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Abstract—Lock-free data objects offer several advantages over their
blocking counterparts, such as being immune to deadlocks, priority
inversion and convoying. They have also been shown to work well
in practice. However, composing the operations they provide into
larger atomic operations, while still guaranteeing efficiency and lock-
freedom, is a challenging algorithmic task.

We present a lock-free methodology for composing a wide variety
of concurrent linearizable objects together by unifying their lineariza-
tion points. This makes it possible to relatively easily introduce atomic
lock-free move operations to a wide range of concurrent lock-free
containers. This move operation allows data to be transferred from
one container to another, in a lock-free way, without blocking any of
the operations supported by the original container.

For a data object to be suitable for composition using our method-
ology it needs to fulfil a set of requirements. These requirement are
however generic enough to be fulfilled by a large set of objects. To
show this we have performed case studies on six commonly used
lock-free objects (a stack, a queue, a skip-list, a deque, a doubly
linked-list and a hash-table) to demonstrate the general applicability
of the methodology. We also show that the operations originally
supported by the data objects keep their performance behavior
under our methodology.

Index Terms—lock-free, data structures, containers, composition

1 INTRODUCTION

Data objects, such as concurrent containers, can be
implemented with different types of progress guar-
antees. Lock-free data objects offer several advantages
over their blocking counterparts, such as being im-
mune to deadlocks, priority inversion, and convoy-
ing. They have also been shown to work well in
practice [1], [2], [3]. They have been included in
Intel’s Threading Building Blocks Framework [4], the
NOBLE library [1], the PEPPHER framework [5], the
Java concurrency package [6], and the parallel exten-
sions to the Microsoft .NET Framework [7]. However,
the lack of a general, efficient, lock-free method for
composing them makes it difficult for the program-
mer to perform multiple operations together atom-
ically. Defining efficient atomic operations spanning
multiple objects requires careful algorithmic design

for every particular composition. Such an approach
is challenging and time-intensive. The task is made
difficult by the fact that lock-free data objects are often
too complicated to be trivially altered.

Composing blocking data objects also puts the pro-
grammer in a difficult situation. In order to avoid
deadlocks, the programmer must know the way locks
are handled internally in the implementation of the
objects themselves. It is not possible to build on lock-
based components without examining their imple-
mentations and even then the drawbacks of locking
will not go away.

Software Transactional Memories (STMs) provide
good composability [8], but have poor support
for dealing with non-transactional code with side-
effects [9], [10]. This requires the data objects to be
rewritten to be handled completely inside the STM,
which lowers performance compared to a pure non-
blocking implementation.

1.1 Composing
With the term composing we refer to the task of
binding together multiple operations in such a way
that they can be performed as one. No intermediate
state should be visible to any other process. In the
literature the term is also used for nesting, making
one data object part of another. This is an interesting
problem, but outside the scope of this paper.

Composing lock-free concurrent data objects, in the
context that we consider in this paper, is an open
problem in the area of lock-free data objects. There
do however exist customized compositions of specific
concurrent data objects. This includes the composition
of lock-free flat-sets by Gidenstam et al. that constitute
the foundation of a lock-free memory allocator [11],
[12]. But thus far there are no generic solutions.

Using blocking locks to compose lock-free opera-
tions is not a viable solution. It would reduce the
concurrency and remove the lock-freedom guarantees
of the operations.
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1.2 Contributions

The main contribution of our paper is a systematic
methodology for defining atomic move operations that
span lock-free containers of potentially distinct types.
An atomic move operation allows elements to be
moved from one container to another, atomically. We
demonstrate the methodology on a large class of
already existing concurrent objects without having
to make significant changes to them and without
impacting the efficiency of their existing primitives.

In our methodology we present a set of proper-
ties that can be used to identify suitable concur-
rent objects. We also describe the mostly mechanical
changes needed for our move operation to function
together with the objects. The properties required by
our methodology are fulfilled by a wide variety of
lock-free data objects, among them lock-free stacks,
queues, lists, skip-lists, priority queues, hash-tables
and dictionaries [13], [14], [15], [16], [17], [18], [19],
[20].

Non-collection based data objects, such as for ex-
ample counters, do not map readily to the required
properties. While the same method for composing can
be used in many instances, these data objects are not
suitable for use with the main contribution of this
paper, the generic move operation.

Our methodology is based on the idea of decompos-
ing and then rearranging lock-free operations appro-
priately so that their linearization points can be com-
bined to form new composed lock-free operations.
The linearization point of a concurrent operation is
the point in time where the operation can be said to
have taken effect. Many commonly used concurrent
data objects support an insert and a remove operation,
or a set of equivalent operations that can be used to
modify its content. These two types of operations can
be composed together using the method presented
in this paper to make them appear to take effect
simultaneously. By doing this we provide a lock-free
atomic operation that can move elements between
objects of different types. To the best of our knowledge
this is the first time that such a general scheme has
been proposed.

As a proof of concept we show how to apply our
method on six commonly used concurrent data ob-
jects, the lock-free queue by Michael and Scott [14], the
lock-free stack by Treiber [13], the lock-free skip-list,
doubly linked-list and deque by Sundell and Tsigas
[17], [21], and the lock-free hash-table by Michael [19].
Experimental results on an Intel multiprocessor sys-
tem show that the methodology presented in the pa-
per offers better performance and scalability, in most
cases, than a composition method based on locking.
This is especially the case for data objects with disjoint
memory accesses, such as the skip-list and hash-table.
The proposed method does this in addition to its
qualitative advantages regarding progress guarantees

that lock-freedom offers. Moreover, the experimental
evaluation has shown that the operations originally
supported by the data objects keep their performance
behavior while used as part of our methodology.

The methodology requires the use of a dual-word
CAS (DCAS) or a multi-word CAS (MWCAS) opera-
tion, depending on the number of objects to compose.
In this paper we provide a software implementation of
a DCAS operation that works for pointers. It has been
designed to support hazard pointers and to provide
information on which of the two words that caused
it to fail, in case of failure. We provide a correctness
proof for it in Section 4. This DCAS operation is used
in all our experiments.

2 THE MODEL

The model considered is the standard shared memory
model, where a set of memory locations can be read
from and written to, by a number of processes that
progress asynchronously. Concurrent data objects are
composed of a subset of these memory locations
together with a set of operations that can use read
and write instructions, as well as other atomic instruc-
tions, such as compare-and-swap (CAS). We require
all concurrent data objects to be linearizable to assure
correctness [22].

Linearizability is a commonly used correctness cri-
terion introduced by Herlihy and Wing [22]. Each
operation on a concurrent object consists of an invo-
cation and a response. A sequence of such operations
makes up a history. Operations in a concurrent history
can be placed in any order if they occur concurrently,
but an operation that finishes before another one is
invoked must appear before the latter. If the opera-
tions in any actual concurrent history can be reordered
in such a way, so that the history is equivalent to a
correct sequential history, then the concurrent object is
linearizable. One way of looking at linearizability is to
think that an operation takes effect at a specific point
in time, the linearization point. All operations can
then be ordered according to the linearization point
to form a sequential history.

3 THE METHODOLOGY

The methodology that we present can be used to unify
the linearization points of a remove and an insert
operation for any two concurrent objects, given that
they fulfill certain requirements. We call a concurrent
object that fulfills these requirements a move-candidate
object.

3.1 Characterization
Definition 1: A concurrent object is a move-candidate

if it fulfills the following requirements:
Requirement 1) It implements linearizable opera-

tions for insertion and removal of a single element.
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Requirement 2) Insert and remove operations in-
voked on different instances of the object can succeed
simultaneously.

Requirement 3) The linearization points of the
successful insert and remove operations can be asso-
ciated with successful CAS operations, (on a pointer),
by the process that invoked it. Such an associated
successful CAS can never lead to an unsuccessful
insert or remove operation.

Requirement 4) The element to be removed is
readable before the CAS operation associated with the
linearization point.

To implement a move operation, the equivalent of a
remove and insert operation needs to be available or
be implemented. A generic insert or remove operation
would be very difficult to write, as it must be tailored
specifically to the concurrent object, which motivates
the first requirement.

Requirement 2 is needed since a move operation
tries to perform the removal and insertion of an
element at the same time. If a successful removal
invalidates an insertion, or the other way around, then
the move operation can never succeed. This could
happen when the insert and remove operations share
locks between them or when they are using mem-
ory management schemes such as hazard pointers
[23], if not dealt with explicitly. With shared locks
there is the risk of deadlocks. The process could be
waiting for itself to release the lock in the remove
operation, before it can acquire the same lock in the
insert operation. Hazard pointers are used to prevent
reclamation of memory that is currently referenced by
the process. They could be accidentally overwritten
if the same pointers are used in both the insert and
remove operations.

Requirement 3 requires that the linearization points
can be associated with successful CAS operations.
However, the linearization point does not need to
be at the actual CAS operation. See Section 5.4 for
an example. The linearization points are usually pro-
vided together with the algorithmic description of
each object. Implementations that use the LL/SC pair
for synchronization can be translated to ones that
use CAS by using the construction by Doherty et
al. [24]. The requirement also states that the CAS
operation should be on a variable holding a pointer.
This is not a strict requirement; the reason for it is
that the DCAS operation used in our methodology
often needs to be implemented in software due to lack
of hardware support for such an operation. Working
only with pointers makes it easier to identify words
that are taking part in a DCAS operation. The last
part requires the linearization point of an operation
to be associated with an execution step by the process
that invoked the operation. This prevents concurrent
data objects from using some of the possible helping
schemes, but not the majority of them. For example,

it does not prevent using the commonly used helping
schemes where the process that helps another process
is not the one that defines the linearization point of
the process helped. As described in Section 1.2, there
is a large class of well-known basic and advanced data
objects that fulfills this requirement.

Requirement 4 is necessary as the insert operation
needs to be invoked with the removed element as an
argument. The element is usually available before the
CAS operation, but there are data objects where the
element is never returned by the remove operation.
This makes it unsuitable for a move operation. The
element could also be accessed after the CAS opera-
tion for efficiency reasons, in which case the algorithm
can often be rewritten.

3.2 The Algorithm
The main part of the algorithm is the actual move
operation, which is described in the following section.

3.2.1 The Move Operation
The main idea behind the move operation is based
on the observation that the linearization points of
many concurrent objects’ operations are each asso-
ciated with a CAS. By combining these CASs and
performing them simultaneously, it would be possible
to compose operations.

By definition a move-candidate operation has a
linearization point that is associated with a successful
CAS. We call the part of the operation prior to this
linearization point the init-phase and the part after
it the cleanup-phase. The move can then be seen as
taking place in five steps:

Step 1) The init-phase of the remove operation is
performed. If the removal fails, due for example to the
element not existing, the move is aborted. Otherwise
the arguments to the CAS associated with the poten-
tial linearization point are stored. By requirement 4 of
the definition of a move-candidate, the element to be
moved can now be accessed.

Step 2) The init-phase of the insert operation is
performed using the element received in the previous
step. If the insertion fails, due for example to the
object being full, the move is aborted. Otherwise the
arguments to the CAS associated with the potential
linearization point are stored.

Step 3) The CASs that are associated with the
linearization points, one for each of the two oper-
ations, are performed together atomically using a
DCAS operation with the stored CAS arguments. Step
two is redone if the DCAS failed due to a conflict in
the insert operation. Steps one and two are redone if
the conflict was in the remove operation.

Step 4) The cleanup-phase for the insert operation
is performed.

Step 5) The cleanup-phase for the remove opera-
tion is performed.
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To be able to divide the insert and remove op-
erations into the init- and cleanup-phases without
resorting to code duplication, it is required to replace
all CASs associated with a possible linearization point
with a call to the scas operation described in Algo-
rithm 3. The task of the scas operation is to restore
control to the move operation and store the arguments
intended for the CAS that was replaced. The scas
operation comes in two forms, one to be called by
the insert operations and one to be called by the
remove operations. They can be distinguished by the
fact that the scas for removal requires the element
to be moved as an argument. If the scas operation is
invoked as part of a normal insert or remove, it reverts
back to the functionality of a normal CAS. This should
minimize the impact on the normal operations.

If the DCAS operation is implemented in software
with helping, hazard pointers might be needed to
disallow reclaiming of the memory referred through-
out the operation. In those cases the hazard pointers
can be given as an argument to the scas operation
and they will be brought to the DCAS operation. The
DCAS operation used in this paper uses helping and
takes advantage of the support for hazard pointers.

If the DCAS in step 3 should fail, this could be for
one of two reasons. First, it could fail because the
CAS for the insert failed. In this case the init-phase
for the insert needs to be redone before the DCAS
can be invoked again. Second, it could fail because
the CAS for the remove failed. Now we need to redo
the init-phase for the remove, which means that the
insert operation needs to be aborted. For concurrent
objects such as linked lists and stacks there might not
be a preexisting way for the insert to abort, so code
to handle this scenario must be inserted. The code
necessary usually amounts to freeing allocated mem-
ory and then return. The reason for this simplicity
is that the abort always occurs before the operation
has reached its linearization point. In some cases the
insertion operation can fail for reasons other than
conflicts with another operation. In those cases there
is also a need for the remove operation to be able to
handle the possibility of aborting.

If one uses a software DCAS, it might be required
to alter all accesses to memory words that could take
part in the DCAS. Accesses to these words must
then go via a special read-operation designed for the
DCAS.

A concurrent object that is a move-candidate (Defi-
nition 1) and has implemented all the above changes
is called a move-ready concurrent object. This is de-
scribed formally in the following definition.

Definition 2: A concurrent object is move-ready if it is
a move-candidate and has implemented the following
changes:

1) The CAS associated with each linearization
point in the insert and remove operations have
been changed to scas.

2) The insert (and remove) operation(s) can abort
if the scas returns ABORT.

3) If a software DCAS is used, all memory locations
that could be part of a scas are accessed via the
read operation.

The changes required are mostly mechanical once the
object has been found to adhere to the move-ready
definition. This object can then be used by our move
operation to move items between different instances
of any concurrent move-ready objects. Requirement 3
is not required for systems with a hardware based
DCAS.

Theorem 2 in Section 4 states that the move opera-
tion is linearizable and lock-free if used together with
two move-ready lock-free concurrent data objects.

3.2.2 DCAS
The DCAS operation performs a CAS on two distinct
words atomically (See Algorithm 1 for its semantics).
It is unfortunately not commonly available in hard-
ware, so for our experiments it had to be implemented
in software. There are several different multi-word
compare-and-swap methods available in the literature
[25], [26], [27], [28], [29], [30], [31] and ours uses
the same basic idea as in the solution by Harris et
al [31]. Our definition is not concerned with DCAS
for arbitrary word contents, but assumes the words
actually contain aligned pointers. This allow us to
use the lower bits of the pointers for management
purposes.

Lock-freedom is achieved by using a two-phase
locking scheme with helping.1 First an attempt is
made to change both the words involved, using a
normal CAS, to point to a descriptor. The descriptor
holds all information required for another process to
help the DCAS complete. See lines D10 and D14 in
Algorithm 4. If any of the CASs fail, the DCAS is
unsuccessful as both words need to match their old
value. In this case, if one of the CASs succeeded, its
corresponding word must be reverted back to its old
value. When a word holds the descriptor it cannot
be changed by any other non-helping process. This
means that if both CASs are successful, the DCAS
as a whole is successful. The two words can now be
changed one at a time to hold their respective new
values. See lines D28 and D29.

If another process wants to access a word that is
involved in a DCAS, it first needs to help the DCAS
operation finish. The process knows that a word is
used in a DCAS if it is pointing to a descriptor. This
is checked at line D34 in the read operation. In our
experiments we have marked the descriptor pointer
by setting its least significant bit to one, a method
introduced by Harris [20]. Using the information in
the descriptor it tries to perform the same steps as

1. Lock-freedom does not exclude the use of locks, in contrast to
its definition-name, if the locks can be revoked.
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Algorithm 1 Semantics of the DCAS operation.

struct DCASDesc
word old1, old2, new1, new2
word ∗ptr1, ∗ptr2
[word ∗hp1, ∗hp2]
word res

dres DCAS(desc)
atomic
if(∗desc.ptr1 6= desc.old1)

return ∗desc.res ← FIRSTFAILED
if(∗desc.ptr2 6= desc.old2)

return ∗desc.res ← SECONDFAILED
∗desc.ptr1 ← desc.new1
∗desc.ptr2 ← desc.new2
return ∗desc.res ← SUCCESS

the initiator. The only difference is that it marks the
pointer to the descriptor it tries to swap in with its
thread id. This is done to avoid the ABA-problem.
A CAS operation cannot distinguish a word that has
been changed from A to B and then back to A again,
from a word whose value has remained A. Unless
taken care of in this manner, the ABA-problem could
cause the DCAS to succeed multiple times, one for
each helping process. A latecoming process could still
cause a pointer to temporarily point to the descriptor,
even after the DCAS is completed. If another process
reads the pointer at that time, the process needs to
change the pointer back to its old value. This is done
in lines D4 to D9. Line D3 is used to protect the words
with hazard pointers. See Lemma 6 in Section 4.

Our DCAS differs from the one by Harris et al.
in that i) it has support for reporting which, if any,
of the operations has failed, ii) it does not need to
allocate an RDCSSDescriptor as it only changes two
words, iii) it has support for hazard pointers, and
iv) it requires two fewer CASs in the uncontended
case. These are, however, minor differences and for
our methodology to function it is not required to use
our specific implementation. Performance gains and
practicality reasons account for the introduction of the
new DCAS. The DCAS is linearizable and lock-free
according to Theorem 1.

4 CORRECTNESS PROOFS

In this section we show that the DCAS operation is
correct, linearizable and lock-free (Theorem 1). We
do this by first showing that the initiating process,
and any potential helping processes, all receive the
same result value (Lemma 1 and 2). If the result
value is SUCCESS, then there was a time when the
two pointers both pointed to a DCAS descriptor
(Lemma 3). They then both changed their value to the
new values given as input to the DCAS (Lemma 4). If
the result value is FIRSTFAILED or SECONDFAILED,
then neither of the two pointers changed their value
to the new values (Lemma 5). Lemma 6 shows that the
DCAS operation is compatible with hazard pointers.

Algorithm 2 Basic operations.

bool remove([key],∗item)
...
while(unsuccessful)

...
// element is the element to be (re)moved.
// See Requirement 4.
result ← scas(ptr, old, new, element, [hp])
// Only needed when insert can fail
[if(result=ABORT)]
[abort]
[return false]

...
...

bool insert([key],item)
...
while(unsuccessful)

...
result ← scas(ptr, old, new,[hp])
if(result=ABORT)
abort
return false

...
...

In Theorem 2 we show that the move operation is
linearizable and lock-free if applied to two lock-free
move-ready concurrent objects.

Lemma 1: The DCAS descriptor’s res variable can
only change from UNDECIDED to SECONDFAILED or
from UNDECIDED to a marked descriptor and conse-
quently to SUCCESS.

Proof: The res variable is set at lines D17, D24,
and D30. On lines D17 and D24 the change is made
using CAS, which assures that the variable can only
change from UNDECIDED to SECONDFAILED or to a
marked descriptor. Line D30 writes SUCCESS directly
to res, but it can only be reached if res differs from
SECONDFAILED at line D25, which means that it must
hold a marked descriptor as set on line D24 or already
hold SUCCESS.

Lemma 2: The initiating and all helping processes
will receive the same result value.

Proof: DCAS returns the result value at lines D9,
D11, D19, D22, D27, and D31. Lines D22 and D27 are
only executed if res is equal to SECONDFAILED and
we know by Lemma 1 that the result value cannot
change after that. Lines D31 and D19 can only be exe-
cuted when res is SUCCESS and by the same Lemma
the value can not change. Line D9 only returns when
the result value is either SUCCESS or SECONDFAILED
and as stated before these value cannot change. Line
D11 returns FIRSTFAILED when the initiator process
fails to announce the DCAS, which means that no
other process will help the operation to finish.

Lemma 3: If and only if the result value of the DCAS
is SUCCESS, then ∗ptr1 held a descriptor at the same
time as ∗ptr2 held a marked descriptor.

Proof: Line D28 can only be reached if the CASs
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Algorithm 3 Move operation.

thread local variables
desc, ltarget, lskey, ltkey, insfailed

M1bool move(source, target, [skey, tkey])
M2 desc ← new DCASDesc
M3 desc.res ← UNDECIDED
M4 [lskey ← skey, ltkey ← tkey]
M5 ltarget ← target
M6 result ← source.remove([lskey], tmp)
M7 desc ← 0
M8 return result

M9fbool scas(ptr, old, new, element, [hp])
M10 if(desc 6= 0)
M11 desc.ptr1 ← ptr
M12 desc.old1 ← old
M13 desc.new1 ← new
M14 [desc.hp1 ← hp]
M15 insfailed ← true
M16 result ← ltarget.insert([ltkey], element)
M17 if(insfailed)
M18 return ABORT
M19 return result
M20 else
M21 return cas(ptr,old,new)

M22fbool scas(ptr, old, new, [hp])
M23 if(desc 6= 0)
M24 desc.ptr2 ← ptr
M25 desc.old2 ← old
M26 desc.new2 ← new
M27 [desc.hp2 ← hp]
M28 result ← DCAS(desc, true)
M29 if(result != SUCCESS)
M30 desc ← new DCASDesc(desc)
M31 desc.res ← UNDECIDED
M32 insfailed ← false
M33 if(result = FIRSTFAILED)
M34 return ABORT
M35 if(result = SECONDFAILED)
M36 return false
M37 return true
M38 else
M39 return cas(ptr,old,new)

at lines D10 and D14 were successful. The values of
∗ptr1 and ∗ptr2 are not changed back until lines D28
and D29, so just before the first process reaches line
D28 ∗ptr1 holds a descriptor and ∗ptr2 holds a marked
descriptor.

Lemma 4: If and only if the result value of the DCAS
is SUCCESS, then ∗ptr1 has changed value from old1

to the descriptor to new1 and ∗ptr2 has changed value
from old2 to a marked descriptor to new2 once.

Proof: On line D10 ∗ptr1 is set to the descriptor
by the initiating process as otherwise the result value
would be FIRSTFAILED. On line D14, ∗ptr2 is set
to a marked descriptor by any of the processes. By
contradiction, if all processes failed to change the
value of ∗ptr2 on line D14, the result value would be
set to SECONDFAILED on line D17. On line D24 the
res variable is set to point to a marked descriptor.
This change is a step on the path to the SUCCESS
result value and thus must be taken. On line D28

Algorithm 4 Double word compare-and-swap.

D1 dres DCAS(desc, initiator)
D2 [if(¬initiator)]
D3 [hp1 ← desc.hp1, hp2 ← desc.hp2]
D4 if(desc.res = SUCCESS ∨ SECONDFAILED)
D5 if(desc is marked)
D6 cas(desc.ptr2, desc, desc.old2)
D7 else
D8 cas(desc.ptr1, desc, desc.old1)
D9 return desc.res

D10 if(initiator∧¬cas(desc.ptr1, desc.old1, desc))
D11 return FIRSTFAILED
D12
D13 mdesc ← mark(unmark(desc),threadID)
D14 p2set ← cas(desc.ptr2, desc.old2, mdesc)
D15 if(¬p2set)
D16 if(∗desc.ptr2.ptr 6= desc)
D17 cas(desc.res, UNDECIDED, SECONDFAILED)
D18 if(desc.res = SUCCESS)
D19 return desc.res
D20 if(desc.res = SECONDFAILED)
D21 cas(desc.ptr1, desc, desc.old1)
D22 return desc.res
D23
D24 cas(desc.res, UNDECIDED, mdesc)
D25 if(desc.res = SECONDFAILED)
D26 if(p2set) cas(desc.ptr2, mdesc, desc.old2)
D27 return desc.res
D28 cas(desc.ptr1, desc, desc.new1)
D29 cas(desc.ptr2, desc.res, desc.new2)
D30 desc.res ← SUCCESS
D31 return desc.res

D32 word read(∗ptr)
D33 result ← ∗ptr
D34 while(result is DCASDesc)
D35 hpd ← result
D36 if(hpd = ∗ptr)
D37 DCAS(result,false)
D38 result ← ∗ptr
D39 return result

∗ptr1 is changed to new1 by one process. It can only
succeed once as the descriptor is only written once
by the initiating process. This is in contrast to ∗ptr2
which can hold a marked descriptor multiple times
due to the ABA-problem at line D14. When ∗ptr2 is
changed to new2 it could be changed back to old2

by a process outside of the DCAS. The CAS at line
D14 has no way of detecting this. This is the reason
why we are using a marked descriptor that is stored
in the res variable using CAS, as this will allow only
one process to change the value of ∗ptr2 to new2 on
line D29. A process that manages to store its marked
descriptor to ∗ptr2, but was not the first to set the res
variable, will have to change it back to its old value.

Lemma 5: If and only if the result value of the DCAS
is FIRSTFAILED or SECONDFAILED, then ∗ptr1 was
not changed to new1 in the DCAS and ∗ptr2 was
not changed to new2 in the DCAS due to either
∗ptr1 6=old1 or ∗ptr2 6=old2.

Proof: If the CAS at line D10 fails, nothing is
written to ∗ptr1 by any processes since the opera-
tion is not announced. The CAS at line D24 must
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fail, since otherwise the result value would not be
SECONDFAILED. This means the test at line D25 will
succeed and the operation will return before line D29,
which is the only place that ∗ptr2 can be changed to
new2.

Lemma 6: If the initiating process protects ∗ptr1 and
∗ptr2 with hazard pointers, they will not be written
to by any helping process unless that process also
protects them with hazard pointers.

Proof: If the initiating process protects the words,
they will not be unprotected until that process returns.
At this point the final result value must have been set.
This means that if the test at D4 fails for a helping
process, the words were protected when the process
local hazard pointers were set at line D3. If the test
did not fail, then the words are not guaranteed to be
protected. But in that case the word that is written to
at line D6 or D8 is the same word that was read in the
read operation. That word must have been protected
earlier by the process calling it, as otherwise it could
potentially read from invalid space. Thus the words
are either protected by the hazard pointers set at line
D3 or by hazard pointers set before calling the read
operation.

Lemma 7: DCAS is lock-free.
Proof: The only loop in DCAS is part of the read

operation that is repeated until the word read is no
longer a DCAS descriptor. The word can be assigned
the same descriptor, with different process id, for a
maximum number of p − 1 times, where p is the
number of processes in the system. This can happen
when each helping process manages to write to ∗ptr2
due to the ABA-problem mentioned earlier. This can
only happen once for each process per descriptor as
it will not get past the test on line D4 a second time.

So, a descriptor appearing on a word means that
either a process has started a new DCAS operation or
that a process has made an erroneous helping attempt.
Either way, one process must have made progress for
this to happen, which makes the DCAS lock-free.

Theorem 1: The DCAS is lock-free and linearizable
with possible linearization points at D10, D17, and
D24, and follows the semantics as specified in Algo-
rithm 1.

Proof: Lemma 2 gives that all processes return the
same result value. According to Lemmata 4 and 5, the
result value can be seen as deciding the outcome of
the DCAS. The result value is set at D17 and D24,
which become possible linearization points. It is also
set at D30, but that comes as a consequence of the
CAS at line D24. The final candidate for linearization
point happens when the CAS at line D10 fails. This
happens before the operation is announced so we do
not need to set the res variable.

Lemma 4 proves that when the DCAS is successful
it has changed both ∗ptr1 and ∗ptr2 to an intermediate
state from a state where they were equal to old1 and
old2, respectively. Lemma 3 proves that they were

in this intermediate state at the same time before
they got their new values, according to Lemma 4
again. If the DCAS was unsuccessful then nothing is
changed due to either ∗ptr1 6=old1 or ∗ptr2 6=old2.
This is in accordance with the semantics specified in
Algorithm 1.

Lemma 7 gives that DCAS is lock-free.
Theorem 2: The move operation is linearizable and

lock-free if applied to two lock-free move-ready con-
current objects.

Proof: We consider DCAS an atomic operation. All
writes, except the ones done by the DCAS operation,
are process local and can as such be ignored.

The move operation starts with an invocation of the
remove operation. If it fails, it means that there were
no elements to remove from the object and that the
linearization point must lie somewhere in the remove
operation. This is so since requirement 1 of the defi-
nition of a move-candidate states that the operations
should be linearizable. If the process reaches the first
scas call, the insert operation is invoked with the
element to be removed as an argument. If the insert
fails before it reached the second scas call, it was
not possible to insert the element. In this case the
insfailed variable is not set at line M32 and scas
will abort the remove operation. The linearization
point in this case is somewhere in the insert operation.
In both these scenarios, whether it is the remove or
the insert operation that fails, the move operation as
a whole is aborted.

If the process reached the second scas call, the
one in the insert operation, the DCAS operation is
invoked. If it is successful, then both the insert and
remove operation must have succeeded according to
requirement 3 of the definition of a move-candidate.
By requirement 1, they can only succeed once, which
makes the DCAS the linearization point. If the DCAS
fails nothing is written to the shared memory and
either the insert or both the remove and the insert
operations are restarted.

Since the insert and remove operations are lock-free,
the only reason for the DCAS to fail is that another
process has made progress in their insertion or re-
moval of an element. This makes the move operation
as a whole lock-free.

5 CASE STUDY

To get a better understanding of how our method-
ology can be used in practice, we apply it to six
commonly used concurrent objects. These are the lock-
free queue by Michael and Scott [14], the lock-free
stack by Treiber [13], the lock-free skip-list, doubly
linked-list and deque by Sundell and Tsigas [17],
[21], and the lock-free hash-table by Michael [19]. A
technical report is available with more detailed code
listings showing some of the algorithms before and
after adaptation [32].
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Algorithm 5 Lock-free queue by Michael and
Scott [14].

Q1 bool enqueue(val)
Q2 node ← new Node
Q3 node.next ← 0
Q4 node.val ← val
Q5 while(true)
Q6 ltail ← read(tail)
Q7 hp1 ← ltail; if(hp1 != read(tail)) continue
Q8 lnext ← read(ltail.next)
Q9 hp2 ← lnext

Q10 if(ltail != read(tail)) continue
Q11 if(lnext != 0)
Q12 cas(tail,ltail,lnext)
Q13 continue
Q14 res ← scas(ltail.next,0,node,hp1)
Q15 if(res = abort)
Q16 free node
Q17 return false
Q18 if(res = true)
Q19 cas(tail,ltail,node)
Q20 return true

Q21 bool dequeue(∗val)
Q22 while(true)
Q23 lhead ← read(head)
Q24 hp3 ← lhead; if(hp3 != read(head)) continue
Q25 ltail ← read(tail)
Q26 lnext ← read(lhead.next)
Q27 hp4 ← lnext
Q28 if(lhead!=read(head)) continue
Q29 if(lnext=0) return false
Q30 if(lhead==ltail)
Q31 cas(tail,ltail,lnext)
Q32 continue
Q33 ∗val ← lnext.val
Q34 if(scas(head,lhead,lnext,val,hp3))
Q35 free lhead
Q36 return true

5.1 Queue

The first case is the lock-free queue by Michael and
Scott [14] that uses hazard pointers for memory man-
agement. We start by making sure that it is a move-
candidate as defined by Definition 1. All line refer-
ences are to Algorithm 5.

Requirement 1) The queue fulfills the first
requirement by providing dequeue and enqueue
operations, which have been shown to be
linearizable [14].

Requirement 2) The insert and remove operations
share hazard pointers in the original implementation.
By using a separate set of hazard pointers for the
dequeue operation we fulfill requirement number 2,
as no other information is shared between two
instances of the object.

Requirement 3) The linearization points can be
found on lines Q34, and Q14 and both consist of a
successful CAS, which fulfils requirement number 3.
There is also a linearization point at line Q29, but
it is not taken in the case of a successful dequeue.
These linearization points were provided together
with the algorithmic description of the object, which
is usually the case for the concurrent linearizable

objects that exist in the literature.
Requirement 4) The linearization point for the

dequeue is on line Q34 and the value that is read
in case of a successful CAS is available on line Q33,
which must be executed before line Q34.

The above simple observations give us the follow-
ing lemma in a straightforward way.

Lemma 8: The queue by Michael and Scott is a
move-candidate.

After making sure that the queue is a move-
candidate we need to replace the CAS operations
at the linearization points on lines Q34 and Q14
with calls to the scas operation. If we are using a
software implementation of DCAS we also need to
alter all lines where words are read that could be part
of a DCAS. They should access them via the read
operation instead. For the queue these changes need
to be done on lines Q6, Q7, Q8, Q10, Q23, Q24, Q25,
Q26, and Q28.

One must also handle the case of scas returning
ABORT in the enqueue. Since there has been no change
to the queue, the only thing to do before returning
from the operation is to free up the allocated memory
on line Q16. The enqueue cannot fail so there is no
need to handle the ABORT result value in the dequeue
operation.

The move operation can now be used with the
queue. In Section 6 we evaluate the performance of
the move-ready queue when combined with another
queue, and when combined with the Treiber stack.

5.2 Stack
The second case is the lock-free stack by Treiber [13].
We look at the version by Michael that uses hazard
pointers for memory management [23]. We first check
to see if the stack fulfils the requirements of the move-
candidate definition. All line references are to Figure 8
in the paper by Michael [23].

Requirement 1) The push and pop operations are
used to insert and remove elements and it has been
shown that they are linearizable. Vafeiadis has, for
example, given a formal proof of this [33].

Requirement 2) There is nothing shared between
instances of the object, so the push and pop operations
can succeed simultaneously.

Requirement 3) The linearization points on lines
5 and 11 are both CAS operations. The linearization
point on line 7 is not a CAS, but it is only taken when
the source stack is empty and when the move cannot
succeed. The conditions in the definition only require
successful operations to be associated to a successful
CAS.

Requirement 4) The node holding the element to
be removed is available on line 10, which is before the
linearization point on line 11.

The above simple observations give us the follow-
ing lemma in a straightforward way.
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Lemma 9: The stack by Treiber is a move-candidate.
To make the stack object move-ready we change

the CAS operations on lines 5 and 11 to point to
scas instead. We also need to change the read of
top on lines 3, 6, and 9, if we are using a software
implementation of DCAS, so that it goes via the read
operation. Since push can be aborted we also need to
add a check after line 5 that looks for this condition
and frees allocated memory.

The stack is now move-ready and can be used to
atomically move elements between instances of the
stack and other move-ready objects, such as the pre-
viously described queue. In Section 6 we evaluate the
performance of the move-ready stack when combined
with another stack as well as when combined with the
Michael and Scott queue.

5.3 Skip-List
The third case is the lock-free skip-list by Sundell and
Tsigas [17] that uses reference counting for memory
management. We first check to see if the skip-list ful-
fils the requirements of the move-candidate definition.
All line references are to the skip-list paper [17].

Requirement 1) The insert and remove operations
have been proved to be linearizable [34].

Requirement 2) There is nothing shared between
instances of the object, so the insert and remove
operations can succeed simultaneously.

Requirement 3) The linearization point of a suc-
cessful delete operations is the CAS at line D8. The
linearization point for a successful insert operation
is either the CAS at line I26, when inserting a new
node, or the CAS at line I13, when updating the value
of a node. The linearization points for unsuccessful
operations can be ignored.

Requirement 4) The element to be removed is read
at line D6, which is before the linearization point on
line D8.

The above simple observations give us the follow-
ing lemma in a straightforward way.

Lemma 10: The skip-list by Sundell and Tsigas is a
move-candidate.

To make the skip-list object move-ready we change
the CAS operations on lines I13, I26 and D8 to scas
operations. If we are using a software DCAS we need
to change all reads of a nodes value and all reads of
the next pointer on the lowest level so that they are
done via the read operation. If the insert operation
should be aborted we need to free the allocated node
and also to lower all reference counters to not interfere
with the memory management.

The skip-list is now move-ready. In Section 6 we
evaluate the performance of the move-ready skip-list.

5.4 Deque
The fourth case is the lock-free double ended queue
by Sundell and Tsigas [21] that uses Beware&Cleanup

(B&C), a combination of hazard pointers and refer-
ence counting, for memory management [35]. We first
check to see if the deque fulfils the requirements of
the move-candidate definition. All line references are
to the deque paper [21].

Requirement 1) The pushLeft, pushRight, popLeft
and popRight operations are linearizable according to
Theorem 1 in the deque paper [21].

Requirement 2) The deque uses hazard pointers
which normally needs to be handled. However, the
B&C memory reclamation scheme dynamically allo-
cates more hazard pointers if needed, which prevents
them from being overwritten before being released.
This allows an insert and remove operation on two
different instances of the object to succeed concur-
rently.

Requirement 3) The successful insert and remove
operations have their linearization points on line L7,
R7, PR11 and PL3. The three first of these are CAS
operations, but the fourth is a read operation. For-
tunately, the read operation is only the linearization
point when it is associated with a successful CAS op-
eration on line PL13, which means that requirement 3
is fulfilled. The linearization points of unsuccessful
operations can be ignored.

Requirement 4) The reference to the node that will
be popped if the popLeft operation is successful, is
taken at line PL3, which is before the CAS at PL13.
For a successful popRight operation the reference to
the node that will be popped is taken at either line
PR2 or PR5, both which are before the CAS at PR11.

The above simple observations give us the follow-
ing lemma in a straightforward way.

Lemma 11: The double ended queue by Sundell and
Tsigas is a move-candidate.

To make the deque object move-ready we need to
extend the B&C scheme so that it provides a compare-
AndSwapRef operation that uses scas instead CAS.
All reads of the next pointer in each node also needs
to be done via the read operation, if we are using a
software DCAS. Since the two push operations can be
aborted we also need to add a check after line L7 and
R7 to check for this condition. If aborted, we need to
free the newly allocated node and release all hazard
pointers before returning.

The deque is now move-ready.

5.5 Doubly linked-list

The fifth case is the doubly linked-list with support
for concurrent cursors that the previously mentioned
deque builds upon [21]. The linked list is traversed
and modified using cursors that support standard
operations such as next, prev, delete and insertBefore
and insertAfter. We first check to see if the dou-
bly linked-list fulfils the requirements of the move-
candidate definition. All line references are to the
doubly linked-list paper [21].
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Requirement 1) The delete, insertBefore and in-
sertAfter operations are linearizable according to The-
orem 1 in the double linked-list paper [21].

Requirement 2) It uses hazard pointers, but these
are handled automatically by the B&C memory recla-
mation scheme. This allows insertion and removal
operations on two different instances of the linked-
list to succeed concurrently.

Requirement 3) The successful insert and remove
operations have their linearization points on line D8,
IB11 and IA8. These are all CAS operations. The
linearization points of unsuccessful operations can be
ignored.

Requirement 4) The cursor is pointing to the
element to delete, which makes it trivially accessible
before the CAS operation at D8.

The above simple observations give us the follow-
ing lemma in a straightforward way.

Lemma 12: The doubly linked-list by Sundell and
Tsigas is a move-candidate.

To make the doubly linked-list move-ready we need
to, as with the deque, to extend the B&C scheme so
that it provides a compareAndSwapRef operation that
uses scas instead CAS. All reads of the next pointer
in each node also needs to be done via the read
operation, if we are using a software DCAS. Since the
two insert operations can be aborted we also need
to add a check after line IB11 and IA8 to check for
this condition. If aborted, we need to free the newly
allocated node and release all hazard pointers before
returning.

The doubly linked-list is now move-ready.

5.6 Hash-table

The last case is the lock-free hash-table by Michael [19]
that uses hazard pointers for memory management.
We first check to see if the hash-table fulfils the
requirements of the move-candidate definition. All
line references are to Figure 7 in the hash-table paper
[19].

Requirement 1) The insert and remove operations
are both linearizable, as stated in Theorem 7 in the
hash-table paper [19].

Requirement 2) The insert and remove operations
both utilizes the same find operation that sets three
hazard pointers. Due to this, the algorithm needs to
be changed so that the find operation uses a disjoint
set of hazard pointers depending on if it is called from
the insert or remove operation.

Requirement 3) The possible linearization point
for a successful operation is the CAS at line A3 for the
insert operation and the CAS at line B2 for the delete
operation. The linearization points for unsuccessful
operations at line D1 and D3 can be ignored.

Requirement 4) The element to be removed is
available after the call to the find operation at line
B1, which is before the linearization point at line B2.

The above simple observations give us the follow-
ing lemma in a straightforward way.

Lemma 13: The hash-table by Michael is a move-
candidate.

The hash-table is made move-ready by changing the
CAS operations on lines A3 and B2 to scas instead.
If we use a software DCAS we need to change all
reads of each nodes next pointer to go via the read
operation instead. Since inserts can be aborted, we
also need to add a check after line A3 that checks for
this condition and returns false if it is the case that
the insert has been aborted. The algorithm will then
free the allocated memory.

The hash-table is now move-ready.
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Fig. 1. Total number of operations per millisecond
before and after adaptation of the data objects.

6 EXPERIMENTS
The evaluation was performed on a machine with an
Intel Core i7 950 3 GHz processor and 6 GB DDR3-
1333 memory. The processor has four cores with
hyper-threading, providing us with eight virtual pro-
cessors in total. All experiments were based on either
two queues, two stacks, two skip-lists, two hash-
tables, or one queue and one stack. The stack used was
the lock-free stack by Treiber [13], the queue was the
lock-free queue by Michael and Scott [14], the skip-
list used was the lock-free skip-list by Sundell and
Tsigas [17], and the hash-table used was the lock-free
hash-table by Michael [19].

In the experiments two types of threads were used,
one that performed only insert/remove operations,
and one that only performed move operations. For
the hash-table and skip-list, the keys used in the
operations were picked in such a way as to guarantee
that the operation could succeed. The skip-list was 8
levels high and the hash-table had 1024 buckets. The
number of threads, as well as the number of move-
only threads, were varied between one and sixteen.
We ran each experiment for five seconds and mea-
sured the number of operations performed in total per
millisecond. Move operations were counted as two
operations to normalize the result. Each experiment
was run fifty times, taking the average as the results.
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Fig. 5. Effect on thread performing insert/remove operations when other threads gradually turn into move-only
threads.

For reference we compared the data objects with
blocking implementations of the same objects, using
test-test-and-set to implement the locks.

All implementations used the same lock-free mem-
ory manager. Freed nodes are placed on a local list
with a capacity of 200 nodes. When the list is full it
is placed on a global lock-free stack. A process that
requires more nodes accesses the global stack to get a
new list of free nodes. Hazard pointers were used by
the queue, stack and hash-table to prevent nodes in
use from being reclaimed. The skip-list used reference
counting.

Two load distributions were tested, one with high
contention and one with low contention, where each
process did some local work for a variable amount

of time after they had performed an operation on
the object. The work time is picked from a normal
distribution and the work takes around 0.1µs per
operation on average for the high contention distri-
bution and 0.5µs per operation on the low contention
distribution.

Figure 1 shows how the performance of the in-
sert/remove operations was affected by the adap-
tation to the move operation. Figure 2 shows the
number of operations in total per millisecond that
was achieved performing either just insert/remove
operations, or just move operations, or an even mix
of the two. The experiments were performed using
both high and low contention. In Figures 3 and 4 we
take a closer look at what happens when the ratio of
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processes performing only move operations is varied.
We used a total of either eight or sixteen processes
and ran the experiment under both low and heavy
contention.

In Figure 5 we examine how the performance of
a thread, that is only performing insert/remove op-
erations, is affected when gradually more threads
go from performing just insert/remove operations to
performing just move operations.

7 DISCUSSION

The stack and queue have very few access points,
which limits the offered parallelism. The experiments
on these two data objects are thus to be seen as show-
ing some of the worst case scenarios. The skip-list
and the hash-table on the other hand allows multiple
operations on disjoint memory locations to succeed
concurrently, and should thus scale better.

Figure 1 shows that the modifications done to the
data objects do not degrade the performance of the
normal operations. This is important, as it means that
the adapted data object can also be efficiently used in
stages where the move operation is not needed.

In Figure 2, when having no move-only threads, we
see that the performance increase sharply up to four
threads. This is the number of cores on the processor.
It then increases more slowly up to eight threads, the
number of cores times two for hyper-threading. After
eight threads there is no increase in performance as
there are no more processing units. After this point
the blocking version drops in performance when more
threads are added.

When more move operations are performed, the
performance does not scale as well. The move opera-
tions are more expensive as they involve performing
two operations and affects both data objects. This
lowers the possible parallelism. This effect is hardly
noticeable for the lock-free skip-list and the hash-
table. Threads performing operations on these data
objects have a high likelihood of accessing disjoint
memory. This lowers the number of conflicts. For
the queue the performance is still better than for the
blocking version, however on the stack it is actually
worse. All operations on this data object need to
alter the same memory word. This leads to a high
number of conflicts and retries. Looking at Figure 3
we see that there is a threshold were the ratio of
move-only threads makes the lock-free version worse
than the blocking. This threshold does not exist for
the queue. Regardless of the ratio it is faster than
the blocking version, though more moves lowers the
performance for the high contention case. For the
low contention case the performance remains the
same. In this scenario there are fewer conflicts and
less operations needs to be helped. In general the
difference in performance between the blocking and
lock-free methods becomes lower when the contention

decreases. It should however be noted that it is not
possible to combine a blocking move operation with
non-blocking insert/remove operations.

In Figure 5 we see how the performance of a thread
doing insert/remove operations is affected by the
kind of operations that the other threads are perform-
ing. We can see that for the blocking implementations
the performance stays roughly the same no matter the
number of move operations. Once the lock has been
acquired there is not much difference in the amount
of work thats needs to be done. On the other hand
the lock-free stack loses in performance as more move
operations are performed. This is due to the higher
probability of a thread needing help another thread
finish its operation. The amount of helping required
is lowered when the contention drops. For the queue,
which can support two operations succeeding at the
same time, the drop in performance due to helping is
half that of the stack. In all cases the lock-free imple-
mentations are faster than their blocking counterparts.

8 CONCLUSION

We present a lock-free methodology for composing
highly concurrent linearizable objects by unifying
their linearization points. Our methodology intro-
duces atomic move operations that can move elements
between objects of different types, to a large class of
already existing concurrent objects without having to
make significant changes to them.

Our experimental results demonstrate that the
methodology presented in the paper, applied to the
classical lock-free implementations, often offers bet-
ter performance and scalability than a composition
method based on locking. This is especially the case
for data objects with disjoint memory accesses, such
as the skip-list and hash-table. These results also
demonstrate that it does not introduce noticeable
performance penalties to the previously supported
operations of the concurrent objects.

By using a MWCAS instead of a DCAS, our
methodology can be easily extended to support n
operations on n distinct objects, for example to create
functions that remove an item from one object and
insert it into n others atomically.
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