
Self-tuning Reactive Distributed Trees for

Counting and Balancing

Phuong Hoai Ha, Marina Papatriantafilou, and Philippas Tsigas

Department of Comp. Science, Chalmers University of Technology, SE-412 96
Göteborg, Sweden. [phuong|ptrianta|tsigas]@cs.chalmers.se

Abstract. The main contribution of this paper is that it shows that it
is possible to have reactive distributed trees for counting and balancing
with no need for the user to fix manually any parameters. We present
a data structure that in an on-line manner balances the trade-off be-
tween the tree traversal latency and the latency due to contention at the
tree nodes. Moreover, the fact that our method can expand or shrink
a subtree several levels in any adjustment step, has a positive effect in
the efficiency: this feature helps the self-tuning reactive tree minimize
the adjustment time, which affects not only the execution time of the
process adjusting the size of the tree but also the latency of all other
processes traversing the tree at the same time with no extra memory
requirements. Our experimental study compared the new trees with the
reactive diffracting ones on the SGI Origin2000, a well-known commercial
ccNUMA multiprocessor. This study showed that the self-tuning reactive
trees i) select the same tree depth as the reactive diffracting trees do; ii)
perform better and iii) react faster.

1 Introduction

Distributed data structures suitable for synchronization that perform efficiently
across a wide range of contention conditions are hard to design. Typically,
“small”, “centralized” such data structures fit better low contention levels, while
“bigger”, “distributed” such data structures can help in distributing concurrent
processor accesses to memory banks and in alleviating memory contention.

Diffracting trees [1] are distributed data structures. Their most significant
advantage is the ability to distribute a set of concurrent process accesses to
many small groups locally accessing shared data, in a coordinated manner. Each
process(or) accessing the tree can be considered as leading a token that follows
a path from the root to the leaves. Each node is a computing element receiving
tokens from its single input (coming from its parent node) and sending out
tokens to its outputs; it is called balancer and acts as a toggle mechanism which,
given a stream of input tokens, alternately forwards them to its outputs, from
left to right (sending them to the left and right child nodes, respectively). The
result is an even distribution of tokens at the leaf nodes. Diffracting trees have
been introduced for counting-problems, and hence the leaf nodes are counters,
assigning numbers to each token that exits from them. Moreover, the number of
tokens that are output at the leaves, satisfy the step property, which states that:
when there are no tokens present inside the tree and if outi denotes the number

of tokens that have been output at leaf i, 0 ≤ outi − outj ≤ 1 for any pair i and
j of leaf-nodes such that i < j (i.e. if one makes a drawing of the tokens that
have exited from each counter as a stack of boxes, the combined outcome will
have the shape of a single step).

The fixed-size diffracting tree is optimal only for a small range of contention
levels. To solve this problem, Della-Libera and Shavit proposed the reactive
diffracting trees, where each node can shrink (to a counter) or grow (to a subtree
with counters as leaves) according to the current load, in order to attain optimal
performance [2]. The algorithm in [2] uses a set of parameters to make its deci-
sions, namely folding/unfolding thresholds and the time-intervals for consecutive
reaction checks. The parameter values depend on the multiprocessor system in
use, the applications using the data structure and, in a multiprogramming envi-
ronment, on the system utilization by the other programs that run concurrently.
The programmer has to fix these parameters manually, using experimentation
and information that is commonly not easily available (future load characteris-
tics). A second characteristic of this scheme is that the reactive part is allowed
to shrink or expand the tree only one level at a time, making the cost of a
multi-adjustment phase on a reactive tree become high.

In this work we show that reactiveness and these two characteristics are not
tied together: in particular, we present a tree-type distributed data structure
that has the same semantics as the reactive trees that can expand or shrink
many levels at a time, without need for manual tuning. To circumvent the need
for manually setting parameters, we have analyzed the problem of balancing the
trade-off between the two key measures, namely the contention level and the
depth of the tree, in a way that enabled the use of efficient on-line methods for
its solution. The new data structure is also considerably faster than the reactive
diffracting trees, because of the low-overhead, multilevel reaction part: the new
reactive trees can shrink and expand many levels at a time without using clock
readings. The self-tuning reactive trees1, like the reactive diffracting trees, are
aimed in general for applications where such distributed data structures are
needed. Since the latter were introduced in the context of counting problems,
we use similar terms in our description, for reasons of consistency.

The rest of this paper is organized as follows. Section 2 presents the key
idea and the algorithm of the self-tuning reactive tree. Section 3 describes the
implementation of the tree. Section 4 presents an experimental evaluation of the
self-tuning reactive trees, compared with the reactive diffracting trees, on the
Origin2000 platform, and elaborate on a number of properties of our algorithm.
Section 5 concludes this paper. Due to the space constraint, the correctness proof
of our algorithm is presented in [3].

2 Self-tuning reactive trees

2.1 Problem description

The problem we are interested in is to construct a tree that satisfies the following
requirements:

1 We do not use term diffracting in the title of this paper since our algorithmic imple-
mentation does not use the prism construct, which is in the core of the algorithmic
design of the (reactive) diffracting trees.

1. It must evenly distribute a set of concurrent process accesses to many small
groups locally accessing shared data (counters at leaves), in a coordinated
manner like the (reactive) diffracting trees. The step-property must be guar-
anteed.

2. Moreover, it must automatically and efficiently adjust its size according to its
load in order to gain performance. It must not require any manually tuning
parameters.

In order to satisfy these requirements, we have to tackle the following algo-
rithmic problems:

1. Design a dynamic mechanism that would allow the tree to predict when and
how much it should resize in order to obtain good performance whereas the
load on it changes unpredictably. Moreover, the overhead that this mech-
anism will introduce should not exceed the performance benefits that the
dynamic behavior itself will bring.

2. This dynamic mechanism should not only adjust the size of the tree in order
to improve performance, but, more significantly, adjust it in a way that the
tree still guarantees the fundamental properties of the structure, such as the
step property.

2.2 Key idea

The ideal reactive tree is the one in which each leaf is accessed by only one
process(or) –holding a token 2 – at a time and the cost to traverse it from the
root to the leaves is kept minimal. However, these two latency-related factors are
opposite to each other, i.e. if we want to decrease the contention at the leaves,
we need to expand the tree and so the cost to traverse from the root to the leaves
increases.

What we are looking for is a tree where the overall overhead, including the
latency due to contention at the leaves and the latency due to traversal from
the root to the leaves, is minimal and with no manual tuning. In addition to
this, an algorithm that can achieve the above, must also be able to cope with
the following difficulties: If the tree expands immediately when the contention
level increases, then it will pay the expensive cost for travel and this cost is
going to be unnecessary if after that the contention level suddenly decreases. On
the other hand, if the tree does not expand in time when the contention-level
increases, it has to pay the large cost of contention. If the algorithm knew in
advance about the changes of contention-levels at the leaves in the whole time-
period that the tree operates, it could adjust the tree-size at each time-point
in a way such that the overall overhead is minimized. As the contention-levels
change unpredictably, there is no way for the algorithm to know this kind of
information, i.e. the information about the future.

To overcome this problem, we have designed a reactive algorithm based on the
online techniques that are used to solve the online currency trading problem [4].

Definition 1. Let surplus denote the number of processors that exceeds the num-
ber of leaves of the self-tuning reactive tree, i.e. the subtraction of the number of

2 For reasons of brevity, throughout the paper, instead of using the phrase “process(or)
holding a token” we use simply the term process or processor

the leaves from the maximal number of processors in the system that potentially
want to access the tree. The surplus represents the contention level on the tree
because the surplus processors cause contention on the leaves.

Definition 2. Let latency denote the latency due to traversal from the root to
the leaves.

Our challenge is to balance the trade-off between surplus and latency. Our
solution for the problem is based on an optimal competitive algorithm called
threat-based algorithm [4]. The algorithm is an optimal solution for the one-way
trading problem, where the player has to decide whether to accept the current
exchange rate as well as how many of his/her dollars should be exchanged to
yens at the current exchange rate without knowledge on how the exchange rate
will vary in the future.

2.3 The new algorithm

level

0

1

2

3

right left

1 1

2 2 3

4 4 5 5 6 6 7 7

8 9 10 11 12 13 14 15

3

leaf

balancer IN

A

Fig. 1. A self-tuning reactive tree

In the self-tuning reactive trees, to adapt to the changes of the contention
efficiently, a leaf should be free to shrink or grow to any level suggested by
the reactive scheme in one adjustment step. With this in mind, we designed a
data structure for the trees such that the time used for the adjustment and the
time in which other processors are blocked by the adjustment are kept minimal.
Figure 1 illustrates the self-tuning reactive tree data structure. Each balancer
has a matching leaf with corresponding identity. Symmetrically, each leaf that is
not at the lowest level of the tree has a matching balancer with corresponding
identity. The squares in the figure are balancers and the circles are leaves. The
numbers in the squares and circles are their identities. Each balancer has two
outputs, left and right, each of them being a pointer that can point to either
a leaf or a balancer. A shrink or expand operation is essentially a switch of
such a pointer (from the balancer to the matching leaf or from the leaf to the

matching balancer, respectively). The solid arrows in the figure represent the
present pointer contents.

Assume the tree has the shape as in Figure 1, where the solid arrows are
the pointers’ current contents. A processor pi first visits the tree at its root IN ,
then following the root pointer visits balancer 1. When visiting a balancer, pi

switches the balancer’s toggle-bit to the other position (i.e. from left to right and
vise-versa) and then continues visiting the next node according to the toggle-
bit. When visiting a leaf L, pi before taking an appropriate counter value and
exiting, checks the reaction condition according to the current load at L. The
reaction condition estimates which tree level is the best for the current load.

The reaction procedure In order to balance the trade-off between surplus and
latency, the procedure can be described as a game, which evolves in load-rising
and load-dropping transaction phases.

Definition 3. A load-rising (resp. load-dropping) transaction phase is a maxi-
mal sequence of subsequent visits at a leaf-node with monotonic non-decreasing
(resp. non-increasing) estimated contention-level over the entire tree. A load-
rising phase ends when a decrease in contention is observed; at that point a
load-dropping phase begins.

During a load-rising phase, a processor traversing that leaf may decide to
expand the leaf to a subtree of depth that depends on the amount of the rising
contention-level. That value is computed using the threat-based on-line method
of [4], following the principle: “expand just enough to guarantee a bounded com-
petitive ratio, even in the case that contention may drop to minimum at the
next measurement”. Symmetric is the case during a load-dropping phase, where
the reaction is to shrink a subtree to the appropriate level, depending on the
measurement. The computation of the level to shrink to or to expand to uses
the number of processors in the system as an upper bound of contention. The
reaction procedure is described in detail in Section 3.2.

Depending on the result of checking the reaction condition, the processor
acts as follows:

Recommended reaction: Grow to level llower, i.e. the current load is too high
for the leaf L and L should expand to level llower. The processor, before exiting
the tree through L, must help in carrying out the expansion task. To do so,
the corresponding subtree must be constructed (if it was not already existent),
the subtree’s counters’ (leaves’) values must be set, and the pointer pointing to
L must switch to point to its corresponding balancer, which is the root of the
subtree resulting from the expansion.

Recommended reaction: Shrink to level lhigher, the current load at the leaf L
is too low and thus L would like to cause a shrink operation to a higher level
lhigher, in order to reduce the latency of traversing from the root to the present
level. This means that the pointer to the corresponding balancer (i.e. ancestor
of L) at level lhigher must switch to point to the matching counter (leaf) and
the value of that counter must be set appropriately. Let B denote that balancer.
The sub-tree with B as a root contains more leaves than just L, which might

not have decided to shrink to lhigher, and thus the processor must take this into
account. To enable processors do this check, the algorithm uses an asynchronous
vote-collecting scheme: when a leaf L decides to shrink to level lhigher, it adds
its weighted vote for that shrinkage to a corresponding vote-array at balancer B.

Definition 4. The weight of the vote of leaf L is the number of lowest-level
leaves in the subtree rooted at the balancer matching L.

As an example in Figure 1 the weight of the vote of leaf 4 is 2. Note that
when voting for balancer B, the leaf L is not concerned about whether B has
shrunk into its matching leaf or not. The processor that helps L write its vote to
B’s vote-array, will then check whether there are enough votes collected at B’s
vote-array. If there are enough votes collected at B’ vote-array, i.e. if the sum
of their weights is more than half of the total possible weight of the sub-tree
rooted at B (i.e. if more than half of that subtree wants to shrink to the leaf
matching B), the shrinkage will happen. After completing the shrinkage task,
the processor increases and returns the counter value of L, thus exiting the tree.
In the checking process, the processor will abort if the balancer B has shrunk
already by a concurrent operation.

In the shrinkage procedure, the leaf matching B and the leaves of the sub-
tree rooted at B must be locked in order to (i) collect their counters’ values,
(ii) compute the next counter value for the leaf matching B and (iii) switch
the pointer from B to its matching leaf. Note that all the leaves of subtree B
need to be locked only if the load on the subtree is so small that it should be
shrunk to a leaf. Therefore, locking the subtree in this case effectively behaves
as if locking a leaf (i.e. as it is done in the classical reactive diffracting trees)
from the performance point of view.

Example of executing grow: Consider a processor pi visiting leaf 3 in Figure 1,
and let the result of the check be that the leaf should grow to sub-tree A with
leaves 12, 13, 14 and 15: The processor first constructs the sub-tree, whereas at
the same time other processors may continue to access leaf 3 to get the counter
values and then exit the tree without any disturbance. After that, it locks leaf
3 in order to (i) switch the pointer to balancer 3 and (ii) assign the proper
values to counters 12, 13, 14 and 15, then it releases leaf 3. At this point, the
new processors following the left pointer of balancer 1 will traverse through the
new sub-tree, whereas the old processors that were directed to leaf 3 before,
will continue to access leaf 3’s counter and exit the tree. After completing the
expansion task, pi continues its normal task to access leaf 3’s counter and exits
the tree.

Example of executing shrink: Consider a processor pi visiting leaf 10 in Figure 1
and let the result of the reaction condition be that the subtree should shrink to
leaf 2. Because the sub-tree rooted at balancer 2 contains more leaves besides
10, which might not have decided to shrink to 2, processor pi will check the
votes collected at 2 for shrinking to that level. Assume that leaf 4 has voted for
balancer 2, too. The weight of leaf 4’s vote is two because the vote represents
leaves 8 and 9 at the lowest level. Leaf 10’s vote has weight 1. Therefore, the sum
of the weights of the votes collected at balancer 2 is 3. In this case, processor pi

will help balancer 2 to perform the shrinkage task because the weight of votes,

3, is more than half of the total possible weight of the sub-tree (i.e. more than
half of 4, which is the number of the leaves at the lowest level of the subtree
–8, 9, 10 and 11). Then pi locks leaf 2 and all the leaves of the sub-tree rooted
at balancer 2, collects the counter values at them, computes the next counter
value for leaf 2 and switches the pointer from balancer 2 to leaf 2. After that, all
the leaves of the sub-tree are released immediately so that other processors can
continue to access their counters. As soon as the counter at leaf 2 is assigned the
new value, the new processors going along the right pointer of balancer 1 can
access the counter and exit the tree whereas the old processors are traversing
in the old sub-tree. After completing the shrinkage task, the processor exits the
tree, returning the value from counter 10.

Space needs of the algorithm In a system with n processors, the algorithm
needs n − 1 balancer nodes and 2n − 1 leaf nodes. Note that it may seem that
the data structure for the self-tuning reactive trees uses more memory space
than the data structure for the reactive diffracting trees, since it introduces an
auxiliary node (matching leaf) for each balancer of the tree. However, this is
actually splitting the functionality of a node in the reactive diffracting trees
into two components, one that is enabled when the node plays the role of a
balancer and another that is enabled when the node plays the role of a leaf (cf.
also Section 3.3 and Section 3.4). In other words, the corresponding memory
requirements are similar. From the structure point of view, splitting the node
functionality is a fundamental difference between the self-tuning trees and the
reactive diffracting trees. The voting arrays’ space needs at each balancer are
O(k), which are similar to the space needs for the prism at each balancer of the
reactive diffracting trees, where k is the number of leaves of the subtree rooted
at the balancer.

3 Implementation

3.1 Preliminaries

Data structure and shared variables: Figure 3 describes the tree data structure
and the shared variables used in the implementation.

The synchronization primitives used for the implementation are test-and-
set (TAS), fetch-and-xor (FAX) and compare-and-swap (CAS). Their seman-
tics are described in [3]. Moreover, in order to simplify the presentation and
implementation of our algorithm, we define, implement and use advanced syn-
chronization operations: read-and-follow-link and conditionally-acquire-lock. The
read-and-follow-link operations and the conditionally-acquire-lock operation are
outlined in pseudo-code in Fig. 2. The way these locking mechanisms interact
and ensure safety and liveness in our data structure accesses is explained in the
descriptions of the implementations of the Grow and Shrink procedures and is
proven in [3].

3.2 Reaction conditions

As mentioned in section 2.3, each leaf L of the self-tuning reactive tree estimates
which level is the best for the current load. The leaf estimates the total load of
tree by using the following formula:

NodeType Assign(NodeType ∗ tracei, NodeType ∗ child)
A0 ∗tracei := child;/*mark tracei under update,clearing mask-bit*/
A1 temp := ∗child; /*get the expected value*/
A2 temp.mask := 1; /*set the mask-bit*/
A3 if (local := CAS(tracei, child, temp)) = child then return temp;
A4 else return local;

NodeType Read(NodeType ∗ tracei)
R0 do

R1 local := ∗tracei;
R2 if local.mask = 0 then /*tracei is marked*/
R3 temp := ∗local; /*help corresponding Assign() ...*/
R4 temp.mask := 1;
R5 CAS(tracei, local, temp);
R6 while(local.mask = 0); /*... until the Assign() completes*/
R7 return local;

boolean AcquireLock cond(int lock, int Nid)
AL0 while ((CurOccId := CAS(lock, 0, Nid)) 6= 0) do

AL1 if IsParent(CurOccId, Nid) then return Fail;
AL2 Delay using exponential backoff;
AL3 return Success;

Fig. 2. The read-and-follow-link operations (Assign/Read) and conditionally-acquire-lock operation
(AcquireLock cond).

TotLoadEst = L.contention ∗ 2L.level

line C0 in CheckCondition() in Figure 3, where MaxProcs is the maximum
number of processors potentially wanting to access the tree and L.contention,
the contention of a leaf, is the number of processors that currently visit the
leaf. L.contention is increased by one every-time a processor visits the leaf L
and is decreased by one when a processor leaves the leaf. Because the number
of processors accessing the tree cannot be greater than MaxProcs we have an
upper bound for the load: TotLoadEst ≤ MaxProcs.

At the beginning, the initial tree is just a leaf, so the the initial surplus,
baseSurplus, is MaxProcs− 1 and the initial latency, baseLatency, is 0. Then,
based on the contention variation on each leaf, the values of surplus and latency
are updated according to the online trading algorithm. Procedure Surplus2Laten-
cy() (respectively Latency2Surplus()) is invoked (lines C4, C5) to adjust the
number of surplus processors that the tree should have at that time. The sur-
plus value will be used to compute the number of leaves the tree should have
and consequently the level the leaf L should shrink/grow to. .

Procedure Surplus2Latency(L, TotLoadEst, F irstInPhase) in Figure 3 ex-
changes L.surplus to L.latency according to the threat-based algorithm [4] using
TotLoadEst as exchange rate. For self-containment, the computation implied
by this algorithm is explained below. In a load-rising transaction phase, the
following rules must be followed:

1. The tree is expanded only when the estimated current total load is the
highest so far in the present transaction phase.

2. When expanding, expand just enough to keep the competitive ratio c = ϕ−
ϕ−1

ϕ1/(ϕ−1) , where ϕ = MaxProcs
2 , even if the total load drops to the minimum

possible in the next measurement.

Following these, the number of leaves the tree should have more is:

deltaSurplus = baseSurplus ∗
1

C
∗

TotLoadEst − TotLoadEst−

TotLoadEst − 2

where TotLoadEst− is the highest observed total load before the present mea-
surement and baseSurplus is the number of surplus processors at the beginning
of the present transaction phase (line SL3, where mXY is the lower bound of
the estimated total load). Everytime a new transaction phase starts, the value
baseSurplus is set to the last value of surplus in the previous transaction phase
(line C3). The parameter FirstInPhase is used to identify whether this is the
first exchange of the transaction phase. At the beginning,

surplus = baseSurplus = MaxProcs − 1

i.e. the tree degenerates to a node. Both variables TotLoadEst− and baseSurplus
are stored in fields TotLoadEst and baseSurplus of the leaf data structure, re-
spectively.

Symmetrically, when the tree should shrink to reduce the traversal latency,
the exchange rate is the inverse of the total load, rXY = 1

TotLoadEst
, which

is increasing. In this case, the value of surplus increases and that of latency
decreases.

3.3 Expanding a leaf to a sub-tree

A grow operation of a leaf L to a subtree T , whose root is L’s matching bal-
ancer B and whose depth is L.SugLevel − L.level, essentially needs to (i) set
the counters at the new leaves in T to proper values to ensure the step prop-
erty; (ii) switch the corresponding child pointer of L’s parent from L to B; and
(iii) activate the nodes in T . (Figure 5 illustrates the steps taken in procedure
grow, which is given in pseudocode in Figure 4.) Towards (i), it needs to:

• make sure there are no pending tokens in T . If there are any, Grow aborts
(step G1 in Grow), since it should not cause “old” tokens get “new” values
(that would cause “holes” in the sequence of numbers received by all tokens
in the end). A new grow operation will be activated anyway by subsequent
tokens visiting L, since L has high contention.

• acquire the locks for the new leaves, to be able to assign proper counter
values to them (step G3 in Grow) to ensure the step property.

• make a consistent measurement of the number of pending processors in L
and L.count to use in the computation of the aforementioned values for
the counters. Consistency is ensured by acquiring L’s lock (step G4) and
by switching L’s parent’s pointer from L to B (i.e. performing action (ii)
described above; step G5 in Grow), since the latter leaves a “non-interfered”
set of processors in L.
Each of these locks’ acquisition is conditional, i.e. if some ancestor of L holds

it, the attempt to lock will return fail. In such a case the grow procedure aborts,
since the failure to get the lock means that there is an overlapping shrink opera-
tion by an ancestor of L. (Note that overlapping grow operations by an ancestor
of L would have aborted, due to the existence of the token (processor) at L (step

type NodeType = record Nid : [1..MaxNodeId]; kind : {BALANCER, LEAF}; mask: bit; end;
BalancerType = record state : {ACTIV E, OLD}; level : int; toggleBit : boolean;

parent : [1..MaxNodeId]; leftChild, rightChild : NodeType;
votes : array[1..SizeOfMySubtree] of int; end;

LeafType = record state : {ACTIV E, OLD}; level, count, init : int;
parent : [1..MaxNodeId]; lock : {0..MaxNodeId}; contention,totLoadEst : int;
transPhase : {RISING, DROPPING};
latency, baseLatency, surplus, baseSurplus, oldSugLevel, sugLevel : int; end;

shared variables

Balancers : array[0..MaxNodeId] of BalancerType;
Leaves : array[1..MaxNodeId] of LeafType;
TokenToReact : array[1..MaxNodeId] of boolean;
Tracing : array[1..MaxProcs] of [1..MaxNodeId];

private variables

MyPath : array[1..MaxLevel] of NodeType; /*one for each processor*/

int CheckCondition(LeafType L)

C0 TotLoadEst := MIN(MaxProcs, L.contention ∗ 2L.level);
C1 FirstInPhase := False;
C2 if (L.transPhase = RISING) and (TotLoadEst < L.totLoadEst) then

L.transPhase := DROPPING; L.baseLatency := L.latency; FirstInPhase := True;
C3 else if (L.transPhase = DROPPING) and (TotLoadEst > L.totLoadEst) then

L.transPhase := RISING; L.baseSurplus := L.surplus; FirstInPhase := True;
C4 if L.transPhase = RISING then Surplus2Latency(L, TotLoadEst, F irstInPhase);
C5 else Latency2Surplus(L, 1

T otLoadEst , F irstInPhase);
L.totLoadEst := TotLoadEst; L.oldSugLevel := L.sugLevel;

C6 L.sugLevel := log2(MaxProcs − L.surplus);
if L.sugLevel < L.level then return SHRINK;
else if L.sugLevel > L.level then return GROW ;
else return NONE;

Surplus2Latency(L, TotLoadEst, F irstInPhase)
SL0 X := L.surplus; baseX := L.baseSurplus; Y := L.latency;
SL1 rXY := TotLoadEst; LrXY := L.totLoadEst;
SL2 if FirstInPhase then

if rXY > mXY ∗ C then deltaX := baseX ∗ 1
C ∗ rXY −mXY ∗C

rXY −mXY ; /*C: comp. ratio*/

SL3 else deltaX := baseX ∗ 1
C ∗ rXY −LrXY

rXY −mXY ;

SL4 L.surplus := L.surplus − deltaX; L.latency := L.latency + deltaX ∗ rXY ;

Latency2Surplus(L, 1
T otLoadEst , F irstInPhase)

/* symmetric to the above with: X := L.latency; baseX := L.baseLatency; Y := L.surplus;
rXY := 1

T otLoadEst ; LrXY := 1
L.totLoadEst ;*/

Fig. 3. The tree data structure and CheckCondition, Surplus2Latency and Latency2Surplus proce-
dures

G1 in Grow).) Furthermore, the new leaves’ locks are requested in decreasing
order of node-id, followed by the request of L.lock, to avoid deadlocks.

Towards action (iii) from above, the grow procedure needs to reset the tree’s
T balancers’ toggle bits and vote arrays (before switching L’s parent’s pointer
from L to B; step G2) and set the state values of all balancers and bottom-level
leaves in T to ACTIVE (after having made sure that the growing will not abort;
step G9-G10).

3.4 Shrinking a sub-tree to a leaf

Towards a decision of whether and where to shrink to, the token at a leaf L0

with recommended reaction to shrink to level L0.SugLevel must add L0’s vote
in the vote arrays of the balancers of its path from the root, starting from level

Grow(int Nid) /*Leaves[Nid] becomes OLD;Balancers[Nid] and its subtree become ACTIVE*/
G0 L := Leaves[Nid]; B := Balancers[Nid];
G1 forall i, Read(Tracing[i]) /* Can’t miss any processors sincethe current ones go to Leaves[Nid]*/

if ∃ pending processors in the subtree rooted at B then return; /*abort*/
G2 for each balancer B′ in the subtree rooted at B,up to level L.sugLevel − 1

forall entries i : B′.votes[i] := 0; B′.toggleBit = 0;
G3 for each leaf L′ at level L.sugLevel of the subtree rooted at B,in decreasing order of nodeId do

if not AcquireLock cond(L′.lock, Nid) then Release all acquired locks; return; /*abort*/
G4 if (not AcquireLock cond(L.lock, Nid)) or (L.state = OLD) then

/*1st: an ancestor activated an overlapping Shrink; 2nd:someone already made the expansion*/
Release all acquired locks; return; /*abort*/

G5 Switch parent’s pointer from L to B;
G6 forall i, Read(Tracing[i]) /*Can’t miss any since the new ones go to B*/

ppL := #(pending processors at L);
G7 CurCount := L.count; L.state := OLD;
G8 Release(L.lock);
G9 for each balancer B′ as described in step G2 do B′.state := ACTIV E;
G10 for each leaf L′ as described in step G3 do

update L′.count using ppL and CurCount; L′.state := ACTIV E; Release(L′.lock);
return;/*Success*/

Elect2Shrink(int Nid, NodeType MyPath[])
E0 L := Leaves[Nid];/*the leaf asks to shrink*/

if L.oldSugLevel < L.sugLevel then /*new suggested level islower than older suggestion*/
E1 for(i := L.oldSugLevel; i < L.sugLevel; i + +) do Balancers[MyPath[i].Nid].votes[Nid] := 0;

else for (i := L.sugLevel; i < L.oldSugLevel; i + +) do

E2 B := Balancers[MyPath[i].Nid];

E3 B.votes[Nid] := 2MaxLevel−L.level; bWeight := 2MaxLevel−B.level; /*weight of B’s subtree*/

E4 if
P

i B.votes[i]

bW eight > 0.5 then Shrink(i); break;

Shrink (int Nid)/*Leaves[Nid] becomes ACTIVE; Balancers[Nid] and its subtree become OLD*/
S0 B := Balancers[Nid]; L := Leaves[Nid];
S1 if (TAS(TokenToReact[Nid]) = 1) then return; /*abort, someone is doing the shrinkage*/
S2 forall i : Read(Tracing[i]) /*can’t miss any since the currentones go to B*/

if ∃ pending processor at L then return;/*abort*/
S3 if (not AcquiredLock cond(L.lock, Nid)) or (B.state = OLD) then

/*1st: some ancestor is performing Shrink; 2nd: someone already made the shrinkage*/
Release possibly acquired lock; return; /*abort*/

S4 L.state := OLD; /*avoid reactive adjustment at L*/
S5 forall leaf L′ in B’s subtree, in increasing order of nodeId do

AcquireLock cond(L′.lock, Nid); /*No fails expected since Grow operations by ancestors
will abort at G1*/

S6 Switch the parent’s pointer from B to L
S7 forall i : Read(Tracing[i]); eppB := #(effective pending processors in B’s subtree;

/*can’t miss any since the new ones go to L*/
S8 for each balancer B′ in the subtree rooted at B do B′.state := OLD;

SL := ∅; SLCount := ∅;
S9 for each leaf L′ in the subtree rooted at B do

if (L.state = ACTIV E) then SL := ∪L′; SLCount := ∪L′.count; L′.state := OLD;
Release(L′.lock);

S10 L.count := f(eppB, SL, SLCount);
S11 L.state := ACTIV E;
S12 Release(L.lock);
S13 Reset(TokenToReact[Nid]);

Fig. 4. The Grow, Elect2Shrink and Shrink procedures

L0.SugLevel, up to level L0.level−1 (it must also take care to remove potentially
existing older votes at layers above that; step E1 in Elect2Shrink in Figure 4).
When a balancer with enough votes is reached, the shrink operation will start

parent

after growbefore grow

Nid Nid

...

L B
G1: proceed only if no pending
processors in B’s subtree

L.sugLevel

L.level

G4−G8: lock L, switch parent ptr from L to B,
=> guarantee non−interfered set of proc’s at L

all balancers here
G2,G9: update & activate

G3,G10: lock, update
& activate leaves here

"not effective"
token here is

magnified view of (*)

=> get consistent leaf data at S9
NOTE: no performance bottleneck

S5: lock all leaves in B’s subtree
after shrink before shrink

BL

...

NidNid

parent

S8: all balancers here are old

include token T

T
in my counter

(*)

S10−13: update L’s data,
release L’s lock &
TokenToReact

S1: get TockenToReact
S2: proceed only if no pending proc’s at L

=> correctly count effective pending processors
S3,S6,S7: lock L, switch parent ptr from B to L,

leaves in B’s subtree
S9: collect data from

=> prevent unnecessary reactions

Fig. 5. Illustration for Grow and Shrink procedures

(steps E3-E4 in Elect2Shrink). Figure 5 and Figure 4 illustrate and give the
pseudocode of the steps taken towards shrinking.

Symmetrically to a grow operation, a shrink from a subtree T rooted at
balancer B (with enough votes) to B’s matching leaf L, essentially needs to (i) set
the counter at L to the proper value to ensure the step property; (ii) switch the
corresponding child pointer of B’s parent from B to L; and (iii) de-activate the
nodes in T . Towards (i), it needs to:

• make sure there are no pending tokens in L. If there are any, shrink aborts
(step S2 in Shrink), since it should not cause “old” tokens get “new” values.
Subsequent tokens’ checking of the reaction condition may reinitiate the
shrinking later on anyway.

• acquire L’s lock (step S3), to be able to assign an appropriate counter value
to it, to ensure the step property.

• make a consistent measurement of (1) the number of pending processors in
T and (2) the values of counters of each leaf L′ in T . Consistency is ensured
by acquiring L′.lock for all L′ in T (step S5) and by switching B’s parent’s
pointer from B to L (i.e. performing action (ii) described above; step S6 in
Shrink), since the latter leaves a “non-interfered” set of processors in T .

Similarly to procedure grow, these locks’ acquisition is conditional. Symmet-
rically with grow, the requests are made first to L.lock and then to the locks of
the leaves in T , in increasing order of node-id, to avoid deadlocks. Failure to get
L.lock implies an overlapping shrink operation by an ancestor of L. Note that
overlapping grow operations by an ancestor of L would have aborted, due to the
existence of the token at B (step G1 in Grow). Note also that an overlapping
shrink by some of L’s ancestors cannot cause any of the attempts to get some
L′.lock to fail, since that shrink operation would have to first acquire the lock

for L (and if it had succeeded in getting that, it would have caused the shrink
from B to L to abort earlier, at step S3 of Shrink()).

Towards action (iii) from above, the shrink procedure sets the balancers’ and
leaves’ states in T to OLD (steps S8-S9 in Shrink), after having made sure that
the shrink will not abort.

4 Evaluation

In this section, we evaluate the performance of the self-tuning reactive trees pro-
posed here. We used the reactive diffracting trees of [2] as a basis of comparison
since they are the most efficient reactive counting constructions in the literature.

The source code of [2] is not publicly available and we implemented it fol-
lowing exactly the algorithm as it is presented in the paper. We used the full-
contention benchmark, the index distribution benchmark [2] and the surge load
benchmark [2] on the SGI Origin2000, a popular commercial ccNUMA multi-
processor.

In [2], besides running the benchmarks on a non-commercially availiable ma-
chine with 32 processors (Alewife), the authors also ran them on the simulator
simulating a multiprocessor system similar to Alewife with up to 256 processors.

The most difficult issue in implementing the reactive diffracting tree is to find
the best folding and unfolding thresholds as well as the number of consecutive
timings called UNFOLDING LIMIT, FOLDING LIMIT and MINIMUM HITS
in [2]. However, subsection Load Surge Benchmark in [2] described that the
reactive diffracting tree sized to a depth 3 tree when they ran index-distribution
benchmark [1] with 32 processors in the highest possible load (work = 0) and the
number of consecutive timings was set at 10. According to the description, we run
our implementation of the reactive diffracting tree on the ccNUMA Origin 2000
with 32 MIPS R10000 processors and the result is that folding and unfolding
thresholds are 4 and 14 microseconds, respectively. This selection of parameters
did not only keep our experiments consistent with the ones presented in [1] but
also gave the best performance for the diffracting trees in our system. Regarding
the prism size (prism is an algorithmic construct used in diffracting process
in the reactive diffracting trees), each node has c2(d−l) prism locations, where
c = 0.5, d is the average value of the reactive diffracting tree depths estimated
by processors passing the tree and l is the level of the node [2, 5]. The upper
bound for adaptive spin MAXSPIN is 128 as mentioned in [1].

In order to make the properties and the performance of the self-tuning re-
active tree algorithm presented here accessible to other researchers and to help
reproducibility of our results, C code for the tested algorithms is available at
http://www.cs.chalmers.se/∼phuong/sat jul04.tar.gz.

4.1 Full-contention and index distribution benchmarks

The system used for our experiments was a ccNUMA SGI Origin2000 with sixty
four 195MHz MIPS R10000 CPUs with 4MB L2 cache each. The system ran IRIX
6.5. We ran the reactive diffracting tree RD-tree and the self-tuning reactive tree
ST-tree in the full-contention benchmark, in which each thread continuously
executed only the function to traverse the respective tree, and in the index

Throughput_SGI_fullcontention

0

2

4

6

8

10

12

14

16

4 8 12 16 20 24 28 32
#processors

Pr
op

or
tio

n
of

 S
T-

tre
e t

o
RD

-tr
ee RD-tree ST-tree

Average_depth_SGI_fullcontention

0

0.5

1

1.5

2

2.5

3

3.5

4 8 12 16 20 24 28 32
#processors

Av
er

ag
e d

ep
th

RD-tree ST-tree

Fig. 6. Throughput and average depth of trees in the full-contention benchmark
on SGI Origin2000.

Throughput_SGI_indexbenchmark_work=500

0

5

10

15

20

25

30

35

40

45

4 8 12 16 20 24 28 32
#processors

Pr
op

or
tio

n
of

 S
T-

tre
e t

o
RD

-tr
ee RD-tree ST-tree

Average_depth_SGI_indexbenchmark_work=500

0

0.5

1

1.5

2

2.5

3

3.5

4 8 12 16 20 24 28 32
#processors

Av
er

ag
e d

ep
th

RD-tree ST-tree

Fig. 7. Throughput and average depth of trees in the index distribution bench-
mark with work = 500µs on SGI Origin2000.

distribution benchmark with work = 500µs [2][1]. Each experiment ran for one
minute and we counted the average number of operations per second.

Results: The results are shown in Figure 6 and Figure 7. The right charts in both
the figures show the average depth of the ST-tree compared to the RD-tree. The
left charts show the proportion of the ST-tree throughput to that of the RD-tree.

The most interesting result is that when the contention on the leaves in-
creases, the ST-tree automatically adjusts its size close to that of the RD-tree
that requires three experimental parameters for each specific system.

Regarding throughput and scalability, we observed that the ST-tree performs
better than the RD-tree. This is because the ST-tree has a faster and more
efficient reactive scheme. The surge load benchmark in the next subsection shows
that the reactive trees continuously adjust their current size slightly around the
average size corresponding to a certain load (cf. Figure 8). Therefore, an efficient
adjustment procedure will significantly improve the performance of the trees.

Studing the figures closer, in the full-contention benchmark (Figure 6), we can
observe the scalability properties of the ST-tree, which shows increased through-
put with increasing number of processors (as expected using the aforementioned
arguments) in the left chart. The right chart shows that the average depth of
the ST-trees is nearly the same as that of the RD-tree, i.e. the reaction decisions
are pretty close.

In the index distribution benchmark with work = 500µs, which provides
a lower-load environment, the ST-tree can be observed to show very desirable
scalability behavior as well, as shown in Figure 7. The charts of the average
depths of both trees have approximately the same shapes again, but the ST-tree

Average_depth_SGI_surgeload_The_Best

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

40
00

46
27

52
54

58
81

65
08

71
35

77
62

83
89

90
16

96
43

10
27

0

10
89

7

11
52

4

12
15

1

12
77

8

13
40

5

14
03

2

14
65

9

#intervals

Av
er

ag
e d

ep
th

ST-tree RD-tree

Average_depth_SGI_surgeload_The_Worst

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

40
00

46
23

52
46

58
69

64
92

71
15

77
38

83
61

89
84

96
07

10
23

0

10
85

3

11
47

6

12
09

9

12
72

2

13
34

5

13
96

8

14
59

1

#intervals

Av
er

ag
e d

ep
th

ST-tree RD-tree

Fig. 8. Average depths of trees in the surge benchmark on SGI Origin2000, best
and worst measurements. In a black-and-white printout, the darker line is the
ST-tree.

expands from half to one depth unit more than RD-tree. This is because the
throughput of the former was larger, hence the contention on the ST-tree leaves
was higher than that on RD-tree leaves, and this made the ST-tree expand more.

4.2 Surge load benchmark

The benchmark shows how fast the trees react to contention variations. The
benchmark is run on a smaller but faster machine3, ccNUMA SGI2000 with
thirty 250MHz MIPS R10000 CPUs with 4MB L2 cache each. On the machine
the optimal folding and unfolding thresholds, which keep our experiments consis-
tent with the ones presented in [1], are 3 and 10 microseconds, respectively. All
other parameters are kept the same as the benchmarks discussed in the previous
subsection.

In this benchmark we measured the average depth of each tree in each inter-
val of 400 microseconds. The measurement was done by a monitor thread. At
interval 5000, the number of threads was changed from four to twenty eight. The
average depth of the trees at the interval 5001 was measured after synchronizing
the monitor threads with all the new threads, i.e. the period between the end
of interval 5000 and the beginning of interval 5001 was not 400 microseconds.
Figure 8 shows the average depth of both trees from interval 4000 to interval
15000. The left chart shows the best reaction time figures for the RD-tree and
the ST-tree; the right one shows the worst reaction time figures for the RD-tree
and the ST-tree. In the benchmark, the ST-tree reached the suitable depth 3 for
the case of 28 threads at interval 5004 in the best case and 5008 in the worst
case, i.e. only after 5 to 8 intervals since the time all 28 threads started to run.
The RD-tree reached level 3 at interval 7447 in the best case and at interval 9657
in the worst case. That means the reactive scheme introduced in this paper and
used by the ST-tree makes the same decisions as the RD-tree, and, moreover, it
reacts to contention variations much faster than the latter.

3 This is because the first machine was replaced with that one at our computer center
while this experimental evaluation was still in progress.

5 Conclusion

The self-tuning reactive trees presented in this work distribute the set of proces-
sors that are accessing them, to many smaller groups accessing disjoint critical
sections in a coordinated manner. They collect information about the contention
at the leaves (critical sections) and then they adjust themselves to attain adap-
tive performance. The self-tuning reactive trees extend a successful result in the
area of reactive concurrent data structures, the reactive diffracting trees, in the
following way:

• The reactive adjustment policy does not use parameters which have to be
set manually and which depend on experimentation.

• The reactive adjustment policy is based on an efficient adaptive algorithmic
scheme.

• They can expand or shrink many levels at a time with small overhead.
• Processors pass through the tree in only one direction, from the root to the

leaves and are never forced to go back.

Moreover, the self-tuning reactive trees:

• have space needs comparable with that of the classical reactive diffracting
trees

• exploit low contention cases on subtrees to make their locking process as
efficient as in the classical reactive diffracting trees although the locking
process locks more nodes at the same time.
Therefore, the self-tuning reactive trees can react quickly to changes of the

contention levels, and at the same time offer a good latency to the processes
traversing them and good scalability behavior. We have also presented an ex-
perimental evaluation of the new trees, on the SGI Origin2000, a well-known
commercial ccNUMA multiprocessor. We think that it is of big interest to do a
performance evaluation on modern multiprocessor systems that are widely used
in practice.

Last, we would like to emphasize an important point. Although the new trees
have better performance than the classical ones in the experimental evaluation
conducted and presented here, this is not the main contribution of this paper.
What we consider as main contribution is the ability of the new trees to self-tune
their size efficiently without any need of manual tuning.

References

1. Shavit, N., Zemach, A.: Diffracting trees. ACM Trans. Comput. Syst. 14 (1996)
385–428

2. Della-Libera, G., Shavit, N.: Reactive diffracting trees. J. Parallel Distrib. Comput.
60 (2000) 853–890

3. Ha, P.H., Papatriantafilou, M., Tsigas, P.: Self-adjusting trees. Technical Re-
port 2003-09, Computing Science, Chalmers University of Technology (2003)
http://www.cs.chalmers.se/∼phuong/ SAT TR.ps.gz.

4. El-Yaniv, R., Fiat, A., Karp, R.M., Turpin, G.: Optimal search and one-way trading
online algorithms. Algorithmica 30 (2001) 101–139

5. Shavit, N., Upfal, E., Zemach, A.: A steady state analysis of diffracting trees. Theory
of Computing Systems 31 (1998) 403–423

