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We have implemented sample sort and a parallel version of Quicksort on a cache-coherent shared
address space multiprocessor: the SUN ENTERPRISE 10000. Our computational experiments
show that parallel Quicksort outperforms sample sort. Sample sort has been long thought to be
the best, general parallel sorting algorithms, especially for larger data sets.

On 32 processors of the ENTERPRISE 10000 the speedup of parallel Quicksort is more than
six units higher than the speedup of sample sort, resulting in execution times that were more
than 50% faster than sample sort. On one processor parallel quicksort achieved 15% percent
faster execution times than sample sorting. Moreover, because of its low memory requirements,
parallel Quicksort could sort data sets twice the size that sample sort could under the same system
memory restrictions.

The parallel Quicksort algorithm that we implemented is a simple, fine-grain extension of
Quicksort. Although fine-grain parallelism has been thought to be inefficient for computations
like sorting due to the synchronization overheads, we show as part of this work that efficiency can
be achieved by incorporating non-blocking techniques for sharing data and computation tasks in
the design and implementation of the algorithm. Non-blocking synchronization has increased con-
currency between communication and computation and gives good execution behavior on cache-
coherent shared memory multiprocessor systems. Cache-coherent shared memory multiprocessors
offer fruitful ground for algorithmic or programming techniques that were considered impractical
before, in the context of high-performance programming, to develop and change a little the way
we think about high-performance programming.
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1. INTRODUCTION

Sorting is an important kernel for sequential and multiprocessing computing and
a core part of database systems. Donald Knuth in [Knuth 1998] reports that
“computer manufacturers of the 1960s estimated that more than 25 percent of the
running time on their computers was spend on sorting, when all their customers
were taken into account. In fact, there were many installations in which the task
of sorting was responsible for more than half of the computing time.” As it was
expected, sorting is one of the most heavily studied problems in computer science.
Parallel algorithms for sorting have been studied for long, with many major ad-
vances in the area coming from as early as the sixties [Knuth 1998]. Accordingly, a
vast number of research articles dealing with parallel sorting have been published;
the number is too large to allow mentioning them all, so we will restrict discus-
sion to those that are directly related to our work. Considerable effort has been
made by the theoretical community in the design of parallel algorithms with excel-
lent and occasionally optimal asymptotic efficiency. However there has only been
limited success in obtaining efficient implementations on actual parallel machines
[Hightower et al. 1992; Zagha and Blelloch 1991]. Similar research effort has also
been made with the practical aspects in mind, for a list of work in this area please
see [Dlekmann et al. 1994] and [Shan and Singh 1999]. The latter work has given
many exciting results due to interaction between the algorithms research area and
the computer architectures research area. Most of the work on high-performance
sorting is based on message-passing machines, vector supercomputers and clusters.

Among all the innovative architectures for multiprocessor systems that have been
proposed the last forty years, a new tightly-coupled multiprocessor architecture is
gaining a central place in high performance computing. This new type of archi-
tecture supports a shared address programming model with physically distributed
memory and coherent replication (either in caches or main memory). A hardware-
based cache coherency scheme ensures that data held in memory is consistent on
a system-wide basis. These systems are commonly referred to as cache-coherent
distributed shared memory (DSM) systems and are built for server and desktop
computing. Over the last decade many such systems have been built and almost
all major computer vendors develop and offer cache coherent shared memory mul-
tiprocessor systems nowadays. This class of systems differs a lot from the tra-
ditional message-passing machines, vector supercomputers and clusters on which
high-performance sorting has been studied. These new systems offer very fast
interprocess communication capabilities and give space to new programming and
algorithmic techniques, which would have been impractical on vector supercomput-
ers or clusters because of high communication costs. Shan and Singh in examined
the performance of radix sorting and sample sorting (the two most efficient parallel
sorting algorithms) in hardware cache-coherent shared address space multiproces-
sors under three major programming models.

This paper looks into the behavior of a simple, fine-grain parallel extension of
Quicksort for cache-coherent shared address space multiprocessors. Quicksort has
many nice properties: i) it is fast and general purpose; it is widely believed that
Quicksort is the fastest general-purpose sorting algorithm, on average, and for a
large number of elements [Blelloch et al. 1991; Dusseau et al. 1996; Helman et al.



1996b; Sohn and Kodama 1998, ii) it is in-place, iii) it exhibits good cache perfor-
mance and iv) it is simple to implement. The new generation of hardware-coherent,
shared address space multiprocessor systems with their already dominant position
on the tightly-coupled multiprocessor systems are our target systems. The imple-
mentation of the parallel Quicksort algorithm utilizes the capabilities that these
new systems have to offer and uses the following algorithmic techniques:

Cache-efficient:. Each processor tries to use all keys when sequentially passing
through the keys of a cached-block from the key array.

Communication Overlapping Fine-grain Parallelism:. It is a fine-grain parallel
algorithm. Although fine-grain parallelism has been thought to be inefficient for
computations like sorting due to the synchronization overheads, we achieved effi-
ciency by incorporating non-blocking techniques for sharing data and computation
tasks. No mutual locks or semaphores are used in our implementation.

Parallel Partition of Data:. A parallel technique for partitioning the data similar
to the one presented in [Heidelberger et al. 1990] is used. We rediscovered this
technique when parallelizing Quicksort.

We implemented the algorithm on a SUN ENTERPRISE 10000, a leading ex-
ample of the tightly-coupled, hardware-coherent architecture and we compared it
with sample sort, which has been previously shown to outperform other compari-
son based, general sorting algorithms, especially for larger data sets [Blelloch et al.
1991; Dusseau et al. 1996; Helman et al. 1996b; Sohn and Kodama 1998]. On
32 processors we achieved a speedup that was more than 6 units higher than the
speedup of sample sort. This speedup resulted in an execution time that was over
50% faster than sample sort. On one processor of the ENTERPRISE 10000 parallel
Quicksort gave 15% percent faster execution times than the sample sort on many
large sorting instances. Moreover, parallel Quicksort could sort data sets double the
size that sample sort could because of the its low memory requirements. One one
processor parallel Quicksort behaves as it sequential parent. The asymptotic num-
ber of all comparisons and computation and memory steps used by the algorithm
is the same as in quicksort: O(N lg(N)) on average and O(N?) for the worst case.
When B < N, the average time complexity for the parallel algorithm is O(%(N))
and the worst case time complexity is O(N?z). O(N + P) is the asymptotic space
complexity.

The remainder of the paper is organized as follows: In Section 2 the algorithm
and its analysis are presented. We describe the experimental evaluation in Section
3. The paper concludes with Section 4.

2. THE ALGORITHM

Quicksort [Hoare 1962] is a sequential sorting algorithm that is widely believed to
be the fastest comparison-based, sequential sorting algorithm (on average, and for
a large input sets) [Cormen et al. 1992; LaMarca and Ladner 1997; Weisstein 1999].
It is a recursive algorithm that uses the “Divide and Conquer” method to sort all
keys. The standard Quicksort first picks a key from the list, the pivot, and finds
its position in the list where the key should be placed. This is done by “walking”
through the array of keys from one side to the other. When doing this, all other



keys are swapped into two parts in the memory: i) the keys less than or equal to the
pivot are placed to “the low side” of the pivot and ii) the keys larger than or equal
to the pivot are placed to “the high side” of the pivot. Then the same program is
recursively applied on these two parts.

2.1 Description

Assume that we have an array with N keys, indexed from 0 to N —1, to be sorted on
a cache-coherent shared memory multiprocessor with P asynchronous processors.
Each processor is assigned a unique index, pid, from 0 to P — 1.

The parallel Quicksort algorithm presented here is a simple parallelization of
Quicksort. It is a 341-phase algorithm. The first three phases constitute the
divide phase and are recursively executed. The last phase is a sequential sorting
algorithm that processors execute in parallel, during this phase a helping scheme
is used. The four phases are: i) the Parallel Partition of the Data phase, ii) the
Sequential Partition of the Data phase, iii) the Process Partition phase and iv) the
Sequential Sorting in Parallel with Helping phase. The detailed explanation of the
four phases is given below.

Phase One: Parallel Partition of the Data. The algorithm sees the array of the
data as a set of consecutive blocks of size B. B depends on the size of the system’s
first-level cache, and is selected so that two blocks of length B can fit in cache at the
same time. In our system where the size of the first-level cache is 16KB, we selected
B = 2048 so as to be able to fit two blocks of data in the cache at the same time. In
order to simplify the description and without loss of generality let us consider first
the case where all keys can be divided into blocks exactly, i.e. N mod B = 0. Later
on, we will show how to extend this phase for the case where N mod B # 0. The
whole array can be viewed as a line of % data blocks; processors can only choose
blocks to work on, from the two ends of the line.

The first phase starts with the processor Py, the one with the smallest pid, picking
a pivot. After that, each processor in parallel picks the block that it finds at the
very end of the left side of the line le ftblock and then the block that it finds at the
very end of the right side of the line rightblock and uses these two blocks together
with the pivot as an input to a function that is called the neutralize function. This
function is described in pseudo-code in Figure 1. The function takes as input two
blocks, leftblock and rightblock, and the pivot and swaps the keys in leftblock
which are larger than the pivot with keys in rightblock that are smaller than the
pivot in an increasing order, as long as this can be done. A call of the neutralize
function will result into one of the following results: either i) all keys in le ftblock
are going to be less than or equal to the pivot, in this case we say that leftblock
has been neutralized or ii) all keys in rightblock are going to be larger than or equal
to the pivot and then we say that rightblock has been neutralized, or iii) it can
also happen that both leftblock and rightblock have been neutralized at the same
time.

Each processor will then try to get a fresh block from the left side of the array
if its leftblock was neutralized before, or from the right side if its rightblock was
neutralized before and it will then neutralize this block with the still charged block
that it has on hand. If both blocks were neutralized, the processor gets two fresh



SIDE neutralize (Data xleftblock , Data *rightblock , Data pivot)

int i, j;
do{
for ( 1i=0; i<BlockSize; i++ )
if (leftblock[i] > pivot)
break ;
for ( j=0; j<BlockSize; j++)
if (rightblock[j] < pivot)

break ;
if ((i== BlockSize) || (j == BlockSize))
break ;
SWAP( leftblock[i], rightblock[]j]);
i++; j++;

} while ( i < BlockSize && j < BlockSize )

if (i == BlockSize && j == BlockSize)
return BOTH;

if (i == BlockSize)
return LEFT;

return RIGHT;

Fig. 1: The neutralize function

blocks from both ends. Processes continue the above steps until all blocks are
exhausted. At this moment, each processor has at most one block unfinished in hand
and puts it on the remainingBlocks shared array that consequently can collect
at most P blocks, and exits the parallel partition phase. The parallel partition
phase is described in pseudo-code in Figure 2. Processors report the number of
keys contained on le ftblocks that have been neutralized by summing the numbers
into LN (Left-Neutralized). The number of keys on rightblocks that have been
neutralized are counted into RN (Right-Neutralized).

For the general case where N mod B = M # 0 we can modify the end condition
for the parallel phase so that a processor exits when it finds that the remaining
keys are not enough to form a block. In this case there are going to be at most P
blocks plus M keys left. To process the remaining keys, the processor Py, with the
smallest pid, will run the sequential partition phase.

Phase Two: Sequential Partition of the Data. The purpose of sequential par-
tition phase is to finish what the parallel partition has started: the placement of
keys to the “correct side” of the pivot. When the parallel partition finishes all neu-
tralized blocks that are between [0, LN — 1) and [RN, N — 1) are correctly placed
with respect to the pivot. After the Parallel Partition phase, the remaining P blocks
that can appear in any position on the array as shown in figure 4a need to be cor-
rectly placed and the neutralized blocks that are placed in [LN — 1, RN] have to
be swapped in a correct position. During this phase processor Py first sorts the P
blocks using the start indices of these blocks. It then uses this order to pick a block
from the left (leftblock) and a block from right (rightblock) and give them as input
to the neutralize function together with the previously selected pivot. It does this
until all remaining blocks are exhausted. In this phase it is not always true that a



if (pid == smallestpid)
pivot = PivotChoose ();
barrier (P);
leftblock = Get A Block From LEFT End;
rightblock = Get A Block From RIGHT End;
leftcounter = 0;
rightcounter = 0;
do{
side = neutralize (leftblock , rightblock , pivot);
if ((side ==LEFT) || (side ==BOTH)) {
leftblock = Get A Block From LEFT End;
leftcounter ++;
}
if ((side == right) || (side ==BOTH)) {
rightblock = Get A Block From RIGHT End;
rightcounter ++4;

} while ((leftblock != EMPTY) && (rightblock != EMPTY));
if (leftblock != EMPTY)

remainingBlocks [pid] = leftblock;
else

remainingBlocks [pid] = rightblock;
LN = LN + (leftcounter * B);

RN = RN + (rightcounter * B);

Fig. 2: The procedure that implements the parallel partition phase.

neutralized block can always contribute to LN or RN, for example, a block that was
picked out from the right end during the parallel partition phase and is neutralized
as leftblock now will not contribute to LN. All blocks between [0, LN — 1] were
picked during the parallel partition phase by some processors from the left end. If
they can be neutralized as leftblocks in this sequential partition phase, they can
contribute to the LN as other neutralized blocks [0, LN — 1]. Similar is the case for
blocks between [N — RN, N —1]. The procedure of sequential partition is described
in figure 3. The first step is sorting the remaining blocks. Then, picking blocks from
the two ends and running the neutralize function on them as shown in figure 4b.
Finally, some blocks are still misplaced between [LN, N — RN — 1]. If there are m
blocks unfinished between [0, LN — 1], then there should be at least m blocks which
are neutralized as leftblocks between [LN, N — RN — 1]. The Sequential Partition
will swap them as shown in figure 4c. The same methods will be applied to the
remain blocks between [N — RN, N —1]. Now, all blocks between [0, LN — 1] contain
keys less than or equal to the pivot and all blocks [N — RN, N — 1] contain keys
larger than or equal to the pivot. The remaining task is to partition between LN
and RN as sequential quicksort.

Next we will demonstrate the behavior of the two phases presented before by a
way of an example. The example is also graphically shown in in Figure 5. For input
37 random integers are selected. Our system for this example has 3 processors and
the block size is 4. First, we need to select a pivot. We use the method proposed
by Sedgewick in [Sedgewick 1978] to choose the pivot, which is the median of the
first, middle and last keys in the array (in this case the pivot does not have to be
an input key).



sort (remainingBlocks , ascend order);

/* p is the number of remain blocks; p< P x/

left = 0; right = p — 1;

/* Treat the remainingBlocks as an array and do Sequential block
Partition */

while (left <right)

{

/* Neutralize the most left block and the most right block */
side = neutralize ( remainingBlocks[left],
remainingBlocks [right], pivot);
if ((side ==LEFT) || (side ==BOTH)) {
if (remainingBlocks is between [0,LN —1]){
/* update LN and remove the block from remainingBlocks
only if it is between [0,LN —1] %/
LN +=B;
remainingBlocks [left ] = EMPTY;
}

left ++;

if ((side == right) || (side ==BOTH)) {
if (remainingBlocks is between [N — RN,N —1]){
/* update RN and remove the block from remainingBlocks
only if it is between [N —RN,N —1] %/
RN +=B;
remainingBlocks [right] = EMPTY;
}

right ——;
}
}

/* For those which still remain in the remainingBlocks array, we will
swap them with blocks between [LN,N — RN) */
for ( 1=0; i<p; i++) {
if (remainingBlocks[i] is not EMPTY) {
Swap remainingBlocks[i] with neutralized blocks between [LN,N —
RN);

}
}

Fig. 3: The procedure that implements the sequential partition phase.

(min(17,7,32) + max(17,7,32))
2

After choosing the pivot, all processors will pick two blocks of keys one block
from the left end and one block from the right end. One possible result is the
following: 1) processor 0 gets block L2 (the second — in input order — block from
the left end) and R1 (the first — in input order — block from the right end), ii)
processor 1 gets L1 and R2, ii) processor 2 gets L3 and R3. Then, every processor
calls the neutralize function. For processor 0, after the return from the neutralize
function, all keys in block L2 are less than or equal to the pivot and all keys in block
R1 are larger than or equal to the pivot, i.e. L1 and R1 have been neutralized.
Block R2 and L3 are neutralized by processors 1 and 2 respectively. To continue
the algorithm processor 0 needs to get two more blocks one from each end of the

pivot = | |1=19
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Fig. 4: A graphical description of the sequential partition phase.

array and processor 1 needs to get one block from the right end and processor 2
needs to get one from the left end. As the whole system is asynchronous, this time
processor 2 gets block L4 and processor 0 get block Lb and R4. When processor 1
tries to pick a block, it finds out that the remaining keys are not enough to form a
block, and consequently it exits the parallel partition phase and puts block L1 in the
remainingBlocks array. Processor 0 and processor 2 use the neutralize function
with input L5 and R4, and L4 and R3, respectively. Processor 0 exits the parallel
partition phase with L5 unfinished. Processor 2 exits with no unfinished block. The
parallel partition phase is over with 2 blocks (< P) marked as unfinished and 1
key (< B —1) (key 29) left unprocessed in the middle. The algorithm will enter
the sequential partition phase to process these keys, in our example there are no
neutralized blocks in (LN,N — RN) to be processed, LN = 12 and RN = 16.

Processor 0, as the one with the smallest pid, will process first the blocks L1
and L5 that are in the remainingBlocks array. Processor 0 calls the neutralize
function with L1 as the leftblock and L5 as the rightblock and as a result L1 is
neutralized. As the start index of L1 is less than LN, LN will be increased by 4. In
this example the remaining block L5 is between [LN,N — RN) and there is no need
to swap it. The processor 0 splits the keys between [LN,N — RN )=[16, 21)=[16, 20]
with the pivot, 19. The final split point is index 18, as shown in figure 5.

After the two partition phases, the array is split into two subarrays and all keys
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Fig. 5: The algorithm by way of an example.

are placed on the “right side” of the pivot.

Phase Three: Process Partition. During this phase, the algorithm partitions all
processors into two groups. The sizes of these groups are proportional to the sizes
of the respective subarrays. If the size of one group is zero, then its size is set to
1 and the other group takes the remaining processors. Each processor group will
take a subarray from Phase Two and apply the same parallel partition method,
Phase One to Phase Three, on it recursively. When only one processor is assigned
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to a subarray, the processor will exit the partition phase and enter the Sequential
Sorting with Helping phase.

Phase Four: Sequential Sorting with Helping. During the sequential sorting phase,
every processor uses quicksort to sort the subarray it gets from phase three and help
other processors’ work after it finishes its own. For the sequential quicksort we use,
the optimization introduced in [LaMarca and Ladner 1997] is applied. This opti-
mization gives good cache behavior. Every processor uses an auxiliary stack for
itself to keep track of the algorithm’s state, and the recursion of Quicksort turns
into a loop of PUSH and POP operations. Whenever a processor encounters a
small subarray which can fit in cache, it will use inserting sort to sort it without
PUSHing it into the stack.

In our parallel sorting algorithm, we introduce the following helping scheme to
achieve good load balance. The stacks of the sequential Quicksort of all processors
are implemented as lock-free (non-blocking) stacks shared among all processors.
All these stacks are restricted shared concurrent stacks, because only one processor
performs the PUSH operations. In the algorithm presented here, we used a variant
of [Treiber 1986] that has been optimized for our restricted class of stacks. When
one processor finished its job, it will start to help other processors by popping out
unsorted subarray (one at a time) from their stacks. In this way we can achieve
load balance online.

The pseudo code of the complete algorithm is shown in Figure 6.

2.2 Analysis of the Algorithm

The parallel Quicksort presented before is a simple parallelization of Quicksort.
The parallel algorithm follows the same divide-and-conquer steps as Quicksort and
the depth of recursion is the same between the parallel quicksort and the sequential
quicksort. Therefore, the amount of comparison and swap operations of the parallel
algorithm is the same with the sequential one: O(Nlg(N)) for the average case
and O(N?) for the worst case. Now, when looking into the analysis of the speedup
of the algorithm we can see that parallelism is introduced in two places: i) the
partition phase and ii) the sorting phase. The time cost of the partition phase is
O(N). The parallel algorithm finishes the partition of the whole array in two steps.
First, all processors neutralize blocks of keys in parallel; this will take O(%) time.
Then one processor will process the unfinished P blocks and M keys; this will take
O(P+ B+ M) time. As M < B, the whole time complexity for the partition phase
is O(% + (P+1)xB). If B< N then the speedup of the partition phase will be
o).

The next parallelism introduced is in the sorting phase. When the whole array
is partitioned into P subarrays, each processor will run Quicksort on one of these
subarrays. The stacks used by all processors for Quicksort during this phase will
be shared by all processors. When a processor is finished with its own subarray,
it will access other processors’ stacks to help them until all keys are sorted. The
speedup for this phase is approximately P with some some small synchronization
overhead.

1The complete version of the code is available for non-commercial use at:
http://www.cs.chalmers.se/ yzhang/PQuick
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PQuicksort (Data *array , int size, int ProcessorNumber)

{

if ( ProcessorNumber == 1) {
/* Parallel Sorting Phasex/
SequentialSorting (array );
HelpOtherProcessor ();

}

/* Parallel Partition Phase; The code is in Figure 2%/
parallel partition;

/* Sequential Partition Phase x/
if ( pid == smallestpid ) {
split = sequential partition; /* The code is in 3 %/

/* Processor Partition Phase x/
processorsplit = Processor Partition;

}

barrier (ProcessorNumber );

/* Recursive call */

PQuicksort(&array [0], split+1, processorsplit);

PQuicksort(&array [split +1], size—split —1,
ProcessorNumber—processorsplit );

Fig. 6: The complete algorithm

From the above analysis, we can see that the time complexity of the algorithm
depends on the size of block, B, and the number of processors, P and does not
depend on the distribution of keys.

3. EXPERIMENTAL RESULTS
3.1 The SUN ENTERPRISE 10000 Platform

The SUN ENTERPRISE 10000, is a scalable, hardware-supported, cache-coherent,
symmetric or uniform memory access (cc-UMA) multiprocessor machine. In EN-
TERPRISE 10000, every processor has its own cache and all the processors and
memory modules attach to the same interconnect. In symmetric shared memory
multiprocessor systems, data normally needs to be moved from point to point, while
addresses often must be broadcasted throughout the system. Therefore the inter-
connect of E10000 uses a packet switched scheme with separate address and data
paths. Data is transfered with a fast crossbar interconnect, and addresses are dis-
tributed with a broadcast router. The crossbar interconnect is constructed with two
levels: global and local. In the Global level, there is a 16 byte wide, 16 x 16 crossbar
that steers data packets between the 16 system boards. The global data crossbar
connects the 16 system boards’ ports, as Local level, together. At the Local level,
“many-to-one” routers are used on the system boards to gather on-board requests
and direct them to one port (per board). The address routing is implemented over
a separate set of four global address buses, one for each of the four memory banks
that can be configured on a system board. The buses are 48 bits wide including
error correcting code bits. Each bus is independent, meaning that there can be
four distinct address transfers simultaneously. Figure 7 graphically describes the
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architecture of the new SUN ENTERPRISE 10000. Main memory is configured in
multiple logical units. All memory units, processors, and I/O buses, are equidistant
in the architecture and all memory modules comprise a single global shared mem-
ory space. The latter means that the machine provides not only a global address
space but also the memory access to any memory location is uniform. There are
four coherency interface controllers (CICs). Each CIC connects to a separate global
address router through one of the four global address buses. The CICs maintain
cache coherency. The machine we used had 36, 249 MHz UltraSPARC processors,
which where divided into two logical domains: one with 4 processors as frontend
and another one with 32 processors. Each CPU had a 16 KB first-level data cache
and a 4 MB second-level cache. Our experiments were done on the 32 processor
domain.
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Fig. 7: The architecture of the SUN Enterprise 10000

3.2 Parallel Sorting with Sample Sort

We compared parallel Quicksort with sample sort. Sample sort has been shown to
be the best comparison-based and consequently general sorting algorithm for larger
data sets [Blelloch et al. 1991; Dusseau et al. 1996; Helman et al. 1996b; Sohn and
Kodama 1998].

Sample sorting is a five-phases algorithm. First it divides the keys evenly among
all P processors, and then, during the first phase each processor sorts locally its
own keys. During the second phase each processor samples a fixed number of keys
from its locally sorted keys. These sample keys in phase three of the algorithm
are sent to one processor, that sorts them and selects P — 1 out of them as sample
splitters for the next phase. During the fourth phase each processor uses these P—1
splitters to partition the sorted input values and to decide locally the appropriate
destinations of its partitioned keys. Finally, in the last phase of the algorithm, each
processor uses mergesort locally to merge the key sequences send to it. In [Li et al.
1993; Shi and Schaeffer 1992] description of the algorithm and its analysis can be
found together with a study on ways to decide how to perform the sampling of the
keys and how to select the sample splitters and how these selection affect the load
balance and the behavior of the program. Sample sort is a very efficient parallel
sorting algorithm on distributed memory and message passing systems [Shan and
Singh 1999].

3.3 Sorting Benchmarks

The performance of sorting depends on the distribution of key values. We used
the benchmark data sets that are described below. A detailed description and
justification of the benchmarks can be found in [Helman et al. 1996a]. In the
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following description, P is the total number of processors used and N is the total
number of keys.

—In Uniform or Random the input keys are uniformly distributed. For the case
where the input is comprised only by integers, it is obtained simply by calling
the random number generator function random() to initialize each key. The
function returns integers in the range from 0 to 23'. For the experiments with
double floating-point input, we divide the integer benchmark values with a prime
number, 97 for our experiments.

—In Gaussian the input values follow the Gaussian distribution. For integer input,
each key is the average of four consecutive integers returned by the random()
function. For the experiments with double data type (floating-point) input, we
normalized the integer inputs in the way described in the Uniform benchmark
case.

—Zero is created by setting every key to a constant that is randomly selected by
calling the function random().

—Bucket is obtained by setting the first 55 elements assigned to each process to be

random numbers between 0 and % — 1, the second 5 elements at each process
to be random numbers between % to % — 1, and so forth. For the experiments
with double data type (floating-point) input, we normalized the integer inputs
the way described in the Uniform benchmark case.

—Stagger is obtained by setting the keys as follows: i) each processors with index

i less than or equal to £, is assigned % keys randomly chosen from the interval

[(2¢+ 1)2—;1(22' + 2)2—;1}, ii) each processor with index ¢ greater than £, is assigned
% keys randomly chosen from the interval [(2i — P)%, (2i —p+ 1)%].

3.4 Results with Integer Input

We used five different input sizes of integers for each of the above five benchmarks:
8M, 32M, 64M, 128M and 256M. For our experiments we had exclusive access to
32 processors of a SUN ENTERPRISE 10000 machine. For parallel Quicksort, we
choose the size of block to be 2048, with this number two blocks could be placed
in the first level cache of our system at the same time. For the sample sort, we
selected the sample size according to [Li et al. 1993; Shi and Schaeffer 1992] and
the number of processors that we had access to. The speedup results are show in
Figures 8, 9, 10, 11 and 12. The results for parallel Quicksort are labeled PQuick.
For the experiments with 256M integer keys, we do not have any results for sample
sort. This is because the kernel configuration of our systems does not allow single
programs to allocate more than 2G bytes of memory and sample sort has higher
memory needs than the parallel Quicksort presented here.

From the results obtained, we can see that for any number of processors and for
any data size selected parallel Quicksort exhibits the following characteristics:
The execution time of parallel Quicksort is not sensitive to the distribution of the
input data. Parallel Quicksort produced the same speedup for the the benchmark
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datasets Uniform, Gaussian, Bucket, and Stagger. For the benchmark Zero, the
speedup that we got is always less than the speedup that we got on the other
benchmarks. But, when looking at the absolute execution times, we can see that
the sequential time for the Zero benchmark is about 30% faster than the sequential
execution time for the other benchmarks while all other benchmarks have almost
the same sequential execution times. The execution time of parallel Quicksort is
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not sensitive to the distribution of the data as mentioned in Section 2.2.

Better Ezecution Times and Speed-ups than Sample Sort. The absolute sequential
execution times from sample sort are at least 15% slower than those of the parallel
Quicksort in general, with only exception a small number of instances with pro-



No. Proc. [U]-64M [G]-64M
PQuick PSRS PQuick PSRS
1 139221763 | 157149728 | 147128678 | 160416695
2 79665604 80083084 74646110 77354959
4 39740592 38210913 37798256 38968839
8 19799215 20113143 19299378 20098710
16 10309607 11108192 9900953 11084988
32 5564001 8015688 5590313 8291338
No. Proc. [B]-64M [S]-64M
PQuick PSRS PQuick PSRS
1 139882786 | 156416659 | 141337885 | 157289882
2 71928127 75946922 82174454 83648007
4 36426837 36768544 37653127 41555739
8 18661486 18728796 19496991 21802329
16 9518032 12768536 9878692 12357691
32 5221680 9297328 5796658 9318278
Table 1: The execution times (us) with 64M Integers
No. Proc. [Z]-8M [Z]-32M \
PQuick PSRS PQuick PSRS |
1 9643146 12912753 48593446 62147791
2 5928310 8383057 28895086 39120591
4 3508595 7251678 14904826 33235381
8 1723524 9285370 7848143 37933231
16 1334066 13362880 4478794 54547186
32 917237 23342432 2910912 93403783
No. Proc. [Z]-64M [Z]-128M |
PQuick PSRS PQuick PSRS
1 100276211 | 127420481 | 211486046 | 262376511
2 59113923 79046473 | 123347231 | 162749347
4 30510105 65319136 62769102 | 131289494
8 15400692 73537879 32329882 | 144721896
16 8475414 | 104793490 16883436 | 203698914
32 5020324 | 178521414 10375268 | 343280741

Table 2: The execution times (us) of Benchmark Zero

No. Proc. [B]-8M [S]-8M
PQuick PSRS PQuick PSRS
1 14269874 16414229 14325041 16452619
2 8244073 8031141 8614346 8548883
4 4252418 4238064 4485420 4402723
8 2204853 2760520 2537265 2722804
No. Proc. [U]-32M [U]-64M
PQuick PSRS PQuick PSRS
1 68339788 76938437 | 139221763 | 157149728
2 38923895 | 36649493 79665604 80083084
4 19327928 | 17931728 39740592 | 38210913
8 9908154 9465147 19799215 20113143

15

Table 3: The execution times (us) of instances (in boldface) where sample sort is faster than

parallel Quicksort

cessors between 2 to 8 and mostly in the benchmarks Uniform and Gaussian. All

the instances in which sample sort outperforms the parallel Quicksort are shown
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in Table 3. The excess execution part in sample sort is due to the Mergesort that
copies the data from one array to another array. From these figures, we can see that
the speedups of the sample sort are better than the parallel Quicksort algorithm
when the input sizes are small and the number of processors are small with the only
exception the benchmark Zero (in Zero sample sort performs very poorly). Table 1
shows the execution times of the benchmark datasets Uniform, Gaussian, Bucket,
and Stagger for parallel Quicksort and the sample sort algorithm with 64M integers
(64 is in the median of 8 and 128, the smallest and the biggest input sizes for sample
sort). In sample sort, the local sort phase is well load balanced. The mergesort
will also be well load balanced if there are not many duplicate keys, which is the
case in benchmarks Uniform and Gaussian. At the same time, when the number
of processors increases, the cache capacity that is used in the algorithm increases.
The increase of cache capacity would offset the parallelism overhead in the sam-
ple sort algorithm and even introduces superlinear speedup e.g. most experiments
on 2 processors for all input data sizes with only exception the benchmark Zero.
However, when the number of processors and/or the input size of the data is large
enough, the cost for parallelism could not be offset by the increase of cache capac-
ity any more. There is no superlinear speedup for sample sort for more than 16
processors and for the experiments with 128M integers only those with 2 processor
show superlinear speedup. After that point, the speedup of sample sort lags behind
the speedup of the parallel Quicksort. As the sequential execution time of sample
sort is longer than the execution time of the parallel Quicksort, the sample sort can
only beat the parallel Quicksort when a large superlinear speedup is achieved.

On benchmark Zero, sample sort never performed better than the parallel Quick-
sort. The benchmark Zero is the most difficult for sample sort. The execution times
of the parallel Quicksort and sample sort for benchmark Zero with 8M, 32M, 64M,
128M are shown in Table 2. When using the benchmark Zero the bottleneck is the
fifth phase of mergesort. Since all keys have the same value, all keys will be send to
one processor at the last phase of the algorithm to be mergesorted. When sorting
inputs from Zero, only the first phase (local sorting) executes in parallel. On the
other hand, parallel Quicksort delivers the best absolute execution times when sort-
ing inputs from benchmark Zero. The reason is that the performance of Quicksort
is optimal because any pivot will partition keys evenly; the best sequential time of
parallel Quicksort for benchmark Zero also confirm this. Partitioning the keys also
help the parallel algorithm by distributing the subarrays evenly among processors.

3.5 Results with Floating Point Inputs

In this section, we present the results of our experiments of sorting 64 bits dou-
ble type (floating-point) input. Because of the same memory allocation limitation
mentioned early, we have the results with data sizes of 8M, 32M, and 64M for both
the parallel Quicksort and the sample sort and the results on 128M for parallel
Quicksort only.

Figure 13, 14, 15 and 16 compare the speedup between the parallel Quicksort
and sample sort algorithm with different double floating point benchmarks. We
can observe the same trend: parallel Quicksort deliver almost the same speedup all
the time; the speedup of the sample sort slowdown when the data size increases
and when the number of processor increases.
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4. CONCLUSION

Cache-coherent shared memory multiprocessors offer fruitful ground for algorithmic
or programming techniques that were considered impractical before, in the context
of high-performance programming, to develop and change a little the way we think
about high-performance programming. We have implemented sample sort and a
parallel version of Quicksort on a cache-coherent shared address space multiproces-
sors: the SUN ENTERPRISE 10000. Our computational experiments show that
parallel Quicksort outperforms sample sort. Sample sort has been long thought
to be the best, general parallel sorting algorithms, especially for larger data sets.
The parallel version of Quicksort is a simple fine-grain parallelization of Quicksort.
Although fine-grain parallelism has long been thought to be inefficient for compu-
tations like sorting due to the synchronization overheads, efficiency was achieved by
increased concurrency between communication and computation, This concurrency
comes from the incorporation of non-blocking techniques especially when sharing
data and sub-tasks. Quicksort might be a practical choice when it comes to general
purpose in-place sorting both for uniprocessor and multiprocessor cc-DSM systems.
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