
J. Parallel Distrib. Comput. 68 (2008) 1008–1020

Contents lists available at ScienceDirect

J. Parallel Distrib. Comput.

journal homepage: www.elsevier.com/locate/jpdc
Lock-free deques and doubly linked lists
Håkan Sundell a,b,∗, Philippas Tsigas b

a School of Business and Informatics, University College of Borås, 501 90 Borås, Sweden
b Department of Computer Science and Engineering, Chalmers University of Technology and Göteborg University, 412 96 Göteborg, Sweden

a r t i c l e i n f o

Article history:
Received 23 January 2007
Received in revised form
11 January 2008
Accepted 7 March 2008
Available online 15 March 2008

Keywords:
Deque
Doubly linked list
Non-blocking
Lock-free
Shared data structure
Multi-thread
Concurrent

a b s t r a c t

We present a practical lock-free shared data structure that efficiently implements the operations of
a concurrent deque as well as a general doubly linked list. The implementation supports parallelism
for disjoint accesses and uses atomic primitives which are available in modern computer systems.
Previously known lock-free algorithms of doubly linked lists are either based on non-available atomic
synchronization primitives, only implement a subset of the functionality, or are not designed for disjoint
accesses. Our algorithm only requires single-word compare-and-swap atomic primitives, supports
fully dynamic list sizes, and allows traversal also through deleted nodes and thus avoids unnecessary
operation retries. We have performed an empirical study of our new algorithm on two different
multiprocessor platforms. Results of the experiments performed under high contention show that the
performance of our implementation scales linearly with increasing number of processors. Considering
deque implementations and systems with low concurrency, the algorithm by Michael shows the best
performance. However, as our algorithm is designed for disjoint accesses, it performs significantly better
on systems with high concurrency and non-uniform memory architecture.

© 2008 Elsevier Inc. All rights reserved.
1. Introduction

A doubly linked list is a fundamental data structure and is used
in kernel as well as user level applications. For example, doubly
linked lists are often used for implementing the deque (i.e., doubly
ended queue) or dictionary abstract data types. A general doubly
linked list should supportmodifications and bidirectional traversal
of a list of items. The items are not necessarily enumerable as they
are only related through their relative position in the list. Thus,
the data structure should at least support the following operations;
InsertBefore, InsertAfter, Delete, Read, Next, Prev, First, and Last. A
corresponding deque abstract data type should at least support the
following operations; PushLeft, PushRight, PopLeft, and PopRight.

To ensure consistency of a shared data object in a concurrent
environment, the most common method is mutual exclusion,
i.e., some form of locking. Mutual exclusion degrades the system’s
overall performance [1] as it causes blocking, i.e., other concurrent
operations cannot make any progress while the access to the
shared resource is blocked by the lock. Mutual exclusion can also
cause deadlocks, priority inversion and even starvation.

In order to address these problems, researchers have proposed
non-blocking algorithms for shared data objects. Non-blocking
∗ Corresponding author at: School of Business and Informatics, University College
of Borås, 501 90 Borås, Sweden.

E-mail addresses: phs@cs.chalmers.se (H. Sundell), tsigas@cs.chalmers.se
(P. Tsigas).

0743-7315/$ – see front matter© 2008 Elsevier Inc. All rights reserved.
doi:10.1016/j.jpdc.2008.03.001
algorithms do not involve mutual exclusion, and therefore do not
suffer from the problems that blocking could generate. Lock-free
implementations are non-blocking and guarantee that regardless
of the contention caused by concurrent operations and the
interleaving of their sub-operations, always at least one operation
will progress. However, there is a risk for starvation as the progress
of some operations could cause some other operations to never
finish. Wait-free [2] algorithms are lock-free and moreover they
avoid starvation as well, as all operations are then guaranteed to
finish in a limitednumber of their own steps. Some researchers also
consider obstruction-free [3] implementations, that are weaker
than the lock-free ones and do not guarantee progress of any
concurrent operation.

The implementation of a lock-based concurrent doubly linked
list is a trivial task, and can preferably be protected by either
a single lock or by multiple locks, where each lock protects a
part of the shared data structure. To the best of our knowledge,
there exist no implementations of wait-free doubly linked
lists. Greenwald [4] presented a CAS2-based doubly linked list
implementation. However, it is only presented in the form of
a dictionary abstract data type and thus requires enumerable
items, and is not disjoint-access-parallel — a property identified
by Israeli and Rappoport [5] as crucial for avoiding bottlenecks
and permitting actual performed parallelism. Moreover, CAS21
1 A CAS2 (DCAS) operation can atomically read-and-possibly-update the
contents of two non-adjacent memory words.

http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
mailto:phs@cs.chalmers.se
mailto:tsigas@cs.chalmers.se
http://dx.doi.org/10.1016/j.jpdc.2008.03.001

H. Sundell, P. Tsigas / J. Parallel Distrib. Comput. 68 (2008) 1008–1020 1009
is not available in modern computer systems. Recently, Attiya
and Hellel [6] presented a CAS2-based doubly linked list allowing
more parallelism. Valois [7] sketched a lock-free doubly linked
list implementation that is based on common atomic hardware
primitives. However, it is not general as it does not support any
delete operations.

Several lock-free implementations [8–12] of the deque abstract
data type have been proposed that are based on the doubly linked
list. However, these implementations do not support all operations
necessary for a general doubly linked list data structure, or are
based on atomic hardware primitives which are not available
in modern computer systems. The deque implementation by
Michael [12] requires CAS of double-width for supporting fully
dynamic sizes and is not disjoint-access-parallel.

Sundell and Tsigas [13,14] presented a practical lock-free deque
implementation which can also support general doubly linked list
operations.2 The basic idea is to utilize the built-in redundancy of
the doubly linked list and allow temporary inconsistency of the
data structure while operations are performed on it. Afterwards,
based on a very similar approach, Martin [15] designed an
implementation of a lock-free doubly linked list specifically for the
Java framework. This implementation has been adopted for use in
a lock-free deque implementation in the Java concurrency package
by Lea [16]. The basic technique of optimistic pointers has also been
used consequently for the design of other data structures based on
linked lists, e.g., a queue by Ladan-Mozes and Shavit [17]. However,
the doubly linked list algorithm in [15] does not support traversals
over deleted nodes3 and do not guarantee that the underlying data
structure is consistent4 in both directions when it is idle. Recently
Heller et al. [18] showed that it can be beneficial for linked list
structures to allow concurrent threads to traverse over locked
nodes (i.e., logically deleted nodes), a technique also exploited in
a lock-free manner in [14,19].

In this paper we improve and extend on the algorithm by
Sundell and Tsigas [14], by presenting the general operations for
a lock-free doubly linked list as well as operations for a deque
abstract data type. The algorithm is implemented using common
synchronization primitives that are available in modern systems.
The underlying data structure is fully consistent when it is idle,
and the algorithm supports bidirectional traversals also through
deleted nodes. The improved algorithm is compatible5 with the
lock-freememory reclamation scheme by Gidenstam et al. [20,21],
and thus the data structure is fully dynamic in size and there is
an upper bound of the amount of memory occupied at any time.
The algorithm, which also allows disjoint accesses on the data
structure to perform in parallel, is described in detail later in this
paper together with the aspects concerning the underlying lock-
free memory management.

We have performed an empirical study to measure the perfor-
mance and scalability of our algorithm under high contention. Ex-
periments were performed on two different multiprocessor sys-
tems equipped with 32 or 48 processors respectively, equipped
with different operating systems and based on different architec-
tures.
2 Although the basic algorithm in the paper could support general doubly linked
list operations, only operations related to the deque abstract data type were
described, and only in the context of expensive reference counting methods for
memory reclamation.

3 When a traversal reaches a deleted node, the traversal must be restarted from
one of the ends of the list.

4 It is corrected when a traversal reaches the inconsistent part of the data
structure, however with possibly severe time penalties.

5 The algorithm in [14] contains recursive calls that made the use of hazard
pointers infeasible as the maximum numbers of these would consequently be
unbounded.
Fig. 1. Shared memory multiprocessor system structure.

The rest of the paper is organized as follows. In Section 2 we
describe the type of systems that our implementation is aiming
for. The actual algorithm is described in Section 3. In Section 4
we show the correctness of our algorithm by proving the lock-
free and linearizability properties. The experimental evaluation is
presented in Section 5. We conclude the paper with Section 6.

2. System description

A typical abstraction of a shared memory multi-processor
system configuration is depicted in Fig. 1. Each node of the system
contains a processor together with its local memory. All nodes are
connected to the shared memory via an interconnection network.
A set of co-operating tasks is running on the system performing
their respective operations. Each task is sequentially executed
on one of the processors, while each processor can serve (run)
many tasks at a time. The co-operating tasks, possibly running on
different processors, use shared data objects built in the shared
memory to co-ordinate and communicate. Tasks synchronize their
operations on the shared data objects through sub-operations on
top of a cache-coherent shared memory. The shared memory may
not though be uniformly accessible for all nodes in the system;
processors can have different access times on different parts of the
memory.

The shared memory system should support atomic read and
write operations of single memory words, as well as stronger
atomic primitives for synchronization. In this paper we use the
Fetch-And-Add (FAA) and the Compare-And-Swap (CAS) atomic
primitives; see Fig. 2 for a description. These read-modify-write
style of operations are available on most common architectures or
can be easily derived from other synchronization primitives [22,
23].

3. The new lock-free algorithm

The doubly linked list data structure is depicted in Fig. 3. In the
data structure every node contains a value. The fields of each node
item are described in Fig. 4 as it is used in this implementation.
Note that the doubly linked list data structure always contains the
static head and tail dummy nodes. The data structure is given an
orientation by denoting the head side as being left and the tail
side as being right, and we can consequently use this orientation
to relate nodes as being to the left or right of each other. New
nodes are created dynamically with the CreateNode functionwhich
in turn makes use of the NewNode function for the actual memory
allocation, see Section 3.2.

To insert or delete a node from the list we have to change
the respective set of prev and next pointers. These have to be
changed consistently, but not necessarily all at once. Our solution
is to treat the doubly linked list as being a singly linked list with
auxiliary information in the prev pointers, with the next pointers
being updated before the prev pointers. Thus, the next pointers
always form a consistent singly linked list and thus define the
nodes positional relations in the logical abstraction of the doubly
linked list, but the prev pointers only give hints as to where to find
the previous node. These hints are useful in a deterministicmanner

1010 H. Sundell, P. Tsigas / J. Parallel Distrib. Comput. 68 (2008) 1008–1020
Fig. 2. The Fetch-And-Add (FAA) and Compare-And-Swap (CAS) atomic primitives.

Fig. 3. The doubly linked list data structure.

thanks to the observation that a “late” non-updated prev pointer
will always point to a node that is directly or some steps before the
current node, and from that “hint” position it is always possible to
traverse6 through the next pointers to reach the logically previous
node.

One problem, that is general for non-blocking implementations
that are based on the singly linked list data structure, arises
when inserting a new node into the list. Because of the linked
list structure one has to make sure that the previous node is not
about to be deleted. If we are changing the next pointer of this
previous node atomically with a CAS operation, to point to the
new node, and then immediately afterwards the previous node is
deleted — then the new node will be deleted as well, as illustrated
in Fig. 5. There are several solutions to this problem, e.g., [24], and
the latest method introduced by Harris [25] is to use a deletion
mark. This deletion mark is updated atomically together with the
next pointer, see the definition of the union Link in Fig. 4 where
both the memory address and a boolean value are stored together
within one single memory word. Any concurrent insert operation
will then be notified about the possibly set deletionmark, when its
CAS operation will fail on updating the next pointer of the to-be-
previous node. For our doubly linked list we need to be informed
also when inserting using the prev pointer. In our algorithm, the
SetMark procedure is used for setting the deletion mark of an
arbitrary pointer.

However, in our doubly linked list implementation, we never
need to change both the prev and next pointers in one atomic
update, and the pre-condition associated with each atomic pointer
update only involves the pointer that is changed. Therefore it is
possible to keep the prev and next pointers in separate words,
duplicating the deletion mark in each of the words. In order to
preserve the correctness of the algorithm, the deletion mark of the
next pointer should always be set first, and the deletionmark of the
6 As will be shown later, we have defined the doubly linked list data structure in
a way that makes it possible to traverse even through deleted nodes, as long as they
are referenced in some way.
Fig. 4. The node structure and auxiliary functions.

Fig. 5. Concurrent insert and delete operations can delete both nodes.

prev pointer should be assured to be set by any operation that has
observed the deletion mark on the next pointer, before any other
updating steps are performed. Thus, full pointer values can be used,
still by only using standard CAS operations.

3.1. The basic steps of the algorithm

The main algorithm steps, see Fig. 6, for inserting a new node
at an arbitrary position in our doubly linked list will thus be as
follows: (I) After setting the new node’s prev and next pointers,
atomically update the next pointer of the to-be-previous node, (II)
Atomically update the prev pointer of the to-be-next node. The
main steps of the algorithm for deleting a node at an arbitrary
position are the following: (I) Set the deletion mark on the next
pointer of the to-be-deleted node, (II) Set the deletion mark on the

H. Sundell, P. Tsigas / J. Parallel Distrib. Comput. 68 (2008) 1008–1020 1011
Fig. 6. Illustration of the basic steps of the algorithms for insertion and deletion of
nodes at arbitrary positions in the doubly linked list, as described in Section 3.1.

prev pointer of the to-be-deleted node, (III) Atomically update the
next pointer of the previous node of the to-be-deleted node, (IV)
Atomically update the prev pointer of the next node of the to-be-
deleted node. As will be shown later in the detailed description
of the algorithm, helping techniques need to be applied in order
to achieve the lock-free property, following the same steps as the
main algorithm for inserting and deleting.

3.2. Memory management

As we are continuously dealing with pointers to memory areas
which are concurrently allocated and recycled, we need a memory
management which can guarantee the safety of dereferencing
those pointers also in a concurrent environment. With safe local
reference or safe global referencewedenote the augmented pointers
which are always possible to dereference for each individual thread
or any thread respectively.

Our demands on the memory management consequently rules
out the SMR or ROP methods by Michael [26,27] and Herlihy
et al. [28] respectively, as they can only guarantee a limited
number of nodes to be safe, and these guarantees are also
related to individual threads and never to an individual node
structure. However, stronger memory management schemes, as
for example reference counting, would be sufficient for our needs.
Fig. 7. The functionality supported by the memory management scheme.
There exists a general lock-free reference counting scheme by
Detlefs et al. [29], though based on the non-available CAS2 atomic
primitive. Valois [7] and Michael and Scott [30] have presented
a reference counting scheme based on the CAS atomic primitive.
This scheme can only by used together with the corresponding
scheme for memory allocation, and thus does not allow reuse of
the reclaimed memory for arbitrary purposes. The SLFRC scheme
by Herlihy et al. [31] improves the scheme by Detlefs et al. [29]
to only require single-word atomic primitives by employing the
corresponding ROP methods. An important drawback with all
those reference counting schemes is their inability to reclaim cyclic
garbage and that no upper bounds on themaximummemory usage
can be established.

For our implementation, we have selected the lock-free
memory management scheme proposed by Gidenstam et al. [21]
which makes use of the CAS and FAA atomic synchronization
primitives. Using this scheme we can assure that a node can only
be reclaimed when there is no prev or next pointer in the list that
points to it and there also are no local references to it from pending
concurrent operations. By supplying the scheme with appropriate
callback functions, the scheme automatically breaks cyclic garbage
as well as recursive chains of references among deleted nodes, and
thus enables an upper bound on the maximum memory usage for
the data structure.

The functionality defined by the memory management scheme
is listed in Fig. 7 and are fully described in [21]. The callback
procedures that need to be supplied to the memory management
scheme are listed in Fig. 8. As the details of how to efficiently
apply thememorymanagement scheme to our basic algorithm are
not always trivial, we will provide a detailed description of them
together with the detailed algorithm description in this section.

3.3. Overall description of the detailed algorithm

The actual implementation of the needed operations of a Deque
abstract data type or a general doubly linked list data structure,
basically follows the steps of performing an insertion or deletion of
a node at an arbitrary position as described in Section 3.1. For the
PushLeft vs. PushRight or PopLeft vs. PopRight operations we need
to first identify the target node(s) and then perform the respective
steps of the overall insertion or deletion. However, at any time,
due to concurrent modification (caused by overlapping operation
invocations) of the underlying data structure, any of the steps
might be impossible to performas thepre-requisites have changed.
In order to continue with the next steps, the cause of the problem
first has to be determined and then the necessary of the remaining
steps of the concurrent operation(s) are performed. A common
problem of this sort appears when following a prev pointer, which
has not been updated to match with the corresponding next
pointer. The cause of this can be an overlapping operation in an
intermediate step of performing either an insertion or deletion.
For the purpose of resolving this problem, the function CorrectPrev

has been defined, taking as arguments; (i) the node containing

1012 H. Sundell, P. Tsigas / J. Parallel Distrib. Comput. 68 (2008) 1008–1020
Fig. 8. Callback procedures for the memory management.

the prev pointer to be fixed, and (ii) an arbitrary “hint” node
that is left of the first argument. The duties of this function are
to fulfill the corresponding steps II or III–IV of the overlapping
operation(s), until the prev pointer of the node in question is
correct (or if the node is deleted when there no longer is any
purpose of correcting) and then return this pointer as the function’s
result. Other operations can call this function whenever detecting
a prev pointer that is not correct; typically after following a prev
pointer and later detecting the mismatch of the corresponding
next pointer, e.g., via a failed CAS sub-operation. The function
can also be used for fulfilling the normal steps II or III–IV of the
current operation, thus being a normal part of the execution also
without interference from concurrent operation invocations. The
actual implementation of the function is somewhat involved and
is described in detail in Section 3.6.

3.4. Operations for the deque abstract data type

The PushLeft and the PushRight operations, are listed in Fig. 9.
The PopLeft and PopRight operations, are listed in Fig. 10.

3.5. General operations for a lock-free doubly linked list

In this section we provide the details for the general operations
of a lock-free doubly linked list, i.e., traversing the data structure
in any direction and inserting and deleting nodes at arbitrary
positions. Formaintaining the current positionwe adopt the cursor
concept by Valois [7], that is basically just a reference to a node in
the list.

In order to be able to traverse through deleted nodes, we also
have to define the position of deleted nodes that is consistent with
the normal definition of position of active nodes for sequential
linked lists.

Definition 1. The position of a cursor that references a node that
is present in the list is the referenced node. The position of a
cursor that references a deleted node, is represented by the node
that was logically next of the deleted node at the very moment of
the deletion (i.e., the setting of the deletion mark). If that node is
deleted as well, the position is equal to the position of a cursor
referencing that node, and so on recursively. The actual position
is then interpreted to be at an imaginary node logically previous of
the representing node.

The Next function, see Fig. 11, tries to change the cursor to the
next position relative to the current position, and returns the status
of success. The algorithm repeatedly in line NT2–NT12 checks the
next node for possible traversal until the found node is present
and is not the tail dummy node. If the current node is the tail
dummy node, false is returned in line NT2. In line NT3 the next
pointer of the current node is de-referenced and in line NT4 the
deletion state of the found node is read. If the found node is
deleted and the current node was deleted when directly next of
the found node, this is detected in line NT5 and then the position
is updated according to Definition 1 in line NT11. If the found node
was detected as present in line NT5, the cursor is set to the found
node in line NT11 and true is returned (unless the found node is
the tail dummy node when instead false is returned) in line NT12.
Otherwise it fulfils the deletion in lines NT6–NT7 after which the
algorithm retries at line NT2.

The Prev function, see Fig. 11, tries to change the cursor to
the previous position relative to the current position, and returns
the status of success. The algorithm repeatedly in line PV2–PV13
checks the next node for possible traversal until the found node
is present and is not the head dummy node. If the current node
is the head dummy node, false is returned in line PV2. In line PV3
the prev pointer of the current node is de-referenced. If the found
node is logically previous of the current node and the current node
is present, this is detected in line PV4 and then the cursor is set to
the found node in line PV6 and true is returned (unless the found
node is the head dummy node when instead false is returned) in
line PV7. If the current node is deleted then the cursor position
is updated according to Definition 1 by calling the Next function
in line PV10. Otherwise the prev pointer of the current node is
updated by calling theCorrectPrev function in line PV12 afterwhich
the algorithm retries at line PV2.

The Read function, see Fig. 12, returns the current value of the
node referenced by the cursor, unless this node is deleted or the
node is equal to any of the dummynodeswhen the function instead
returns a non-value. In line RD1 the algorithm checks if the node
referenced by the cursor is either the head or tail dummynode, and
then returns a non-value. The value of the node is read in line RD2,
and in line RD3 it is checked if the node is deleted and then returns
a non-value, otherwise the value is returned in line RD4.

The InsertBefore operation, see Fig. 13, inserts a new node
directly before the node positioned by the given cursor and later
changes the cursor to position the inserted node. If the node
positioned by the cursor is the head dummy node, the new node
will be inserted directly after the head dummynode. The algorithm
checks in line IB1 if the cursor position is equal to the head
dummynode, and consequently then calls the InsertAfter operation
to insert the new node directly after the head dummy node. The
algorithm repeatedly tries in lines IB5–IB13 to insert the new node
(node) between the previous node (prev) of the cursor and the
cursor positioned node, by atomically changing the next pointer
of the prev node to instead point to the new node. If the node
positioned by the cursor is deleted this is detected in line IB5 and
the cursor is updated by calling the Next function. If the update of
the next pointer of the prev node by using the CAS operation in
line IB11 fails, this is because either the prev node is no longer the
logically previous node of the cursor positioned node, or that the
cursor positioned node is deleted. If the prev node is no longer the
logically previous node this is detected in line IB12 and then the

H. Sundell, P. Tsigas / J. Parallel Distrib. Comput. 68 (2008) 1008–1020 1013
Fig. 9. The algorithm for the PushLeft and PushRight operations.
CorrectPrev function is called in order to update the prev pointer
of the cursor positioned node. If the update using CAS in line IB11
succeeds, the cursor position is set to the newnode in line IB14 and
the prev pointer of the previous cursor positioned node is updated
by calling the CorrectPrev function in line IB15.

The InsertAfter operation, see Fig. 13, inserts a newnode directly
after the node positioned by the given cursor and later changes
the cursor to position the inserted node. If the node positioned by
the cursor is the tail dummy node, the new node will be inserted
directly before the tail dummy node. The algorithm checks in line
IA1 if the cursor position is equal to the tail dummy node, and
consequently then calls the InsertBefore operation to insert the
new node directly after the head dummy node. The algorithm
repeatedly tries in lines IA5–IA13 to insert the new node (node)
between the cursor positioned node and the next node (next) of
the cursor, by atomically changing the next pointer of the cursor
positioned node to instead point to the new node. If the update of
the next pointer of the cursor positioned node by using the CAS
operation in line IA8 fails, this is because either the next node is no
longer the logically next node of the cursor positioned node, or that
the cursor positioned node is deleted. If the cursor positioned node
is deleted, the operation to insert directly after the cursor position
now becomes the problem of inserting directly before the node
that represents the cursor position according to Definition 1. It is
detected in line IA10 if the cursor positioned node is deleted and
then it calls the InsertBefore operation in line IA12. If the update
using CAS in line IA8 succeeds, the cursor position is set to the
new node in line IA14 and the prev pointer of the previous cursor
positioned node is updated by calling the CorrectPrev function in
line IA15.

The Delete operation, see Fig. 14, tries to delete the non-
dummy node referenced by the given cursor and returns the
value if successful, otherwise a non-value is returned. If the cursor
positionednode is equal to any of the dummynodes this is detected
in line D2 and a non-value is returned. The algorithm repeatedly
tries in line D4–D8 to set the deletion mark of the next pointer
of the cursor positioned node. If the deletion mark is already set,
this is detected in line D5 and a non-value is returned. If the CAS
operation in line D8 succeeds, the deletion process is completed
by setting the mark on the prev pointer in line D9–D11 and calling
the CorrectPrev function in line D12. The value of the deleted node
is read in line D14 and the value returned in line D16.

The remaining necessary functionality for initializing the cursor
positions like First() and Last() can be trivially derived by using
the dummy nodes. If an Update() functionality is necessary, this
could easily be achieved by extending the value field of the node
data structure with a deletion mark, and throughout the whole
algorithm interpret the deletion state of the whole node using
this mark when semantically necessary, in combination with the
deletion marks on the next and prev pointers.

3.6. Helping and back-off

The CorrectPrev sub-function, see Fig. 15, tries to update the
prev pointer of a node and then return a reference to a possibly
logically previous node, thus fulfilling step II of the overall insertion
scheme or steps III–IV of the overall deletion scheme as described
in Section 3.1. The algorithm repeatedly tries in lines CP3–CP25
to correct the prev pointer of the given node (node), given a
suggestion of a previous (not necessarily the logically previous)
node (prev). Before trying to update the prev pointer with the CAS
operation in line CP22, it assures in line CP5 that the prev node
is not marked, in line CP3 that node is not marked, and in line
CP16 that prev is the previous node of node. If prev is marked we
need to delete it before we can update prev to one of its previous
nodes and proceed with the current operation. If lastlink is valid
and thus references the node previous of the current prev node, the
next pointer of the lastlink node is updated with CAS in line CP8.
Otherwise prev is updated to be the prev pointer of the prev node

1014 H. Sundell, P. Tsigas / J. Parallel Distrib. Comput. 68 (2008) 1008–1020
Fig. 10. The algorithm for the PopLeft and PopRight operations.

Fig. 11. The algorithms for the Next and Prev operations.

H. Sundell, P. Tsigas / J. Parallel Distrib. Comput. 68 (2008) 1008–1020 1015
Fig. 12. The algorithm for the Read function.

in lines CP12–CP14. If node is marked, the procedure is aborted.
Otherwise if prev is not the previous node of node it is updated to
be the next node in lines CP17–CP19. If the update in line CP22
succeeds, there is though the possibility that the prev node was
deleted (and thus the prev pointer of node was possibly already
updated by the concurrent Delete operation) directly before the
CAS operation. This is detected in line CP23 and then the update
is possibly retried with a new prev node.

Because CorrectPrev are often used in the algorithm for “help-
ing” late operations that might otherwise stop progress of other
concurrent operations, the algorithm is suitable for pre-emptive
as well as fully concurrent systems. In fully concurrent systems
though, the helping strategy as well as heavy contention on atomic
primitives, can downgrade the performance significantly. There-
fore the algorithm, after a number of consecutive failed CAS oper-
ations (i.e., failed attempts to help concurrent operations) puts the
current operation into back-off mode. When in back-off mode, the
thread does nothing for a while, and in this way avoids disturbing
the concurrent operations that might otherwise progress slower.
The duration of the back-off is initialized to some value (e.g., pro-
portional to the number of threads) at the start of an operation,
and for each consecutive entering of the back-off mode during one
operation invocation, the duration of the back-off is changed using
some scheme, e.g., increased exponentially.
Fig. 13. The algorithms for the InsertBefore and InsertAfter operations.
4. Correctness proof

In this sectionwe sketch the correctness proof of our algorithm.
We prove that our algorithm is a linearizable one [32] and that it
is lock-free. A set of definitions that will help us to structure and
shorten the proof is first described in this section.

Definition 2. We denote with Qt the abstract internal state of a
deque at the time t. Qt = [v1, . . . , vn] is viewed as an list of values
v, where |Qt| ≥ 0. The operations that can be performed on the
deque are PushLeft(L), PushRight(R), PopLeft(PL) and PopRight(PR).
The time t1 is defined as the time just before the atomic execution
of the operation that we are looking at, and the time t2 is defined as
the time just after the atomic execution of the same operation. In
the following expressions that define the sequential semantics of
our operations, the syntax is S1 : O1, S2, where S1 is the conditional
state before the operation O1, and S2 is the resulting state after
performing the corresponding operation:

Qt1 : L(v1), Qt2 = [v1] + Qt1 (1)

Qt1 : R(v1), Qt2 = Qt1 + [v1] (2)

Qt1 = ∅ : PL() = ⊥, Qt2 = ∅ (3)

Qt1 = [v1] + Q1 : PL() = v1, Qt2 = Q1 (4)

Qt1 = ∅ : PR() = ⊥, Qt2 = ∅ (5)

Qt1 = Q1 + [v1] : PR() = v1, Qt2 = Q1. (6)

Definition 3. We denote with Lt the abstract internal state of a
doubly linked list at the time t. Lt is viewed as a set of nodes
n, where each node ni has a value vi and the relations Del(ni)
and Next(ni, nj), and where nhead, ntail ∈ Lt . For positioning there

1016 H. Sundell, P. Tsigas / J. Parallel Distrib. Comput. 68 (2008) 1008–1020
Fig. 14. The algorithm for the Delete function.

Fig. 15. The algorithm for the CorrectPrev function.
is a function Pos(c) = n which maps a cursor c with the
corresponding node n according to Definition 1. The operations
that can be performed on the doubly linked list are Next(NT),
Prev(PV), Read(RD), InsertBefore(IB),InsertAfter(IA) and Delete(DE).
The following expressions define the sequential semantics of our
operations, with same syntax as in Definition 2:

Pos(ct1) = ntail : NT(ct1) = F, ct2 = ntail (7)

Next(ni, ntail) ∧ Pos(ct1) = ni : NT(ct1) = F, ct2 = ntail (8)
∃nj ∈ Lt1 .Next(ni, nj) ∧ ct1 = ni : NT(ct1) = T,

ct2 = Pos(nj) ∧ ¬Del(nj) (9)

Pos(ct1) = nhead : PV(ct1) = F, ct2 = nhead (10)

Next(nhead, ni) ∧ Pos(ct1) = ni : PV(ct1) = F, ct2 = nhead (11)
∃nj ∈ Lt1 .Next(nj, ni) ∧ ¬Del(nj) ∧ Pos(ct1)

= ni : PV(ct1) = T, ct2 = nj (12)

ct1 = nhead ∨ ct1 = ntail : RD(ct1) = ⊥, ct2 = ct1 (13)

ct1 = ni ∧ Del(ni) : RD(ct1) = ⊥, ct2 = ct1 (14)
ct1 = ni ∧ ni 7→ vi : RD(ct1) = vi, ct2 = ct1 (15)
∃nj ∈ Lt1 .Next(nhead, nj) ∧ Pos(ct1) = nhead : IB(ct1,vk),

ct2 = nk ∧ nk ∈ Lt2 ∧ Next(nhead, nk) ∧ Next(nk, nj) ∧ nk 7→ vk (16)
∃nj ∈ Lt1 .Next(nj, ni) ∧ Pos(ct1) = ni : IB(ct1,vk),

ct2 = nk ∧ nk ∈ Lt2 ∧ Next(nj, nk) ∧ Next(nk, ni) ∧ nk 7→ vk (17)
∃nj ∈ Lt1 .Next(nj, ntail) ∧ Pos(ct1) = ntail : IA(ct1,vk),

ct2 = nk ∧ nk ∈ Lt2 ∧ Next(nj, nk) ∧ Next(nk, ntail) ∧ nk 7→ vk (18)
∃nj ∈ Lt1 .Next(ni, nj) ∧ Pos(ct1) = ni ∧ ¬Del(ni) : IA(ct1,vk),

ct2 = nk ∧ nk ∈ Lt2 ∧ Next(ni, nk) ∧ Next(nk, nj) ∧ nk 7→ vk (19)

ct1 = nhead ∨ ct1 = ntail : DE(ct1) = ⊥, ct2 = ct1 (20)

ct1 = ni ∧ Del(ni) : DE(ct1) = ⊥, ct2 = ct1 (21)

ct1 = ni ∧ ni 7→ vi : DE(ct1) = vi, ct2 = ct1 ∧ Del(ni). (22)

Definition 4. In order for an implementation of a shared concur-
rent data object to be linearizable [32], for every concurrent execu-
tion there should exist an equal (in the sense of the effect) and valid

H. Sundell, P. Tsigas / J. Parallel Distrib. Comput. 68 (2008) 1008–1020 1017
(i.e., it should respect the semantics of the shared data object) se-
quential execution that respects the partial order of the operations
in the concurrent execution.

Note that the following linearizability points are described in
the context of either the operations for the deque abstract data type
or the general doubly linked data structure, not both.

Definition 5. The linearizability points for the deque abstract data
type are defined as follows, with the corresponding equation
number within parenthesis:

• ThePushLeft operation (1) – the successful CAS operation in line
L7.

• The PushRight operation (2) – the successful CAS operation in
line R7.

• APopLeft operation that fails (3) – the read operation of the next
pointer in line PL3.

• APopLeft operation that succeeds (4) – the read operation of the
next pointer in line PL3.

• A PopRight operation that fails (5) – the read operation of the
next pointer in line PR4.

• A PopRight operation that succeeds (6) – the CAS sub-operation
in line PR11.

In the proofs of the following lemmas we will use the fact that if
a deletion mark of a node is detected not to be set, it can be safely
interpreted that the state also holds in earlier statements in the
execution history. We will also use the fact that the cursors are
local, and thus can the state changes of these be interpreted to
have taken effect at an arbitrary step within the invocation of the
operation.

Definition 6. The linearizability points for the general doubly
linked list data structure are defined as follows, with the
corresponding equation number within parenthesis:

• A Next function that succeeds (9) – the read sub-operation of
the next pointer in line NT3.

• A Next function that fails (7) and (8) – line NT2 if the node
positioned by the original cursor was the tail dummy node,
and the read sub-operation of the next pointer in line NT3
otherwise.

• A Prev function that succeeds (12) – the read sub-operation of
the prev pointer in line PV3.

• A Prev function that fails (10) and (11) – line PV2 if the node
positioned by the original cursor was the head dummy node,
and the read sub-operation of the prev pointer in line PV3
otherwise.

• A Read function that returns a value (14) – the read sub-
operation of the next pointer in line RD3.

• A Read function that returns a non-value (13) – the read sub-
operation of the next pointer in line RD3, unless the node
positioned by the cursorwas the head or tail dummynodewhen
the linearizability point is line RD1.

• The InsertBefore operation – the successful CAS operation in
line IB11, or equal to the linearizability point of the InsertAfter

operation if that operation was called in line IB1.
• The InsertAfter operation – the successful CAS operation in

line IA8, or equal to the linearizability point of the InsertBefore

operation if that operation was called in line IA1 or IA12.
• A Delete function that returns a value (21) – the successful CAS

operation in line D8.
• A Delete function that returns a non-value (20) – the read

sub-operation of the next pointer in line D4, unless the node
positioned by the cursorwas the head or tail dummynodewhen
the linearizability point instead is line D2.
We will now try to prove the lock-free property by first showing
that any operation invocation will terminate if ignoring the
interference caused by concurrent operation invocations, and then
showing that for every possible concurrent change at least one
operation will make progress towards termination.

Lemma 1. The path of prev pointers from a node is always pointing a
present node that is to the left of the current node.

Proof. Wewill look at all possibilitieswhere the prev pointer is set
or changed. Firstly, nodes are nevermoved relatively to each other.
The setting in line IB9 is clearly to the left as it is verified by IB11.
The setting in line IA6 is clearly to the left as it is verified by IA8.
The change of the prev pointer in line CP22 is to the left as verified
by line CP4 and CP16. Finally, the change of the prev pointer in line
CU5 is to the left as it is changed to the prev pointer of the previous
node. �

Lemma 2. Any operation invocation will terminate if exposed to
a limited number of concurrent changes to the underlying data
structure.

Proof. We assume that the number of changes to the underlying
data structure an operation could experience is limited. Because
of the reference counting, none of the nodes which are referenced
to by local variables can be garbage collected. When traversing
through prev or next pointers, the memory management guaran-
tees atomicity of the operations, thus no newly inserted or deleted
nodes will be missed. We also know that the relative positions of
nodes that are referenced to by local variables will not change as
nodes are never moved in the doubly linked list. Most loops in the
operations retry because a change in the state of some node(s) was
detected in the ending CAS sub-operation, and then retry by re-
reading the local variables (and possibly correcting the state of the
nodes) until no concurrent changes was detected by the CAS sub-
operation and therefore the CAS succeeded and the loop termi-
nated. Those loops will clearly terminate after a limited number
of concurrent changes. Included in that type of loops are IB5–IB13,
IA5–IA13 and D4–D8.

The loop CP3–CP25 will terminate if either the to-be-corrected
node is marked in line CP3 or if the CAS sub-operation in line CP22
succeeds and prev node is not marked. We know that from the
start of the execution of the loop, the prev node is left of the to-
be-corrected node. Following from Lemma 1 this order will hold
by traversing the prev node through its prev pointer. Consequently,
traversing the prev node through the next pointerwill finally cause
the prev node to be logically previous of the to-be-corrected node
if this is not deleted (and the CAS sub-operation in line CP22 will
finally succeed), otherwise line CP3 will succeed. As long as the
prev node ismarked itwill be traversed to the left in line CP6–CP15.
If the prev node is not marked it will be traversed to the right. As
there is a limited number of changes and thus a limited number of
marked nodes left of the to-be-corrected node, the prev node will
finally traverse to the right and either of the termination criteria
will be fulfilled.

The loop CU1–CU14 will terminate if both the prev node and
the next node of the to-be-deleted node is not marked in line CU3,
respectively line CU9.We know that from the start of the execution
of the loop, the prev node is left of the to-be-deleted node and
the next node is right of the to-be-deleted node. Following from
Lemma 1, traversing the prev node through the next pointer will
finally reach a not marked node or the head node (which is not
marked), and traversing the next node through the next pointer
will finally reach a not marked node or the tail node (which is not
marked), and both of the termination criteria will be fulfilled. �

1018 H. Sundell, P. Tsigas / J. Parallel Distrib. Comput. 68 (2008) 1008–1020

7 Even with as few as 1000 operations per thread some implementations took
over 20 s per experiment. To compensate for accuracy, each experiment was
repeated 50 times.
Lemma 3. With respect to the retries caused by synchronization, one
operation will always progress regardless of the actions by the other
concurrent operations.

Proof. We now examine the possible execution paths of our
implementation. There are several potentially unbounded loops
that can delay the termination of the operations. We call these
loops retry-loops. If we omit the conditions that are because of
the operations semantics (i.e., searching for the correct criteria
etc.), the loop retries when sub-operations detect that a shared
variable has changed value. This is detected either by a subsequent
read sub-operation or a failed CAS. These shared variables are
only changed concurrently by other CAS sub-operations. According
to the definition of CAS, for any number of concurrent CAS
sub-operations, exactly one will succeed. This means that for
any subsequent retry, there must be one CAS that succeeded.
As this succeeding CAS will cause its retry-loop to exit, and
our implementation does not contain any cyclic dependencies
between retry-loops that exit with CAS, this means that the
corresponding InsertBefore, InsertAfter or Delete operation will
progress. Consequently, independent of any number of concurrent
operations, one operation will always progress. �

Theorem 1. The algorithm implements a lock-free and linearizable
deque abstract data type and a lock-free and linearizable general
doubly linked list data structure.

Proof. By using the respective linearizability points as defined
in Definitions 5 and 6 we can create an identical (with the
same semantics) sequential execution that preserves the partial
order of the operations in a concurrent execution. Following
from Definition 4, the implementation is therefore linearizable.
Lemmas 2 and 3 give that our implementation is lock-free. �

5. Experimental evaluation

In this section we evaluate the performance of our implemen-
tations by the means of some custom micro-benchmarks. The
purpose is to estimate how well the implementations scale with
increasing number of threads under high contention.

In our experiments, each concurrent thread performed a
given number of randomly chosen sequential operations on the
particular data structure. The experiments were performed using a
different number of threads, varying from 1 to a chosen limit with
increasing steps. Each experiment was repeated several times, and
an average execution time for each experiment was estimated.
Exactly the same sequence of operations was performed for all
different implementations compared. A clean-cache operationwas
performed just before each sub-experiment. All implementations
are written in C and compiled with the highest optimization level.
The atomic primitives are written in assembly.

In an ideal parallel system the experiment’s execution time
should scale with a time complexity of a constant with respect
to the number of threads. However, under high contention the
shared memory acts like a bottleneck, which relaxes down to the
memory’s bandwidth with increasing number of disjoint accesses.
Thus, the expected time complexity under full contention without
disjoint accesses is linear at best. As a reference in this context
are lock-free implementations in the literature using non-greedy
helping techniques known to scale worse, as helping can cause
each thread to perform all the other thread’s operation steps as
well as its own.
5.1. General doubly linked list experiment

In this experiment, each thread performed 50 000 operations
fromadistribution of 30% traversal, 10% InsertBefore, 10% InsertAfter

and 50% Delete operations. The traversal operations are alternately
changing between the Next versus Prev operation whenever any
of the ends of the list are reached. The purpose of the chosen
distributionwas to simulate aworst-case scenario in the context of
contention (i.e., the list size is constantly kept as short as possible).

Two different platforms were used, with varying number of
processors and level of sharedmemory distribution.Weperformed
our experiments on a Sun Fire 15 K system running Solaris 9 with
48 Ultrasparc III processors of 900 MHz each, and also on an IBM
p690+ Regatta system running AIX with 32 processors of 1.7 GHz
each. The results from the experiments with up to 32 threads are
shown in Fig. 16. The average execution time is drawn as a function
of the number of threads.

The results show that our new algorithm scales linearly with
increasing number of threads, consequently from the nature of our
algorithm to use greedy helping techniqueswith a successful back-
off strategy. We expect our implementation to scale better with
decreasing contention (i.e., longer lists) thanks to the nature of our
algorithm to support parallelism for disjoint accesses.

5.2. Deque experiment

In this experiment, each thread performed 10007 operations
from a distribution of 1/4 PushRight, 1/4 PushLeft, 1/4 PopRight

and 1/4 PopLeft operations. Besides our implementation, we also
performed the same experiment with the lock-free implementa-
tion by Michael [12] and the implementation by Martin et al. [11],
two of themost efficient lock-free deques that have been proposed.
The algorithm byMartin et al. was implemented together with the
correspondingmemorymanagement scheme by Detlefs et al. [29].
However, as both [11,29] use the atomic operation CAS2 which is
not available in any modern system, the CAS2 operation was im-
plemented in software using two different approaches. The first
approach was to implement CAS2 using mutual exclusion (as pro-
posed in [11]). The other approach was to implement CAS2 using
one of themost efficient software implementations of CASNknown
that could meet the needs of [11,29], i.e., the implementation by
Harris et al. [33].

Three different platforms were used, with varying number of
processors and level of sharedmemory distribution. To get a highly
pre-emptive environment, we performed our experiments on a
Compaq dual-processor Pentium II PC running Linux, and a Sun
Ultra 80 system running Solaris 2.7 with 4 processors. In order to
evaluate our algorithm with full concurrency we also used a SGI
Origin 2000 system running Irix 6.5with 29 250MHzMIPS R10000
processors. The results from the experimentswith up to 32 threads
are shown in Fig. 17. The average execution time is drawn as a
function of the number of threads.

Our results show that both the CAS-based algorithms outper-
form the CAS2-based implementations for any number of threads.
For the systems with low or medium concurrency and uniform
memory architecture, [12] has the best performance. However, for
the systemwith full concurrency and non-uniformmemory archi-
tecture our algorithm performs significantly better than [12] from
2 threads and more, as a direct consequence of the nature of our
algorithm to support parallelism for disjoint accesses.

H. Sundell, P. Tsigas / J. Parallel Distrib. Comput. 68 (2008) 1008–1020 1019
Fig. 16. Experiment with doubly linked lists and high contention.

Fig. 17. Experiment with deques and high contention. Logarithmic scales in the right column.

1020 H. Sundell, P. Tsigas / J. Parallel Distrib. Comput. 68 (2008) 1008–1020
6. Conclusions

We have presented the first lock-free algorithmic implemen-
tation of a concurrent doubly linked list that has all the following
features: (i) it supports parallelism for disjoint accesses, (ii) uses a
fully described lock-free memory management scheme, (iii) uses
atomic primitives which are available in modern computer sys-
tems, (iv) allows pointers with full precision to be used and thus
supports fully dynamic list sizes, and (v) supports deterministic
and well defined traversals also through deleted nodes.

We have performed an empirical study of our new algorithm on
two differentmultiprocessor platforms. Results of the experiments
performed under high contention show that the performance of
our implementation scales linearly with increasing number of
processors. We have also performed experiments that compare
the performance of our algorithm with two of the most efficient
algorithms of lock-free deques known, using full implementa-
tions of those algorithms. The experiments show that our im-
plementation performs significantly better on systems with high
concurrency and non-uniform memory architecture.

We believe that our implementation is of highly practical inter-
est for multi-processor applications. We are currently incorporat-
ing it into the NOBLE [34] library.

References

[1] A. Silberschatz, P. Galvin, Operating System Concepts, Addison Wesley, 1994.
[2] M. Herlihy, Wait-free synchronization, ACM Transactions on Programming

Languages and Systems 11 (1) (1991) 124–149.
[3] M. Herlihy, V. Luchangco, M. Moir, Obstruction-free synchronization: Double-

ended queues as an example, in: Proceedings of the 23rd International
Conference on Distributed Computing Systems, 2003.

[4] M.Greenwald, Two-handed emulation:How to build non-blocking implemen-
tations of complex data-structures using DCAS, in: Proceedings of the Twenty-
First Annual Symposium on Principles of Distributed Computing, ACM Press,
2002, pp. 260–269.

[5] A. Israeli, L. Rappoport, Disjoint-access-parallel implementations of strong
shared memory primitives, in: Proceedings of the Thirteenth Annual ACM
Symposium on Principles of Distributed Computing, 1994.

[6] H. Attiya, E. Hillel, Built-in coloring for highly-concurrent doubly-linked
lists, in: Proceedings of the 20th International Symposium on Distributed
Computing, 2006, pp. 31–45.

[7] J.D. Valois, Lock-free data structures, Ph.D. Thesis, Rensselaer Polytechnic
Institute, Troy, New York, 1995.

[8] M. Greenwald, Non-blocking synchronization and system design, Ph.D. Thesis,
Stanford University, Palo Alto, CA, 1999.

[9] O. Agesen, D. Detlefs, C.H. Flood, A. Garthwaite, P. Martin, N. Shavit, G.L.
Steele Jr., DCAS-based concurrent deques, in: ACM Symposium on Parallel
Algorithms and Architectures, 2000, pp. 137–146.

[10] D. Detlefs, C.H. Flood, A. Garthwaite, P. Martin, N. Shavit, G.L. Steele Jr.,
Even better DCAS-based concurrent deques, in: International Symposium on
Distributed Computing, 2000, pp. 59–73.

[11] P. Martin, M. Moir, G. Steele, DCAS-based concurrent deques supporting bulk
allocation, Tech. Rep. TR-2002-111, Sun Microsystems, 2002.

[12] M.M. Michael, CAS-based lock-free algorithm for shared deques, in: Proceed-
ings of the 9th International Euro-Par Conference, in: Lecture Notes in Com-
puter Science, Springer Verlag, 2003.

[13] H. Sundell, P. Tsigas, Lock-free and practical deques using single-word
compare-and-swap, Tech. Rep. 2004-02, Computing Science, Chalmers
University of Technology, March 2004.

[14] H. Sundell, P. Tsigas, Lock-free and practical doubly linked list-based deques
using single-word compare-and-swap, in: Proceedings of the 8th International
Conference on Principles of Distributed Systems, in: LNCS, vol. 3544, Springer
Verlag, 2004, pp. 240–255.

[15] P. Martin, A practical lock-free doubly-linked list, December 2004, personal
communication.

[16] D. Lea, The java.util.concurrent synchronizer framework, Science of Computer
Programming 58 (3) (2005) 293–309.

[17] E. Ladan-Mozes, N. Shavit, An optimistic approach to lock-free fifo queues, in:
Proc. of the 18th Annual Conference on Distributed Computing, DISC 2004,
2004, pp. 117–131.
[18] S. Heller, M. Herlihy, V. Luchangco, M. Moir, W.N. Scherer, N. Shavit, A lazy
concurrent list-based set algorithm, in: Proceedings of the 9th International
Conference on Principles of Distributed Systems, 2005.

[19] H. Sundell, P. Tsigas, Scalable and lock-free concurrent dictionaries, in: Pro-
ceedings of the 19th ACM Symposium on Applied Computing, ACM press,
2004, pp. 1438–1445.

[20] A. Gidenstam, M. Papatriantafilou, H. Sundell, P. Tsigas, Practical and efficient
lock-free garbage collection based on reference counting, Tech. Rep. 2005-04,
Computing Science, Chalmers Univ. of Tech., 2005.

[21] A. Gidenstam, M. Papatriantafilou, H. Sundell, P. Tsigas, Efficient and reliable
lock-free memory reclamation based on reference counting, in: Proceedings
of the 8th International Symposium on Parallel Architectures, Algorithms and
Networks, IEEE, 2005.

[22] M. Moir, Practical implementations of non-blocking synchronization primi-
tives, in: Proceedings of the 15th Annual ACM Symposium on the Principles of
Distributed Computing, 1997.

[23] P. Jayanti, A complete and constant timewait-free implementation of cas from
ll/sc and vice versa, in: DISC, vol. 1998, 1998, pp. 216–230.

[24] J.D. Valois, Lock-free linked lists using compare-and-swap, in: Proceedings of
the 14th Annual Principles of Distributed Computing, 1995, pp. 214–222.

[25] T.L. Harris, A pragmatic implementation of non-blocking linked lists, in:
Proceedings of the 15th International Symposium of Distributed Computing,
2001, pp. 300–314.

[26] M.M. Michael, Safe memory reclamation for dynamic lock-free objects using
atomic reads and writes, in: Proceedings of the 21st ACM Symposium on
Principles of Distributed Computing, 2002, pp. 21–30.

[27] M.M. Michael, Hazard pointers: Safe memory reclamation for lock-free
objects, IEEE Transactions on Parallel and Distributed Systems 15 (8).

[28] M. Herlihy, V. Luchangco, M.Moir, The repeat offender problem: Amechanism
for supporting dynamic-sized, lock-free data structure, in: Proceedings of 16th
International Symposium on Distributed Computing, 2002.

[29] D. Detlefs, P. Martin, M. Moir, G. Steele Jr., Lock-free reference counting, in:
Proceedings of the 20th Annual ACM Symposium on Principles of Distributed
Computing, 2001.

[30] M.M. Michael, M.L. Scott, Correction of a memory management method for
lock-free data structures, Tech. rep., Computer ScienceDepartment, University
of Rochester, 1995.

[31] M. Herlihy, V. Luchangco, P. Martin, M. Moir, Dynamic-sized lock-free
data structures, in: Proceedings of the Twenty-First Annual Symposium on
Principles of Distributed Computing, ACM, 2002, 131–131.

[32] M. Herlihy, J. Wing, Linearizability: A correctness condition for concurrent
objects, ACM Transactions on Programming Languages and Systems 12 (3)
(1990) 463–492.

[33] T. Harris, K. Fraser, I. Pratt, A practical multi-word compare-and-swap
operation, in: Proceedings of the 16th International SymposiumonDistributed
Computing, 2002.

[34] H. Sundell, P. Tsigas, NOBLE: A non-blocking inter-process communication
library, in: Proceedings of the 6th Workshop on Languages, Compilers and
Run-time Systems for Scalable Computers, 2002.

Håkan Sundell main research interests are in efficient
shared data structures for practicalmulti-thread program-
ming on multiprocessor and multi-core computers. He is
known as a pioneer in the Swedish IT-history with roots
in the early 1980’s emerging programming community.
He received a M.Sc. degree in computer science in 1996
at Göteborg University. Between the years 1995–1999 he
worked as a senior consultant and systems programmer
within the telecommunication and multimedia industry.
In 2004 he received a Ph.D. degree in computer science at
Chalmers University of Technology. At present he is a se-

nior lecturer at the School of Business and Informatics, University College of Borås,
Sweden.

Philippas Tsigas research interests include concurrent
data structures for multiprocessor systems, communica-
tion and coordination in parallel systems, fault-tolerant
computing, mobile computing. He received a B.Sc. in
Mathematics from the University of Patras, Greece and a
Ph.D. in Computer Engineering and Informatics from the
same University. Philippas was at the National Research
Institute for Mathematics and Computer Science, Ams-
terdam, the Netherlands (CWI), and at the Max-Planck
Institute for Computer Science, Saarbrücken, Germany,
before. At present he is an associate professor at the

Department of Computing Science at Chalmers University of Technology, Sweden
(www.cs.chalmers.se/~tsigas).

http://www.cs.chalmers.se/~tsigas

	Lock-free deques and doubly linked lists
	Introduction
	System description
	The new lock-free algorithm
	The basic steps of the algorithm
	Memory management
	Overall description of the detailed algorithm
	Operations for the deque abstract data type
	General operations for a lock-free doubly linked list
	Helping and back-off

	Correctness proof
	Experimental evaluation
	General doubly linked list experiment
	Deque experiment

	Conclusions
	References

