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Abstract
We present three lock-free data structures for priority task
scheduling: a priority work-stealing one, a centralized one
with ρ-relaxed semantics, and a hybrid one combining both
concepts. With the single-source shortest path (SSSP) prob-
lem as example, we show how the different approaches af-
fect the prioritization and provide upper bounds on the num-
ber of examined nodes. We argue that priority task schedul-
ing allows for an intuitive and easy way to parallelize the
SSSP problem, notoriously a hard task. Experimental ev-
idence supports the good scalability of the resulting algo-
rithm.

The larger aim of this work is to understand the trade-offs
between scalability and priority guarantees in task schedul-
ing systems. We show that ρ-relaxation is a valuable tech-
nique for improving the first, while still allowing semantic
constraints to be satisfied: the lock-free, hybrid k-priority
data structure can scale as well as work-stealing, while still
providing strong priority scheduling guarantees, which de-
pend on the parameter k. Our theoretical results open up
possibilities for even more scalable data structures by adopt-
ing a weaker form of ρ-relaxation, which still enables the
semantic constraints to be respected.

Categories and Subject Descriptors D.4.1 [Operating Sys-
tems]: Process Management—Scheduling

Keywords Task-parallelism, priority scheduling, k-priority
data structure, work-stealing, parallel single-source shortest
paths

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
PPoPP ’14, February 15–19, 2014, Orlando, Florida, USA.
Copyright is held by the owner/author(s).
ACM 978-1-4503-2656-8/14/02.
http://dx.doi.org/10.1145/2555243.2555278

1. Preliminaries
A C++ implementation of our data structures and applica-
tions is available for download as part of the open source
task-scheduling framework Pheet [3, 5]1. Implementation
details, proofs and further references are available in the ac-
companying technical report [4].

2. ρ-relaxation
In order to improve the scalability of the proposed data
structures, we adopt a ρ-relaxation scheme, as introduced
by Afek et al. [1], which allows up to ρ items in the data
structure to be ignored, based on their recency. We say that
an item in a priority queue is ignored whenever some other
item with lower rank is returned by a pop.

The centralized k-priority queue satisfies ρ-relaxation in
the following sense: a pop operation is allowed to ignore
items added by the latest ρ = k push operations (in the
worst case, the top k by priority). In the hybrid k-priority
queue pop operations are allowed to ignore the latest k
items added by each thread, which implies that, being P the
number of threads, up to ρ = Pk items might be ignored.

3. Data structures
3.1 Work-stealing
We adapt work-stealing to priority scheduling, by using lo-
cal priority queues per thread instead of deques [3]. This pre-
serves the scalability of work-stealing, while imposing local
prioritization on the tasks. Due to the decentralized nature
of work-stealing, no global priority ordering can be imposed
and thus no guarantees can be given on the priority of tasks
that are being executed.

3.2 Centralized k-priority data structure
A global priority queue provides strong guarantees on the
priority of tasks, but can suffer from congestion. We reduce
congestion by adopting ρ-relaxation, which is realized by
splitting the data structure into two components: (i) a local

1 http://www.pheet.org
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Figure 1. Total execution time and number of nodes relaxed for varying P (n = 10000, k = 512, p = 50%).

priority queue per thread with references to tasks, and (ii)
a global array of tasks. All the tasks stored in the global
array at some index i < tail are visible to all the threads
and referenced in their local priority queues. Newly created
tasks are stored in the global array at a random position in
the range {tail, . . . , tail + k − 1} (similarly to k-FIFO
queues [2]), with the tail index being advanced whenever
all the k positions are filled.

3.3 Hybrid k-priority data structure
The hybrid k-priority data structure combines the work-
stealing and the ρ-relaxation ideas into a single data struc-
ture. It consists of three components: (i) a global list, storing
tasks visible to all places, (ii) one local task list per thread,
of length at most k, and (iii) one priority queue per thread,
storing references to tasks in the global and local lists, or-
dered by priority. Newly created tasks are added to a local
task list. When more than k tasks have been added to some
local list, it is appended to the global one.

4. Evaluation
Our evaluation is based on a simple parallelization of Di-
jkstra’s algorithm for SSSP, where nodes are speculatively
relaxed to increase the available parallelism. Each thread se-
lects the next node to relax based on its tentative distance
value, by using the priority data structures presented in this
work. Whenever a node is relaxed for which the tentative
distance value is not final, this counts as useless work, since
the node will have to be relaxed again. In our analysis using
Erdős-Rényi random graphs we show that the useless work
performed when using ρ-relaxed priority data structures can
be bounded from above. The theoretical bounds are later ver-
ified by simulation.

We also performed an experimental evaluation of our
three data structure implementations on an 80-core Intel
Xeon system. We show the execution time and the total
number of nodes relaxed for executions as a function of the
number of threads P (Figure 1). The useless work can be
computed by subtracting the number of nodes in the graph
(10000) from the number of relaxed nodes. The ρ-relaxed
data structures barely produce any useless work for k ≤

512, whereas for work-stealing the useless work exceeds the
useful work for 20 threads and more.

The parallel implementations are also compared to a se-
quential implementation of Dijkstra’s algorithm (shown only
for one thread). Due to the small task granularity, the over-
head for parallel execution on all data structures is relatively
high, but for two or more threads the execution times drop
below the sequential time.

5. Conclusion
We have developed three lock-free data structures for prior-
ity scheduling, each of them providing different trade-offs
between scalability and guarantees concerning the execu-
tion order of tasks. We argue that the hybrid k-priority data
structure offers the best compromise between scalability and
amount of useless work performed.

Our evaluation shows that ρ-relaxation is a valuable tech-
nique to improve scalability, while still enabling strong guar-
antees. We understood more deeply which properties are
required to obtain these guarantees and in future work we
plan to further extend priority queues based on this insight:
first results on such relaxed k-priority data structures look
promising.
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