
Work-stealing with Configurable Scheduling Strategies

Martin Wimmer Jesper Larsson Träff
Faculty of Informatics, Research Group Parallel

Computing
Vienna University of Technology

1040 Vienna/Wien, Austria
{wimmer,traff}@par.tuwien.ac.at

Daniel Cederman Philippas Tsigas
Computer Science and Engineering
Chalmers University of Technology

412 96 Göteborg, Sweden
{cederman,tsigas}@chalmers.se

Abstract
Work-stealing systems are typically oblivious to the nature of the
tasks they are scheduling. They do not know or take into account
how long a task will take to execute or how many subtasks it will
spawn. Moreover, task execution order is typically determined by
an underlying task storage data structure, and cannot be changed.
There are thus possibilities for optimizing task parallel executions
by providing information on specific tasks and their preferred exe-
cution order to the scheduling system.

We investigate generalizations of work-stealing and introduce
a framework enabling applications to dynamically provide hints
on the nature of specific tasks using scheduling strategies. Strate-
gies can be used to independently control both local task execution
and steal order. Strategies allow optimizations on specific tasks, in
contrast to more conventional scheduling policies that are typically
global in scope. Strategies are composable and allow different, spe-
cific scheduling choices for different parts of an application simul-
taneously. We have implemented a work-stealing system based on
our strategy framework. A series of benchmarks demonstrates ben-
eficial effects that can be achieved with scheduling strategies.

Categories and Subject Descriptors D.4.1 [Operating Systems]:
Process Management—Scheduling; D.3.2 [Programming Lan-
guages]: Language Classifications—concurrent, distributed, and
parallel languages

General Terms Algorithms

Keywords Work-stealing, scheduler hints, strategies, priorities

1. Introduction
Work-stealing is a popular way to schedule parallel work-loads
of independent tasks [4] and is used by well-known frameworks
such as Cilk [3], Cilk++ [9], Intel Threading Building Blocks [8],
X10 [5] and others. Standard work-stealing schedulers are oblivi-
ous to most properties of individual tasks and treat tasks equally.
When this is a drawback, specialized work-stealing systems can
apply specific optimizations, taking knowledge of the tasks into ac-
count. Such systems can be useful for specific applications, but may
be difficult to compose with other applications running at the same
time.

The execution order for local tasks in a work-stealing system is
determined by the data structures used for storing the tasks. While
the execution order provided by work-stealing deques [1] is good
for some applications, there are application kernels for which other
execution orders are better. Search-based algorithms can profit
from prioritization to explore the most promising branches early.
Other applications benefit from giving preference to tasks that ac-
cess data already in the cache [12]. Locality-aware scheduling poli-
cies are also often used [7]. Another heuristic is to prioritize tasks
on the critical path [11].

2. Scheduling Strategies
We introduce the concept of scheduling strategies as a way of
informing the scheduling system about properties of individual
tasks. Strategies also provide means to prioritize tasks without
losing any generality of the scheduler. In addition, strategies are
composable, so regardless of which strategies/types of strategies
are combined, the scheduling behavior is always well-defined.

2.1 Spawn to call
Strategies make it possible to perform a conversion of task spawns
to synchronous function calls based on properties of the task to
be spawned and the state of the system. Our system maintains a
transitive weight estimate of the work that will be generated by a
task and its descendants. Below a certain threshold the spawn is
converted to a function call. This can depend dynamically on, for
example, the number of tasks in the local task queue.

2.2 Number of tasks to steal
Using the transitive weight the number of tasks stolen can be
chosen to better reflect the amount of work that will be generated
by these tasks, which can improve load balance [2]. Strategies can
control the steal operation in this fashion.

2.3 Priority
Strategies can be used to suggest an execution order to the schedul-
ing system, by giving the user a means to prioritize tasks. An ap-
plication specific execution order of tasks leads to higher efficiency
(performance, memory usage, quality of the results) compared to a
fixed execution order like last-in-first-out.

2.4 Locality
Together with the notion of a place, which denotes an execution
unit together with its supporting data-structures, the prioritization
mechanism can be used to implement per task (spatial and tempo-
ral) locality optimizations.

Copyright is held by the author/owner(s). 
PPoPP’13, February 23–27, 2013, Shenzhen, China.
ACM 978-1-4503-1922-5/13/02. 
 

315



Figure 1. Graph bipartitioning for unweighted graphs. Problem
size n = 39, density 50%. Results obtained on a 4×12-core AMD
Opteron 6168.

2.5 Composability
We achieve composability of algorithms that use different (per task)
strategies by organizing strategies into a hierarchy, which imposes
an order on strategies of different types. Tasks with different strate-
gies are prioritized by the strategy of their common ancestor.

3. Applications and Results
We have used a number of (kernel) applications to illustrate advan-
tages and flexibility of scheduling strategies.

3.1 Graph Bipartitioning
Branch-and-bound algorithms can be implemented in a task-
parallel fashion, and benefit from an execution order determined
by a weight assigned to each subproblem task. We used strategies
to solve the graph-bipartitioning problem using an easily com-
putable lower bound. Figure 1 shows the effect of prioritization vs.
a non-prioritized task-execution (LIFO/FIFO), as well as a standard
work-stealing system without strategy support.

3.2 Prefix sum
For the prefix-sums problem strategies can be used to make a par-
allel algorithm (which performs about a factor two more operations
than the trivial sequential algorithm) adapt towards the sequential
performance when other applications are running at the same time.
Strategies lead to better performance when the prefix-sums compu-
tation is performed concurrently as part of a larger application.

3.3 Unbalanced Tree Search
The fine-grained Unbalanced Tree Search (UTS) benchmark [10]
reduces the scheduler overhead using the more flexible spawn to
call conversion that is possible with strategies.

3.4 Triangle strip generation
Using an implementation of the so called SGI algorithm [6], this
benchmark explores the simultaneous use of two different prioriti-
zation strategies to achieve better results faster.

3.5 Single-source shortest path
The straight-forward parallelization of Dijkstra’s single-source
shortest path algorithm requires prioritization and can be paral-
lelized in a simple way with strategies.

3.6 Quicksort
This standard example can also benefit from strategies. Good cache
behavior is expected if locally spawned tasks are executed depth-

first, and the shorter subsequence is processed first. When stealing
tasks, the largest subsequences should be stolen first to reduce in-
terference. When enough tasks have been generated, further spawns
should be converted to calls. This can all be achieved with strate-
gies.

4. Conclusion
We introduced a dynamic scheduling strategy framework for
work-stealing schedulers in order to enable application dependent
scheduling decisions. This includes decisions on the execution and
stealing order of tasks, as well as on when to merge tasks at run-
time. These decisions can reduce scheduling overhead, as well as
make the execution more efficient and adaptive. We found consid-
erable improvements to a series of kernel benchmarks.

Acknowledgments
This research was partly funded by the European Union Seventh
Framework Programme (FP7/2007-2013) under grant agreement
no. 248481 (project PEPPHER, www.peppher.eu).

References
[1] U. A. Acar, G. E. Blelloch, and R. D. Blumofe. The data locality of

work stealing. Theory of Computing Systems, 35(3):321–347, 2002.
[2] P. Berenbrink, T. Friedetzky, and L. A. Goldberg. The natural work-

stealing algorithm is stable. In Proceedings of the 42nd IEEE Sym-
posium on Foundations of Computer Science (FOCS), pages 178–187,
2001.

[3] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson, K. H.
Randall, and Y. Zhou. Cilk: An efficient multithreaded runtime sys-
tem. Journal of Parallel and Distributed Computing, 37(1):55–69,
1996.

[4] R. D. Blumofe and C. E. Leiserson. Scheduling multithreaded compu-
tations by work stealing. Journal of the ACM, 46(5):720–748, 1999.

[5] P. Charles, C. Grothoff, V. Saraswat, C. Donawa, A. Kielstra,
K. Ebcioglu, C. von Praun, and V. Sarkar. X10: an object-oriented ap-
proach to non-uniform cluster computing. In Proceedings of the 20th
annual ACM SIGPLAN conference on Object-oriented programming,
systems, languages, and applications, OOPSLA, pages 519–538, New
York, NY, USA, 2005. ACM.

[6] F. Evans, S. Skiena, and A. Varshney. Optimizing triangle strips for
fast rendering. In Proceedings of the 7th conference on Visualiza-
tion’96, pages 319–326. IEEE, 1996.

[7] Y. Guo, J. Zhao, V. Cavé, and V. Sarkar. SLAW: A scalable locality-
aware adaptive work-stealing scheduler. In 24th IEEE International
Symposium on Parallel and Distributed Processing (IPDPS), pages
1–12, 2010.

[8] A. Kukanov and M. J. Voss. The foundations for scalable multi-
core software in Intel Threading Building Blocks. Intel Technology
Journal, 11(4), 2007.

[9] C. E. Leiserson. The Cilk++ concurrency platform. The Journal of
Supercomputing, 51(3):244–257, 2010.

[10] S. Olivier, J. Huan, J. Liu, J. Prins, J. Dinan, P. Sadayappan, and
C. Tseng. UTS: An unbalanced tree search benchmark. Languages
and Compilers for Parallel Computing, pages 235–250, 2007.

[11] F. Song, A. YarKhan, and J. Dongarra. Dynamic task scheduling for
linear algebra algorithms on distributed-memory multicore systems.
In Proceedings of the Conference on High Performance Computing
Networking, Storage and Analysis, SC ’09, pages 19:1–19:11, New
York, NY, USA, 2009. ACM.

[12] B. Weissman. Performance counters and state sharing annotations: a
unified approach to thread locality. In Proceedings of the eighth in-
ternational conference on Architectural support for programming lan-
guages and operating systems, ASPLOS-VIII, pages 127–138, New
York, NY, USA, 1998. ACM.

316




