
Progress Guarantees When Composing
Lock-Free Objects∗

Nhan Nguyen Dang and Philippas Tsigas

Department of Computer Science and Engineering
Chalmers University of Technology

Gothenburg, Sweden
{nhann,tsigas}@chalmers.se

Abstract. Highly concurrent and reliable data objects are vital for parallel pro-
gramming. Lock-free shared data objects are highly concurrent and guarantee
that at least one operation, from a set of concurrently executed operations, fin-
ishes after a finite number of steps regardless of the state of the other operations.
Lock-free data objects provide progress guarantees on the object level. In this pa-
per, we first examine the progress guarantees provided by lock-free shared data
objects that have been constructed by composing other lock-free data objects. We
observe that although lock-free data objects are composable when it comes to lin-
earizability, when it comes to progress guarantees they are not. More specifically
we show that when a lock-free data object is used as a component (is shared)
by two or more lock-free data objects concurrently, these objects can no longer
guarantee lock-free progress. This makes it impossible for programmers to di-
rectly compose lock-free data objects and guarantee lock-freedom. To help pro-
grammability in concurrent settings, this paper presents a new synchronization
mechanism for composing lock-free data objects. The proposed synchronization
mechanism provides an interface to be used when calling a lock-free object from
other lock-free objects, and guarantees lock-free progress for every object con-
structed. An experimental evaluation of the performance cost that the new mecha-
nism introduces, as expected, for providing progress guarantees is also presented.

1 Introduction

A concurrent data object is lock-free if it guarantees that at least one, among all con-
current operations, finishes after a finite number of steps. Lock-free data objects are
immune to deadlocks and livelocks, and typically provide high scalability and perfor-
mance [12] [11] [20] [22], especially in shared memory multiprocessor architectures.
Several lock-free implementations of fundamental data structures have been
introduced in the literature, such as queues [15] [21] [9], priority queues [18], linked-
lists [23] [19] [18] [10], and hashtables [7] [17] [4]. Moreover, the problem of compos-
ing lock-free data objects has been considered recently in an effort to support the use
of lock-free objects in the context of complex software development. Composite data

∗ This work was partially supported by the EU as part of FP7 Project PEPPHER
(www.peppher.eu) under grant 248481 and the Swedish Research Council under grant
37252706.

E. Jeannot, R. Namyst, and J. Roman (Eds.): Euro-Par 2011, LNCS 6853, Part II, pp. 148–159, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Progress Guarantees When Composing Lock-Free Objects 149

structures, which are built by nesting multiple basic data structures, were first studied
by Cohen and Campell [5]. Recently, Gidenstam et al. [8] and Cederman and Tsigas [3]
studied the problem of composing two operations from two different lock-free objects
into one compound atomic operation. These results made it possible to perform com-
plex atomic operations such as moves that could move an item from one lock-free data
object to another lock-free data object in a lock-free way.

Petrank and Steensgaard [16] also studied the problem of composing lock-free pro-
grams and services. They provided new formal definitions of lock-freedom, the bounded
and unbounded lock-freedom and they extended them to programs and services. These
new definitions allowed the authors to formally state and prove the composition theo-
rem. The theorem guarantees lock-free progress for a lock-free program when compos-
ing with a service supporting lock-freedom, using the new definitions. This contribution
is a step towards formally studying lock-freedom. However, the paper did not consider
the case when multiple programs share a service and compete with each other to use it.
This way of composing programs and services can affect their progress guarantees.

In this work, we address the lock-free composition problem but from the perspective
of object-oriented programming and we do not consider changing the definition of lock-
freedom in order to guarantee composition. In object-oriented programs, one lock-free
object can be concurrently shared by other lock-free objects. In this setting, composition
of several lock-free objects in one object is possible. When examining progress guaran-
tees provided by these objects, we found that they can not provide the lock-free progress
guarantee offered by the shared objects that compose them. To help solve this problem,
a synchronization mechanism is proposed for a lock-freedom progress guarantee. By
applying this mechanism when composing lock-free objects, we can compose as many
objects as possible without fear of losing lock-freedom of the individual participants.

The rest of this paper is organized as follows. Section 2 examines the progress guar-
antees for lock-free objects in a composition. Then, the new synchronization mecha-
nism for composing lock-free objects is proposed in section 3. Section 4 presents a set
of experiments to evaluate our synchronization mechanism in practice. A conclusion of
our work and discussions about future improvements come last in the section 5.

2 Progress Guarantee When Composing Lock-Free Data Objects

This section examines progress guarantees by lock-free objects used in an object-oriented
program. The program can also contain blocking objects. However, since we are consid-
ering composing lock-free objects, blocking objects can be taken away without degra-
dation of generality. In the remainder of this paper, all objects mentioned are lock-free.

2.1 Lock-Free Data Objects

Lock-free objects are objects that provide lock-free progress guarantee for their op-
eration executions. The guarantee ensures that some among its concurrent operations
succeed after a finite number of steps of their own execution. To provide such a guar-
antee, lock-free objects usually use non-blocking synchronization primitives to syn-
chronize concurrent accesses to shared memory among the concurrent operations. Two

150 N.N. Dang and P. Tsigas

Algorithm 1. A template of a lock-free object

1 class LF
2 word *ptr
3 public op(args)
4 while (1)
5 oldVal ← *ptr
6 newVal ← calculate(args)
7 if (CAS(ptr, oldVal, newVal))
8 return

Algorithm 2. Operation Descriptor

9 struct OpDesc
10 void *oper(void *args)
11 void *args
12 bool done
13 Object src

16

synchronization primitives that are commonly used are Compare-And-Swap (CAS),
Load-Link/Store-Conditional (LL/SC). CAS [12] takes three arguments: an address, an
expected value, and an update value. If the value at the address is equal to the expected
value, it is replaced by the update value; otherwise the value is left unchanged. LL/SC is
a pair of instructions. The LL instruction reads from an address. A later SC instruction
attempts to store a new value at the address. The instruction succeeds if content of the
address are unchanged since that thread issued the earlier LL instruction to it. The in-
struction fails if the content has changed in the interval. These instructions are equally
powerful since they both have an infinitive consensus number [12].

By observing several lock-free implementation of fundamental data structures such
as queues [15] [21], linked-lists [23], and memory allocators [14], we found a common
template that most of these implementations followed presented in Algorithm 1. The
template object LF offers one operation op, which takes generalized arguments args.
This operation computes a newVal (line 6) and updates it to ptr variable. In a multi-
threaded environment, several threads can try to update ptr concurrently. Therefore,
the CAS primitive is used to keep each update atomic. Examples of an LF object and
an operation op that it supports are a lock-free Queue [15] and its enqueue operation,
respectively. The enqueue operation creates a new node containing the new value and
inserts it to the head of the queue (by a CAS) to become the new head node.

2.2 Examining Lock-Free Progress Guarantee in Object-Oriented Program

An object-oriented program comprised by three lock-free objects is examined as an
example. Among the objects, one, O21, is concurrently shared by the other objects: O11

and O12. All are assumed to be implemented by using the above template.
During the executions of O11 and O12’s operations, they invoke operations in O21

and wait for the returned results. Object O21 is lock-free and therefore, always has some
executed operations, invoked by O11 or O12, finish and return after a finite number of
executed steps. But, O21 provides no mechanism to ensure fairness among the execu-
tions invoked by different objects. As a result, that only executed operations called by
one object (e.g O11) succeed while those called by the other object fail to succeed is
possible. Consequently, the former object progresses while the latter does not and fails
to provide lock-freedom. So, composition causes a lock-free conflict point at O21 for
O11 and O12. When it is the case, lock-freedom of objects that conflict can be violated.

Progress Guarantees When Composing Lock-Free Objects 151

This lock-free conflict concept can be generalized. There can be several objects shar-
ing another object. An object sharing another object can also be shared by other objects
and become itself a conflict point. This sharing scenario creates a hierarchy of sharing
lock-free objects together with the respective hierarchy of lock-free conflicts.

Our objective is to introduce a new synchronization mechanism enhancing the shared
object so that it supports the lock-free property of the sharing objects.

3 A Synchronization Mechanism for Composing Lock-Free
Objects

3.1 Our Approach

A new synchronization mechanism for sharing lock-free objects is proposed. Applica-
tion of this mechanism enhances objects with the capability to maintain fairness among
all the objects that invoke its operations. This fairness ensures that any invoking object
has at least one operation returned after a finite number of steps. In other words, no
object starves because of performing operations at the shared object.

In detail, the proposed synchronization mechanism keeps track of all invocations by
sharing objects to the shared object’s operations. When those by an object are unsuc-
cessful to execute the instruction(s) at the linearization point many times, the mecha-
nism will announce one of the operations. When such an announcement is made, later
invocations help finish the announced operation before performing their expected oper-
ations. Completion of the announced operation allows the sharing object to progress.

The description of the proposed synchronization mechanism are introduced in the
two next subsections. A correctness proof for the mechanism is also presented.

3.2 The Operation Descriptor

The new synchronization mechanism is introduced so that an unfinished operation can
be helped to finish. The operation can be executed by more than one thread but the
mechanism guarantees that only at most one execution can successfully complete. To
make this helping scheme possible, a description of the operation and its execution sta-
tus is needed. Any thread can read the description and execute the operation it describes.

The data structure OpDesc illustrated in Algorithm 2 is such an operation descriptor.
OpDesc contains a function pointer *oper to the operation, along with arguments for
the operation; a boolean variable done records the status of the operation (finished or
unfinished); src is a unique identity of the object that invokes this operation.

An OpDesc object encapsulates an operation (e.g enqueue operation) provided by
shared lock-free object. The mechanism introduces a special kind of operation which
can help executing other operations. In other words, operations that can read OpDesc
and execute the operation it described. We call them “super-operations”. The term “op-
eration”, from this point, refer to an operation representing functionality that other ob-
jects want to perform at the shared object, which is described as an OpDesc object.

152 N.N. Dang and P. Tsigas

3.3 The Synchronization Mechanism

The implementation of our synchronization mechanism for the lock-free object LF is
presented in Algorithm 3. The new object CLF provides the same interface as that LF
does to other objects. However each method in the interface is associated with a super-
operation instead of an operation.

Any operation op in LF is re-written into a pair of one public method op (a super-
operation) and one private one op m (an operation). The operation CLF.op m executes
steps to make changes to the CLF object similar to that LF.op does to the LF ob-
ject. The difference between CLF.op m and LF.op is additional steps required by the

Algorithm 3. A lock-free object employing the proposed synchronization mechanism

17 class CLF
18 word *ptr
19 OpDesc hlps[M], EMPTY; //EMPTY.done=true

21 public op(src, args)
22 OpDesc me(src,&op m,(void*)args), hlp

24 for(int i ← 0; i < M; i++) {
25 hlp ← hlps[i];
26 hp_x ← hlp; //protect hlp with hazard pointer
27 if (hlp != hlps[i]) continue;
28 if (!hlp.done) *hlp.oper(me, hlp)

30 if (¬me.done) op m(me, me)

32 private op m(OpDesc me, OpDesc hlp)
33 while (¬hlp.done)
34 for (tries=0; tries< TMAX ∧¬hlp.done; tries++)
35 oldVal ← *ptr
36 newVal ← calculate(hlp.args)
37 tmp ← hlps[hlp.src]
38 if (DCAS(ptr, oldVal, newVal, &hlp.done, false, true))
39 counter[hlp.src] ← 0;
40 CAS(hlps[hlp.src], tmp, EMPTY);
41 break;

43 if (¬hlp.done)
44 if (++counter[me.src]≥OMAX)
45 announce(me)

47 void announce(OpDesc me)
48 curr ← hlps[me.src]
49 if(curr.done)
50 CAS(hlps[me.src], curr, me)

Progress Guarantees When Composing Lock-Free Objects 153

synchronization mechanism that will be discussed later. CLF.op, is to provide the same
interface as that LF but the content is totally new. When CLF.op is invoked, it is ex-
pected to perform modifications on CLF similar to functionality of operation LF.op.
The functionality is now implemented in CLF.op m. In addition, CLF.op can help fin-
ish other CLF.op m operations that other objects want to perform.

When CLF.op is invoked (assuming by object Oi) to perform the operation
CLF.op m, it does not perform the operation immediately. Instead, it first creates an
OpDesc describing the operation (line 22) which it can perform by itself (line 30) or
any thread can help finishing the operation. Then it checks if there are operations of any
object needing help to finish (line 24). If there are such operations, the super-operation
will execute these operations (line 28). The checking for any object that needs help is
performed through a newly introduced array hlps[]. When one among the objects needs
help, one of the concurrent operations the object performs will be placed in hlps[] at
a dedicated position for the object. Other concurrent super-operation executions then
can help to finish that one. We assume that there are M objects sharing CLF object.
Therefore, hlps[] can have M elements that one is assigned to an object.

The operation CLF.op m introduces two main changes compared to LF.op. The first
change is that a Double-Compare-And-Swap (DCAS) is used instead of a CAS in LF.op
(line 7). DCAS atomically compares and exchanges values at two separate memory
locations. Lock-free implementations of DCAS have been introduced in [6] and [3]. In
CLF.op m, the DCAS performs modification of *ptr and a status variable atomically.
The former is similar to CAS in LF.op. The latter is to set the execution status variable
of OpDesc. This status variable, which is allowed to be changed only once, makes sure
that an OpDesc only succeeds once even when multiple threads are executing it.

The second change in CLF.op m is the introduction of a counter array counter[] to
record the numbers of times invocations by sharing objects try (but fail) to commit the
changes to the shared object CLF. The counter at position i is increased after a failed
DCAS execution (line 38) in an operation invoked by object Oi. When this number
reaches a threshold, an executed operation invoked by Oi will be announced in hlps[]
to be helped.

Due to this change, the loop inside this operation is also modified. Our algorithm
could have followed the idea of increasing the counter after every failed DCAS. In
this case, the counter at any position would be shared among several threads and need
synchronization for every update which decreases the performance. To avoid this high
overhead, in our design, this counter was split into two counters. One local counter tries
for each operation execution and a shared one (counter[]) to record number of tries the
executions invoked by the object have made. When tries reach a threshold TMAX , an
update to counter[me.src] is made. And if this counter reaches its threshold OMAX ,
one of the operation executions whose src is the same as me.src is announced.

In addition to those changes, a CAS is added to remove the reference from the an-
nouncement array hlps[] to a successful operation hlp. This avoids any unsafe reference
to hlp in the future when its hazard-pointer protection (line 26) is removed. The mem-
ory used by hlp can safely be reclaimed later by a memory reclamation scheme.

In short, the synchronization mechanism guarantees that new invocations of CLF’s
operations helps finish on-going executed operations that need help. Then they executes

154 N.N. Dang and P. Tsigas

the operation they are supposed to perform. With this mechanism, objects invoking
operations of CLF always has one of the invocations finish after a finite number of
steps. Therefore, these objects make progress.

3.4 ABA Problem

Similar to other lock-free objects, our mechanism also encounters the ABA problem.
The ABA problem happens when the content at an address changes from A to B, and
then changes back to A. CAS cannot distinguish this case and the case where the content
is unchanged. A number of methods have been introduced to tackle with ABA problem
such as tagging [1], hazard pointers [13]. In addition, memory words used by lock-free
objects must be protected from deletion by concurrent threads when they are in use and
reclaimed when they are no more used. Safe Memory Reclamation with hazard pointers
introduced in [13] is used for these purposes.

3.5 Linearizability

This section states the lemmas for the linearizability and lock-freedom property of CLF.
Due to the space limitation, the proofs for these lemmas are not included in this version
of the paper.

Lemma 1. Regardless of the number of threads executing an operation op m with the
same value of hlp argument, only one can succeed.

Lemma 2. CLF is linearizable with the linearization point at line 38.

Lemma 3. The presented object CLF is lock-free.

3.6 How Does the Proposed Synchronization Mechanism Resolve Lock-Free
Conflicts?

When a lock-free object is concurrently used by other lock-free objects O1 . . . OM , it
can become a lock-free conflict and block the progress of those objects. This section
will prove that when there is such a conflict point at CLF, our mechanism can resolve
the conflict. Therefore, CLF does not block lock-free progress of the objects using it.

A scenario of using CLF is a program containing M lock-free objects O1. . . OM and
one CLF object. An object Oi can have at most n concurrent invocations (executed by
n threads) to CLF.op to perform an intended CLF.op m (referred to as me). Each in-
vocation creates an execution of operation CLF.op. We seek a bound of the maximum
number of steps (a step is one execution of DCAS) performed by these executions be-
tween any two successful operations. If this bound is finite, it guarantees that any object
that uses CLF progresses. The lemmas and theorem below figure out this bound.

Lemma 4. An object Oi can make at most n concurrent invocations to super-operation
CLF.op. Starting from when the last invocation returns (or when the program starts, if
there is no such invocation), if any of these invocations has executed:

U BOUND = TMAX .OMAX (1)

steps, one of the following condition must hold:

Progress Guarantees When Composing Lock-Free Objects 155

– at least one invocation finished. Or
– one of these concurrent CLF.op m operations has been announced.

Lemma 5. When an operation me is announced in hlps, either me or another opera-
tion that has the same src as me.src finishes after it has executed at most

HELP BOUND = n(M − 1) + 1

steps since when the announcement is made.

Theorem 1. When CLF is shared by several objects by invoking to CLF’s super-
operation op, there is always one, among all invocations by one object, finishing after
executing a finite number of steps.

Proof. From lemma 4, there must be one among the invocations from O which finishes
before any of them has executed U BOUND steps. Otherwise, one of the invocations
has its operation me announced.

If me is announced, lemma 5 stated that one of the operations whose src is the same
as me.src (including me) finishes after it has executed at most HELP BOUND steps
since the announcement is made. Therefore, one of the invocations from one object
returns after executing at most:

U BOUND + HELP BOUND = n(M − 1) + TMAX .OMAX + 1

steps; where:

– TMAX is the number of steps executed by an operation before it checks if it should
announce itself.

– OMAX is the number of times TMAX was reached by all invocations from one
object.

– n is the maximum number of concurrent operations of CLF that can be executed.
– M is the number of objects that are sharing CLF.

4 Experimental Evaluation

For our experimental evaluation we considered the composition scenario where a pro-
gram containing a number of pseudo objects sharing one queue. The queue is an imple-
mentation of the Michael-Scott Queue [15] enhanced with the proposed synchroniza-
tion mechanism. A set of experiments to evaluate the effectiveness and performance
cost of our synchronization mechanism was performed and the results are presented.

In our experiments, the program was executed to perform queue’s operations at three
contention levels. In high contention, each thread performed one operation right after
another. In medium contention, “other work” with a ratio following the normal dis-
tribution between 0 and 1 was performed between two consecutive operations. The
“other work” was a fixed-times spin loop of a simple calculation. In low contention,
“other work” was always performed between two consecutive operations. An exponen-
tial back-off was also used after any failed DCAS. The program can be run by one to 8

156 N.N. Dang and P. Tsigas

 0

 10

 20

 30

 40

 50

 60

 70

 1 2 4 6 8

A
tt

em
p
ts

Threads

w/o SM, w/o backoff
w/o SM, w/ backoff
w/ SM, w/o backoff
w/ SM, w/ backoff

(a) attempts(max)/op

 0

 1

 2

 3

 4

 5

 1 2 4 6 8
A
tt

em
p
ts

Threads

w/o SM, w/o backoff
w/o SM, w/ backoff
w/ SM, w/o backoff
w/ SM, w/ backoff

(b) attempts(avg)/op

 0

 1

 2

 3

 4

 5

 1 2 4 6 8

T
im

e
(s

)

Threads

w/o SM, w/o backoff
w/o SM, w/ backoff
w/ SM, w/o backoff
w/ SM, w/ backoff

(c) Execution time

Fig. 1. Measurement results in high contention level

threads and each thread performs 1 000 000 queue operations. Each experiment is the
program configured to one contention level and with or without back-off, and set up
with a specific number of threads. Each experiment ran five times on a platform with
two Intel Core i7 quad-core processors and the average result of the runs was reported.
When running the experiments, no other users were using the system.

Three measurements were recorded. The first two were the maximum and average
number of attempts between two consecutive successful operations invoked by one ob-
ject. The maximum number of attempts is an indicator to know whether the proposed
synchronization mechanism helped the sharing objects before they starved. The lower
this number, the more likely an object is to be helped. On the other hand, the aver-
age number of attempts, helps answer a question: does the synchronization mechanism
cause the total number of attempts to perform the set of operations increasing? The third
measurement was the time it took to finish a run.

Fig. 1 presents the experimental results for the case of high contention. Fig. 1a shows
that our synchronization mechanism (w/ SM) significantly reduced the maximum num-
ber of attempts to finish one operation when there was no back-off. In the case where
no synchronization mechanism was used (w/o SM), the maximum number of attempts
when back-off is used (w/ backoff) is much lower than when it is not (w/o backoff). The
reason is that back-off reduces the contention among threads and, therefore, lowers the
number of attempts. Even though, in this case, there is no lock-free progress guarantee
for the sharing objects. The average number of attempts in Fig. 1b shows that when our
synchronization mechanism is used, one queue operation needs, on average, about only
two thirds of the number of attempts compared to when it is not used. Similar improve-
ments when the synchronization mechanism was used are also observed in medium and
low contention levels as shown in Figs. 2a, 2b, 3a, and 3b.

Fig. 1c shows the time to finish all operations at high contention level. Either with or
without back-off, the execution time of the runs where our synchronization mechanism
was used took about 1.7 of those where the original queue is used. This degradation
in performance is because of the overhead cost when applying our synchronization
mechanism to achieve the lock-freedom property. In medium and low contention levels,
our synchronization performed better which reduced the ratios to 1.5 (Fig. 2c) and 1.2

Progress Guarantees When Composing Lock-Free Objects 157

 0

 10

 20

 30

 40

 50

 60

 70

 1 2 4 6 8

A
tt

em
p
ts

Threads

w/o SM, w/o backoff
w/o SM, w/ backoff
w/ SM, w/o backoff
w/ SM, w/ backoff

(a) attempts(max)/op

 0

 1

 2

 3

 4

 5

 1 2 4 6 8
A
tt

em
p
ts

Threads

w/o SM, w/o backoff
w/o SM, w/ backoff
w/ SM, w/o backoff
w/ SM, w/ backoff

(b) attempts(avg)/op

 0

 1

 2

 3

 4

 5

 1 2 4 6 8

T
im

e
(s

)

Threads

w/o SM, w/o backoff
w/o SM, w/ backoff
w/ SM, w/o backoff
w/ SM, w/ backoff

(c) Execution time

Fig. 2. Measurement results in medium contention level

 0

 10

 20

 30

 40

 50

 60

 70

 1 2 4 6 8

A
tt

em
p
ts

Threads

w/o SM, w/o backoff
w/o SM, w/ backoff
w/ SM, w/o backoff
w/ SM, w/ backoff

(a) attempts(max)/op

 0

 1

 2

 3

 4

 5

 1 2 4 6 8

A
tt

em
p
ts

Threads

w/o SM, w/o backoff
w/o SM, w/ backoff
w/ SM, w/o backoff
w/ SM, w/ backoff

(b) attempts(avg)/op

 0

 1

 2

 3

 4

 5

 1 2 4 6 8

T
im

e
(s

)

Threads

w/o SM, w/o backoff
w/o SM, w/ backoff
w/ SM, w/o backoff
w/ SM, w/ backoff

(c) Execution time

Fig. 3. Measurement results in low contention level

(Fig. 3c) respectively. Especially, in low contention level with back-off, the performance
of the queue where our synchronization was used is closer to that when it was not used.
Our synchronization mechanism performed better in these contention levels than in
high contention levels. This is consistent with the previous result that fewer attempts
were performed to finish one queue operation in lower contention level. In addition,
when the number of attempts were fewer, the number of cases that the synchronization
mechanism was activated to help “unlucky object” were fewer too.

We performed additional experiments to analyze the overhead cost by measuring the
performance of DCAS comparing to that of CAS. The experimental setup was similar
to the one described in previous experiments. The only difference was that the queue
operations were replaced by an operation containing a simple mathematical calculation
and a DCAS (or CAS). The performance result in Fig. 4 shows that DCAS is much more
expensive than CAS especially in high and medium contention levels. In low contention
level, execution time of a DCAS operations is quite comparable to that of a CAS. These
results support a claim that DCAS contributes a big portion to the overhead cost of our
synchronization mechanism.

158 N.N. Dang and P. Tsigas

 0

 1

 2

 3

 4

 5

 1 2 4 6 8

T
im

e
(s

)

Threads

CAS, w/o backoff
CAS, w/ backoff
DCAS, w/o backoff
DCAS, w/ backoff

(a) High contention

 0

 1

 2

 3

 4

 5

 1 2 4 6 8
T
im

e
(s

)

Threads

CAS, w/o backoff
CAS, w/ backoff
DCAS, w/o backoff
DCAS, w/ backoff

(b) Medium contention

 0

 1

 2

 3

 4

 5

 1 2 4 6 8

T
im

e
(s

)

Threads

CAS, w/o backoff
CAS, w/ backoff
DCAS, w/o backoff
DCAS, w/ backoff

(c) Low contention

Fig. 4. Performance of DCAS and CAS

In brief, the experimental results demonstrate that our synchronization mechanism
reduces the maximum number of attempts in all the contention level cases. The pre-
sented experimental results support the theoretical proofs. The results also show, as
expected, that there is a performance overhead cost in order to achieve lock-freedom
when composing. The software-implemented DCAS mainly contributes to this cost. We
expect that with the use of a hardware-supported DCAS such as the Advanced Synchro-
nization Facility by Advanced Micro Devices [2], this cost will be reduced significantly.

5 Conclusion

This paper presents our observation on progress guarantees provided by lock-free ob-
jects that concurrently share other lock-free objects. We found that these sharing ob-
jects can not provide lock-free progress guarantee as expected. A new synchronization
mechanism for composing lock-free objects is proposed in order to provide lock-free
progress guarantees for each individual. The experimental results show the effective-
ness of the new mechanism. A preliminary study for the performance cost introduced
by the new mechanism is also presented.

The assumption of the fixed number M of sharing objects should be studied further
and if possible removed. Additional experiments can be performed to investigate the
influence of choosing TMAX and OMAX on the performance of the mechanism. In
addition, an implementation of the mechanism that uses a hardware-supported DCAS
such as Advanced Synchronization Facility by Advanced Micro Devices is expected to
reduce the performance cost.

References

1. IBM System/370 Extended Architecture, Principles of Operations. No. SA22-7085. IBM
Publication (1983)

2. AMD: Advanced Synchronization Facility - Proposed Architectural Specification. No.
45432/rev 2.1, AMD (2009)

Progress Guarantees When Composing Lock-Free Objects 159

3. Cederman, D., Tsigas, P.: Supporting lock-free composition of concurrent data objects. In:
Conf. Computing Frontiers, pp. 53–62. ACM, New York (2010)

4. Click, C.: A lock-free wait-free hash table, lecture notes in Course EE380 (2006-2007), Stan-
ford University (2007),
http://www.stanford.edu/class/ee380/Abstracts/
070221 LockFreeHash.pdf

5. Cohen, D., Campbell, N.: Automatic composition of data structures to represent relations.
In: Proceedings of KBSE 1992, pp. 182–191 (September 1992)

6. Fraser, K., Harris, T.: Concurrent programming without locks. ACM Trans. Comput.
Syst. 25(2) (2007)

7. Gao, H., Groote, J., Hesselink, W.: Almost wait-free resizable hashtables. In: Proceedings of
IPDPS 2004, p. 50a (2004)

8. Gidenstam, A., Papatriantafilou, M., Tsigas, P.: Allocating memory in a lock-free manner.
Algorithmica 58, 304–338 (2005)

9. Gidenstam, A., Sundell, H., Tsigas, P.: Cache-aware lock-free queues for multiple produc-
ers/consumers and weak memory consistency. In: Lu, C., Masuzawa, T., Mosbah, M. (eds.)
OPODIS 2010. LNCS, vol. 6490, pp. 302–317. Springer, Heidelberg (2010)

10. Harris, T.L.: A pragmatic implementation of non-blocking linked-lists. In: Lecture Notes in
Computer Science, pp. 300–314. Springer, Heidelberg (2001)

11. Herlihy, M.: A methodology for implementing highly concurrent objects. ACM Trans. Pro-
gram. Lang. Syst. 15(5), 745–770 (1993)

12. Herlihy, M., Shavit, N.: The Art of Multiprocessor Programming. Morgan Kaufmann, San
Francisco (2008)

13. Michael, M.M.: Hazard pointers: Safe memory reclamation for lock-free objects. IEEE
Trans. Parallel Distrib. Syst. 15(6), 491–504 (2004)

14. Michael, M.M.: Scalable lock-free dynamic memory allocation. SIGPLAN Not. 39(6), 35–
46 (2004)

15. Michael, M.M., Scott, M.L.: Simple, fast, and practical non-blocking and blocking concur-
rent queue algorithms. In: Proceedings of PODC 1996, pp. 267–275 (1996)

16. Petrank, E., Musuvathi, M., Steesngaard, B.: Progress guarantee for parallel programs via
bounded lock-freedom. In: Proceedings of PLDI 2009, pp. 144–154 (2009)

17. Purcell, C., Harris, T.: Non-blocking hashtables with open addressing. In: Fraigniaud, P. (ed.)
DISC 2005. LNCS, vol. 3724, pp. 108–121. Springer, Heidelberg (2005)

18. Sundell, H., Tsigas, P.: Fast and lock-free concurrent priority queues for multi-thread sys-
tems. J. Parallel Distrib. Comput. 65(5), 609–627 (2005)

19. Sundell, H., Tsigas, P.: Lock-free and practical doubly linked list-based deques using single-
word compare-and-swap 3544, 240–255 (2005)

20. Tsigas, P., Zhang, Y.: Evaluating the performance of non-blocking synchronization on
shared-memory multiprocessors. SIGMETRICS Perform. Eval. Rev. 29, 320–321 (June
2001)

21. Tsigas, P., Zhang, Y.: A simple, fast and scalable non-blocking concurrent fifo queue for
shared memory multiprocessor systems. In: Proceedings of SPAA 2001, pp. 134–143 (2001)

22. Tsigas, P., Zhang, Y.: Integrating non-blocking synchronisation in parallel applications: per-
formance advantages and methodologies. In: Proceedings of the 3rd International Workshop
on Software and Performance WOSP 2002, pp. 55–67 (2002)

23. Valois, J.D.: Lock-free linked lists using compare-and-swap. In: Proceedings of PODC 1995,
pp. 214–222. ACM, New York (1995)

http://www.stanford.edu/class/ee380/Abstracts/070221_LockFreeHash.pdf
http://www.stanford.edu/class/ee380/Abstracts/070221_LockFreeHash.pdf

	Progress Guarantees When Composing Lock-Free Objects
	Introduction
	Progress Guarantee When Composing Lock-Free Data Objects
	Lock-Free Data Objects
	Examining Lock-Free Progress Guarantee in Object-Oriented Program

	A Synchronization Mechanism for Composing Lock-Free Objects
	Our Approach
	The Operation Descriptor
	The Synchronization Mechanism
	ABA Problem
	Linearizability
	How Does the Proposed Synchronization Mechanism Resolve Lock-Free Conflicts?

	Experimental Evaluation
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

