
Wait-free Queue Algorithms for the Real-time Java Specification

Philippas Tsigas1, Yi Zhang2, Daniel Cederman1, Tord Dellsén1

1Department of Computing Science 2School of Computer Science
Chalmers University of Technology, University of Birmingham,

SE-412 60, Gothenburg, Birmingham, B15 2TT,
Sweden United Kingdom

Abstract

Efficient algorithmic implementations of wait-free queue
classes in the Real-time Specification for Java are presented
in this paper. The algorithms are designed to exploit the
unidirectional nature of these queues and the priority-based
scheduling in the specification. The proposed implementa-
tions support multiple real-time threads to access the queue
in a wait-free manner and at the same time keep the ”Write
Once, Run Anywhere” principle of Java. Experiments show
our implementations outperform the reference implementa-
tions, especially with high priority tasks.

In the implementations, we introduce a new solution to
the “enabled late-write” problem discussed in [9]. The
problem is caused by using only memory read/write op-
erations. The new solution is more efficient, with respect
to space complexity, compared to previous wait-free imple-
mentations, without losing in time complexity.

1 Introduction

Using Java as the programming language for real-time
and embedded systems has attracted certain academic and
industry interests in recent years. In the States, the Na-
tional Institute of Standard and Technology has organized
the requirements working group for real-time extensions for
the Java Platform. The Java Community Process Program
has formed the Real-Time for Java Expert Group and pro-
duced the Real-time Specification for Java (RTSJ) [3, 4, 6].
Following the publication of the RTSJ, many papers have
been published to address different issues in the specifica-
tion [12, 8, 13].

To make Java more suitable for real-time programming,
RTSJ enhances Java in several areas with better deter-
minism and multithreading [3]. The enhancements in-
clude scheduling of real-time threads, memory manage-

ment which allows applications to bypass garbage collec-
tion, introducing wait-free synchronization between real-
time threads and non-real-time threads and others.

Among the above enhancements, we are interested in
the wait-free synchronization between real-time threads and
non-real-time threads. In this paper, we present efficient al-
gorithmic implementations of wait-free queue classes de-
fined in the RTSJ. Our implementations follow the ”Write
Once, Run Anywhere” principle which is one of the most
important principles for Java and RTSJ and provide pre-
dictability with wait-free mechanism. In our implemen-
tations, we only use read/write operations which are sup-
ported by all Java runtime environments. At the same time,
we provide formal proof for our implementation. We also
compare the performance of our implementations with the
reference implementations of RTSJ from Timesys.

The wait-free queue classes that are provided by RTSJ
have been designed to enable communication between the
real-time and the regular Java threads; they have a unidi-
rectional nature with one side of the queue (read or write)
for the real-time threads and the other one (write or read,
respectively) for the non-real-time ones. The implementa-
tions presented in this paper are designed having the uni-
directional nature of these queues in mind in order to gain
efficiency and allowing multiple real-time threads to access
the queue in a wait-free manner. To the best of our knowl-
edge our implementations are the first unidirectional wait-
free queue implementations that allows multiple real-time
threads to access the queue in the literature.

The remainder of this paper is structured as follows. The
next subsection describe related work. Section 2 provide a
detail description of the problem. We present our imple-
mentations in section 3. The proof of correctness of our
implementations is presented in section 4. We evaluate our
implementations in section 5. Section 6 concludes the pa-
per.



1.1 Related Work

Concurrent FIFO queue data structures are fundamen-
tal data structures used in many programs and algorithms
and, as can be expected, many researchers have proposed
implementations for them. Although there are many non-
blocking implementations (see [11] for references), only
few of them are wait-free. In a non-blocking algorithm,
some operations are allowed to perform an unbounded num-
ber of steps when they are concurrent with other opera-
tions; this, of course, is not allowed in a wait-free algo-
rithm. All previous constructions (wait-free or not) were
targeted toward asynchronous systems; such constructions
require hardware support for strong synchronization prim-
itives such as Compare-and-Swap etc. These primitives
are not available in the Real-Time Specification for Java.
As a matter of fact in the RTSJ only read and write mem-
ory operations are supported. The reason is the hardware-
independence property that the RTSJ wants to preserve.

Recent research at the University of North Carolina has
shown that wait-free algorithms can be simplified consid-
erably in real-time systems by exploiting the way that pro-
cesses are scheduled for execution in such systems [1, 9]. In
particular, if processes are scheduled by priority, then object
calls by high-priority processes automatically appear to be
atomic to lower-priority processes executing on the same
processor. Consequently they show an implementation of
Compare-and-Swap from reads and writes in a priority-
based uniprocessor system [9]. In a consequent paper [2],
a wait-free implementation of a linked-list from compare-
and-swap for priority-based systems is presented. These re-
sults combined can offer an efficient implementation, with
respect to time complexity, that satisfies the specifications
of the wait-free queue classes in RTSJ. The space complex-
ity of this implementation is O(N ∗ M) where N and M
is the maximum number of concurrent tasks that the queue
supports and the size of the queue respectively; the time
complexity of this implementation is O(N) for each task.

To enhance the concurrent programming ability of Java,
the Java Community Process Program also worked out a
specification for concurrency utilities, JSR-166 [], which
is part of SUN Java JDK 5.0. In the concurrency utili-
ties, an atomic primitive CompareAndSet, an equivalent
of Compare-and-Swap, is provided. However, as stated
in the specification, the hardware implementations of Com-
pareAndSet may not be supported by some platforms; thus
some form of internal locking may be used, and the method
is not guaranteed to be non-blocking. The RTSJ introduces
wait-free queues to avoid the dilemma introduced by lock-
ing which will be described later. Therefore, the atomic
primitive CompareAndSet in the concurrent utilities can-
not be used straightforward in implementing the wait-free
queue required by RTSJ for real-time systems.

After the publication of RTSJ, a lot of research has been
carried out to enhance and implement the ideas in RTSJ.
For examples, in [12], the authors focus on asynchronous
event handlers in RTSJ; paper [8, 13] focus on memory
management issues in RTSJ. In the industry, Timesys pro-
vided the first reference implementation of RTSJ [10]. Re-
cently, AICAS developed JamaicaVM which implements
RTSJ. SUN also has a project named Mackinac to develop
a commercial implementation of RTSJ. As Timesys is the
first reference implementation of RTSJ it is relatively sta-
ble. In this paper, we use Timesys’ implementation of RTSJ
as the platform for evaluation and comparison.

2 Wait-free Synchronization in RTSJ

In this section, first, the wait-free synchronization mech-
anism and related features of RTSJ are presented. Then, we
will discuss our understanding of wait-free synchronization
in RTSJ.

The RTSJ is designed for multithreading priority-based
uniprocessor systems. The application program must see
the minimum 28 priorities as unique; for example, it
must know that a thread with a lower priority will never
execute if a thread with a higher priority is ready. If
threads with the same priority are eligible to run, they
will execute in FIFO order. The RTSJ provides wait-
free queue classes to provide protected, non-blocking,
shared access to objects accessed by both regular Java
threads and NoHeapRealtimeThreads (NHRT). These
classes are provided explicitly to enable communication be-
tween the real-time execution of NHRT and regular Java
threads. Basically, there exist two different new queue
classes in RTSJ: the WaitFreeWriteQueue class and
the WaitFreeReadQueue class.

Both these queue classes are unidirectional. The infor-
mation flow for the WaitFreeWriteQueue is from the
real-time side to the non-real-time one, as shown in Figure
1. The information flow for the WaitFreeReadQueue is
from the non-real-time side to the real-time one, as shown
in Figure 2. When a NHRT wants to send data to a regu-
lar Java thread, it uses the write (real-time) operation of
WaitFreeWriteQueue class. Regular threads use the
read (non-real-time) operation of the same class to read in-
formation. The write side is non-blocking and wait-free,
so that NHRT will not experience delays from the garbage
collection. The read operation, on the other hand, is block-
ing. The WaitFreeReadQueue class, which is unidirec-
tional from non-real-time to real-time, works in the con-
verse manner.

The wait-free queue classes in RTSJ are used to solve a
dilemma caused by NHRT, garbage collection and mech-
anisms for solving priority inversion in the specification.
Garbage collection is an important language feature of

2



Concurrent
No-Heap Realtime
 Threads

Concurrent
Non-Realtime
Threads

Mutual Exclusion Wait-free Access

Enqueue Dequeue

Figure 1. The WaitFreeReadQueue
class

Concurrent
No-Heap Realtime
 Threads

Concurrent
Non-Realtime
Threads

Mutual Exclusion Wait-free Access

EnqueueDequeue

Figure 2. The WaitFreeWriteQueue
class

Java and is kept in RTSJ. In RTSJ, regular Java threads
and RealtimeThread cooperate with garbage collec-
tors. The NHRT is introduced for threads which need to run
without the intervention of garbage collection. When lock-
based synchronization is used between threads, the prior-
ity inversion problem must be prevented by either priority
ceiling emulation protocol or priority inheritance protocol,
as required in the specification. Synchronization between
NHRT and regular Java threads causes a dilemma if the syn-
chronization is lock-based: regular Java threads may pre-
empt NHRT to avoid priority inversion; in the mean time,
garbage collection may preempt the regular Java threads
and intervene in the execution of NHRT. For example, let us
assume a NHRT TN shared information through a shared
data object SO with a regular Java thread TR. The speci-
fication wants (a) the thread TN running without the inter-
ference of the garbage collection process and requires (b)
that the thread TR cannot block the garbage collection pro-
cess. The priority of TN is higher than that of thread TR.
To protect the consistency, the shared object is guarded by
a monitor; to prevent the priority inversion problem, PCP
or PIP is used at the same time. If TN preempts TR while
it accesses the shared object SO, the priority of TR will be
prompted to be higher than TN . Now, if the garbage collec-
tion process starts, shall it preempt TR? By the requirement
(a), it cannot preempt TR which block TN ; if it preempted
TR, the action renders the introduction of NHRT meaning-
less. By requirement (b), it has to preempt TR to satisfy the
consistency of JVM. To avoid the dilemma, RTSJ introduce
wait-free synchronization between NHRT and regular Java
threads.

In RTSJ, some requirements of wait-free synchroniza-
tion are obscure. In the specification, it is said that ”If two

real-time threads intend to read from this queue they must
provide their own synchronization.” Should the synchro-
nization between real-time threads be wait-free also? The
reference implementation from Timesys uses lock-based
synchronization between real-time threads. In this case, the
wait-free queues are essentially single-writer/single-reader
wait-free queues. As the RTSJ is published far ahead of the
specification for concurrency utilities, JSR-166, it is unclear
whether using CompareAndSet in JSR-166 complies with
the specification.

To make things clear, we intend to develop wait-free
queue implementations that satisfy the following require-
ments. First, if two or more real-time threads intend to op-
erate on the same queue, they will cooperate with each other
in a wait-free manner. This requirement will require multi-
writer/multi-reader wait-free queue implementations. Sec-
ond, we will not use CompareAndSet in JSR-166. There-
fore, our implementations will keep the the ”Write Once,
Run Anywhere” principle and can be run in all environ-
ments which support RTSJ.

3 The Implementations of Wait-free Queues
for RTSJ

The implementations of the two wait-free queue classes
(WaitFreeWriteQueue and WaitFreeReadQueue)
are quite similar algorithmically. In this paper, we present
the implementation of the WaitFreeWriteQueue class
to illustrate the ideas behind the constructions.

3.1 The Sequential Implementation

To simplify the presentation of our algorithm, we start
with a simple sequential queue implementation. We will
then discuss how to extend this sequential algorithm to a
concurrent queue implementation with the specifications
that we are looking for. The Java-pseudo-code for this se-
quential queue is shown in Figure 3.

As it can be seen in Figure 3 we implemented algorith-
mically the queue using a singly linked list. For efficiency
reasons, we choose the front of the queue, where we only
delete nodes, to be the head of the list, and the rear of the
queue, where we only insert, to be the tail of the list. In this
way we only use the operations of the linked list that mod-
ify the head and the tail of the list. In order to minimize the
interference between the write (enqueue) and read
(dequeue)1 operations, we introduce a dumbcell in the

1Throughout the paper, the terms queue write and enqueue are
used interchangeably. The same also holds for the terms queue read and
dequeue. To distinguish between the queue read/write and normal
read/write memory operation, we are using typewriter type style for the
queue operations and serif type style for the memory ones.

3



1 public class SeqQueue {
RTQueueCell head, tail;

3 RTQueueCell dumbcell;
void SeqQueue() {

5 head = dumbcell;
tail = dumbcell;

7 dumbcell.data = null;
dumbcell.next = null;

9 }
public java.lang.Object read() {

11 RTQueueCell temp;
temp = (RTQueueCell)head.next;

13 if (temp != null)
head = temp;

15 return temp;
}

17 public boolean write(java.lang.Object object) {
RTQueueCell temp;

19 temp = new RTQueueCell();
temp.data = object;

21 temp.next = null;
/*tail and tail,next will be shared

23 read/write in concurrent implementation*/
tail.next = temp;

25 tail = temp;
return TRUE;

27 }
}

Figure 3. The Sequential implementation of
the queue

empty list. In this way, when executing a dequeue op-
eration, only the head needs to be checked in order to see
whether the queue is empty or not. If the next field of the
head is null, the queue is empty. Therefore, the dequeue
operation needs only to check the head variable and only
the tail needs to be checked for the enqueue operation.
For the initialization for the simple sequential queue we de-
fine a dumbcell, with null in its next field, and let the
head and the tail of the queue point to it, statements 5 to 8
in Figure 3.

Figure 4 shows the structure of the cells of the linked
list that we are using. The class RTQueueCell has two
public members: one is for the data entry, the other is the
next pointer that singly links the elements of the list.

3.2 The Concurrent Implementation

To extend the sequential version to a concurrent wait-
free queue implementation, first we will use a simple
announce-and-help scheme for the enqueue operations.
The announce-and-help scheme uses the priority-based
scheduler to achieve wait-freedom. This scheme is based
on the task priorities to guarantee that an operation will fin-
ish in a bounded number of steps regardless of the status

of the other operations, as follows: First, each enqueue-
task announces the data (writes a pointer to the memory
where the data are) that it wants to enqueue in a special
Announcement array. The enqueue-task with priority i
will use the ith position of the array. After the announce-
ment step, the enqueue-task reads and helps the data that
have been announced in the array one by one, starting
from the lowest priority up to its own priority. During
this helping phase, if an enqueue-task A is not preempted
by a higher priority task, then all current enqueue opera-
tions, with lower priority than the priority of A, that are
announced will be helped/enqueued by A. If the enqueue
task A is preempted by a higher priority task B during its
helping phase, then there are two cases:

public class RTQueueCell {
public java.lang.Object data = null;
public java.lang.Object next = null;

}

Figure 4. Definition of the queue cell

• B is not an enqueue-task in the same queue: then task
A will continue its program steps after B finishes from the
same queue-state from which it was pre-empted. Dequeue
operations on the same queue are executed by tasks that
have lower priority and therefore they can not preempt en-
queue operations in the same queue.
• B performs an enqueue operation on the same queue: in
this case B is going to announce its task and help all lower
priority tasks that are announced and its own task that has
just been announced. Therefore task A will be helped by
B. Because the priorities are bounded, there always exists a
task which will not be preempted by another enqueue task.
Therefore, all tasks that announced their operations will be
helped (either by themselves or by higher priority tasks).

As stated before, we intend to only use read and write
primitives in our implementation. Although reads and
writes are very weak synchronization primitives in the con-
text of general asynchronous systems, by exploiting the fact
that the tasks are executed by priority, it has been shown that
they are universal primitives for priority-based uniprocessor
systems [9].

However, a problem named the “enabled late-write”
problem in [9] arises from the use of memory read/write
operations only. The “enabled late-write” problem arises
when a low priority task A is preempted while it is about to
write to a memory position, and is preempted by other tasks
that access and modify the same memory position. When
task A resumes running, it overwrites the previous “fresh”
value with an “old” one. Anderson et al. [9] proposed a
majority voting scheme to overcome the problem. Their
scheme requires 2N − 1 memory words to solve “the en-
abled late-write” problem for one word.

4



In this paper we propose a new more efficient scheme
to face the “enabled late-write”. The new scheme tries to
avoid the problem from the beginning by:

1. Making sure that, when a task A is preempted before
writing to position p, all other tasks that write on p,
(while A is preempted) write the same value that A
wanted to write. In order to establish this, we guide
the tasks to go through the same computational steps
as A when they have to decide about the value that
they want to write on the same memory location.

2. When the above is possible, we organize the shared
variables that might suffer from the “enabled late-
write” problem as arrays that carry information that
can be used algorithmically to determine the correc-
t/new value of the variable.

We believe that, the same idea can be used when algorith-
mically designing other shared objects for the RTSJ.

public class WaitFreeWriteQueue
{
... ...
private MemoryArea MemPool;
private java.lang.Object[] Announcement;
private RTQueueCell[] tail;
private RTQueueCell head;
// get the minPriority from the scheduler
private int minPriority;
// get the maxPriority from the scheduler
private int maxPriority;

... ...
}

Figure 5. Shared private variables for
WaitFreeWriteQueue

RTQueueCell dumbcell = new RTQueueCell();
... ...
Announcement = new
java.lang.Object[maxPriority + 1];
tail = new RTQueueCell[maxPriority + 1];

for (i=minPriority;i<=maxPriority;i++) {
Announcement[i] = null;
tail[i] = null;
}
tail[minPriority] = dumbcell;
head = dumbcell;
dumbcell.data = null;
dumbcell.next = null;

Figure 6. Initialization for WaitFreeWriteQueue

The wait-free part in this class is the part that imple-
ments the enqueue operations. The wait-free write op-
erations also share the private variable MemPool that hold

references to a MemoryArea2. The shared private vari-
ables for our WaitFreeWriteQueue are as shown in
Figure 5. All RTQueueCells should be allocated from
the MemoryArea. The Announcement array is used
to hold the different enqueue operations. The tail and
Announcement arrays are of equal length, equal to the
real-time priority level supported by the scheduler. For
the head of the queue we use the simple variable head.
minPriority and maxPriority are the minimum and
maximum priorities that real-time threads can be assigned,
respectively. This information can be obtained from the
scheduler. All shared variables will be initialized when con-
structing the queue. The initialization is similar to that in
the sequential version. Because we now use an array to rep-
resent the tail, we need to initialize this array in a way that
makes it easy for the algorithm to find the correct tail (the
dumbcell), when a task accesses the queue for the first time.
When a task accesses the tail array, it checks from the the
cell of the lowest priority task to the highest to find a non-
null cell. Henceforth, we initialize the cell corresponding to
the lowest priority point to the dumbcell. During the initial-
ization part, we also need to initialize the Announcement
array with the value null, which means that there are no
announced operations. The pseudo-code for the initializa-
tion is shown in Figure 6. The initialization of the local
variables is part of the pseudo-code description of the algo-
rithm described in Figure 7.

Now, in order to extend the sequential version that we
presented at the beginning of this section to the concur-
rent one that we are aiming for, we first need to make
sure that the shared read/write operations to the tail and
the tail.next variables (the shared variables of our imple-
mentation where overwriting might take place) do not suf-
fer from the “enabled late-write” problem. The wait-free
enqueue operation is presented in the write function be-
low. The announce-and-help scheme, that is used in our im-
plementation, uses the priority-based scheduler to achieve
wait-freedom. Each priority is mapped to the respective
entry of the array Announcement. An enqueue opera-
tion first gets the priority of its thread, then it allocates a
free cell from the memory area assigned to the queue. The
memory area is where the queue and its internal elements
are allocated. After writing the data in the free cell, the
task announces this cell in the Announcement array at the
index that is associated to its priority. This constitutes the
last part of the announcement phase. This is, as we will see
later, the “linearization point” of the enqueue operation at
the linearizability history. After it announces the object that
it wants to enqueue in the Announcement array, a task
will enter the helping phase that was described at the be-

2The RTSJ introduces the memoryarea concept, which is a region
of memory outside the garbage-collected heap that you can use to allocate
objects. The RTSJ uses the abstract class MemoryArea for this.

5



ginning of this subsection. The helping phase is described
in relation to the implementation pseudo-code in Figure 7.
During the helping phase, an enqueue operation with pri-
ority i helps the tasks with priority j ≤ i that have been an-
nounced in the array Announcement, one at a time, start-
ing from the operation with the smallest priority that it can
find (statement 18 in the implementation). For each such
operation, it finds the tail of the queue (statements 23-33 on
the protocol); then puts the data announced at the end of the
tail of the queue; then changes the tail variable to point to
the new position; and finally cleans Announcement[j].

The wait-free queue classes we designed are used to
provide communication between NHRTs and regular Java
threads. To untangle the effect of garbage collection, stati-
cal memory management is needed for nodes of the queue
class. Statical memory management is not the subject of
this paper; but, a simple scheme is presented in [5]. Other
better and more efficient schemes are possible. In [5], we
describe implementations of the other methods supported
by the WaitFreeWriteQueue class.

public boolean write(java.lang.Object object) {
2 boolean find = false; int i,j, mypriority;
RTQueueCell tempcell, temptail=null;

4 java.lang.Object tempAnnounce;
java.lang.Thread currentone;

6 //Find current task’s priority
currentone = java.lang.Thread.currentThread();

8 mypriority = currentone.getPriority();
//Allocate a cell in the MemoryArea

10 try {
tempcell = MemPool.newInstance(RTQueueCell);

12 tempcell.data = object; tempcell.next = null;
} catch(OutofMemoryError x) { return false; }

14 //Announce current task’s operation
Announcement[mypriority]=tempcell;

16 /*Enter helping phase and help tasks with
lower priorities and itself*/

18 for(i=minPriority;i<=mypriority;i++) {
tempAnnounce=Announcement[i];

20 if (tempAnnounce == null) continue;
//Try to find the actual tail

22 find = false;
for(j=minPriority;j<=maxPriority;j++) {

24 if (tail[j]!=null)
if (tail[j].next == null) {

26 find = true;
break;

28 }
}

30 //Continued in Figure 8

Figure 7. Wait-free enqueue operation for the
WaitFreeWriteQueue

Figure 9 shows the lock-based read operation of the
WaitFreeWriteQueue class. It’s a straightforward im-
plementation that uses mutual exclusion to serialize concur-

if (find)
32 //No preemption. The actual tail is found.

temptail = tail[j];
34 else

//Preemption detected! There are 2 possibilities
36 if(Announcement[i]!=null) {

/*Low priority tasks are preempted and helped but
38 the help is not completely. Help the task with

priority i to update tail and Announcement array*/
40 tail[i]=(RTQueueCell)tempAnnounce;

Announcement[i] = null;
42 continue;

}
44 else

/*Current task is preempted and helped by a higher
46 priority task that helped all low priority tasks.*/

return true;
48

/*Check whether current task preempt a lower priority
50 task when it was on statements 64 and 65?*/

if(temptail==tempAnnounce)
52 {

//If so, help it to update the Announcement
54 Announcement[i] = null;

continue;
56 }

/*Check whether current task is preempted by a
58 higher priority task that has helped current

task to complete its operation?*/
60 if(Announcement[i]==null)

return true;
62 //Enqueue the announcement

temptail.next=tempAnnounce;
64 tail[i]=(RTQueueCell)tempAnnounce;

Announcement[i] = null;
66 }
return true;

68 }

Figure 8. Wait-free enqueue operation for the
WaitFreeWriteQueue (continued)

rent dequeue operations.

4 Correctness Proof

In the helping phase two sets of variables are used, the
tail array (tasks help to enqueue data at the tail of the
queue) and the Announcement array; both are shared vari-
ables and can be read and written by different tasks. In the
implementation, the value of a variable Announcement[i]
changes from null to a non-null value when a task with pri-
ority i announces its enqueue operation. The value of the
same variable changes back to null when the item that the
enqueue operation wanted to enqueue was enqueued by
the same operation or by another higher priority enqueue
operation. If there are e enabled writes that are ready to
write to Announcement[i] then at least e − 1 of them are

6



public synchronized java.lang.Object read() {
2 RTQueueCell tempcell;
tempcell = head.next;

4 if (tempcell != null)
head = (RTQueueCell) tempcell;

6 return tempcell;
}

Figure 9. Lock-based dequeue operation for
WaitFreeWriteQueue

helping operations and have priority higher than i and want
to change the value of the Announcement[i] from non-null
to null. The one “enabled late-write”, that might exist, is
the write with priority i that wants to announce a new en-
queue operation. This write will not be scheduled before
the other pending writes, with higher priority, take place,
and thus, its write will not be overwritten by them. The
above proves the following lemma:

Lemma 1 ∀i, minPriority ≤ i ≤ maxPriority,
Announcement[i] will not suffer from the “enabled late-
write” problem.

Lemma 2 When a task A is preempted just before it writes
to the tail array, a higher priority task will write the same
content to the same position in the tail array.

Proof: The decision of what to write to the tail is based
on the contents of the Announcement and tail arrays. If
a higher priority task preempted task A just before A was
to write the tail array, then, since, nothing changed on the
Announcement and tail of the object from the time that A
read them, the higher priority task, that preempted A, will
compute the same value to write to the tail array.

If we would have used a simple tail variable for the
queue, as it is used in the sequential implementation of the
queue, the “enabled late-write” problem could have hap-
pened in the tail variable. To solve that problem, we or-
ganize the tail of the queue as an array. Each location in
the array corresponds to the respective priority. All tasks
with the same priority will be executed in a FIFO order and
use the same location in the array. Each enqueued item from
a task with priority i will become the tail of the queue once,
and the ith index of the tail will point to it. In our con-
struction, all tasks that try to help a task with priority i that
has been announced, are going to write to the tail array
at the index that corresponds to priority i. For example,
when a task A is helping with task C, it is preempted by an-
other high priority task B and has an enabled write on the
tailarray. Then the new task B will help the same task C
also and will go through the same computational steps and
will update the same entry of the tail array with the same

value as the preempted enabled write of task A. This is
guaranteed from Lemma 2. In this way, the “enabled late-
write” problem can not take place in any tail[i] variable.
This sketches a proof of the following lemma.

Lemma 3 ∀i,minPriority ≤ i ≤ maxPriority, tail[i]
will not suffer from the “enabled late-write” problem.

Now, we need to give a way for the tasks to read the tail
array and compute the real tail of the queue. Each item in
the tail array has been the real tail of the queue at some
point in time but only one of them is the current tail of the
queue. In our implementation, there is at most one tail en-
try that has the value null on its next field. As we are de-
signing a concurrent queue, an enqueue operation can be
preempted anywhere; a task A can be preempted between
statement 63 and 64 by a task B. The tail array then will
have no element with the value null on its next field. The
actual tail in this case should point to the object enqueued
by a task C, which is being helped by task A (A executes
statement 63 and 64 i only when it is helping another task).
During the helping phase of its enqueue operation, task B
need to find the tail of the queue and uses the local variable
temptail to store it. In the pseudo-code, when task B exe-
cutes statements 23-29, it goes through the tail array from
the lowest priority to the highest priority and tries to find the
one index in the array with null in the ‘next’ field, if there
is one. If there is no overlapping with enqueue operations,
task B will find the index with null in the next field. It will
store the value in temptail (statement 33).

Lemma 4 temptail.next will not suffer from the “enabled
late-write” problem.

Proof: When a task A with priority j helps a task with pri-
ority i that has been announced, where i < j, all items in
the announcement array from minPriority to i− 1 should
have the value null because task A starts its helping phase
from minPriority, and, tasks with priority less than j can
not preempt task A and make changes in the announcement
array. Before task A updates the next field of the tail of the
queue (statement 63), nothing changes in the tail array and
the announcement array. If a task B with priority k, where
k > j, preempted task A, task B will add its own announce-
ment in position k and nothing between minPriority to j
in the announcement array will change. Therefore task B
will help the announcement of the task with priority i and
will find the same tail and make the same decision with task
A and finally put the same value as A on temptail.next.

If task B overlapped with other enqueue tasks, then
task B might not find an index on the array with null in
the next field. If this happens, task B has already enough
information to find the actual tail of the queue and help the
preempted task to update the tail of the queue. To see this,

7



let us look at the possible ways that the above could have
happened; there are two cases:
• Task B preempts the lower priority task A, when A was
between statements 63 and 64; e.g. A had just finished en-
queueing the data before updating the tail of the queue. The
actual tail of the queue at this point is the task which is be-
ing helped by both task A and task B. Task B will help task
C to update the tail when B runs statements 40-41.
• Task B is preempted by a higher priority task D and D
updates the tail array in such a way that task B misses the
actual tail of the queue when B is scheduled back. In this
case, D will help all lower priority tasks. So, task B just
needs to stop its helping phase and return. B will detect
that it has been helped and return in statement 47.

The above sketches a proof that items are going to be put
on the singly link-list one after the other.

Since different tasks are going to try to help the same
task, we need to show that an item is not going to be en-
queued more than one time. That is the reason that state-
ment 51 is used from task B to detect that it has preempted
a task A when A was between statements 64 and 65 of its
pseudo-code. When the preemption happens, the announce-
ment has been added to the queue as a tail but not been
cleaned, which has been read by task B in temptail. If
such a preemption is detected, the task B will help task A to
clean the announcement array, when task B executes state-
ment 54. As both of them want to write null at the same
position, no “enabled late-write” problem exist. Statement
60-61 is used from task B to detect that it had been pre-
empted by a higher priority tasks D and to conclude that
task D has helped the task that B was helping when pre-
empted.

The following lemma also proves that it is necessary and
sufficient for a task to help other tasks with priority up to its
own priority.

Lemma 5 When a task A with priority i announces an en-
queue data in the Announcement array, all elements of
the array from i + 1 to maxPriority have the value null.

Proof: Assume toward a contradiction that
Announcement[j] is not null, where j > i. Then
there must exist a task B with priority j that announced its
enqueue object in Announcement array and the announce-
ment by task B hasn’t been “cleaned”. Announcement[j]
is cleaned as the last step of the enqueue operation. The
task A must preempt task B to announce its enqueue object
in Announcement, in order to preempt task B, i > j must
hold. This is a contradiction,

As the contents of the Announcement array from index
i+1 to index maxPriority are null when task A announce
its operation, there is no need to help them. It is sufficient to
help tasks with priority up to i. As task A can preempt any

lower priority task after it has announced, it is necessary to
help them.

The access of the queue is modeled by a history h. A his-
tory h is a finite (or not) sequence of operation invocation
and response events. Any response event is preceded by the
corresponding invocation event. For our case there are two
different operations that can be invoked, a write opera-
tion or a read operation. An operation is called complete
if there is a response event in the same history h; otherwise,
it is said to be pending. A history is called complete if all
its operations are complete. In a global time model each op-
eration q “occupies” a time interval [sq, fq] on a linear time
axis (sq < fq); we can think of sq and fq as the starting and
finishing time instants of q. During this time interval the
operation is said to be pending. There exists a precedence
relation on operations in a history denoted by <h, which is
a strict partial order: q1 <h q2 means that q1 ends before q2

starts; Operations incomparable under <h are called over-
lapping. A complete history h is linearizable if the partial
order <h on its operations can be extended to a total order
→h that respects the specification of the object [7].

In the remains of this section, we prove that our imple-
mentation is a concurrent linearizable queue implementa-
tion. In order to do so, we will show that any possible
history (<h), produced by our implementation, can be ex-
tended to a total order (→h) by using a “linearization point”
for each operation. The “linearization point” of an opera-
tion is an atomic point on its execution, during which the
operation takes effect.

Lemma 6 The write to the announcement array is the “lin-
earization point” for the write operations.

Proof: By Lemma 5, when a task A with priority i ex-
ecutes statement 15, all items of the announcement array
from i+1 to maxPriority have the value null. Task A will
help all operations announced in Announcement from the
lowest to its own priority. Enqueue operations with lower
priority than i that have been announced by executing state-
ment 15, will be enqueued before A’s announcement on the
anouncement array. If the current task A is preempted
by a higher priority task after executing statement 15, the
announcement will be enqueued before the announcement
of the task with higher priority. So, the execution order of
statement 15 in the write operation extends the prece-
dence partial order to a total order that respects the FIFO
specifications of the WaitFreeWriteQueue class.

Lemma 7 The read of the next field of the head of the
queue is the “linearization point” for the reads of the
queue.

Proof: Since, mutual exclusion is used between read op-
erations on the queue, the order in which they get access to

8



the critical section totally orders them. But as the read op-
erations of the queue have lower priority than all the write
operations of the queue, they can be preempted and run con-
currently with write operations. As all high priority tasks
will appear atomic to a low priority task, a write operation
will only be observed if it starts executing before statement
3 of the read operation. By selecting then the execution of
the statement 3 of a read operation as its “linearizability
point”, all operations are totally ordered with a relation that
extends the precedence relation and respects the specifica-
tion of the WaitFreeWriteQueue class.

The lemma below proves that our queue implementation
is a FIFO one and that no enqueued element gets lost. For
simplicity we introduce write(empty) operations in the
history when the queue is empty.

Lemma 8 In a complete history such that write(x) →h
write(y), then read(x) →h read(y).

Proof: ¿From the assumption, we have that write(x) →h
write(y) which means x is announced before y. If there is
no overlapping, x will be put in the list before y as in the se-
quential version. If overlapping exists, by lemma 5, the task
A who announces y has higher priority than the task who
announces x. As task A will help from the task with lowest
priority to itself, it will put x in the list before y. As read
uses mutual exclusion, only one read operation processes
the list from the head to the tail. So read operations will
find x first.

The lemma below proves that dequeue operations de-
queue items that have really been enqueued.

Lemma 9 In a complete history, if x is read, then it has
been writed, and write(x) →h read(x)

Proof: The linearizability point of the read(x) is the point
where the read operation reads the next field of the head.
Because a write operation announces its operation and the
announcement takes place before the helping phase, and in
the helping phase the announcement will be put in the next
field of a tail[i]. If x is read, then some task must write in
the field during its helping phase. Helping an announcement
can only happen after it has been announced by some task
in the announcement array. So, the x read by a task must
have been written before the read operation.

The above lemmas give us the following theorem.

Theorem 1 Our algorithm for the
WaitFreeWriteQueue is a linearizable FIFO concur-
rent queue without the “enabled late-write” problem.

5 Experimental Evaluation

In this section, we present the experimental results
of evaluating our implementations. We implemented

WaitFreeWriteQueue and test it under the RTSJ ref-
erence implementation from Timesys. We compare the pro-
posed implementation with the one in the reference imple-
mentation from TimeSys and the one from [2].

For the TimeSys implementation, we don’t have the
source code. To our knowledge, their implementation only
has support for wait-free access from one thread at a time.
For example, if two real-time threads would like to do wait-
free writes to a queue at the same time, lock-based syn-
chronization needs to be applied between the two threads.
Therefore, when several real-time threads want to access the
wait-free implementation from TimeSys, we have to choose
some kinds of protocol to avoid the priority inversion prob-
lem. In our experiments, we choose the priority ceiling em-
ulation protocol: whenever a real-time thread want to ac-
cess the queue, we will raise the priority of the thread to the
highest priority and restore the priority afterward.

All experiments were run in the following environ-
ment. We used the reference implementation for RTSJ from
TimeSys. The version of the JVM from TimeSys used was
1.0.0 build 547. Since the reference implementation was
based on Linux, we installed it on a Linux distribution from
TimeSys. The distribution we used is version 4.1 build
155 which is optimized for standard Pentiums with kernel
2.4.7. The computer used for the experiments is a dedi-
cated workstation with a 1100 MHz Intel Celeron proces-
sor with 128kb L2 cache and 512MB memory (with 100
MHz clock frequency). To get good timing information,
we used the Pentium specific instruction rdtsc (read time
stamp counter) to get runtime cycle information from hard-
ware performance counters built into Pentium processors.

Due to the space limitation, we only report the results
about the memory requirements of the three implementa-
tions and worst-case response times of the proposed algo-
rithm and the reference implementation from Timesys. Ex-
tensive experiments have been carried out. Readers who are
interested in the results are referred to [5].

Figure 10 shows the results of memory consumption of
the three implementations with different queue sizes. In the
experiments, we created a queue in immortal memory and
measured the amount of free space before and after. From
the figure, we can see the reference implementation from
Timesys has the smallest memory consumption. However,
this implementation only support a single real-time thread
to do wait-free operation on the queue. If several real-time
threads want to access the queue, lock-based synchroniza-
tion and protocols to prevent priority inversions must be in
place. The memory consumption of the lock-based syn-
chronization and related protocols is in the JVM and Linux
kernel. Measuring such memory consumption is complex
and beyond the scope of this paper. The implementation
of the proposed algorithms requires about 20 times more
memory than the reference implementation at application

9



1 11 21 31 41 51 61 71 81 91 101
100B

1kB

10kB

100kB

1MB

10MB

Queue Size

M
em

or
y 

U
sa

ge

timesys
new
anderson

Figure 10. Memory Consumption of Different
Implementations

level. The implementation from [2] uses more memory than
the others, because their implementation of Compare-and-
Swap requires a lot of memory.

The experiments to measure the response time overhead
were carried out with 2 to 16 real-time threads. In the exper-
iments, the lowest priority thread only performs read opera-
tions on the queue and all other threads only perform write
operations. To simulate a real-time execution environment,
we use the following parameters to keep the processor uti-
lization to 90% for all experiments. In the experiment with
n threads, we name the threads from 0 to n−1. Each thread
runs a periodic task. Thread 0 is the lowest priority thread
and thread n− 1 is the highest priority thread. Let the com-
putation time of the highest priority task be c. The compu-
tation times and periods of all threads can be determined as
following to keep the processor utilization to 90%.

Ti = (n− i) ∗ 20 ∗ C, i = 0, ..., (n− 1)

Ci =
{

(n− i) ∗ C, i = 1, ..., (n− 1)
(19− n) ∗ n ∗ C, i = 0

In the above formulas, 2 ≤ n ≤ 16; Ti is the period of
task i; Ci is the computation time of task i.

We use the three WaitFreeWriteQueue implemen-
tations in the above task sets. We measure the response
time overheads of tasks for different implementations. The
response time overhead for task i is defined as Tro =
tf − ts − Ci where ts is the time impact of release jitter
will be the same for that the system starts to run the job and
tf is the time that the job is finished. We choose to measure
the times at the application level. We assume the overhead
introduce by JVM will be the same for experiments with
the same number of threads. The response time overheads
of write tasks with the lowest and middle and highest pri-
orities are presented in figure 11 for the implementation of

the proposed algorithm and the reference implementation.
The response times reported are the worst response times in
50 periods for each cases. As one can see from the figure,
the difference between the two implementations is small for
the lowest priority write task. For the lowest priority task,
the computation time of the task is much larger than the
time spend on operations on the queue. Therefore, the per-
formance different between the two implementation has a
small impact on the overhead response time. When we look
at the experiments with middle and the highest priorities,
the difference between the response times of the two im-
plementation is noticeable. The proposed implementation
outperforms the reference implementation.

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

50

100

150
Write Thread with the Lowest Priority

timesys
new

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

10

20

30

R
es

po
ns

e 
Ti

m
e 

O
ve

rh
ea

d 
(m

s)

Write Thread with Middle Priority

timesys
new

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

0.5

1

Number of Threads

Write Thread with the Highest Priority

timesys
new

Figure 11. Response Time Overheads of
Write Tasks with Different priorities

There are more experimental results with a similar trend
in [5]. We also implemented the WaitFreeReadQueue
class for RTSJ and performed extensive experiments to
compare with the reference implementation. We obtained
similar results. The results can also be found at [5].

6 Conclusion

Efficient implementations of the RTSJ queue classes are
presented in this paper. The wait-free queue classes pro-
posed in the Real-time Specification for Java are of general
interest to any real-time synchronization system where hard
real-time tasks have to synchronize with soft or even non
real-time tasks. The implementations presented here are
designed with the unidirectional nature of these queues in
mind. In the implementation, we introduce a new solution
to the “enabled late-write” problem. The new solution is

10



more efficient, with respect to space, compared to previous
solutions without losing in time complexity.

The proposed implementation have several advan-
tages. First, the implementation supports multiple real-time
threads to access the queue in a wait-free manner at the
same time. The reference implementation from Timesys
only support one real-time threads to access the queue in
a wait-free manner at the same time. Second, only read
and write memory operations are used in our implementa-
tion. Our implementation keeps the ”Write Once, Run Any-
where” principle and can be run in all environments which
support RTSJ. Third, our implementation is efficient. Ex-
periments shows that our implementation outperforms the
reference implementation, especially when it comes to high
priority tasks.

There are several ways that future research in wait-
free synchronization can contribute to real-time Java. Very
promising, we believe, is the investigation of practical wait-
free implementations of garbage collection in the RTSJ
model. The garbage collector is a central component of the
Java environment. A wait-free implementation will improve
the programmers ability to correctly reason about the tem-
poral behavior of their Java programs.

References

[1] J. Anderson, R. Jain, and S. Ramamurthy. Wait-free object-
sharing schemes for real-time uniprocessors and multipro-
cessors. In Proceedings of the 18th IEEE Real-Time Systems
Symposium (RTSS ’97), pages 111–122. IEEE, Dec. 1997.

[2] J. Anderson, S. Ramamurthy, and R. Jain. Implementing
wait-free objects on priority-based systems. In Proceed-
ings of the 16th Annual ACM Symposium on Principles of
Distributed Computing (PODC ’97), pages 229–238. ACM,
Aug. 1997.

[3] G. Bollella and J. Gosling. The real-time specification for
java. IEEE Computer, 33(6):47–54, June 2000.

[4] G. Bollella, J. Gosling, B. Brosgol, P. Dibble, S. Furr,
and M. Turnbull. The Real-Time Specification for
Java. Java Series. Addison-Wesley, June 2000. URL:
www.javaseries.com/rtj.pdf.

[5] D. Cederman and T. Dellsén. A study of queue algo-
rithms for wait-free inter-thread communication in real-time
java. Master’s thesis, Department of Computer Science,
CHALMERS UNIVERSITY OF TECHNOLOGY, 2005.
http://www.dtek.chalmers.se/˜d00ceder/thesis/index.html.

[6] P. Dibble and A. Wellings. The real-time specification
for java: current status and future work. In Proceedings
of the Seventh IEEE International Symposium on Object-
Oriented Real-Time Distributed Computing, pages 71–77.
IEEE Computer Society Press, 2004.

[7] M. P. Herlihy and J. M. Wing. Linearizability: A correct-
ness condition for concurrent objects. ACM Transactions on
Programming Languages and Systems, 12(3):463–492, July
1990.

[8] M. Higuera-Toledano. Illegal references in a real-time java
concurrent environment. In Proceedings of the Seventh
IEEE International Symposium on Object-Oriented Real-
Time Distributed Computing, pages 321–324. IEEE Com-
puter Society Press, 2004.

[9] S. Ramamurthy, M. Moir, and J. Anderson. Real-time object
sharing with minimal system support. In Proceedings of the
15th Annual ACM Symposium on Principles of Distributed
Computing (PODC ’96), pages 233–242. ACM, May 1996.

[10] TimeSys. The java reference implementa-
tion (RI) for real-time specification for java.
http://www.timesys.com/products/java/, 2005.

[11] P. Tsigas and Y. Zhang. A simple, fast and scalable non-
blocking concurrent fifo queue for shared memory multi-
processor systems. In Proceedings of the 13th Annual ACM
Symposium on Parallel Algorithms and Architectures (SPAA
’01), pages 134–143. ACM, July 2001.

[12] A. Wellings and A. Burns. Asynchronous event han-
dling and real-time threads in the real-time specification for
Java. In Proceedings of the Eighth Real-Time and Embed-
ded Technology and Applications Symposium, pages 81–89.
IEEE Computer Society Press, 2002.

[13] T. Zhao, J. Noble, and J. Vitek. Scoped types for real-time
java. In Proceedings of the 25th IEEE International Real-
Time Systems Symposium, pages 241–251. IEEE Computer
Society Press, 2004.

11


