The Lock-Free t-LSM Relaxed Priority Queue

Martin Wimmer Jakob Gruber
Jesper Larsson Traff

Faculty of Informatics, Paralle] Computing
Vienna University of Technology
1040 Vienna/Wien, Austria

{wimmer,gruber,traff}@par.tuwien.ac.at

Abstract

We present a new, concurrent, lock-free priority queue that relaxes
the delete-min operation to allow deletion of any of the p+ 1 small-
est keys instead of only a minimal one, where p is a parameter that
can be configured at runtime. It is built from a logarithmic num-
ber of sorted arrays, similar to log-structured merge-trees (LSM).
For keys added and removed by the same thread the behavior is
identical to a non-relaxed priority queue. We compare to state-of-
the-art lock-free priority queues with both relaxed and non-relaxed
semantics, showing high performance and good scalability of our
approach.

Categories and Subject Descriptors
Distributed data structures

Keywords Task-parallel programming, priority-queue, concur-
rent data structure relaxation, shared memory

1. Preliminaries and Ordering Semantics

A priority queue is a data structure for storing keys in an ordered
fashion which must support insertion of keys as well as finding
and deleting a minimal (or maximal) key, and may have additional
operations like decreasing or deleting an arbitrary key. In a con-
current setting, the delete-min operation is an obvious scalability
bottleneck, which can be addressed in various ways. We focus on
semantics that provide trade-offs between scalability and lineariz-
ability guarantees on update operations (insert and delete_min)
as well as read operations (find min).

Afek et al. [1] introduced an alternative consistency model
called quasi linearizability which allows operations to occur out
of a correct linearizable order bounded by their distance in such
an order. This model has later been expanded upon by Henzinger
et al. [4] (quantitative relaxation) and Wimmer et al. [7, 8] (p-
relaxation). Our data-structure ensures p-relaxation semantics,
where find min and delete min are allowed to return any of
the p + 1 smallest keys instead of the minimal one, as well as local
ordering semantics, where a thread will never return a key larger
than the smallest key available inserted by the same thread.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the Owner/Author.
Copyright is held by the author/owner(s).
PPoPP’15, February 7-11, 2015, San Francisco, CA, USA

ACM 978-1-4503-3205-7/15/02
http://dx.doi.org/10.1145/2688500.2688547

E.1 [Data]: Data Structures—

277

Philippas Tsigas

Computer Science and Engineering
Chalmers University of Technology
412 96 Goteborg, Sweden

tsigas@chalmers.se

2. The Relaxed £-LSM Priority Queue

Our new priority queue is based on log-structured merge-trees [6].
A log-structured merge-tree (LSM) is a priority queue that operates
on a logarithmic number of sorted arrays of sizes padded to the next
power of two. Each array size is guaranteed to occur at most once
in an LSM. All operations can be performed in O(log n) amortized
time for queues with n items.

Our k-LSM priority queue consists of one thread-local LSM
priority queue per thread, bounded in size by the parameter k,
and one unbounded LSM shared by all threads. Once a thread-
local LSM reaches the size k it is merged into the shared LSM. A
find min will return the smaller of the thread-local minimal key
and one of the k smallest keys in the shared LSM, which is selected
at random. This approach guarantees that find _min returns one of
the p = T'k smallest keys, where 7" is the number of threads.

3. Experimental Evaluation and Comparison

We have compared our lock-free k-priority queue to a state-of-
the-art lock-free priority queue by Lindén and Jonsson [5], and to
the recent relaxed lock-free priority queues by Alistarh et al. [2]
and Wimmer et al. [8]. We show that our data structure has high
absolute performance, due to its cache-efficient layout and small
amount of synchronization operations, as well as good scalability.

The reported experiments were performed on a system consist-
ing of eight Intel Xeon E7-8850 processors with 10 cores each and
1TB of main memory. All data-structures and benchmarks were
implemented in C++ and compiled with gcc 4.9.1.

To compare with the priority queues of Lindén and Jonsson and
Alistarh et al. we used the latter’s throughput benchmark where all
threads randomly insert and delete keys from a queue with a given
prefill. The benchmark creates extremely high contention on the
priority queue and thus provides good insights into its scalability.
We report mean throughput per second for 30 10-second runs.

The throughput results are shown in Figure 1. For the k-LSM
queue, the parameter k has a significant impact on both scalabil-
ity and absolute performance. The larger k, the less we need to
rely on the shared LSM. Performance and scalability furthermore
improves with smaller prefill values, since this also reduces the re-
liance on the shared LSM priority queue. For large k as well as for
the distributed LSM where all data is stored in thread-local LSMs,
almost linear, in some cases even superlinear scalability can be ob-
served. The absolute throughput per thread is close to the through-
put for a binary heap protected by a single lock on one thread. The
Lindén and Jonsson skip-list provides similar performance to but
better scalability than our k-LSM with £k = 0, but remains sen-
sitive to the inherent scalability bottlenecks of non-relaxed prior-
ity queues. A direct comparison between the SprayList by Alistarh
et al. and k-LSM is more difficult. The SprayList will return one

] Heap + Lock 7] Linden & Jonsson 7] SprayList [l k-LSM (0)] k-LsM (4) [l k-LSM (256) [k-LSM (4096) [F] Distributed LSM
é 1.2e407 § 1.0e+07 _
é 9.0e+06 _| ;:’ 7.5e+06 _|
= 6.0e+06 - 5 5.0e+06 _
[oR Q.
< 3.0e+06 _| < 2.5e+06 _
> >
2 0.0e+00 _ 2 0.0e+00 _
= I I I I I I I I = I I I I I I I I
1 2 3 20 40 80 1 2 3 20 40 80
Threads Threads
Figure 1. Throughput per thread per second for priority queues prefilled with 10° (left) and 107 (right) elements.
g ghput p p priority q p g
] centraiized k [Hybrid k] k-LsM

O O
o 0.75 _ o 0.15 _
£ £
< 0.50 % 0.10 _
phol | [[
£ 0.00 M hrssh 9<’ooo

I I I I I I I I

1 2 3 1 20 40 80

Threads

1 64 256 1024 409616384
k

Figure 2. Execution times for SSSP benchmark for varying numbers of threads (k = 256) and values for & (10 threads).

of the O(T logj T) smallest keys whp. where 7T is the number of
threads, as opposed to k-LSM, which will return one of the Tk
smallest keys on delete_min. The relaxation of SprayList grows
superlinearly with the number of threads, whereas for k-LSM it
grows linearly. Assuming small constant factors for the SprayList’s
relaxation, we see k-LSM (4) as the closest match for small num-
bers of threads, and k-LSM (256) for larger numbers. The perfor-
mance of both data structures is fairly similar, with k-LSM having
the advantage of providing configurable relaxation as well as local
ordering semantics.

The data structures by Wimmer et al. [8] are part of a task
scheduling system, and cannot be used stand-alone. It is therefore
not possible to do a fair comparison with the throughput bench-
mark. Instead, we used the SSSP benchmark from Wimmer et
al., which is a straight-forward parallelization of Dijkstra’s single-
source shortest path algorithm that uses a lazy deletion scheme
and reinsertion instead of an explicit decrease_key operation. We
adapted our priority queue to support the lazy deletion scheme.
Since this has a significant impact on performance, but is nei-
ther available with the Lindén and Jonsson priority queue nor the
SprayList, and since there was no easy way to directly delete keys
from these priority queues with the available implementations, we
did not include these data structures in the SSSP benchmark. The
SSSP benchmark was run on Erd8s-Rényi [3] random graphs with
10000 nodes and edge probability 50%. All experiments were re-
peated 30 times, and mean values with confidence intervals are
shown in Figure 2. We compare our k-LSM priority queue against
the centralized and hybrid k-priority queues by Wimmer et al. [8].
While the algorithm of the benchmark seems to have limited scal-
ability, our priority queue provides stable performance while the
other priority queues experience a slowdown with more threads.

4. Conclusion

We sketched a novel relaxed concurrent priority queue with lock-
free progress guarantees. The sequential performance is close to

278

a binary heap, and the data structure shows good scalability for
sufficiently high values of the relaxation parameter k. Comparison
with recent lock-free relaxed priority queues shows that our prior-
ity queue delivers competitive and often superior performance. In
contrast to the SprayList, our priority queue gives fixed and eas-
ily calculated relaxation guarantees and local ordering semantics.
In comparison with the priority queues by Wimmer et al. [8] we
achieve both better scalability and absolute performance for the
SSSP application.

References

[1] Y. Afek, G. Korland, and E. Yanovsky. Quasi-Linearizability: Relaxed
consistency for improved concurrency. In Principles of Distributed Sys-
tems (OPODIS), volume 6490 of Lecture Notes in Computer Science,
pages 395-410, 2010.

[2] D. Alistarh, J. Kopinsky, J. Li, and N. Shavit. The spraylist: A scalable
relaxed priority queue. In 20st ACM SIGPLAN Symposium on Princi-
ples and Practice of Parallel Programming (PPoPP), 2014.

[3] P. Erd6s and A. Rényi. On random graphs. Publicationes Mathematicae
Debrecen, 6:290-297, 1959.

[4] T. A. Henzinger, C. M. Kirsch, H. Payer, A. Sezgin, and A. Sokolova.
Quantitative relaxation of concurrent data structures. In 40th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages (POPL), pages 317-328, 2013.

[5] J. Lindén and B. Jonsson. A skiplist-based concurrent priority queue
with minimal memory contention. In Principles of Distributed Systems
(OPODIS), volume 8304 of Lecture Notes in Computer Science, pages
206-220, 2013.

[6] P. O’Neil, E. Cheng, D. Gawlick, and E. O’Neil. The log-structured
merge-tree (LSM-tree). Acta Informatica, 33(4):351-385, 1996.

[71 M. Wimmer. Variations on Task Scheduling for Shared Memory Sys-
tems. PhD thesis, Vienna University of Technology, 2014.

[8] M. Wimmer, F. Versaci, J. L. Triff, D. Cederman, and P. Tsigas.
Data structures for task-based priority scheduling. In 7/9th ACM SIG-

PLAN Symposium on Principles and Practice of Parallel Programming
(PPoPP), pages 379-380, 2014.

