
Self-stabilizing TDMA Algorithms for Wireless
Ad-hoc Networks without External Reference

(Extended Abstract)

Thomas Petig, Elad M. Schiller, Philippas Tsigas
{petig, elad, tsigas}@chalmers.se

Department of Computer Science and Engineering

Chalmers University of Technology, Sweden

Abstract—Time division multiple access (TDMA) is a method
for sharing communication media. In wireless communications,
TDMA algorithms often divide the radio time into timeslots of
uniform size, ξ, and then combine them into frames of uniform
size, τ . We consider TDMA algorithms that allocate at least
one timeslot in every frame to every node. Given a maximal
node degree, δ, and no access to external references for collision
detection, time or position, we consider the problem of collision-
free self-stabilizing TDMA algorithms that use constant frame
size.

We demonstrate that this problem has no solution when
the frame size is τ < max{2δ, χ2}, where χ2 is the chromatic
number for distance-2 vertex coloring. As a complement to this
lower bound, we focus on proving the existence of collision-free
self-stabilizing TDMA algorithms that use constant frame size
of τ . We consider basic settings (no hardware support for
collision detection and no prior clock synchronization), and the
collision of concurrent transmissions from transmitters that are
at most two hops apart. In the context of self-stabilizing systems
that have no external reference, we are the first to study this
problem (to the best of our knowledge), and use simulations to
show convergence even with computation time uncertainties.

I. INTRODUCTION

Autonomous and cooperative systems will ultimately carry

out risk-related tasks, such as piloting driverless cars, and

liberate mankind from mundane labor, such as factory and

production work. Note that the implementation of these coop-

erative systems implies the use of wireless ad hoc networks

and their critical component – the medium access control
(MAC) layer. Since cooperative systems operate in the pres-

ence of people, their safety requirements include the provision

of real-time guarantees, such as constant communication delay.

Infrastructure-based wireless networks successfully provide

high bandwidth utilization and constant communication delay.

They divide the radio into timeslots of uniform size, ξ, that are

then combined into frames of uniform size, τ . Base-stations,

access points or wireless network coordinators can schedule

the frame in a way that enables each node to transmit during

its own timeslot, and arbitrate between nearby nodes that

wish to communicate concurrently. We strive to provide the

The work of this author was partially supported by the EC, through project
FP7-STREP-288195, KARYON (Kernel-based ARchitecture for safetY-
critical cONtrol). This work appears as a technical report in [26].

needed MAC protocol properties, using limited radio and clock

settings, i.e., no external reference for collision detection, time

or position. Note that ad hoc networks often do not consider

collision detection mechanisms, and external references are

subject to signal loss. For these settings, we demonstrate

that there is no solution for the studied problem when the

frame size is τ < max{2δ, χ2}, where δ is the maximal

node degree, and χ2 is the chromatic number for distance-2
vertex coloring. The main result is the existence of collision-

free self-stabilizing TDMA algorithms that use constant frame

size of τ > max{4δ,X2} + 1, where X2 ≥ χ2 is a number

that depends on the coloring algorithm in use. To the best

of our knowledge, we are the first to study the problem of

self-stabilizing TDMA timeslot allocation without external

reference. The algorithm simulations demonstrate feasibility

in a way that is close to the practical realm.

Wireless ad hoc networks have a dynamic nature that is

difficult to predict. This gives rise to many fault-tolerance

issues and requires efficient solutions. These networks are

also subject to transient faults due to temporal malfunctions

in hardware, software and other short-lived violations of the

assumed system settings, such as changes to the communica-

tion graph topology. We focus on fault-tolerant systems that

recover after the occurrence of transient faults, which can

cause an arbitrary corruption of the system state (so long as

the program’s code is still intact). These self-stabilizing [9]

design criteria simplify the task of the application designer

when dealing with low-level complications, and provide an

essential level of abstraction. Consequently, the application

design can easily focus on its task – and knowledge-driven

aspects.

ALOHAnet protocols [1] are pioneering MAC algorithms

that let each node select one timeslot per TDMA frame at

random. In the Pure Aloha protocol, nodes may transmit at

any point in time, whereas in the Slotted Aloha version,

the transmissions start at the timeslot beginning. The latter

protocol has a shorter period during which packets may

collide, because each transmission can collide only with trans-

missions that occur within its timeslot, rather than with two

consecutive timeslots as in the Pure Aloha case. Note that

the random access approach of ALOHAnet cannot provide

constant communication delay. Distinguished nodes are often

2014 13th Annual Mediterranean Ad Hoc Networking Workshop (MED-HOC-NET)

978-1-4799-5258-8/14/$31.00 ©2014 IEEE 87

used when the application requires bounded communication

delays, e.g., IEEE 802.15.4 and deterministic self-stabilizing

TDMA [3, 16]. Without such external references, the TDMA

algorithms have to align the timeslots while allocating them.

Existing algorithms [5] circumvent this challenge by assuming

that τ/(Δ + 1) ≥ 2, where Δ is an upper bound on the

number of nodes with whom any node can communicate with

using at most one intermediate node for relaying messages.

This guarantees that every node can transmit during at least

one timeslot, s, such that no other transmitter that is at

most two hops away, also transmits during s. However, the

τ/(Δ + 1) ≥ 2 assumption implies bandwidth utilization that

is up to O(δ) times lower than the proposed algorithm, because

Δ ∈ O(δ2).
As a basic result, we show that τ/δ ≥ 2, and as a

complement to this lower bound, we focus on considering the

case of τ/δ ≥ 4. We present a collision-free self-stabilizing

TDMA algorithm that uses constant frame size of τ . We show

that it is sufficient to guarantee that collision freedom for

a single timeslot, s, and a single receiver, rather than all
neighbors. This narrow opportunity window allows timeslot

alignment and, after convergence, there are no collisions of

any kind.

Related work Herman and Zhang [13] assume con-

stant bounds on the communication delay and present self-

stabilizing clock synchronization algorithms for wireless ad

hoc networks. Herman and Tixeuil [12] assume access to syn-

chronized clocks and present the first self-stabilizing TDMA

algorithm for wireless ad hoc networks. They use external

reference for dividing the radio time into timeslots and as-

sign them according to the neighborhood topology. The self-

stabilization literature often does not answer the causality

dilemma of “which came first, synchronization or commu-

nication” that resembles Aristotle’s “which came first, the
chicken or the egg?” dilemma. On one hand, existing clock

synchronization algorithms often assume the existence of

MAC algorithms that offer bounded communication delay,

e.g. [13], but on the other hand, existing MAC algorithms that

provide bounded communication delay, often assume access

to synchronized clocks, e.g. [12]. We propose a bootstrap-

ping solution to the causality dilemma of “which came first,

synchronization or communication”, and discover convergence

criteria that depend on τ/δ.

The converge-to-the-max synchronization principle assumes

that nodes periodically transmit their clock value, ownClock.

Whenever they receive clock values, receivedClock >
ownClock, that are greater than their own, they adjust their

clocks accordingly, i.e., ownClock ← receivedClock. Her-

man and Zhang [13] assume constant bounds on the communi-

cation delay and demonstrate convergence. Basic radio settings

do not include constant bounds on the communication delay.

We show that the converge-to-the-max principle works when

given bounds on the expected communication delay, rather

than constant delay bounds, as in [13].

The proposal in [11] considers shared variable emulation.

Several self-stabilizing algorithms adopt this abstraction, e.g.,

a generalized version of the dining philosophers problem for

wireless networks in [7], topology discovery in anonymous

networks [21], random distance-k vertex coloring [22], de-

terministic distance-2 vertex coloring [4], two-hop conflict

resolution [27], a transformation from central demon mod-

els to distributed scheduler ones [29], to name a few. The

aforementioned algorithms assume that if a node transmits

infinitely many messages, all of its communication neighbors

will receive infinitely many of them. We do not make such

assumptions about (underlying) transmission fairness. We as-

sume that packets, from transmitters that are at most two hops

apart, can collide every time.

The authors of [17] present a MAC algorithm that uses

convergence from a random starting state (inspired by self-

stabilization). In [18, 24], they use network simulators for

evaluating self-� MAC algorithms. A self-stabilizing TDMA

algorithm, that accesses external time references, is presented

in [19]. Simulations are used for evaluating the heuristics of

MS-ALOHA [28] for dealing with timeslot exhaustion by

adjusting the nodes’ individual transmission signal strength.

The authors of [2, 10] assume timeslot alignment, access to

collision detection mechanisms and complete communication

graphs and they study the problem of transmission rate control

for optimal channel throughput of Slotted ALOHA. We do

not require these assumptions and offer, after a bounded

convergence period, a deterministic transmission schedule. We

provide analytical proofs and consider basic radio settings. The

results presented in [8, 15] do not consider the time it takes

the algorithm to converge, as we do. We mention a number

of MAC algorithms that consider onboard hardware support,

such as receiver-side collision detection [5, 6, 8, 28, 31]. We

consider merely basic radio technology that is commonly used

in wireless ad hoc networks. The MAC algorithms in [30, 31]

assumes the accessibility of an external time or geographical

references or the node trajectories, e.g., Global Navigation

Satellite System (GNSS). We instead integrate the TDMA

timeslot alignment with clock synchronization.

Our contribution Given a maximal node degree, δ, we

consider the problem of the existence of collision-free self-

stabilizing TDMA algorithms that use constant frame size

of τ . In the context of self-stabilizing systems that have no

external reference, we are the first to study this problem

(to the best of our knowledge). The proposed self-stabilizing

and bootstrapping algorithm answers the causality dilemma of

synchronization and communication.

For settings that have no assumptions about fairness and

external reference existence, we establish a basic limit on the

bandwidth utilization of TDMA algorithms in wireless ad hoc

networks (Section III). Namely, τ < max{2δ, χ2}, where χ2

is the chromatic number for distance-2 vertex coloring. We

note that the result holds for general graphs with a clearer

connection to bandwidth utilization for the cases of tree graphs

(χ2 = δ + 1) and planar graphs [23] (χ2 = 5δ/3 +O(1)).
We prove the existence of collision-free self-stabilizing

TDMA algorithms that use constant frame size of τ without

assuming the availability of external references (Section IV).

2014 13th Annual Mediterranean Ad Hoc Networking Workshop (MED-HOC-NET)

88

The convergence period is within O(diam · τ2δ + τ3δ) steps

starting from an arbitrary configuration, where diam is the

network diameter. We note that in case the system happens to

have access to external time references, i.e., start from a con-

figuration in which clocks are synchronized, the convergence

time is within O(τ3), and O(τ3δ) steps when τ > 2Δ, and

respectively, τ > max{4δ,Δ+ 1}. We also demonstrate con-

vergence via simulations that take uncertainties into account,

such as (local) computation time.

II. SYSTEM SETTINGS

The system consists of a set, P := {pi}, of communicating

entities, which we call nodes. An upper bound, ν > |P |, on

the number of nodes in the system is known. Subscript font

is used to point out that Xi is pi’s variable (or constant) X .

Node pi has a unique identifier, idi, that is known to pi but

not necessarily by pj ∈ P \ {pi}.

Communication graphs At any instance of time, the

ability of any pair of nodes to communicate, is defined by

the set, δi ⊆ P , of (direct) neighbors that node pi ∈ P
can communicate with directly. The system can be repre-

sented by an undirected network of directly communicating

nodes, G := (P,E), named the communication graph, where

E := {{pi, pj} ∈ P × P : pj ∈ δi}. We assume that G is

connected. For pi, pj ∈ P , we define the distance, d(pi, pj),
as the number of edges in an edge minimum path connecting pi
and pj . We denote by Δi := {pj ∈ P : 0 < d(pi, pj) ≤ 2} the

2-neighborhood of pi, and the upper bounds on the sizes of δi
and Δi are denoted by δ ≥ maxpi∈P (|δi|), and respectively,

Δ ≥ maxpi∈P (|Δi|). Note that pi ∈ δi and pi ∈ Δi. We

assume that diam ≥ maxpi,pj∈P d(pi, pj) is an upper bound

on the network diameter.

Synchronization The nodes have fine-grained clock hard-

ware (with arbitrary clock offset upon system start). For the

sake of presentation simplicity, our work considers zero clock

skews. We assume that the clock value, C ∈ [0, c − 1], and

any timestamp in the system have c states. The pseudo-code

uses the GetClock() function that returns a timestamp of

C’s current value. Since the clock value can overflow at its

maximum, and wrap to the zero value, arithmetic expressions

that include timestamp values are module c, e.g., the function

AdvanceClock(x) := C ← (C + x) mod c adds x time

units to clock value, C, modulo its number of states, c. We

assume that the maximum clock value is sufficiently large,

c � diamτ2, to guarantee convergence of the clock synchro-

nization algorithm, before the clock wrap around. We say that

the clocks are synchronized when ∀pi, pj ∈ P : Ci = Cj ,

where Ci is pi’s clock value.

Periodic pulses invoke the MAC protocol, and divide the

radio time into (broadcasting) timeslots of ξ time units in

a way that provides sufficient time for the transmission of

a single packet. We group τ timeslots into (broadcasting)
frames. The pseudo-code uses the event timeslot(s) that is

triggered by the event 0 = Ci mod ξ and s := Ci ÷ ξ mod τ
is the timeslot number, where ÷ is the integer division.

Operations The communication allows a message exchange

between the sender and the receiver. After the sender, pi,
fetches message m ← MAC_fetchi() from the upper layer,

and before the receiver, pj , delivers it to the upper layer

in MAC_deliverj(m), they exchange m via the operations

transmiti(m), and respectively, m ← receivej(). We model

the communication channel, qi,j (queue), from node pi to

node pj ∈ δi as the most recent message that pi has sent

to pj and that pj is about to receive, i.e., |qi,j | ≤ 1. When pi
transmits message m, the operation transmiti(m) inserts a

copy of m to every qi,j , such that pj ∈ δi. Once m arrives, pj
executes receive() and returns the tuple 〈i, ti, tj ,m〉, where

ti = Ci and tj = Cj are the clock values of the associated

transmiti(m), and respectively, m ← receivej() calls. We

assume zero propagation delay and efficient time-stamping

mechanisms for ti and tj . Moreover, the timeslot duration,

ξ, allows the transmission and reception of at least a single

packet, see Property 1.

Property 1. Let pi ∈ P , pj ∈ δi. At any point in time ti
in which node pi transmits message m for duration of ξ,

node pj receives m if there is no node pk ∈ (δi ∪ δj) \ {pi}
that transmits starting from time tk with duration ξ such that

[ti, ti + ξ) and [tk, tk + ξ) are intersecting.

This means a node can receive a message if no node in the

neighborhood of the sender and no node in the neighborhood

of the receiver is transmitting concurrently.

Interferences Wireless communications are subject to

interferences when two or more neighboring nodes transmit

concurrently, i.e., the packet transmission periods overlap

or intersect. We model communication interferences, such

as unexpected peaks in ambient noise level and concurrent

transmissions of neighboring nodes, by letting the (commu-
nication) environment to selectively omit messages from the

communication channels. We note that we do not consider any

error (collision) indication from the environment.

The environment can use the operation omissioni,j(m) for

removing message m from the communication channel, qi,j ,

when pi’s transmission of m to pj ∈ δi is concurrent with

the one of pk ∈ Δi. Immediately after transmiti(m), the

environment selects a subset of pi’s neighbors, Omitm ⊆ δi,
removes m from qi,j : pj ∈ Omitm and by that it prevents the

execution of m ← receivej(). Note that Omitm = δi implies

that no direct neighbor can receive message m.

Self-stabilization Every node, pi ∈ P , executes a program

that is a sequence of (atomic) steps, ai. The state, sti, of

node pi ∈ P includes pi’s variables, including the clocks

and the program control variables, and the communication

channels, qi,j : pj ∈ δi. The (system) configuration is a tuple

c := (st1, . . . , st|P |) of node states. Given a system config-

uration, c, we define the set of applicable steps, a = {ai},

for which pi’s state, sti, encodes a non-empty communication

channel or an expired timer. An execution is an unbounded

alternating sequence R := (c[0], a[0], c[1], a[1], . . .) (Run) of

configurations c[k], and applicable steps a[k] that are taken

by the algorithm and the environment. The task T is a set

2014 13th Annual Mediterranean Ad Hoc Networking Workshop (MED-HOC-NET)

89

frame = 9 slots

Fig. 1. The outer five nodes are covering nine timeslots. The top horizontal
line and its perpendicular marks depict the radio time division according to
the central node, pδ . The gray boxes depict the radio time covered by the leaf
nodes, pi ∈ L.

of specifications and LE (legal execution) is the set of all

executions that satisfy T . We say that configuration c is safe,

when every execution that starts from it is in LE. An algorithm

is called self-stabilizing if it reaches a safe configuration within

a bounded number of steps.

Task definition We consider the task TTDMA
, that requires

all nodes, pi, to have timeslots, si, that are uniquely allocated

to pi within Δi. We define LETDMA to be the set of legal

executions, R, for which ∀pi ∈ P : (pj ∈ P ⇒ Ci =
Cj)∧ (((si ∈ [0, τ − 1])∧ (pj ∈ Δi)) ⇒ si �= sj) holds in all

of R’s configurations. We note that for a given finite τ , there

are communication graphs for which T
TDMA

does not have a

solution, e.g., the complete graph, Kτ+1, with τ + 1 nodes.

In Section III, we show that the task solution can depend

on the (arbitrary) starting configuration, rather than just the

communication graph.

III. BASIC RESULTS

We establish a bandwidth utilization limitation for TDMA

algorithms in wireless ad hoc networks, i.e., τ < max{2δ, χ2},

where χ2 is the chromatic number for distance-2 vertex

coloring. Suppose that δ ∈ N, τ < 2δ, the communication

graph, G := ({p0, . . . pδ}, E), has the topology of a star, where

the node pδ is the center (root) node and E := {pδ}×L, where

L := {p0, . . . pδ−1} are the leaf nodes. The illustrative exam-

ple in Figure 1 explains why no algorithm can converge. (The

proof details appear in [26].) Note that the gap between pi’s
transmission and the following transmission by p(i+1) mod δ

is less than the slot size ξ. This pattern of a frame repeats,

because only pδ receives these messages transmitted by the

leaves and pδ does not have a timeslot assigned. According to

Property 1, all pδ transmission attempts can fail.

IV. SELF-STABILIZING TDMA ALLOCATION AND

ALIGNMENT ALGORITHM

We propose Algorithm 1 as a self-stabilizing algorithm for

the T
TDMA

task. The nodes transmit data packets, as well

as control packets. Data packets are sent by active nodes

during their data packet timeslots. The passive nodes listen

to the active ones and do not send data packets. Both active
and passive nodes use control packets, which include the

reception time and the sender of recently received packets from

direct neighbors. Each node aggregates the frame information

it receives. It uses this information for avoiding collisions,

acknowledging packet transmission and resolving hidden node

problems. A passive node, pi, can become active by selecting

random timeslots, si, that are not used by active nodes. Then

pi sends a control packet in si and waiting for confirmation.

Once pi succeeds, it becomes an active node that uses timeslot

si for transmitting data packets. Node pi becomes passive
whenever it learns about conflicts with nearby nodes, e.g., due

to a transmission failure.

The hidden node problem refers to cases in which node pi
has two neighbors, pj , pk ∈ δi, that use intersecting timeslots.

The algorithm uses random back off techniques for resolving

this problem in a way that assures at least one successful

transmission from all active and passive nodes within O(τ),
and respectively, O(1) frames in expectation. The passive
nodes count a random number of unused timeslots before

transmitting a control packet. The active nodes use their

clocks for defining frame numbers. They count down only

during TDMA frames whose numbers are equal to si, where

si ∈ [0, τ − 1] is pi’s data packet timeslot. These back off

processes connect all direct neighbors and facilitate clock

synchronization, timeslot alignment and timeslot assignment.

During legal executions, in which all nodes are active, there

are no collisions and each node transmits one control packet

once every τ frames.

Algorithm details The node status, statusi, is either

active or passive. When it is active, variable si contains pi
timeslot number. The frame information is the set FIi := {idk,
typek, occurrencek, rxT imek}k ⊂ FI = ID × {message,
welcome} × {remote, local} × N that contains information

about recently received packets, where ID := {⊥} ∪ N is

the set of possible ids and the null value denoted by ⊥. An

element of the frame information contains the id of the sender

idk. The type typek = message indicates that the sender was

active. For a passive sender typek = welcome indicates that

there was no known conflict when this element was added

to the local frame information. If occurrencek = local, the

corresponding packet was received by pi, otherwise it was

copied from a neighbor. The reception time rxT imek is the

time when this packet was received, regarding the local clock

Ci, i.e., it is updated whenever the local clock is updated. The

algorithm considers the frame information to select an unused

timeslot. An entry in the frame information with timestamp t
covers the time interval [t, t+ ξ).

Nodes transmit control packets according to a random back

off strategy for collision avoidance. The passive node, pi,
chooses a random back off value, stores it in the variable

waiti, and uses waiti for counting down the number of

timeslots that are available for transmissions. When waiti = 0,

node pi uses the next unused timeslot according to its frame

information. During back off periods, the algorithm uses the

variables waiti and waitAddi for counting down to zero. The

process starts when node pi assigns waiti ← waitAddi + r,

where r is a random choice from [1, 3Δ], and updates

2014 13th Annual Mediterranean Ad Hoc Networking Workshop (MED-HOC-NET)

90

Algorithm 1: Self-stabilizing TDMA Allocation, code for node pi
statusi ∈ {active, passive}; /* current node status */
si ∈ [0, τ − 1]; /* current data packet timeslot */
waiti, waitAddi ∈ [0,maxWait]; /* current back off countdown */
FIi := {idk, typek, occurrencek, rxT imek}k ⊂ FI; /* frame information */
timeOut; /* constant, age limit of elements in FIi */
BackOff() := let (tmp, r) ← (waitAddi, random([1, 3Δ])); return (r + tmp, 3Δ− r); /* reset backoff counter */
frame() := (GetClock()÷ ξτ) mod τ,; /* the current frame number */
Slot(t) := (t÷ ξ mod τ), s() := Slot(GetClock()); /* convert time to slot numbers */
Local(set) := {〈•, local, •〉 ∈ set}; /* dist-1 neighbors in set */
Used(set) :=

⋃
〈•,tk〉∈set[Slot(tk), Slot(tk + ξ − 1)]; Unused(set) := [0, τ − 1] \ Used(set); /* set of (un)used slots */

ConflictWithNeighbors(set) := (�〈idi•〉∈set∨ si ∈ [Slot(ti), Slot(ti + ξ)]∨
∃〈k,•,rxTime〉∈set,k �=idi

: si ∈ [Slot(rxT ime− tj + ti), Slot(rxT ime− tj + ti + ξ)]); /* check for conflicts */
AddToFI(set, o) := FIi ← FIi ∪ {〈x, y, remote, z′〉 : 〈x, y, •, z〉 ∈ set, z′ := (z +max{0, o}) mod c, z′ ≤timeOut Ci}; /* set+ FIi */
IsUnused(s) := s ∈ Unused(FIi) ∨ (Unused(FIi) = ∅ ∧ s ∈ Unused(Local(FIi))); /* is s an unused slot? */

1 upon timeslot() do
2 if s() = si ∧ statusi = active then transmit(〈statusi, Local(FIi),MAC_fetch()〉) ; /* send data packet */
3 else if ¬(statusi = active ∧ frame() = si) then /* check if our frame */
4 if IsUnused(s()) ∧ waiti ≤ 0 then /* send control packet */
5 transmit(〈statusi, Local(FIi), 0〉);

〈waiti, waitAddi〉 ← BackOff(); /* prepare for next control packet */
6 if statusi = active then 〈si, statusi〉 ← 〈s(), active〉;
7 else if waiti > 0 ∧ IsUnused((s()− 1) mod τ) then waiti ← max{0, waiti − 1}; /* count down */

8 FIi ← {〈•, rxT ime〉 ∈ FIi : rxT ime ≤timeOut GetClock()}; /* remove old entries from FIi */

9 upon 〈j, tj , ti, 〈statusj , F Ij ,m
′〉〉 ← receive() do

10 if ConflictWithNeighbors(FIj) ∧ statusi = active then /* conflicts? */
〈〈waiti, waitAddi〉, status〉 ← 〈BackOff(), passive〉; /* get passive */

11 if statusj = active then /* active node acknowledge */
12 if m′ = ⊥ then FIi ← {〈idi, •〉 ∈ FIi : idi = j}∪ {〈j,message, local, ti〉};
13 else if tj = ti ∧ Slot(tj) ∈ Used(FIi) then /* passive node acknowledge */
14 FIi ← {〈idi, •〉 ∈ FIi : idi = j}∪ {〈j,welcome, local, ti〉};

15 if ti < tj then /* converge-to-the-max */
16 AdvanceClock(tj − ti); /* adjust clock */
17 FIi ← {〈•, (rxT ime+ tj − ti) mod c〉 : 〈•, rxT ime〉 ∈ FIi}; /* shift timestamps in FIi */
18 〈〈waiti, waitAddi〉, statusi〉 ← 〈BackOff(), passive〉; /* get passive */

19 AddToFI(FIj , ti − tj); /* Aggregate information on used timeslots */
20 if m′ = ⊥ then MAC_deliver(m′);

waitAddi ← 3Δ− r, cf. BackOff().

The node clock is the basis for the frame and timeslot

starting times, cf. frame(), and respectively, s(), and also

for a given timeslot number, cf. Slot(t). When working with

the frame information, set, it is useful to have restriction

by local occupancies, cf. Local(set) and to list the sets of

used and unused timeslots, cf. Used(set), and respectively,

Unused(set). We check whether an arriving frame infor-

mation, set, conflicts with the local frame information that

is stored in FIi, cf. ConflictWithNeighbors(set), before

merging them together, cf. AddToFI(set, offset), after up-

dating the timestamps in set, which follow the sender’s clock.

Node pi can test whether the timeslot number s is available

according to the frame information in FIi and pi’s clock.

Since Algorithm 1 complements the studied lower bound

(Section III), the test in IsUnused(s) checks whether FIi
encodes a situation in which there are no unused timeslots.

In that case, IsUnused(s) tests whether we can say that

s is unused when considering only transmissions of direct

neighbors. The correctness proof considers the cases in which

τ > 2Δ and τ > max{4δ,Δ + 1}. For the former case, we

show that there is always an unused timeslot s′ that is not used

by any neighbor pj ∈ Δi. For the latter case, the proof shows

that for any neighbor pj ∈ δi, there is a timeslot s′′ for which

there is no node pk ∈ δi ∪ δj ∪ {pj , pi} that transmits during

s′′. The code of Algorithm 1 considers two events: (1) periodic

timeslots (line 1) and (2) reception of a packet (line 9).

(1) timeslot(), line 1: Actives nodes transmit their data

packets upon their timeslot (line 2). Passive nodes transmit

control packets when the back off counter, waiti, reaches zero

(line 5). Note that passive nodes count only when the local

frame information says that the previous timeslot was unused

(line 7). Active nodes also send control packets, but rather

than counting all unused timeslots, they count only the unused

timeslots that belong to frames with a number that matches

the timeslot number, i.e., frame() = si (line 3).

(2) receive(), line 9: Active nodes, pi, become passive
when they identify conflicts in FIj between their data packet

timeslots, si, and data packet timeslots, sj of other nodes

pj ∈ Δi (line 10). When the sender is active, the receiver

records the related frame information. Note that the payload

of data packets is not empty in line 12, c.f., m′ �= ⊥.

Passive nodes, pj , aim to become active. In order to do

that, they need to send a control packet during a timeslot

2014 13th Annual Mediterranean Ad Hoc Networking Workshop (MED-HOC-NET)

91

that all nearby nodes, pi, view as unused, i.e., Slot(t) �∈
Used(FIi), where t is the packet sending time. Therefore,

when the sender is passive, and its data packet timeslots are

aligned, i.e., ti = tj , node pi welcomes pi’s control packet

whenever Slot(tj) �∈ Used(FIi). Algorithm 1 uses a self-

stabilizing clock synchronization algorithm that is based on the

converge-to-the-max principle. When the sender clock value is

higher (line 15), the receiver adjusts its clock value and the

timestamps in the frame information set, before validating its

timeslot, si, (lines 16 to 18). The receiver can now use the

sender’s frame information and payload (lines 19 to 20).

V. CORRECTNESS

The existence proof of a collision-free self-stabilizing

TDMA algorithms is given by this section (Theorem 3), and it

starts by showing the existence of unused timeslots considering

the cases in which τ > 2Δ and τ > max{4δ,Δ + 1}. This

facilitates the proof of network connectivity, clock synchro-

nization (Theorem 1) and bandwidth allocation (Theorem 2).

Due to the space limit, some parts of the proofs appear in [26].

Communication among neighbors is possible only when

there are timeslots that are free from transmissions by nodes in

the local neighborhood. We start by assuming that τ > 2Δ and

show that every node, pi ∈ P , has an unused timeslot, s, with

respect to pi’s clock. This satisfies the conditions of Property 1

with respect to all of pi’s neighbors pj ∈ δi. We then continue

by assuming that τ > max{4δ,Δ+1} and showing that every

node, pi ∈ P , has an unused timeslot, s, with respect to

pi’s clock. This satisfies the conditions of Property 1 with

respect to one of pi’s neighbors pj ∈ δi, rather than all pi’s
neighbors pj ∈ δi. This implies that there is a single timeslot,

s, that is unused with respect to the clocks of node pi and all,
respectively, one of pi’s neighbors. Lemma 1 shows that the

control packet exchange provides network connectivity. The

proof shows that we can apply the analysis of [14], because the

back off process of a passive node counts r unused timeslots,

where r is a random choice in [1, 3Δ]. The lemma statement

denotes the latency period by � := (1− e−1)−1.

A frame information set FIi is locally consistent if all local
entries can be used to predict a transmission of a node in δi.
A locally consistent frame information set FIj is consistent

if all remote entries can be used to predict transmissions of

nodes in Δi \ δi.
Lemma 1 (The proof appears in [26]). Let R be an execution
of Algorithm 1 that starts from an arbitrary configuration c[x].
Then there is a suffix R′ of R that starts from a configuration
c[x + O(timeOut)] such that a passive node pi receives a
message from all nodes in δi within finite time.

Proof Sketch. We show that every execution reaches a

configuration c′′ such that in the suffix R′ of R starting from

c′′ neighbors can exchange packets within finite time. The

proof shows the existence of a free timeslot for all nodes

and their clocks. Then we show that it is also marked as

free in the node’s frame information, since stale entries, i.e.,

entries for which there is no neighbor that has corresponding

id and timeslot, might block it. Therefore, we study the

behavior of elements in the frame information set FIi during

the different clock update steps. Furthermore, we show how

elements in the frame information set are propagated between

neighboring nodes. We see how the age of each entry is either

increasing monotonically, or updated when new packets are

received. Thus all stale entries are deleted after Ci advances

by timeOut clock steps. Additionally, after all stale entries are

deleted there is maximal one entry in FIi for each neighbor

pj ∈ Δi. Thus, pi sees the free timeslot.

After showing network connectivity (Lemma 1), we give an

expectation for the communication delay, i.e., how long does

it take to successfully send a control packet to a neighbor.

Namely, every expected γ frames, pi receives at least one

message from all active neighbor, pk ∈ δi, where γ is 3Δτ�
frames if τ > 2Δ, or 3Δτ�δ frames if τ > max{4δ,Δ+ 1}.

Theorem 1 shows that the converge-to-the-max principle

works when given bounds on the expectation of the commu-

nication delay, rather than constant delay bounds, as in [13].

Theorem 1 (The proof appears in [26]). Let R be an execution
of Algorithm 1 that starts from an arbitrary configuration
c[x]. Within expected Φ := γ · diam frames, a configuration
c[xsynchro] is reached after which all clocks are synchronized.

Once the clocks are synchronized, and the TDMA timeslots

are aligned, Algorithm 1 allocates the bandwidth within O(γ2)
frames using distance-2 coloring, see Theorem 2.

Theorem 2. Let R be an execution that starts from an
arbitrary configuration c[xsynchro] in which all clocks are
synchronized. Within expected γ2 frames from c[xsynchro], the
system reaches a configuration, c[xalloc], in which each node
pi ∈ P has a timeslot that is unique in Δi.

Proof Sketch. We have showed that active nodes get feedback

within an expected time. Active nodes with positive feedback

stay active, but conflicting active nodes get a negative feedback

and change their status to passive. Passive nodes are transmit-

ting from time control packets. They are successful and stay

active on this timeslot with probability 1 − 1/e. Otherwise,

they get a negative feedback within expected γ frames. Hence,

the number of active nodes without conflicts is monotonically

increasing until every node is active.

The convergence time of this timeslot assignment is domi-

nated by the time for a successful transmission and the time

for a negative feedback in case of a unsuccessful transmission.

This leads to an expected convergence time of γ2.

The proof of Theorem 3 is concluded by showing that

configuration, c[xalloc] (Theorem 2), is a safe configuration

with respect to LE
TDMA

, see Lemma 2.

Lemma 2. Configuration c[x] is a safe configuration with
respect to LE

TDMA
, when (1) ∀pi,pj∈P : Ci = Cj , (2) ∀pi∈P :

statusi = active, (3) ∀pi∈P∀pj∈Δi
: si �= sj , (4) ∀pi∈P :

2014 13th Annual Mediterranean Ad Hoc Networking Workshop (MED-HOC-NET)

92

∀pj∈Δi∪{pi}∃!〈id,message,•〉∈FI : id = idj .

Proof. First we check that c[x] is legal regarding LE
TDMA

.The

conditions (1) and (3) are coinciding with the conditions of

a legal execution LETDMA . Condition (2) is necessary in

combination to (3) to ensure that the TDMA slot stored in

si is valid. Condition (4) restricts configurations in LE
TDMA

by ensuring that nodes are aware of their neighbors.

We conclude by proofing that the conditions of this Lemma

hold for all configurations following c[x] in an execution R
of Algorithm 1. Since (1) holds in c[x], this means all clocks

are synchronized, a node can never receive a clock value that

is larger than its own, so the clock update step in line 16 is

never executed. Thus for all following configurations to c[x] in

R condition (1) holds. A node changes its statusi to passive
when it updates its clock (line 16), or when it detects a conflict

with the slot assignment (line 10). From (1) follows that there

is no clock update. From (3) follows that in c[x] there is no

conflict with the slot assignment and from (4) that everyone

is aware that there is no conflict. Furthermore, (4) implies

that every node selects only slots for control packets that are

free within the distance-2 neighborhood. Thus, in R there is

never a message transmitted from that the receiver can detect

a conflict and no conflict is introduced by sending a control

packet on a data packet slot of a distance-2 neighbor. This

proofs that c[x] is a safe configuration for LETDMA .

Corollary 1. The configuration c[xalloc] is a safe configura-
tion for the task T

TDMA
.

Proof. We check that c[xalloc] fulfills the conditions of

Lemma 2. Condition (1) follows from Theorem 1 and con-

ditions (2), (3) and (4) are following from Theorem 2.

Theorem 3. Algorithm 1 is a self-stabilizing implementation
of task TTDMA that converges within O(diamτΔδ + (Δτδ)2)
frames starting from an arbitrary configuration. In case the
system happens to have access to external time references, i.e.,
start from a configuration in which clocks are synchronized,
the convergence time is within O((Δτδ)2) frames.

Proof Sketch. The proof shows that communication is pos-

sible after a constant number of clock steps. It bounds the

expected communication delay to γ. Theorem 1 shows that

after O(γ ·diam) frames a configuration c[xsynchro] is reached

where the clocks are synchronized. Theorem 2 shows that

in O(γ2) frames after c[xsynchro], a configuration c[xalloc]
is reached in which all nodes have an allocated timeslot.

Corollary 1 shows that Algorithm 1 solves T
TDMA

by reaching

c[xalloc].

VI. EXPERIMENTAL RESULTS

We demonstrate the implementation feasibility. We study the

behavior of the proposed algorithm in a simulation model that

takes into account timing uncertainties. Thus, we demonstrate

feasibility in a way that is close to the practical realm.

The system settings (Section II) that we use for the correct-

ness proof (Section V) assumes that any (local) computation

20 40 60 80
0

50

100

150

number of nodes

fr
am

es

grid graph

random graph

Fig. 2. The converges time in frames for different graphs. In the grid graph,
nodes are placed on a lattice and connected to their four neighbors. The
convergence times are the average over 16 runs that start each with random
clock offsets. The random node graph is a unified disk graph with random
node placement with maximal 16 neighbors pair node.

can be done in zero time. In contrast to this, the simula-

tions use the TinyOS embedded operating systems [20] and

the Cooja simulation framework [25] for emulating wireless

sensor nodes together with their processors. This way Cooja

simulates the code execution on the nodes, by taking into ac-

count the computation time of each step. We implemented the

proposed algorithm for sensor nodes that use IEEE 802.15.4

compatible radio transceivers. The wireless network simulation

is according to the system settings (Section II) is based on

a grid graph with 4 ≥ δ as an upper bound on the node

degree and a random graph with 16 ≥ δ as an upper bound

on the node degree. The implementation uses clock steps of

1 millisecond. We use a timeslot size of ξ = 20 clock steps,

where almost all of this period is spent on transmission, packet

loading and offloading. The frame size is τ = 16 ≥ 4δ
timeslots for the grid graph and τ = 64 ≥ 4δ for the

random graphs. For these settings, all experiments showed

convergence, see Figure 2.

VII. CONCLUSIONS

This work considers fault-tolerant systems that have basic

radio and clock settings without access to external references

for collision detection, time or position, and yet require

constant communication delay. We study collision-free TDMA

algorithms that have uniform frame size and uniform timeslots

and require convergence to a data packet schedule that does

not change. By taking into account (local) computation time

uncertainties, we observe that the algorithm is close to the

practical realm. Our analysis considers the timeslot allocation

aspects of the studied problem, together with transmission

timing aspects. Interestingly, we show that the existence of

the problem’s solution depends on convergence criteria that

include the ratio, τ/δ, between the frame size and the node

degree. We establish that τ/δ ≥ 2 as a general convergence

criterion, and prove the existence of collision-free TDMA

algorithms for which τ/δ ≥ 4. This works shows how that

self-stabilizing algorithms provide bootstrap solutions to the

causality dilemma of “which came first, synchronization or

communication”. As future work, we suggest the study of

this causality dilemma in communication networks that do not

share a common reference for time collision arbitration.

2014 13th Annual Mediterranean Ad Hoc Networking Workshop (MED-HOC-NET)

93

REFERENCES

[1] N. Abramson. Development of the ALOHANET. Info.
Theory, IEEE Trans. on, 31(2):119–123, 1985.

[2] B. T. An and E. Gelenbe. Control and improvement of

the broadcast channel. In Modelle für Rechensysteme,

pages 256–276, 1977.

[3] M. Arumugam and S. Kulkarni. Self-stabilizing deter-

ministic time division multiple access for sensor net-

works. AIAA Journal of Aerospace Computing, Info.,
and Comm. (JACIC), 3:403–419, 2006.

[4] J. R. S. Blair and F. Manne. An efficient self-stabilizing

distance-2 coloring algorithm. Theor. Comput. Sci.,
444:28–39, 2012.

[5] C. Busch, M. Magdon-Ismail, F. Sivrikaya, and B. Yener.

Contention-free MAC protocols for asynchronous wire-

less sensor networks. Distrib. Comp., 21(1):23–42, 2008.

[6] H. A. Cozzetti and R. Scopigno. RR-Aloha+: a slotted

and distributed MAC protocol for vehicular communica-

tions. In Vehicular Networking Conference (VNC), 2009
IEEE, pages 1 –8, Oct. 2009.

[7] P. Danturi, M. Nesterenko, and S. Tixeuil. Self-stabilizing

philosophers with generic conflicts. ACM Tran. Au-
tonomous & Adaptive Systems (TAAS), 4(1), 2009.

[8] M. Demirbas and M. Hussain. A MAC layer protocol

for priority-based reliable multicast in wireless ad hoc

networks. In BROADNETS. IEEE, 2006.

[9] S. Dolev. Self-Stabilization. MIT Press, 2000.

[10] G. Fayolle, E. Gelenbe, and J. Labetoulle. Stability

and optimal control of the packet switching broadcast

channel. J. ACM, 24(3):375–386, 1977.

[11] T. Herman. Models of self-stabilization and sensor

networks. In 5th International Workshop on Distributed
Computing, IWDC 2003, pages 205–214, 2003.

[12] T. Herman and S. Tixeuil. A distributed TDMA slot

assignment algorithm for wireless sensor networks. In

ALGOSENSORS, volume 3121 of LNCS, pages 45–58.

Springer, 2004.

[13] T. Herman and C. Zhang. Best paper: Stabilizing clock

synchronization for wireless sensor networks. In 8th
Inter. Symp. on Stabilization, Safety, and Security of
Distributed Systems (SSS’06), pages 335–349, 2006.

[14] J.-H. Hoepman, A. Larsson, E. M. Schiller, and P. Tsigas.

Secure and self-stabilizing clock synchronization in sen-

sor networks. Theor. Comput. Sci., 412(40):5631–5647,

2011.

[15] A. Jhumka and S. S. Kulkarni. On the design of mobility-

tolerant TDMA-based media access control (MAC) pro-

tocol for mobile sensor networks. In 4th International
Conference on Distributed Computing and Internet Tech-
nology, ICDCIT 2007, pages 42–53, 2007.

[16] S. S. Kulkarni and M. Arumugam. Transformations for

write-all-with-collision model, . Computer Communica-
tions, 29(2):183–199, 2006.

[17] P. Leone, M. Papatriantafilou, and E. M. Schiller. Relo-

cation analysis of stabilizing MAC algorithms for large-

scale mobile ad hoc networks. In 5th Inter. Workshop
Algo. Wireless Sensor Net. (ALGOSENSORS), pages

203–217, 2009.

[18] P. Leone, M. Papatriantafilou, E. M. Schiller, and G. Zhu.

Chameleon-MAC: adaptive and self-� algorithms for

media access control in mobile ad hoc networks. In

12th Inter. Symp. on Stabilization, Safety, and Security
of Distributed Systems (SSS’10), pages 468–488, 2010.

[19] P. Leone and E. M. Schiller. Self-stabilizing TDMA

algorithms for dynamic wireless ad-hoc networks. Int.
J. Distributed Sensor Networks, 639761, 2013.

[20] P. Levis, S. Madden, J. Polastre, R. Szewczyk, K. White-

house, A. Woo, D. Gay, J. Hill, M. Welsh, E. Brewer,

et al. Tinyos: An operating system for sensor networks.

In Ambient intelligence, pages 115–148. Springer, 2005.

[21] T. Masuzawa and S. Tixeuil. On bootstrapping topology

knowledge in anonymous networks. ACM Trans. Auton.
Adapt. Syst., 4(1):8:1–8:27, Feb. 2009.

[22] N. Mitton, E. Fleury, I. G. Lassous, B. Sericola, and

S. Tixeuil. Fast convergence in self-stabilizing wireless

networks. In 12th Int. Conf. Parallel and Distributed
Systems (ICPADS’06), pages 31–38, 2006.

[23] M. Molloy and M. R. Salavatipour. A bound on the

chromatic number of the square of a planar graph. J.
Comb. Theory, Ser. B, 94(2):189–213, 2005.

[24] M. Mustafa, M. Papatriantafilou, E. M. Schiller, A. To-

hidi, and P. Tsigas. Autonomous TDMA alignment for

VANETs. In 76th IEEE Vehicular Technology Conf.
(VTC-Fall’12), pages 1–5. IEEE, 2012.

[25] F. Osterlind, A. Dunkels, J. Eriksson, N. Finne, and

T. Voigt. Cross-level sensor network simulation with

cooja. In Local Computer Networks, Proceedings 2006
31st IEEE Conference on, pages 641–648. IEEE, 2006.

[26] T. Petig, E. M. Schiller, and P. Tsigas. Self-stabilizing

TDMA algorithms for wireless ad-hoc networks without

external reference. CoRR, abs/1308.6475, 2013.

[27] S. Pomportes, J. Tomasik, A. Busson, and V. Vèque. Self-

stabilizing algorithm of two-hop conflict resolution. In

12th Inter. Symp. on Stabilization, Safety, and Security
of Distributed Systems (SSS’10), pages 288–302, 2010.

[28] R. Scopigno and H. A. Cozzetti. Mobile slotted aloha

for VANETs. In 70th IEEE Vehicular Technology Conf.
(VTC-Fall’09), pages 1 – 5, 2009.

[29] V. Turau and C. Weyer. Randomized self-stabilizing

algorithms for wireless sensor networks. In H. de Meer

and J. P. G. Sterbenz, editors, IWSOS/EuroNGI, volume

4124 of LNCS, pages 74–89. Springer, 2006.

[30] S. Viqar and J. L. Welch. Deterministic collision free

communication despite continuous motion. In 5th Inter.
Workshop Algo. Wireless Sensor Net. (ALGOSENSORS),
pages 218–229, 2009.

[31] F. Yu and S. Biswas. Self-configuring TDMA protocols

for enhancing vehicle safety with dsrc based vehicle-to-

vehicle communications. Selected Areas in Communica-
tions, IEEE Journal on, 25(8):1526 –1537, oct. 2007.

2014 13th Annual Mediterranean Ad Hoc Networking Workshop (MED-HOC-NET)

94

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

