores accessing
shared data, the scalability can be a major issue. Scalability
refers to how system throughput is affected by the increasing
number of contending threads. Lock-based techniques, such as
mutexes are not expected to be efficient in embedded systems
with such a high number of cores, since they do not scale in
case of high contention and become a bottleneck leading to

This work was supported by the EC through the FP7 IST project 611183,
EXCESS (Execution Models for Energy-Efficient Computing Systems).

978-1-4799-3770-7/14/$31.00 ©2014 IEEE 282

2014 International Conference on Embedded Computer Systems: Architectures, Modeling, and Simulation (SAMOS XIV)

performance decline. This has been adequately proven in
experiments on the HPC domain [2]. Additionally, locks can
cause unpredictable blocking times, making them unattractive
in real-time embedded systems. Therefore, other scalable
synchronization algorithms should also be evaluated to
overcome the limitations of locks.

It has been argued, during the last years, that the embedded
system and HPC domains are gradually converging [7]. The
shared data accessing synchronization issues that appeared on
the HPC domain in the past are now a major issue on the multi-
core embedded systems. Therefore, the adoption of techniques
from the HPC to the embedded systems domain is likely to
lead to efficient solutions. Lock-free mechanisms have been
developed in the HPC domain as alternatives to locks, aiming
to avoid the lock disadvantages and retain scaling under high
contention. In this work we evaluate a number of lock-free
solutions in the embedded systems domain.

To summarize our motivation, we argue that embedded
platforms tend to integrate an ever-increasing number of cores
on a single chip. For instance, Myriad1 embedded platform
integrates 8 cores and newer versions of the platform are
expected to integrate even more cores [18]. Therefore,
synchronization of accessing shared data is becoming a critical
issue in such platforms. The same issues apply to the HPC
domain, where it is proven that lock-based synchronization is
becoming inefficient, as the number of cores (and therefore the
contention) increases. A proposed solution in the HPC domain
is the message-passing synchronization. In this work we
transfer this solution to the embedded systems domain.

More specifically, in this paper we evaluate four
synchronization algorithms that can be used as alternatives to
locks in embedded platforms with a large number of cores,
where contention is relatively high and locks become
inefficient. These algorithms are inspired by designs from the
HPC domain and are based on the message passing, which
seems to be an efficient solution under high contention [14].
The general idea is to dedicate cores that do not contribute to
improving the performance of the application to handle the
synchronization. The four algorithms we evaluated can be
divided in two categories: Two of them use a Client-Server
model, where a core plays the role of the server, synchronizing
the access to shared data. The second category is an adaptation
of the Remote Core Locking, (initially proposed in the HPC
domain), to embedded systems: A core which is not utilized by
the application, not only synchronizes the access requests to the
critical sections, but also executes them [14][20]. We
implemented the aforementioned algorithms in a multi-core
embedded platform and tuned them to the platform
specifications. As a shared data structure case study, we chose
the queue, which is one of the most widely used data structures
in embedded applications (used, for instance, in path-finding
and work-stealing algorithms).

The rest of the paper is organized as follows: Section II
discusses the related work. Next, we provide a summary of the
technical details of the embedded platform used to evaluate our
implementations. Section IV is the description of the proposed
algorithms. The experimental results are presented and

discussed on Section V. Finally, we draw our conclusions in
Section VI.

II. RELATED WORK
The main synchronization paradigm used in embedded systems
is based on mutual exclusion and more specifically on locks.
The instruction set of many modern embedded processors
supports specific atomic instructions that can be used as
primitives for implementing mutual exclusion. For instance,
the latest ARM processors provide atomic load and store (load
exclusive and store exclusive) instructions used to implement
mutexes [3]. Another common way of achieving
synchronization, used mainly in simple embedded platforms is
based on the utilization of disabling interrupts for preventing
task preemption inside a critical section [8].

Various lock-based synchronization techniques have been
proposed in embedded systems. The C-Lock approach tries to
combine the advantages of both locks and Transactional
Memory, by detecting conflicts and avoiding a roll-back
overhead [9]. Also, disabling the clock of blocked cores
minimizes power consumption. Synchronization-operation
Buffer is a hardware block targeting the minimization of
polling operations [10]. Speculative Lock Elision allows the
concurrent execution of non-conflicting critical sections [11].
All the aforementioned techniques try to improve the efficiency
of locks. However, as previously stated, locks are expected to
be a performance bottleneck in case of high contention, caused
by a large number of cores trying to access shared data.

Another proposed approach is the Embedded Transactional
Memory (Embedded TM) that tries to search a compromise
between the simplicity and the energy efficiency required by
embedded systems [12]. An evaluation of a lock-free
synchronization approach in single processor dynamic real-
time embedded systems can be found in [13].

Message passing techniques have been extensively
researched in the HPC domain. For instance, Remote Core
Locking (RCL) is based on the utilization of a dedicated server
core which executes the critical sections [14][20]. Flat
combining technique is an entirely software solution: the role
of the server which serves the access requests to the critical
sections is played by client threads in a periodical manner [21].
Intel SCC [15] experimental processor utilizes hardware
message passing. Other works from the HPC domain focus on
Hardware Transactional Memory [16] and in mutual exclusion
techniques, like the token-based messaging [17].

In this paper we propose four message passing algorithms
from the HPC domain, similar to the one proposed in [14] and
evaluate them on a multi-core embedded platform.

III. PLATFORM DESCRIPTION
Myriad1 is a 65nm heterogeneous Multi-Processor System-

on-Chip (MPSoC) designed by Movidius Ltd [18] to provide
high throughput coupled with large memory bandwidth. The
design of the platform is tailored to satisfy the ever-increasing
demand for high computational capabilities at a low energy
footprint on mobile devices such as smartphones, tablets and
wearable devices.

283

2014 International Conference on Embedded Computer Systems: Architectures, Modeling, and Simulation (SAMOS XIV)

Fig. 1. Myriad1 architecture diagram: The RISC processor (LEON) and the 8
SHAVE cores. In each core a CMX memory slice is attached. (TMU is the
Texture Management Unit). The 64MB SDRAM memory is depicted at the
bottom of the diagram.

A. General Description of Myriad1 Platform
The recommended use case of the Myriad chip is as a co-

processor connected between a sensor system such as a set of
cameras and the host application processor. Myriad platform is
designed to perform the heavy processing on the data stream
coming from the sensor system and feed the application
processor with metadata and processed content from the sensor
system.

The heterogeneous multi-processor system integrates a 32-
bit SPARC V8 RISC processor core (LEON) utilized for
managing functions such as setting up process executions,
controlling the data flow and interrupt handling. Computational
processing is performed by the Movidius Streaming Hybrid
Architecture Vector Engine (SHAVE) cores with an instruction
set tailored for streaming multimedia applications. The
Myriad1 SoC integrates 8 SHAVE processors as depicted in
Fig. 1.

Regarding the memory specifications, the platform contains
1MB on-chip SRAM memory (named Connection Matrix –
CMX) with 128KB directly linked to each SHAVE processor
providing local storage for data and instruction code.
Therefore, the CMX memory can be seen as a group of 8
memory “slices”, with each slice being connected to each one
of the 8 SHAVEs. The Stacked SDRAM memory of 64MB is
accessible through the DDR interface. (Stacked SDRAM will
be referred as DDR in the rest of the paper). Finally, LEON has
32KB dedicated RAM (LRAM).

Table I shows the access costs of LEON and SHAVES for
accessing LRAM, CMX and DDR memories. Access cost
refers to the cycles needed to access each memory. We notice
that LEON has low access cost on CMX and potentially on
DDR. The same applies to the SHAVEs. However, SHAVE
access time to the DDR is much higher in comparison with the
access time to CMX for random accesses. DDR is designed to
be accessed by SHAVEs efficiently only through DMA. It is
important to mention that each SHAVE accesses its own CMX
slice at higher bandwidth and lower power consumption.

TABLE I. ACCESS COSTS FOR LEON AND SHAVES ACCESSING
DIFFERENT MEMORIES

Memory Size LEON
access cost

SHAVE
access cost

LRAM 32KB Low High

CMX 1MB Low Low

DDR 64MB
• High
• Low when data

cache hit

• Low via DMA
• Low for L1 cache hit
• Moderate when L2 hit
• High for random access

Myriad platform avails a set of registers that can be used
for fast SHAVEs arbitration. Each SHAVE has its own copy of
these registers and its size is 4x64 bit words. An important
characteristic is that they are accessed in a FIFO pattern, so
each one of them is called “SHAVE’s FIFO”. Each SHAVE
can push data to the FIFO of any other SHAVE, but can read
data only from its own FIFO. A SHAVE writes to the tail of
another FIFO and the owner of the FIFO reads from the front.
If a SHAVE attempts to write to a full FIFO, it stalls. Finally,
LEON cannot access SHAVE FIFOs.

SHAVE FIFOs can be utilized for achieving efficient
synchronization between the SHAVEs. Also, they provide an
easy and fast way for exchanging data directly between the
SHAVEs (up to 64 bits per message), without the need of using
shared memory variables.

B. Mutexes on Myriad1Platform
The chip supports basic synchronization primitives

implemented in hardware. It avails Test-and-Set registers that
can be used to create spin locks, which are commonly referred
as “mutexes”. Spin-locks are used to create busy-waiting
synchronization techniques: a thread spins to acquire the lock
so as to have access to a shared resource. As mentioned in
Section I, busy-waiting techniques can result in high contention
on the interconnect buses and could result in starvation of
threads trying to acquire the lock. Additionally the busy-
waiting technique has very aggressive energy demands.

However, analysis of experiments on the Myriad1 platform
shows that the mutex implementation is a fair lock with round-
robin arbitration. Therefore, there is enough time available for
each SHAVE to acquire the lock, so we observed that the locks
have very low latency. Myriad1 platform provides 8 hardware
implemented mutexes.

As mentioned before, synchronization techniques based on
locks have been observed not to scale well with increasing
thread count [2]. We anticipate that the thread count on the
Myriad platform is bound to increase with increase demand
and interest in multi-core embedded processors. To this effect,
it is paramount that we develop synchronization techniques that
can scale fairly on these embedded platforms with respect to
both system throughput and energy consumption.

In contrast to synchronization under the HPC domain, the
embedded systems pose very stringent constraints on energy,
memory and resource management prerequisites. Considering
the hardware restrictions, we apply synchronization techniques

284

2014 International Conference on Embedded Computer Systems: Architectures, Modeling, and Simulation (SAMOS XIV)

Fig. 2. Client-Server Implementations. Notice that the server remains idle
(spinning on a local variable or on a mutex register value) while it is waiting
for the client to exit the critical section.

evaluated so far only in the HPC domain, to the embedded
systems domain.

IV. DESCRIPTION OF SYNCHRONIZATION ALGORITHMS
In this section, we describe the synchronization algorithms

we implemented in the context of this work. All the algorithms
were evaluated using a concurrent queue data structure, which
is implemented as an array [23]. Elements are inserted to the
tail of the queue and removed from the head, by decreasing or
increasing the head and the tail pointer, respectively.

The concurrent queue is shared by all the SHAVE cores. In
other words, all SHAVEs try to access the queue by
enqueueing and / or dequeueing elements. Therefore, the
critical sections of the concurrent queue are obviously inside
the enqueue() and dequeue() functions. The queue array was
placed in the CMX memory. Although the CMX is much
smaller in comparison with the DDR memory, it provides
much smaller access time for the SHAVEs, than the DDR.

The synchronization algorithms we implemented can be
divided in three categories: The Lock-based, the Client-Server
and the Remote Core Locking (RCL) implementations.

A. Lock-based Implementations
The lock-based implementations of the concurrent queue

utilize the mutexes provided by the Myriad architecture. We
designed two different lock-based implementations: In the first
one, a single lock is used to protect the critical section of the
enqueue() function and a second one to protect the critical
section of the dequeue() [24]. Therefore, simultaneous access
to both ends of the queue can be achieved. The second
implementation utilizes only one lock to protect the whole data
structure.

B. Client-Server Implementations
In the Client-Server implementations one of the cores is

utilized as a server to arbitrate the clients’ access to the shared
data. We implemented two different versions of the algorithm:
In the first one, the clients and the server communicate through
shared variables, while in the second one they utilize the
mutexes for achieving faster communication.

Both implementations are based on the idea of using LEON
as an arbitrator (server), which will accept requests from
SHAVEs (clients) for accessing the shared data structure. The
communication is based on message passing. It is important to
mention that the Myriad1 platform is ideal for such kind of
synchronization algorithms. LEON is indeed designed to be
utilized for controlling the data flow on the platform and
SHAVEs for playing the role of the workers, responsible for
performing computational intensive operations assigned to
them by LEON. So, the utilization of LEON as an arbitrator is
not expected to degrade the application’s performance, since
this is the kind of tasks LEON is expected to perform in
Myriad1.

The Client-Server implementation is relatively simple.
There are 3 kinds of messages exchanged between the server
and the clients: acc_req (sent from a client to the server to
request access to the shared data structure), acc_resp (sent
from the server to a client to grant access) and oper_fin (sent
from a client to the server to notify the server that the client has
left the critical section).

Each client requests access to the shared queue by sending
to the server an acc_req message. The client waits until it
receives an acc_resp message from the server. When such a
message is received, the client has exclusive access to the
critical section and completes one operation (enqueue or
dequeue). As soon as the operation is completed, the server is
notified by receiving an oper_fin message from the client.
Then, the server is ready to handle the next request, issued
from another (or the same) client. Therefore, clients are served
in a cyclical fashion.

To illustrate further the algorithm, Fig. 2 shows an
example: Client0 requests access to the queue by sending an
acc_req message to the server. It spins on the buffer until it
receives an acc_resp message. Then, it accesses the queue in
the CMX memory and performs an enqueue. Upon the
completion of the operation, Client0 notifies the server with an
oper_fin message. Client1 requests access to perform a
dequeue. Its request is handled by the server immediately after
receiving the oper_fin from Client0 and is served in a similar
manner.

As previously stated, the first variation of the algorithm utilizes
buffers implemented as shared variables between the LEON
and the SHAVEs, which are placed in the CMX local slices of
each SHAVE. The second variation utilizes mutexes in the
following manner: when a client receives an acc_resp message
and enters the critical section acquires one the 8 mutexes
provided by the Myriad1 architecture. The client releases the
mutex as soon as it exits the critical section. At the same time,
LEON spins on the mutex status register and when the mutex
get released, LEON is ready to serve another request. Thus, the
oper_fin message is implemented though mutexes, instead of
using a shared variable. It is important to underline again that
mutexes in this algorithm are not used for protecting shared
data (as happens with the lock-based implementations).
Instead, they are utilized for achieving efficient
communication.

285

2014 International Conference on Embedded Computer Systems: Architectures, Modeling, and Simulation (SAMOS XIV)

Fig. 3. Remote Core Locking (RCL) implementation. Each SHAVE stores its
elements in its dedicated CMX memory. Notice the the queue contains the
addresses of the elements. The server executes the critical sections, by
enqueuing or dequeuing the addresses of the elements.

The Client-Server algorithms do not utilize much space in
the CMX. Also, they allow the direct access of the data
structure by the SHAVEs. LEON is responsible only for
arbitrating the access requests to the queue, so it is actually
replacing the lock. More specifically, it loops over the acc_req
buffer slots to identify the clients that request access.
Therefore, clients access the critical sections of the data
structure in a cyclical fashion.

The motivation of using mutexes for communication lies in
the assumption that the accessing of mutex registers by the
LEON should be faster than spinning on shared variables.
Mutexes are implemented on hardware and low-level assembly
code and therefore are expected to provide increased
communication performance.

The Client-Server implementations move the
synchronization from the mutexes of the lock-based
implementations, to a core that has the role of the arbitrator.
They are relatively simple and the Client-Server
implementation using mutexes for communication is expected
to perform relatively fast. Client-Server designs can be
considered as relatively platform independent, since they do
not utilize any specific platform characteristics. Another
advantage of this category of algorithms is that it provides fair
utilization of the data structure by all clients, since they are
served in a cyclical fashion. However, the main disadvantage is
that the core having the role of the server is underutilized, since
it performs only very limited amount of work. In this design, it
is restricted in sending and receiving messages to the client
cores and does not execute any part of the actual application
workload.

C. Remote Core Locking Implementations
We optimized the Client-Server implementations by

upgrading the role of the server. Instead of using the server
only for arbitrating the access to the shared data structure, we
moved the execution of the critical sections from the clients to
the server. We implemented two different versions of the
algorithm. In both of them we took advantage of the Myriad1
platform specifications. As mentioned before, Myriad1
platform provides 128KB of local CMX memory for each

SHAVE. Taking advantage of the relatively large CMX
memory, we optimized the queue by allowing the SHAVEs to
access only their local CMX slice, instead of granting access
directly to the queue. The first implementation uses shared
variables for communication between the LEON and the
SHAVEs, while the second one utilizes the SHAVEs' FIFO for
achieving fast arbitration to the shared data.

The differences between the Client-Server and the Remote
Core Locking (RCL) implementations can be summarized as
follows:

• LEON (server) is responsible not only for arbitrating,
but also for enqueuing / dequeuing elements to / from
the queue. Therefore, the server executes the critical
sections.

• Queue entries are not the allocated elements, but
pointers to the elements that are physically allocated in
local CMX memory slices. Therefore, RCL
implementations occupy more memory space that the
Client-Server ones, where the clients access the queue
directly for storing and retrieving elements to / from the
queue. This memory overhead of the RCL is obviously
application specific.

• While in the Client-Server implementations the server
remains idle while waiting for a client to exit the critical
section, in the RCL implementations the server executes
the critical section. At the same time, the client may
remain idle or continue with the application execution,
if possible, or even issue more requests to the server for
accessing the shared data.

More specifically, when a client requests access to the data
structure to enqueue an element allocated in its local CMX
slice, it sends the address of the element to the server. Then, the
server enqueues the address and replies with an enq_fin
message to notify the client that the operation is completed. In
the case of dequeueing, the client sends a deq() message to the
server and waits for the address of the dequeued element.

Fig. 3 shows an example: Client0 allocates the new element
e6 to its local CMX slice. Then, it sends the address of element
(&e6) to the server. The server enqueues the address to the
queue (which in this example is placed in the CMX1) and it
responds with an enq_fin message. Client1 requests to dequeue,
so it sends a deq() message and spins on the buffer waiting for
an element address. The server responds by sending the address
of e0 (&e0). Client1 accesses the dequeued element in the
CMX0 memory slice, where it is allocated.

We implemented two versions of the RCL on the Myriad1
platform. The first one uses shared variables for the
communication between the clients and the server. The second
one utilizes the SHAVE FIFOs. More specifically, the element
addresses, the enq_fin and the deq() messages are sent and
received between the SHAVEs through the FIFO of each one.
It is important to mention that, in contrast with all the other
message passing implementations, in this case (i.e. the second
version of the RCL implementations) the server is not the
LEON, but one of the 8 SHAVE cores, since LEON does not
have access to the SHAVE FIFOs.

286

2014 International Conference on Embedded Computer Systems: Architectures, Modeling, and Simulation (SAMOS XIV)

Fig. 4. Performance when half SHAVEs perform enqueue and half dequeue
operations. In the RCL-SHV_FIFO implementation there are only 6 clients
and one SHAVE is used as a server.

The implementations are an adaptation of the RCL
algorithm presented in [20]. The main characteristic of the
algorithm is that the arbitrator executes the critical section of
the application (in the case of concurrent queue the enqueing
and dequeing). The clients send requests to the server and the
arbitrator is responsible for serving them. Therefore, in case of
enqueueing there is no reason for SHAVEs to stall, while
waiting for server to complete the enqueue. Instead, they can
continue with other computations or even issue more enqueue
requests. SHAVEs stall only in dequeue operations, while
waiting for server to send the address of the dequeued element.
The RCL implementations are more platform dependent in
comparison with the Client-Server. They require a relatively
large local memory (since they allocate new objects only in
their local CMX slice) and in the case of the SHAVE's FIFO
implementation the necessary hardware support.

V. EXPERIMENTAL RESULTS
The algorithms described in the previous section were

evaluated using a concurrent array-based queue. The queue is
shared between the 8 SHAVE cores of the Myriad1 platform.
The synthetic benchmark we used is composed by a fixed
workload of 20,000 operations and it is equally divided
between the running SHAVEs. In other words, in an
experiment with 4 SHAVEs each one completes 5,000
operations, while in an experiment with 8 SHAVEs, each one
completes 2,500 operations.

All algorithms were evaluated in terms of time
performance, for the given fixed workload, which is expressed
in number of execution cycles. More specifically, in Myriad1
platform the data flow is controlled by LEON. SHAVEs start
their execution when instructed so by LEON and then LEON
waits for them to finish. The number of cycles measured is
actually LEON cycles from the point that SHAVEs start their
execution until they all finish. This number represents
accurately the execution time.

Fig. 5. Performance when the SHAVEs perform randomly enqueue and
dequeue operations. In the RCL-SHV_FIFO implementation there are only 6
clients and one SHAVE is used as a server.

A. Experimental Results
We performed two sets of experiments for evaluating the

behavior of the designs: dedicated SHAVEs and random
operations. In the “dedicated SHAVEs” experiment each
SHAVE performs only one kind of operations. In other words,
half of the SHAVEs enqueue and half dequeue elements to /
from the data structure. “Random operations” means that each
SHAVE has equal probability to perform either an enqueue or
a dequeue each time it prepares its next operation.

In the rest of the subsection we present the performance
experimental results. mtx-(2-locks) is the lock-based queue
implementation with 2 locks, while mtx-(1 lock) is the same
implementation with a single lock. C-S refers to the Client-
Server implementation using shared variables, while C-S-mtx is
the Client-Server implementation using mutexes for
communication. RCL refers to the Remote Core Locking
implementation using shared variables for passing messages
between the clients and server. Finally, RCL-SHV_FIFO is the
RCL implementation using SHAVEs’ FIFOs for
communication.

The execution time is displayed in Fig. 4 and Fig. 5 for
dedicated SHAVEs and random operations respectively. mtx-
(2 locks) performs better in both dedicated SHAVEs and
random operations for 8 SHAVES, (up to 51% in comparison
with the RCL), since it is the only implementation that provides
the maximum possible concurrency for the queue data
structure. All other implementations serialize the accesses to
the shared data. mtx-(1 lock) doubles the execution time in
comparison with the mtx-(2 locks).

In respect with the message passing implementations, the
C-S leads to poor performance, due to the extensive utilization
of shared variables. However, C-S-mtx performs much better.
We noticed that the bottleneck of C-S is the spinning of the
server to the shared variable, while waiting for the oper_fin
message from the client. In the C-S-mtx implementation the
message is transferred through a mutex, which leads to much
lower communication overhead in comparison with the shared
memory variables. RCL-SHV_FIFO is another implementation
with very low communication overhead, with only 12% more
execution time than the mtx-(2 locks) in the experiment with 6

287

2014 International Conference on Embedded Computer Systems: Architectures, Modeling, and Simulation (SAMOS XIV)

TABLE II. QUALITATIVE COMPARISON OF THE SYNCHRONIZATION
ALGORITHMS

Algorithm Pros Cons

Lock-based
using

mutexes

• Hardware
implemented, so it is
quite fast.

• Performs well in low
contention.

• Becomes a bottleneck in
high contention

• Danger of deadlocks, in
the case of complex
synchronization.

C-S • Platform independent
• Low memory size.

• Low performance due to
spinning in non-local
shared variables.

• Server is underutilized.

C-S-mtx
Communication using
mutexes is fast and
reliable.

Server is underutilized.

RCL-
SHV_FIFO

FIFOs are hardware
implemented, so
communication has very
low overhead.

Consumes more memory
than the other
implementations, since
SHAVEs store elements in
their dedicated memory.
Pointers to the elements are
stored in the concurrent
queue.

RCL

SHAVEs spin only in
variables stored in their
dedicated memories, and
LEON does not spin at
all, so it is fast.

Same as RCL-SHV_FIFO

SHAVEs. Finally, the RCL implementation scales well and its
performance is very close to the mtx-(1 lock) (it reaches 14.5%
more execution cycles in comparison with mtx-(1 locks)). In
this algorithm, we utilize shared variables in a very careful
way: each SHAVE spins only on a variable that is stored in its
local CMX slice (mostly when a SHAVE is waiting for the
server to respond with the address of a dequeued element). In
contrast with the C-S implementation, the spinning on a
variable in a local CMX slice does not lead to performance
degradation.

In both experiments, we notice in some implementations a
high increase in performance from two to four SHAVEs
(especially in RCL, mtx-(2 locks)). The reason is that in the
case of two SHAVEs there are many small time intervals
where no SHAVE accesses the data structure (because it
prepares to the next operation to be performed). However, as
the number of SHAVEs increases, there is always one SHAVE
(or two in case of mtx-(2 locks)) that makes progress by
accessing a critical section. On the other hand, in the case of
the mtx-(1 lock) the performance remains almost flat in all
experiments. This is because all operations are serialized, so
even when there are only two SHAVEs, there is always one
making progress. In C-S and C-S-mtx, however, even the small
communication overhead between LEON and SHAVEs results
in lower performance for two SHAVEs, in comparison with
four.

B. Discussion of the Experimental Results
One important observation from the experimental results is

that RCL-SHV_FIFO performs very close (or even better for
small number of SHAVEs) in comparison with the mtx-(2
locks), although it serializes the accesses to the critical section.

Due to the very low communication overhead it provides, since
no memory is utilized for synchronization, it outperforms the
mtx-(1 lock) by up to 39%. Also, it provides very low
execution time in the case of small number of cores (29.6%
reduced execution time compared with the mtx-(2 locks) for 2
SHAVEs). This proves that message passing implementations
can be a feasible solution, not only in the HPC, but also in the
multi-core embedded systems domain. Platforms like Myriad1
that integrate a RISC core for controlling the chip data flow can
favor the usage of synchronization algorithms based on the
server-client model.

In all experiments, we stored the shared data structure in
CMX memory. Although, CMX size limits the maximum
memory size that the queue can occupy, it provides higher
performance for all the evaluated implementations. However, if
an application utilizes a larger shared queue, then it should be
placed in DDR memory, with cost in execution time.

The utilization of shared variables for synchronization,
although it is relatively platform independent, usually leads to
poor performance. A core spinning in shared variables causes
bus saturation and performance degradation. According to our
experiments, the only case that shared variables do not lead to
poor performance is when the spinning takes place to a core
dedicated memory (as in the RCL case, which performs quite
close to mtx-(1 lock) for 8 SHAVEs). However, this implies
that the multi-core embedded platform avails dedicated
memories, so the RCL cannot be considered entirely platform
independent. On the other hand, the platform dependent
implementations and especially the RCL-SHV_FIFO lead
generally to high performance. Taking advantage of the
hardware specifications for achieving fast communication is an
important factor leading to efficient synchronization.

Table II summarizes the advantages and disadvantages of
each algorithm we evaluated in this paper. Our goal was to
transfer message passing synchronization algorithms from the
HPC domain in multi-core embedded systems. All algorithms
implemented and adapted to the hardware characteristics of the
embedded platform. This tuning led to very satisfactory
performance results, since some message passing algorithms
perform close, or even better than the single lock queue
implementation. Therefore, since in the near future the
embedded systems will integrate even more cores and mutexes
will become a bottleneck (as happened in HPC), message
passing synchronization can be a feasible solution.

VI. CONCLUSION AND FUTURE WORK
In this work we evaluated a number of message-passing

synchronization algorithms in an embedded platform and
proved that message passing implementations are an efficient
solution to the shared data synchronization issue. We intent to
extend our work in three directions: First, we plan to evaluate
the message passing implementations in terms of power
consumption, which is a very important evaluation metric in
the embedded systems domain. We can also evaluate more
synchronization algorithms which are proven to perform well
in the HPC domain (e.g. the Flat Combining [21]). Finally, in
this work we tuned the synchronization algorithms to take
advantage of the hardware characteristics of the Myriad1

288

2014 International Conference on Embedded Computer Systems: Architectures, Modeling, and Simulation (SAMOS XIV)

platform. We consider very interesting the evaluation of the
algorithms in other embedded platforms as well, with different
specifications and identify the hardware metadata that affect
the synchronization algorithms implementation.

ACKNOWLEDGMENT
The authors would like to thank Paul Renaud-Goud

(Distributed Computing and Systems Research Group at
Chalmers University) for his useful comments and suggestions
on the paper and Anders Gidenstam (Distributed Computing
and Systems Research Group at Chalmers University) for his
help and support on running the synchronization algorithms on
the Myriad1 platform.

REFERENCES
[1] D. Cederman, et al., "Lock-free concurrent data structures," in

"Programming Multi-Core and Many-Core Computing Systems", Wiley
Series on Parallel and Distributed, Wiley-Blackwell, ISBN: 978-
0470936900.

[2] D. Cederman, et al., “A study of synchronization methods in commonly
used languages and systems,” in Proc. IPDPS, 2013, pp. 1309-1320.

[3] ARM synchronization primitives:
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dht0008a/
ch01s02s01.html.

[4] W. Wolf, “High-performance embedded computing: architectures,
applications and methodologies,” Morgan Kaufmann, 2007.

[5] Wandboard ARM multi-core board: http://www.wandboard.org.
[6] AMD Opteron 6000 Series Embedded Platform:

 http://www.amd.com/us/Documents/6000_Series_product_brief.pdf.
[7] D. Kaeli and D. Akodes, “The convergence of HPC and embedded

systems in our heterogenous computing future,” in Proc. ICCD, 2011,
pp. 9-11.

[8] F. Schon, et al., “On interrupt-transparent synchronization in an
embedded object-oriented operating system,” in Proc. ISORC 2000, pp.
270-277.

[9] S. H. Kim, et al., “C-Lock: energy efficient synchronization for
embedded multicore systems,” IEEE Transactions on Computers, Vol.
99, 2013.

[10] M. Monchiero, G. Palermo, C. Silvano, and O. Villa,
“Power/performance hardware optimization for synchronization
intensive applications in MPSOCs,” in Proc. Design, Automation and
Test in Europe (DATE), vol.1, 2006.

[11] R. Rajwar and J. Goodman, “Speculative lock elision: enabling highly
concurrent multithreaded execution,” in Proc. 34th Annual ACM/IEE
Int’l. Symp. on Microarchitecture. IEEE Computer Sociaty, 2001, pp.
294-305.

[12] S. Sanyal, et al. “Clock gate on abort: towards energy-effient hardware
transactional memory,” in Proc. IEEE Int’l Symp. on Parallel and
Distributed Processing, 2009.

[13] H. Cho, B. Ravindran and E. D. Jensen, “Lock-Free synchronization for
dynamic embedded real-time systems,” in Proc. Design, Automation and
Test in Europe (DATE), vol.1, 2006.

[14] D. Petrovic, T. Ropars and A. Schiper, “Leveraging hardware message
passing for efficient thread synchronization,” in Proc. 19th Symposium
on Principles and Practice of Parallel Programming, 2014.

[15] J. Howard, et al., “A 48-core IA-32 message-passing processor with
DVFS In 45nm CMOS,” In Proc. International IEEE Solid-State Circuits
Conference Digest of Technical Papers, 2010.

[16] V. Gramoli, R. Guerraoui, and V. Trigonakis, “TM2C: A software
transactional memory for many-cores,” In Proc. 7th ACM European
Conference on Computer Systems, 2012.

[17] J. L. Abellan, J. Fernandez, and M. E. Acacio. “GLocks: efficient
support for highly-contended locks in many-core CMPs,” In Proc. 2011
IEEE International Parallel and Distributed Processing Symposium,
2011.

[18] D. Moloney, “1TOPS/W Software Programmable Media Processor”,
HotChips HC23, Stanford (CA), 2011.

[19] M. Hill and M. Marty, “Amdahl’s law in the multicore era,” Computer,
vol. 41, no. 7, pp. 33-38, 2008.

[20] J. P. Lozi, F. David, G. Thomas, J. Lawall, and G. Muller, “Remote core
locking: migrating critical-section execution to improve the performance
of multithreaded applications,” in Proc. USENIX Annual Technical
Conference, 2012.

[21] D. Hendler, I. Incze, N. Shavit, and M. Tzafrir. “Flat combining and the
synchronization-parallelism tradeoff,” in Proc. SPAA’10, pages 355-
364, 2010.

[22] G. Bell, “Bell's law for the birth and death of computer classes,”
Communications of the ACM, January 2008, Vol 51, No. 1, pp 86-94.

[23] P. Tsigas and Y. Zhang, “A simple, fast and scalable non-blocking
concurrent FIFO queue for shared memory multiprocessor systems,” in
Proc. thirteenth annual ACM symposium on Parallel Algorithms and
Architectures (SPAA), 2001, pp.134-143.

[24] M. Michael and M. Scott, “Simple, fast, and practical non-blocking and
blocking concurrent queue algorithms,” in Proc fifteenth annual ACM
symposium on Principles of Distributed Computing (PODC), 1996,
pp.267-275.

289

2014 International Conference on Embedded Computer Systems: Architectures, Modeling, and Simulation (SAMOS XIV)

