
NB-FEB: A Universal Scalable Easy-to-Use
Synchronization Primitive for Manycore

Architectures

Phuong Hoai Ha1, Philippas Tsigas2, and Otto J. Anshus1

1 University of Tromsø, Department of Computer Science, Faculty of Science,
NO-9037 Tromsø, Norway, {phuong,otto}@cs.uit.no

2 Chalmers University of Technology, Department of Computer Science and
Engineering, SE-412 96 Göteborg, Sweden, tsigas@chalmers.se

Abstract. This paper addresses the problem of universal synchroniza-
tion primitives that can support scalable thread synchronization for large-
scale manycore architectures. The universal synchronization primitives
that have been deployed widely in conventional architectures, are the
compare-and-swap (CAS) and load-linked/store-conditional (LL/SC) prim-
itives. However, such synchronization primitives are expected to reach
their scalability limits in the evolution to manycore architectures with
thousands of cores.
We introduce a non-blocking full/empty bit primitive, or NB-FEB for
short, as a promising synchronization primitive for parallel program-
ming on manycore architectures. We show that the NB-FEB primitive
is universal, scalable, feasible and easy to use. NB-FEB, together with
registers, can solve the consensus problem for an arbitrary number of pro-
cesses (universality). NB-FEB is combinable, namely its memory requests
to the same memory location can be combined into only one memory re-
quest, which consequently makes NB-FEB scalable (scalability). Since
NB-FEB is a variant of the original full/empty bit that always returns
a value instead of waiting for a conditional �ag, it is as feasible as the
original full/empty bit, which has been implemented in many computer
systems (feasibility). We construct, on top of NB-FEB, a non-blocking
software transactional memory system called NBFEB-STM, which can
be used as an abstraction to handle concurrent threads easily. NBFEB-
STM is space e�cient: the space complexity of each object updated by
N concurrent threads/transactions is Θ(N), which is optimal.

1 Introduction

Universal synchronization primitives [9] are essential for constructing non-blocking
synchronization mechanisms for parallel programming, such as non-blocking soft-
ware transactional memory [8, 10, 12, 17]. Non-blocking synchronization elimi-
nates the concurrency control problems of mutual exclusion locks, such as prior-
ity inversion, deadlock and convoying. As manycore architectures with thousands

of cores are expected to be our future chip architectures [2], universal synchro-
nization primitives that can support scalable thread synchronization for such
large-scale architectures are desired.

However, the conventional universal primitives such as compare-and-swap
(CAS) and load-linked/ store-conditional (LL/SC) are expected to reach their
scalability limits in the evolution to manycore architectures with thousands of
cores. The universal primitives are usually built on top of conventional cache-
coherent protocols. Experimental studies have recently shown that the universal
primitives, which lock the entire memory bank to ensure atomicity (i.e. coarse-
grained synchronization), are not scalable for multicore architectures [19]. The
authors of [19] also experimentally show that the original (blocking) full/empty
bit (FEB), which lock only the memory location under consideration (i.e. �ne-
grained synchronization), scales much better. Moreover, the conventional cache-
coherent protocols are considered ine�cient for large-scale manycore architec-
tures [2]. As a result, several emerging multicore architectures, such as the
NVIDIA CUDA, the ClearSpeed CSX, the IBM Cell BE and the Cyclops-64,
utilize a fast local memory for each processing core rather than a coherent data
cache.

For the emerging manycore architectures without a coherent data cache, the
CAS and LL/SC primitives are not scalable either since they are not combinable
[3, 11]. Primitives are combinable if their memory requests to the same memory
location (arriving at a switch of the processor-to-memory interconnection net-
work) can be combined into only one memory request. Separate replies to the
original requests are later created from the reply to the combined request (at
the switch). The combining technique has been implemented in the NYU Ul-
tracomputer [4] and the IBM RP3 machine [14], and has been shown to be a
promising technique for large-scale multiprocessors to alleviate the performance
degradation due to a synchronization "hot spot". The CAS primitives are not
combinable since the success of a CAS(x, a, b) primitive depends on the cur-
rent value of the memory location x. For m-bit locations (e.g. 64-bit words),
there are 2m possible values and therefore, a combined request that represents k
CAS(x, a, b) requests, k < 2m, must carry as many as k di�erent checking-values
a and k new values b. Although the single-valued CASa(x, b) [3], which will atom-
ically swap b to x if x equals a is combinable, the number of instructions CASa

must be as many as the number of integers a that can be stored in one memory
word (e.g. 264 CASa instructions for 64-bit words, where a = 0, 1 · · · , 264 − 1).
Note that the value domains of x, a and b must be the same. This fact makes
the single-valued CASa unfeasible for hardware implementation. Note that the
LL/SC primitives are not combinable since the success of a SC primitive de-
pends on the state of its reservation bit at the memory location that has been
set previously by the corresponding LL primitive. Therefore, a combined request
that represents k SC requests (from di�erent processes/processors) must carry
as many as k store values.

Another universal primitive called sticky bit has been suggested in [15], but
it has not been deployed so far due to its usage complexity. A sticky bit is a

data object that holds 0, 1 or ⊥ and supports the following operations: Jam(v),
which sets the value to v and returns Success atomically if the value was ⊥ or v;
Flush(), which sets the value to ⊥; and Read(), which returns the current value
of the object. To the best of our knowledge, the universal construction using the
sticky bit in [15] does not prevent a delayed thread, even after being helped,
from jamming the sticky bits of a cell that has been re-initialized and reused.
Since the universal construction is built on a doubly-linked list of cells, it is not
obvious how an external garbage collector (supported by the underlying system)
can help solve the problem. Moreover, the space complexity of the universal
construction for an object is as high as O(N3) [15] 3 , where N is the number
of processes.

This paper suggests a novel synchronization primitive, called NB-FEB, as
a promising synchronization primitive for parallel programming on manycore
architectures. What makes NB-FEB a promising primitive is its following four
main properties. NB-FEB is:
Feasible: NB-FEB is a non-blocking variant of the conventional full/empty bit

that always returns the old value of the variable instead of waiting for its
conditional �ag to be set (or cleared) (cf. Section 3). This simple modi�cation
makes NB-FEB as feasible as the original (blocking) full/empty bit, which
has been implemented in many computer systems such as HEP, Tera (or Cray
MTA-2), MDP, Sparcle, M-Machine, and Eldorado. The original full/empty
bit is also used to design a synchronization array � a dedicated hardware
structure for pipelined inter-thread communication [16].

Universal: This simple modi�cation, however, signi�cantly increases the syn-
chronization power of full/empty bits, making NB-FEB as powerful as CAS
or LL/SC. NB-FEB, together with registers, can solve wait-free4 consensus
[9] for an arbitrary number of processes, the essential property for construct-
ing non-blocking synchronization mechanisms (cf. Section 3.1). Note that
due to blocking, the original full/empty bit is as weak as read/write regis-
ters with respect to synchronization power: it, together with registers, cannot
solve wait-free consensus for even two processes.

Scalable: NB-FEB is combinable, namely its memory requests to the same mem-
ory location can be combined into only one memory request (cf. Section 3.2).
This empowers NB-FEB with the ability to provide scalable thread synchro-
nization for large-scale manycore architectures [4, 14].

Easy-to-use: The original full/empty bit is well-known as a special-purpose prim-
itive for fast producer-consumer synchronization and has been used exten-
sively in speci�c domains of applications (e.g. parallel graph algorithms). In
this paper, by providing an abstraction on top of NB-FEB, we show that NB-
FEB can be deployed easily as a general-purpose primitive. We construct, on

3 Each object needs O(N2) cells of size O(N).
4 An implementation is wait-free if it guarantees that any process can complete any
operation on the implemented object in a �nite number of steps, regardless of the
execution speeds on the other processes.

top of NB-FEB, a non-blocking software transactional memory system called
NBFEB-STM, which can be used as an abstraction to handle concurrent
threads easily. NBFEB-STM is space e�cient: the space complexity of each
object updated by N concurrent threads/transactions is Θ(N), the optimal
(cf. Section 4).
The rest of this paper is organized as follows. Section 2 presents the shared

memory and interconnection network models assumed in this paper. Sections
3 describes the NB-FEB primitive in detail and proves its universality and
combinability properties. Section 4 introduces and analyzes NBFEB-STM, the
obstruction-free multi-versioning STM constructed on top of the NB-FEB prim-
itive. Section 5 concludes this paper. Because of space limitations, most proofs
are omitted from this version of the paper and can be found in [7].

2 Models

Similarly to previous research on the synchronization power of synchronization
primitives [9], this paper assumes the linearizable shared memory model. Due
to NB-FEB combinability, as in [11] we assume that the processor-to-memory
interconnection network is nonovertaking and that a reply message is sent back
on the same path followed by the request message. The intermediate nodes on
the communication path from a processor to a global shared memory module
can be either switches of a multistage interconnection network [11] or memory
modules of a multilevel memory hierarchy [3]. The intermediate nodes can detect
requests destined for the same destination and maintain the queues of requests.
In this paper, we assume that such a combining network is provided and we
mainly focus on the combining logic of the new primitive. For the design details
of the combining network, the reader is referred to [4]. No memory coherent
schemes are assumed.

3 NB-FEB Primitives

NB-FEB is a set of four primitives: test-�ag-and-set TFAS (cf. Algorithm 1),
Load (Algorithm 2), store-and-clear SAC (Algorithm 3) and store-and-set SAS
(Algorithm 4). Each variable x has an associated full-empty bit flagx. Primitive
TFAS will atomically write value v to variable x (and set flagx to true) if flagx

is false. The primitive always returns the (previous) value of pair (x, flagx)
regardless of the value of flagx. Primitive SAC atomically writes v to x, sets
flagx to false and returns the previous value of (x, flagx). Primitive SAS is
similar to SAC except that SAS sets flagx to true. Regarding conditional load
primitives such as load-if-set and load-if-clear in the original FEB, a processor
can check the �ag value, flagx, returned by the unconditional load primitive
Load to determine if it was successful.

When the value of flagx returned is not needed, we just write r ←TFAS(x, v)
instead of (r, flagr) ← TFAS(x, v), where r is x's old value. The same applies to

SAC and SAS. For Load, we just write r ← x instead of r ← Load(x). In this
paper, the �ag value returned is needed only for combining NB-FEB primitives.

Algorithm 1 TFAS(x: variable, v:
value): Test-Flag-And-Set, a non-
blocking variant of the original Store-
if-Clear-and-Set primitive, which
always returns the old value of x.

(o, flago) ← (x, flagx);
if flagx = false then

(x, flagx) ← (v, true);
end if
return (o, flago);

Algorithm 2 Load(x: variable)
return (x, flagx);

Algorithm 3 SAC(x: variable, v:
value): Store-And-Clear

(o, flago) ← (x, flagx);
(x, flagx) ← (v, false);
return (o, flago);

Algorithm 4 SAS(x: variable, v:
value): Store-And-Set

(o, flago) ← (x, flagx);
(x, flagx) ← (v, true);
return (o, flago);

Algorithm 5 SICAS(x: variable, v:
value): Store-If-Clear-And-Set, one of
the original FEB primitives, which
waits for flagx to be clear (or false).

Wait for flagx to be false;
(x, flagx) ← (v, true);

Algorithm 6 LISAC(x: variable):
Load-If-Set-And-Clear, one of the orig-
inal FEB primitives, which waits for
flagx to be set (or true).

Wait for flagx to be true;
flagx ← false;
return x;

Algorithm 7
TFAS_Consensus(proposal: value)
Decision: shared variable. The shared vari-
able is initialized to ⊥ with a clear �ag (i.e.
flagDecision = false).

Output: a value agreed by all processes.
1T: (first, flagfirst) ←

TFAS(Decision, proposal);
2T: if first =⊥ then
3T: return proposal;
4T: else
5T: return first;
6T: end if

3.1 TFAS : A Universal Primitive

In this section, we will show that TFAS is a universal primitive like CAS. Note
that due to blocking, the original full/empty bit primitives such as store-if-clear-
and-set (cf. Algorithm 5) and load-if-set-and-clear (cf. Algorithm 6) are as weak
as read/write registers with respect to synchronization power: they, together
with registers, cannot solve wait-free consensus [9] for even two processes.

Lemma 1. (Universality) The test-�ag-and-set primitive (or TFAS for short)
is universal.

The wait-free consensus algorithm is shown in Algorithm 7. Processes share
a variable called Decision, which is initialized to ⊥ with a false �ag. Each
process p proposes its value (6=⊥) called proposal by calling TFAS_Consensus
(proposal).

The TFAS_Consensus procedure is clearly wait-free since it contains no
loops. It is not di�cult to see that the procedure will return the proposal of the
�rst process executing TFAS on the Decision variable to all processes.

3.2 Combinability
Lemma 2. (Combinability) NB-FEB primitives are combinable.

Proof. Figure 1 summarizes the combining logic of NB-FEB primitives on a
memory location x. The �rst column is the name of the �rst primitive request
and the �rst row is the name of the successive primitive request. For instance,
the cell [SAS,TFAS] is the combining logic of SAS and TFAS in which SAS
is followed by TFAS . Let v1, v2, r and fr be the value of the �rst primitive
request, the value of the second primitive request, the value returned and the
�ag returned, respectively. In each cell, the �rst line is the combined request,
the second is the reply to the �rst primitive request and the third (and forth)
is the reply to the successive primitive request. The values 0 and 1 of fr in the
reply represent false and true, respectively.

Consider cell [TFAS ,TFAS] as an example. The cell describes the case where
request TFAS (x, v1) is followed by request TFAS (x, v2), at an intermediate node
(e.g. a switch) of the processor-to-memory interconnection network. At the node,
the two input requests are combined into only one output request TFAS (x, v1)
(line 1), which will be forwarded further to the corresponding memory controller.
When receiving a reply (r, fr) to the combined request, the intermediate node
at which the requests were combined, creates separate replies to the two original
requests. The reply to the �rst original request, TFAS (x, v1), is (r, fr) (line 2) as
if the request was executed by the memory controller. The reply to the successive
request, TFAS (x, v2), depends on whether the combined request TFAS (x, v1)
has successfully updated the memory location x. If fr = 0, TFAS (x, v1) has
successfully updated x with its value v1. Therefore, the reply to the successive
request TFAS (x, v2) is (v1, 1) as if the request was executed right after the �rst
request TFAS (x, v1). If fr = 1, TFAS (x, v1) has failed to update the x variable.
Therefore, the reply to the successive request TFAS (x, v2) is (r, 1). ut

Due to the combining logic in Figure 1, the set of primitives TFAS (universal
primitive), Load (read-primitive), SAC and SAS (write-primitives) are closed
under the combining operation: the combination of any two primitives of the
set belongs to the set (e.g. cell [SAC,TFAS] is SAS). Namely, all concurrent
requests to the same memory location can be combined into only one request.
Based on previous experimental results of combinable primitives in the literature
such as fetch-and-add [4, 14], NB-FEB would be scalable in practice.

4 NBFEB-STM: Obstruction-free Multi-versioning STM

Like previous obstruction-free 5 multi-versioning STM called LSA-STM [17], the
new software transactional memory called NBFEB-STM assumes that objects
are only accessed and modi�ed within transactions. NBFEB-STM assumes that
5 A synchronization mechanism is obstruction-free if any thread that runs solo (i.e.
without encountering a synchronization con�ict from a concurrent thread) for long
enough, makes progress.

there are no nested transactions, namely each thread executes only one trans-
action at a time. NBFEB-STM, like other obstruction-free STMs [10, 12, 17],
is designed for garbage-collected programming languages (e.g. Java). A vari-
able reclaimed by the garbage collector is assumed to have all bits 0 when it is
reused. Note that there are non-blocking garbage collection algorithms that do
not require synchronization primitives other than reads and writes while they
still guarantee the non-blocking property for application-threads. Such a garbage
collection algorithm is presented in [7].

(x, [v1]) The successive primitive with parameters (x, [v2])
Load SAC SAS TFAS

Load Load SAC(v2) SAS(v2) TFAS (v2)
(r, fr) (r, fr) (r, fr) (r, fr)
(r, fr) (r, fr) (r, fr) (r, fr)

SAC SAC(v1) SAC(v2) SAS(v2) SAS(v2)
(r, fr) (r, fr) (r, fr) (r, fr)
(v1, 0) (v1, 0) (v1, 0) (v1, 0)

SAS SAS(v1) SAC(v2) SAS(v2) SAS(v1)
(r, fr) (r, fr) (r, fr) (r, fr)
(v1, 1) (v1, 1) (v1, 1) (v1, 1)

TFAS TFAS (v1) SAC(v2) SAS(v2) TFAS (v1)
(r, fr) (r, fr) (r, fr) (r, fr)
Like 5th Like 5th Like 5th if fr=0: (v1, 1)
column column column else: (r, 1)

Fig. 1. The combining logic of NB-
FEB primitives on a memory location
x

TMObj...

next 0

new
old
cts

Tx

next 0

new
old
cts

Tx

Aborted 1
cts

Committed1Active 0Active 0
ctsctscts

10tsloc 10tsloc

next

new
old
cts

Tx

1

new
old
cts

Tx

next 1

Data2Data3Data4

1020 10

20

Data1

Transaction Tx1Tx2Tx3Tx4

Loc4 Loc3 Loc2 Locator Loc1

[1][2][3][4]
tsloc 20tsloc 0

Fig. 2. The data structure of a trans-
actional memory object TMObj in
NBFEB-STM.

Primitives TFAS , SAC and Load are used to implement NBFEB-STM. Note
that primitive SAS is included in NB-FEB to make the set of NB-FEB primitives
closed under the combining operation (cf. cell [SAC,TFAS] in Figure 2). Since
NB-FEB primitives are combinable, NBFEB-STM eliminates all conventional
synchronization hot spots in STMs (cf. Lemma 10).

4.1 Challenges and Key Ideas

Unlike the STMs using CAS [10, 12, 17], NBFEB-STM using TFAS and SAC
must handle the problem that SAC's interference with concurrent TFAS will
violate the atomicity semantics expected on variable x. Overlapping TFAS 1 and
TFAS2 both may successfully write their new values to x if SAC interference
occurs.

The key idea is not to use the transactional memory object TMObj 6 [10, 12,
17] that needs to switch its pointer frequently to a new locator (when a transac-
tion commits). Such a TMObj would need SAC in order to clear the pointer's
�ag, allowing the next transaction to switch the pointer. Instead, NBFEB-STM
keeps a linked-list of locators for each object and integrates a write-once pointer
next into each locator (cf. Figure2). When opening an object O for write, a
6 The reader is assumed to be familiar with the basic concepts of STMs, which are
nicely presented in the seminal paper [10].

transaction T tries to append its locator to O's locator-list by changing the
next pointer of the head-locator7 of the list using TFAS . Due to the semantics
of TFAS , only one of the concurrent transactions trying to append their loca-
tors succeeds. The other transactions must retry in order to �nd the new head
and then append their locators to the new head. Using the locator-list, each
next pointer is changed only once and thus its �ag does not need to be cleared
during the lifetime of the corresponding locator. This prevents SAC from in-
terleaving with concurrent TFAS . The next pointer, together with its locator,
will be reclaimed by the garbage collector when the lifetime of the locator is
over. The garbage collector ensures that a locator will not be recycled until no
thread/transaction has a reference to it.

Linking locators together creates another challenge on the space complexity
of NBFEB-STM. Unlike the STMs using CAS, a delayed/halted transaction
T in NBFEB-STM may prevent all locators appended after its locator in a
locator-list from being reclaimed. As a result, T may make the system run out
of memory and thus prevent other transactions from making progress, violating
the obstruction-freedom property. The key idea to solve the space challenge is
to break the list of obsolete locators into pieces so that a delayed transaction T
prevents from being reclaimed only the locator that T has a direct reference as
in the STMs using CAS. The idea is based on the fact that only the head of O's
locator-list is needed for further accesses to the O object.

However, breaking the list of an obsolete object O also creates another chal-
lenge on �nding the head of O's locator-list. Obviously, we cannot use a head
pointer as in non-blocking linked-lists since modifying such a pointer requires
CAS. The key idea is to utilize the fact that there are no nested transactions
and thus each thread has at most one active locator8 in each locator list. There-
fore, by recording the latest locator of each thread appended to O's locator-list,
a transaction can �nd the head of O's locator list. The solution is elaborated
further in Section 4.3 and Section 4.4.

Based on the key ideas, we come up with the data structure for a transactional
memory object that is illustrated in Figure 2 and presented in Algorithm 8.

4.2 Data Structures
A transactional memory object TMObj in NBFEB-STM is an array of N pairs
(pointer, timestamp), where N is the number of concurrent threads/transactions,
as shown in Figure 2. Item TMObj[i] is modi�ed only by thread ti and can be
read by all threads. Pointer TMObj[i].loc points to the locator called Loci corre-
sponding to the latest transaction committed/aborted by thread ti. Timestamp
TMObj[i].ts is the commit timestamp of the object referenced by Loci.old. After
successfully appending its locator Loci to the list by executing TFAS (head.next, Loci),
ti will update its own item TMObj[i] with its new locator Loci. The TMObj ar-
ray is used to �nd the head of the list of locators Loc1, · · · , LocN . Note that since
7 The head-locator is the last element of O's singly-linked list whose next pointer is
null (e.g. Loc3 in Figure 2)

8 An active locator is a locator that is still in use, opposite to an obsolete locator.

contemporary large-scale multicore architectures (e.g. NVIDIA CUDA with up
to 30 cores [13]) deploy high memory bandwidth to deal with the high latency of
shared memory accesses, reading/writing to an array with several elements such
as TMObj will not be problematic on manycore architectures. For instance, the
NVIDIA CUDA currently allows each core to read/write to a large segment of
shared memory (e.g. 128 bytes) in a single memory transaction.

For each locator Loci, in addition to �elds Tx, old and new that reference the
corresponding transaction object, the old data object and the new data object,
respectively, as in DSTM[10], there are two other �elds cts and next. The cts
�eld records the commit timestamp of the object referenced by old. The next
�eld is the pointer to the next locator in the locator list. The next pointer is
modi�ed by NB-FEB primitives.

In Figure 2, values {0, 1} in the next pointer denote the values {false, true}
of its �ag, respectively. The next pointer of the head of the locator list, Loc3.next,
has its �ag clear (i.e. 0) while the next pointers of previous locators (e.g. Loc1.next,
Loc2.next) have their �ags set (i.e. 1) since their next pointers were changed.
The next pointer of a new locator (e.g. Loc4.next) is initialized to (⊥, 0). Due
to the garbage collector semantics, all locators Locj reachable from the TMObj
shared object by following their Locj .next pointers, will not be reclaimed.

For each transaction object Txi, in addition to �elds status, readSet and
writeSet corresponding to the status, the set of objects opened for read, and
the set of objects opened for write, respectively, there is a �eld cts recording
Txi's commit timestamp (if Txi committed) as in LSA-STM [17].

4.3 Algorithm
A thread ti starts a transaction T by calling the StartSTM(T) procedure (Al-
gorithm 8). The procedure sets T.status to Active and clears its �ag using SAC
(cf. Algorithm 3). The procedure then initializes the lazy snapshot algorithm
(LSA) [17] by calling LSA_Start. NBFEB-STM utilizes LSA to preclude in-
consistent views by live transactions, an essential aspect of transactional memory
semantics [6]. The LSA has been shown to be an e�cient mechanism to construct
consistent snapshots for transactions [17]. Moreover, the LSA can utilize up to
(N + 1) versions of a transactional memory object TMObj recorded in N loca-
tors of TMObj's locator list. Note that the global counter CT in LSA can be
implemented by the fetch-and-increment primitive [4], a combinable (and thus
scalable) primitive [11]. Except for the global counter CT , the LSA in NBFEB-
STM does not need any strong synchronization primitives other than TFAS .
The Abort(T) operation in LSA, which is used to abort a transaction T , is re-
placed by TFAS (T.status, Aborted). Note that the status �eld is the only �eld
of a transaction object T that can be modi�ed by other transactions.

Read-accesses When a transaction T opens an object O for read, it invokes the
OpenR procedure (Algorithm 11). The procedure simply calls the LSA_Open
procedure of LSA [17] in the Read mode to get the version of O that maintains
a consistent snapshot with the versions of other objects being accessed by T .

If no such a version of O exists, LSA_Open will abort T and consequently
OpenR will return ⊥ (line 3R). That means there is a con�icting transaction
that makes T unable to maintain a consistent view of all the object being accessed
by T . Otherwise, OpenR returns the version of O that is selected by LSA. This
version is guaranteed by LSA to belong to a consistent view of all the objects
being accessed by T . Up to (N + 1) versions are available for each object O
in NBFEB-STM (cf. Lemma 7). Since NBFEB-STM utilizes LSA, read-accesses
to an object O are invisible to other transactions and thus do not change O's
locator list.

Write-accesses When a transaction T opens an object O for write, it invokes the
OpenW procedure (cf. Algorithm 13). The task of the procedure is to append
to the head of O's locator list a new locator L whose Tx and old �elds reference
to T and O's latest version, respectively. In order to �nd O's latest version, the
procedure invokes FindHead (cf. Algorithm 10) to �nd the current head of O's
locator list (line 3W). When the head called H is found, the procedure deter-
mines O's latest version based on the status of the corresponding transaction
H.Tx as in DSTM [10], by invoking InitLoc (line 4W). If the H.Tx transaction
committed, O's latest version is H.new with commit timestamp H.Tx.cts (lines
2I-4I, Algorithm 12). A copy of O's latest version is created and referenced by
L.new (line 5I) (cf. locators Loc2 and Loc3 in Figure 2 as H and L, respec-
tively, for an illustration). If the H.Tx transaction aborted, O's latest version is
H.old with commit timestamp H.cts (lines 7I-9I) (cf. locators Loc1 and Loc2 in
Figure 2 as H and L, respectively, for an illustration). If the H.Tx transaction
is active, OpenW consults the contention manager [5, 18] (line 13I, Algorithm
12) to solve the con�ict between the T and H.Tx transactions. If T must abort,
OpenW tries to change T.status to Aborted using TFAS (lines 15I-16I, Algo-
rithm 12) and returns ⊥ (line 5W, Algorithm 13). Note that other transactions
change T.status only to Aborted, and thus if TFAS at line 15I fails, T.status has
been changed to Aborted by another transaction. If H.Tx must abort, OpenW
changes H.Tx.status to Aborted using TFAS (line 18I, Algorithm 12) and checks
H.Tx.status again.

The latest version of O is then checked to ensure that it, together with
the versions of other objects being accessed by T , belongs to a consistent view
using LSA_Open with "Write" mode (line 7W). If it does, OpenW tries to
append the new locator L to O's locator list by changing the H.next pointer to
L (line 11W). Note that the H.next pointer was initialized to ⊥ with a clear
�ag, before H was successfully appended to O's locator list (line 24I, Algorithm
12). If OpenW does not succeed, another locator has been appended as a new
head and thus OpenW must retry to �nd the new head (line 12W). Otherwise,
it successfully appends the new locator L as the new head of O's locator list.
OpenW, which is being executed by a thread ti, then makes O[i].ptr reference
to L and records L.cts in O[i].ts (line 15W). This removes O's reference to the
previous locator oldLoc appended by ti, allowing oldLoc to be reclaimed by the
garbage collector. Since oldLoc now becomes an obsolete locator, its next pointer
is reset (line 16W) to break possible chains of obsolete locators reachable by a

delayed/halted thread, helping oldLoc's descendant locators in the chains be
reclaimed. For each item j in the O array such that timestamp O[j].ts < O[i].ts,
the O[j].ptr locator now becomes obsolete in a sense that it no longer keeps O's
latest version although it is still referenced by O[j] (since only thread tj can
modify O[j]). In order to break the chains of obsolete locators, OpenW resets
the next pointer of the O[j].ptr locator so that O[j].ptr's descendant locators
can be reclaimed by the garbage collector (lines 17W-18W). This chain-breaking
mechanism makes the space complexity of an object updated by N concurrent
transactions/threads in NBFEB-STM be Θ(N), the optimal (cf. Theorem 1).

In order to �nd the head of O's locator list as in OpenW, a transaction
invokes the FindHead(O) procedure (cf. Algorithm 10). The procedure atomi-
cally reads O into a local array start (line 2F). Such a multi-word read operation
is supported by emerging multicore architectures (e.g. CUDA [13]) which deploy
high memory bandwidth to deal with the high latency of shared memory ac-
cesses. In the contemporary chips of these architectures, a read operation can
atomically read 128 bytes. In general, such a multi-word read operation can be
implemented as an atomic snapshot using only single-word read and single-word
write primitives9 [1]. FindHead �nds the item startlatest with the highest times-
tamp in start and searches for the head from locator startlatest.ptr by following
the next pointers until it �nds a locator H whose next pointer is ⊥ (lines 3F-6F).
Since some locators may become obsolete and their next pointers were reset to
⊥ by concurrent transactions (lines 16W and 18W in Algorithm 13), FindHead
needs to check H's commit timestamp against the highest timestamp of O at
a moment after H is found (lines 8F-10F). If H's commit timestamp is greater
than or equal to the highest timestamp of O, H is the head of O's locator list (cf.
Lemma 4). Otherwise, H is an obsolete locator and FindHead must retry (line
10F). The FindHead procedure is lock-free, namely it will certainly return the
head of O's locator list after at most N iterations unless a concurrent thread has
completed a transaction and subsequently has started a new one, where N is the
number of concurrent (updating) threads (cf. Lemma 5). Note that as soon as a
thread obtains head from FindHead (line 3W of OpenW, Algorithm 13), the
locator referenced by head will not be reclaimed by the garbage collector until
the thread returns from the OpenW procedure.

Commitments When committing, read-only transactions in NBFEB-STM do
nothing and always succeed in their commit phase as in LSA-STM [17]. They
can abort only when trying to open an object for read (cf. Algorithm 11). Other
transactions T , which have opened at least one object for write, invoke the
CommitW procedure (Algorithm 9). The procedure calls the LSA_Commit
procedure to ensure that T still maintains a consistent view of objects being
accessed by T (line 1C). T 's commit timestamp is updated with the timestamp
returned from LSA_Commit (line 2C). Finally, CommitW tries to change
T.status to Committed (line 3C). T.status will be changed to Committed at
this step if it has not been changed to Aborted due to the semantics of TFAS .

9 Note that single-word read/write primitives are combinable [11].

Algorithm 8 StartSTM(T : transac-
tion)
TMObj: array[N] of {ptr, ts}. Pointer
TMObj[i].ptr points to the locator called
Loci corresponding to the latest transaction
committed/aborted by thread ti. Timestamp
TMObj[i].ts is the commit timestamp of the
object referenced by Loci.old. N is the number
of concurrent threads/transactions. TMObj[i] is
written only by thread ti.

Locator: record tx, new, old: pointer; cts:
timestamp; end. The cts timestamp is the
commit timestamp of the old version.

Transaction: record status :
{Active, Committed, Aborted}; cts: times-
tamp; end. NBFEB-STM also keeps read/write
sets as in LSA-STM, but the sets are omitted
from the pseudocode since managing the sets in
NBFEB-STM is similar to LSA-STM.

1S: SAC(T.status, Active); // Store-and-clear
2S: LSA_Start(T) // Lazy snapshot algo-

rithm

Algorithm 9 CommitW(T : Transac-
tion): Try to commit an update trans-
action T by thread pi

1C: CTT ← LSA_Commit(T); // Check con-
sistent snapshot. CTT is T 's unique commit
timestamp from LSA.

2C: T.cts ← CTT ; // Commit timestamp of T
if T manages to commit.

3C: TFAS(T.status, Committed);

Algorithm 10 FindHead(O:
TMObj): Find the head of the lo-
cator list
Output: reference to the head of the locator list
1F: repeat
2F: start ← O; // Read O to a local array

atomically.
3F: Let startlatest be the item with highest

timestamp;
4F: tmp ← startlatest.ptr; // Find a (possi-

ble) head, starting from startlatest.ptr.
5F: while tmp.next 6=⊥ do
6F: tmp ← tmp.next;
7F: end while
8F: start′ ← O; // Check if current tmp is

the actual head.
9F: Let start′latest be the item with highest

timestamp;
10F: until tmp.cts ≥ start′latest.ts;
11F: return tmp;

Algorithm 11 OpenR(T : Transac-
tion; Oi: TMObj): Open a transac-
tional object for read
Output: reference to a data object if succeeds,

or ⊥.
1R: LSA_Open(T, 0i, ”Read”); // LSA's

Open procedure
2R: if T.status = Aborted then
3R: return ⊥;
4R: else
5R: return the version chosen by

LSA_Open;
6R: end if

4.4 Analysis

In this section, we prove that NBFEB-STM ful�lls the three essential aspects of
transactional memory semantics [6]:
Instantaneous commit: Committed transactions must appear as if they executed

instantaneously at some unique point in time, and aborted transactions, as
if they did not execute at all.

Preluding inconsistent views: The state (of shared objects) accessed by live trans-
actions must be consistent.

Preserving real-time order: If a transaction Ti commits before a transaction Tj

starts, then Ti must appear as if it executed before Tj . Particularly, if a trans-
action T1 modi�es an object O and commits, and then another transaction
T2 starts and reads O, then T2 must read the value written by T1 and not
an older value.
We present some key properties of NBFEB-STM that make NBFEB-STM

ful�ll the three aspects. Because of space limitations, proofs are in the full version
of this paper [7].

Algorithm 12
InitLoc(newLoc, head: Locator; T :
Transaction): Initialize a new locator
Output: ⊥ if T.status = Aborted
1I: for i = 0 to 1 do
2I: if head.tx.status = Committed then
3I: newLoc.old ← head.new;
4I: newLoc.cts ← head.tx.cts;
5I: newLoc.new ← Copy(head.new);//

Create a duplicate
6I: break;
7I: else if head.tx.status = Aborted then
8I: newLoc.old ← head.old;
9I: newLoc.cts ← head.cts;
10I: newLoc.new ← Copy(head.old);
11I: break;
12I: else
13I: myProgession ←

CM(Oi, ”Write”); // head.tx is
active ⇒ Consult the contention
manager

14I: if myProgression = false then
15I: TFAS(T.status, Aborted); // If

fails, another has executed this
TFAS .

16I: return ⊥;
17I: else
18I: TFAS(head.tx.status, Aborted);
19I: continue; // Transaction head.tx

has committed/aborted ⇒ Check
head.tx.status one more time (line
2I).

20I: end if
21I: end if
22I: end for
23I: newLoc.tx ← T ;
24I: SAC(newLoc.next,⊥); // Store-and-clear

Algorithm 13 OpenW(T : Transac-
tion; O: TMObj): Open a transactional
memory object for write by a thread pi

Output: reference to a data object if succeeds,
or ⊥.

1W: newLoc ← new Locator;
2W: while true do
3W: head ← FindHead(O); // Find the

head of O's list.
4W: if InitLoc(newLoc, head, T) =⊥

then
5W: return ⊥;
6W: end if
7W: LSA_Open(T, O, ”Write”); // LSA's

Open procedure.
8W: if T.status = Aborted then
9W: return ⊥; // Performance (not cor-

rectness): Don't add newLoc to O if
T has aborted due to, for instance,
LSA_Open.

10W: end if
11W: if TFAS(head.next, newLoc) 6=⊥

then
12W: continue; // Another locator has

been appended ⇒ Find the head again

13W: else
14W: oldLoc = O[i];
15W: O[i] ← (newLoc, newLoc.cts); //

Atomic assignment; pi's old locator is
unlinked from O.

16W: SAC(oldLoc.next,⊥); // oldLoc
may be in the chain of a sleeping thread
⇒ Stop the chain here

17W: for each item Lj in O such that
Lj .ts < O[i].ts do

18W: SAC(Lj .ptr.next,⊥) // Reset
the next pointer of the obsolete lo-
cator

19W: end for
20W: return newLoc.new;
21W: end if
22W: end while

Lemma 3. A locator Li with timestamp ctsi does not have any links/references
to another locator Lj with a lower timestamp ctsj < ctsi.

Lemma 4. The locator returned by FindHead(O) (Algorithm 10) is the head
H of O's locator list at the time-point FindHead found H.next =⊥ (line 5F).

Lemma 5. (Lock-freedom) FindHead(O) will certainly return the head of O's
locator list after at most N repeat-until iterations unless a concurrent thread has
completed a transaction and subsequently has started a new one, where N is the
number of concurrent threads updating O.

Since NBFEB-STM uses the lazy snapshot algorithm LSA [17], the second
correctness criterion Precluding inconsistent views will follow if we can prove
that the LSA algorithm is correctly integrated into NBFEB-STM.

Lemma 6. The versions kept in N locators O[j].ptr, 1 ≤ j ≤ N , for each object
O are enough for checking the validity of a transaction T using the LSA algorithm
[17].

Lemma 7. The number of versions available for each object in NBFEB-STM
is up to (N + 1), where N is the number of threads.

De�nition 1. The value of a locator L is either L.new if L.tx.status = Committed,
or L.old otherwise.

Lemma 8. In each O's locator list, the old value L′.old of a locator L′ is not
older than the value of its previous locator 10 L.

Lemma 9. For each object O, there are at most 4N locators that cannot be
reclaimed by the garbage collector at any time-point, where N is the number of
update threads.

Theorem 1. (Space complexity) The space complexity of an object updated by
N threads in NBFEB-STM is Θ(N), the optimal.

Lemma 10. (Contention reduction) NBFEB-STM has a lower contention level
than CAS-based STMs.

5 Conclusions and Future Work
We have introduced a new non-blocking full/empty bit primitive called NB-FEB,
as a promising synchronization primitive for parallel programming on manycore
architectures. We have provided a theoretical treatment of the primitive to sup-
port our claim that it is a promising primitive to consider for further research.
Particularly, we have proven that i) it is universal, ii) it is combinable and thus,
based on previous experimental results, it would be scalable in practice. In or-
der to prove that it can be deployed easily as a general-purpose synchronization
primitive, we have shown how to construct a non-blocking software transactional
memory system NBFEB-STM with optimal space complexity using this prim-
itive. NBFEB-STM can be used as a building block to implement concurrent
algorithms conveniently.

Although the combinability makes NB-FEB promising for manycore archi-
tectures where high-contention executions are expected more frequent, experi-
mental work is needed for future research to clearly identify the applications and
system settings where NB-FEB is faster/slower than CAS or LL/SC.
Acknowledgments The authors wish to thank the anonymous reviewers for
their helpful and thorough comments on the earlier version of this paper. Phuong
Ha's and Otto Anshus's work was supported by the Norwegian Research Coun-
cil (grant numbers 159936/V30 and 155550/420). Philippas Tsigas's work was
supported by the Swedish Research Council (VR) (grant number 37252706).
10 A locator L is a previous locator of a locator L′ if starting from L we can reach L′

by following next pointers.

References
1. Y. Afek, H. Attiya, D. Dolev, E. Gafni, M. Merritt, and N. Shavit. Atomic snap-

shots of shared memory. J. ACM, 40(4):873�890, 1993.
2. K. Asanovic and et al. The landscape of parallel computing research: A view from

Berkeley. TR No. UCB/EECS-2006-183, Univ. of California, Berkeley, 2006.
3. G. E. Blelloch, P. B. Gibbons, and S. H. Vardhan. Combinable memory-block

transactions. In Proc. of the ACM Symp. on Parallel Algorithms and Architectures
(SPAA), pages 23�34, 2008.

4. A. Gottlieb and et al. The NYU Ultracomputer�designing a MIMD, shared-
memory parallel machine (extended abstract). In Proc. of the Intl. Symp. on
Computer Architecture (ISCA), pages 27�42, 1982.

5. R. Guerraoui, M. Herlihy, and B. Pochon. Polymorphic contention management.
In Proc. of the Intl. Symp. on Distributed Computing (DISC), pages 303�323, 2005.

6. R. Guerraoui and M. Kapalka. On the correctness of transactional memory. In
Proc. of the ACM Symp. on Principles and Practice of Parallel Programming
(PPoPP), pages 175�184, 2008.

7. P. H. Ha, P. Tsigas, and O. J. Anshus. Nb-feb: An easy-to-use and scalable universal
synchronization primitive for parallel programming. TR No. CS-2008-69, Univ. of
Tromsø, Norway, 2008. http://www.cs.uit.no/∼phuong/nbfeb_tr.pdf.

8. T. Harris and K. Fraser. Language support for lightweight transactions. In Proc.
of the ACM Conf. on Object-oriented Programing, Systems, Languages, and Ap-
plications (OOPSLA), pages 388�402, 2003.

9. M. Herlihy. Wait-free synchronization. ACM Transaction on Programming and
Systems, 11(1):124�149, Jan. 1991.

10. M. Herlihy, V. Luchangco, M. Moir, and W. N. S. III. Software transactional
memory for dynamic-sized data structures. In Proc. of Symp. on Principles of
Distributed Computing (PODC), pages 92�101, 2003.

11. C. P. Kruskal and et al. E�cient synchronization of multiprocessors with shared
memory. ACM Trans. Program. Lang. Syst., 10(4):579�601, 1988.

12. V. J. Marathe, W. N. S. III, and M. L. Scott. Adaptive software transactional
memory. In Proc. of the Intl. Symp. on Distributed Computing (DISC), pages
354�368, 2005.

13. NVIDIA. NVIDIA CUDA Compute Uni�ed Device Architecture, Programming
Guide, version 1.1. NVIDIA Corporation, 2007.

14. G. F. P�ster and et al. The IBM research parallel processor prototype (RP3):
Introduction and architecture. In ICPP, pages 764�771, 1985.

15. S. A. Plotkin. Sticky bits and universality of consensus. In Proc. of Symp. on
Principles of Distributed Computing (PODC), pages 159�175, 1989.

16. R. Rangan, N. Vachharajani, M. Vachharajani, and D. August. Decoupled software
pipelining with the synchronization array. In Proc. of the Intl. Conf. on Parallel
Architecture and Compilation Techniques (PACT), pages 177�188, 2004.

17. T. Riegel, P. Felber, and C. Fetzer. A lazy snapshot algorithm with eager validation.
In Proc. of the Intl. Symp. on Distributed Computing (DISC), pages 284�298, 2006.

18. W. N. Scherer, III and M. L. Scott. Advanced contention management for dynamic
software transactional memory. In Proc. of Symp. on Principles of Distributed
Computing (PODC), pages 240�248, 2005.

19. S. Sridharan, A. Rodrigues, and P. Kogge. Evaluating synchronization techniques
for light-weight multithreaded/multicore architectures. In Proc. of the ACM Symp.
on Parallel Algorithms and Architectures (SPAA), pages 57�58, 2007.

