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Abstract. We present an efficient and practical lock-free implementa-
tion of a concurrent deque that supports parallelism for disjoint accesses
and uses atomic primitives which are available in modern computer sys-
tems. Previously known lock-free algorithms of deques are either based
on non-available atomic synchronization primitives, only implement a
subset of the functionality, or are not designed for disjoint accesses. Our
algorithm is based on a general lock-free doubly linked list, and only
requires single-word compare-and-swap atomic primitives. It also allows
pointers with full precision, and thus supports dynamic deque sizes. We
have performed an empirical study using full implementations of the
most efficient known algorithms of lock-free deques. For systems with
low concurrency, the algorithm by Michael shows the best performance.
However, as our algorithm is designed for disjoint accesses, it performs
significantly better on systems with high concurrency and non-uniform
memory architecture. In addition, the proposed solution also implements
a general doubly linked list, the first lock-free implementation that only
needs the single-word compare-and-swap atomic primitive.

1 Introduction

A deque (i.e. double-ended queue) is a fundamental data structure. For example,
deques are often used for implementing the ready queue used for scheduling of
tasks in operating systems. A deque supports four operations, the PushRight,
the PopRight, the PushLeft, and the PopLeft operation. The abstract definition
of a deque is a list of values, where the PushRight/PushLeft operation adds a
new value to the right/left edge of the list. The PopRight/PopLeft operation
correspondingly removes and returns the value on the right/left edge of the
list.

To ensure consistency of a shared data object in a concurrent environment,
the most common method is mutual exclusion, i.e. some form of locking. Mutual
exclusion degrades the system’s overall performance [1] as it causes blocking,
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i.e. other concurrent operations can not make any progress while the access to
the shared resource is blocked by the lock. Mutual exclusion can also cause
deadlocks, priority inversion and even starvation.

In order to address these problems, researchers have proposed non-blocking
algorithms for shared data objects. Non-blocking algorithms do not involve mu-
tual exclusion, and therefore do not suffer from the problems that blocking could
generate. Lock-free implementations are non-blocking and guarantee that regard-
less of the contention caused by concurrent operations and the interleaving of
their sub-operations, always at least one operation will progress. However, there
is a risk for starvation as the progress of some operations could cause some other
operations to never finish. Wait-free [2] algorithms are lock-free and moreover
they avoid starvation as well, as all operations are then guaranteed to finish
in a limited number of their own steps. Recently, some researchers also include
obstruction-free [3] implementations to the non-blocking set of implementations.
These kinds of implementations are weaker than the lock-free ones and do not
guarantee progress of any concurrent operation.

The implementation of a lock-based concurrent deque is a trivial task, and
can preferably be constructed using either a doubly linked list or a cyclic array,
protected by either a single lock or by multiple locks where each lock protects
a part of the shared data structure. To the best of our knowledge, there exists
no implementations of wait-free deques, but several lock-free implementations
have been proposed. However, all previous lock-free deques lack in several im-
portant aspects, as they either only implement a subset of the operations that
are normally associated with a deque and have concurrency restrictions1 like
Arora et al. [4], or are based on atomic hardware primitives like Double-Word
Compare-And-Swap (CAS2)2 which is not available in modern computer sys-
tems. Greenwald [5] presented a CAS2-based deque implementation as well as
a general doubly linked list implementation [6], and there is also a publication
series of a CAS2-based deque implementation [7],[8] with the latest version by
Martin et al. [9]. Valois [10] sketched out an implementation of a lock-free dou-
bly linked list structure using Compare-And-Swap (CAS)3, though without any
support for deletions and is therefore not suitable for implementing a deque.
Michael [11] has developed a deque implementation based on CAS. However, it
is not designed to allow parallelism for disjoint accesses as all operations have
to synchronize, even though they operate on different ends of the deque. Sec-
ondly, in order to support dynamic maximum deque sizes it requires an extended

1 The algorithm by Arora et al. does not support push operations on both ends, and
does not allow concurrent invocations of the push operation and a pop operation on
the opposite end.

2 A CAS2 operations can atomically read-and-possibly-update the contents of two
non-adjacent memory words. This operation is also sometimes called DCAS in the
literature.

3 The standard CAS operation can atomically read-and-possibly-update the contents
of a single memory word.
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CAS operation that can atomically operate on two adjacent words, which is not
available4 on all modern platforms.

In this paper we present a lock-free algorithm for implementing a concurrent
deque that supports parallelism for disjoint accesses (in the sense that operations
on different ends of the deque do not necessarily interfere with each other). An
earlier description of this algorithm appeared as a technical report [12] in March
2004. The algorithm is implemented using common synchronization primitives
that are available in modern systems. It allows pointers with full precision, and
thus supports dynamic maximum deque sizes (in the presence of a lock-free dy-
namic memory handler with sufficient garbage collection support), still using
normal CAS-operations. The algorithm is described in detail later in this paper,
together with the aspects concerning the underlying lock-free memory manage-
ment. In the algorithm description the precise semantics of the operations are
defined and a proof that our implementation is lock-free and linearizable [13] is
also given.

We have performed experiments that compare the performance of our algo-
rithm with two of the most efficient algorithms of lock-free deques known; [11]
and [9], the latter implemented using results from [14] and [15]. Experiments
were performed on three different multiprocessor systems equipped with 2,4 or
29 processors respectively. All three systems used were running different operat-
ing systems and were based on different architectures. Our results show that the
CAS-based algorithms outperforms the CAS2-based implementations5 for any
number of threads and any system. In non-uniform memory architectures with
high contention our algorithm, because of its disjoint access property, performs
significantly better than the algorithm in [11].

The rest of the paper is organized as follows. In Section 2 we describe the
type of targeted systems. The actual algorithm is described in Section 3. The
experimental evaluation is presented in Section 4. We conclude the paper with
Section 5.

2 System Description

Each node of the shared memory multi-processor system contains a processor
together with its local memory. All nodes are connected to the shared memory
via an interconnection network. A set of co-operating tasks is running on the
system performing their respective operations. Each task is sequentially executed
on one of the processors, while each processor can serve (run) many tasks at a
time. The co-operating tasks, possibly running on different processors, use shared

4 It is available on the Intel IA-32, but not on the Sparc or MIPS microprocessor
architectures. It is neither available on any currently known and common 64-bit
architecture.

5 The CAS2 operation was implemented in software, using either mutual exclusion or
the results from [15], which presented an software CASn (CAS for n non-adjacent
words) implementation.
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data objects built in the shared memory to co-ordinate and communicate. Tasks
synchronize their operations on the shared data objects through sub-operations
on top of a cache-coherent shared memory. The shared memory may not though
be uniformly accessible for all nodes in the system; processors can have different
access times on different parts of the memory.

3 The New Lock-Free Algorithm

The algorithm is based on a doubly linked list data structure, see Figure 1. To
use the data structure as a deque, every node contains a value. The fields of each
node item are described in Figure 5 as it is used in this implementation. Note
that the doubly linked list data structure always contains the static head and
tail dummy nodes.

In order to make the doubly linked list construction concurrent and non-
blocking, we are using two of the standard atomic synchronization primitives,
Fetch-And-Add (FAA) and Compare-And-Swap (CAS). Figure 2 describes the
specification of these primitives which are available in most modern platforms.

To insert or delete a node from the list we have to change the respective
set of prev and next pointers. These have to be changed consistently, but not
necessarily all at once. Our solution is to treat the doubly linked list as being a
singly linked list with auxiliary information in the prev pointers, with the next
pointers being updated before the prev pointers. Thus, the next pointers always
form a consistent singly linked list, but the prev pointers only give hints for
where to find the previous node. This is possible because of the observation that
a “late” non-updated prev pointer will always point to a node that is directly or
some steps before the current node, and from that “hint” position it is always

v1 vi vj vn. . .

. . .

. . .

Head Tail

prev

next

Fig. 1. The doubly linked list data structure

procedure FAA(address:pointer to word, number:integer)
atomic do

*address := *address + number;

function CAS(address:pointer to word, oldvalue:word, newvalue:word):boolean
atomic do

if *address = oldvalue then *address := newvalue; return true;
else return false;

Fig. 2. The Fetch-And-Add (FAA) and Compare-And-Swap (CAS) atomic primitives
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Fig. 3. Concurrent insert and delete operations can delete both nodes

possible to traverse6 through the next pointers to reach the directly previous
node.

One problem, that is general for non-blocking implementations that are based
on the singly linked list data structure, arises when inserting a new node into
the list. Because of the linked list structure one has to make sure that the
previous node is not about to be deleted. If we are changing the next pointer
of this previous node atomically with a CAS operation, to point to the new
node, and then immediately afterwards the previous node is deleted - then the
new node will be deleted as well, as illustrated in Figure 3. There are several
solutions to this problem. One solution is to use the CAS2 operation as it can
change two pointers atomically, but this operation is not available in any modern
multiprocessor system. A second solution is to insert auxiliary nodes [10] between
every two normal nodes, and the latest method introduced by Harris [16] is to
use a deletion mark. This deletion mark is updated atomically together with the
next pointer. Any concurrent insert operation will then be notified about the
possibly set deletion mark, when its CAS operation will fail on updating the
next pointer of the to-be-previous node. For our doubly linked list we need to
be informed also when inserting using the prev pointer.

In order to allow usage of a system-wide dynamic memory handler (which
should be lock-free and have garbage collection capabilities), all significant bits
of an arbitrary pointer value must be possible to be represented in both the next
and prev pointers. In order to atomically update both the next and prev pointer
together with the deletion mark as done by Michael [11], the CAS-operation
would need the capability of atomically updating at least 30 + 30 + 1 = 61 bits
on a 32-bit system (and 62+62+1 = 125 bits on a 64-bit system as the pointers
are then 64 bit). In practice though, most current 32 and 64-bit systems only
support CAS operations of single word-size.

However, in our doubly linked list implementation, we never need to change
both the prev and next pointers in one atomic update, and the pre-condition
associated with each atomic pointer update only involves the pointer that is
changed. Therefore it is possible to keep the prev and next pointers in separate

6 As will be shown later, we have defined the deque data structure in a way that makes
it possible to traverse even through deleted nodes, as long as they are referenced in
some way.
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words, duplicating the deletion mark in each of the words. In order to preserve
the correctness of the algorithm, the deletion mark of the next pointer should
always be set first, and the deletion mark of the prev pointer should be assured to
be set by any operation that has observed the deletion mark on the next pointer,
before any other updating steps are performed. Thus, full pointer values can be
used, still by only using standard CAS operations.

3.1 The Basic Steps of the Algorithm

The main algorithm steps, see Figure 4, for inserting a new node at an arbitrary
position in our doubly linked list will thus be as follows: I) Atomically update the
next pointer of the to-be-previous node, II) Atomically update the prev pointer
of the to-be-next node. The main steps of the algorithm for deleting a node at an
arbitrary position are the following: I) Set the deletion mark on the next pointer
of the to-be-deleted node, II) Set the deletion mark on the prev pointer of the
to-be-deleted node, III) Atomically update the next pointer of the previous node
of the to-be-deleted node, IV) Atomically update the prev pointer of the next
node of the to-be-deleted node. As will be shown later in the detailed description
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Fig. 4. Illustration of the basic steps of the algorithms for insertion and deletion of
nodes at arbitrary positions in the doubly linked list, as described in Section 3.1
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of the algorithm, helping techniques need to be applied in order to achieve the
lock-free property, following the same steps as the main algorithm for inserting
and deleting.

3.2 Memory Management

As we are concurrently (with possible preemptions) traversing nodes that will
be continuously allocated and reclaimed, we have to consider several aspects of
memory management. No node should be reclaimed and then later re-allocated
while some other process is (or will be) traversing that node. For efficiency
reasons we also need to be able to trust the prev and the next pointers of
deleted nodes, as we would otherwise be forced to re-start the traversing from
the head or tail dummy nodes whenever reaching a deleted node while travers-
ing and possibly incur severe performance penalties. This need is especially
important for operations that try to help other delete operations in progress.
Our demands on the memory management therefore rule out the SMR or ROP
methods by Michael [17] and Herlihy et al. [18] respectively, as they can only
guarantee a limited number of nodes to be safe, and these guarantees are also re-
lated to individual threads and never to an individual node structure. However,
stronger memory management schemes as for example reference counting would
be sufficient for our needs. There exists a general lock-free reference counting
scheme by Detlefs et al. [14], though based on the non-available CAS2 atomic
primitive.

For our implementation, we selected the lock-free memory management
scheme invented by Valois [10] and corrected by Michael and Scott [19], which
makes use of the FAA and CAS atomic synchronization primitives. Using this
scheme we can assure that a node can only be reclaimed when there is no prev or
next pointer in the list that points to it. One problem though with this scheme, a
general problem with reference counting, is that it can not handle cyclic garbage
(i.e. 2 or more nodes that should be recycled but reference each other, and there-
fore each node keeps a positive reference count, although they are not referenced
by the main structure). Our solution is to make sure to break potential cyclic
references directly before a node is possibly recycled. This is done by changing
the next and prev pointers of a deleted node to point to active nodes, in a way
that is consistent with the semantics of other operations.

The memory management scheme should also support means to de-reference
pointers safely. If we simply de-reference a next or prev pointer using the means
of the programming language, it might be that the corresponding node has been
reclaimed before we could access it. It can also be that the deletion mark that
is connected to the prev or next pointer was set, thus marking that the node
is deleted. The scheme by Valois et al. supports lock-free pointer de-referencing
and can easily be adopted to handle deletion marks.

The following functions are defined for safe handling of the memory manage-
ment:

function MALLOC NODE() :pointer to Node
function DEREF(address:pointer to Link) :pointer to Node
function DEREF D(address:pointer to Link) :pointer to Node
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function COPY(node:pointer to Node) :pointer to Node
procedure REL(node:pointer to Node)

The functions DEREF and DEREF D atomically de-references the given link
and increases the reference counter for the corresponding node. In case the dele-
tion mark of the link is set, the DEREF function then returns NULL. The func-
tion MALLOC NODE allocates a new node from the memory pool. The function
REL decrements the reference counter on the corresponding given node. If the
reference counter reaches zero, the function then calls the TerminateNode func-
tion that will recursively call REL on the nodes that this node has owned pointers
to, and then it reclaims the node. The COPY function increases the reference
counter for the corresponding given node.

As the details of how to efficiently apply the memory management scheme to
our basic algorithm are not always trivial, we will provide a detailed description
of them together with the detailed algorithm description in this section.

3.3 Pushing and Popping Nodes

The PushLeft operation, see Figure 5, inserts a new node at the leftmost po-
sition in the deque. The algorithm first repeatedly tries in lines L4-L14 to
insert the new node (node) between the head node (prev) and the leftmost
node (next), by atomically changing the next pointer of the head node. Be-
fore trying to update the next pointer, it assures in line L5 that the next node
is still the very next node of head, otherwise next is updated in L6-L7. After
the new node has been successfully inserted, it tries in lines P1-P13 to up-
date the prev pointer of the next node. It retries until either i) it succeeds
with the update, ii) it detects that either the next or new node is deleted, or
iii) the next node is no longer directly next of the new node. In any of the
two latter, the changes are due to concurrent Pop or Push operations, and the
responsibility to update the prev pointer is then left to those. If the update
succeeds, there is though the possibility that the new node was deleted (and
thus the prev pointer of the next node was possibly already updated by the
concurrent Pop operation) directly before the CAS in line P5, and then the
prev pointer is updated by calling the HelpInsert function in line P10. The lin-
earizability point of the PushLeft operation is the successful CAS operation in
line L11.

The PushRight operation, see Figure 5, inserts a new node at the rightmost
position in the deque. The algorithm first repeatedly tries in lines R4-R13 to
insert the new node (node) between the rightmost node (prev) and the tail node
(next), by atomically changing the next pointer of the prev node. Before trying to
update the next pointer, it assures in line R5 that the next node is still the very
next node of prev, otherwise prev is updated by calling the HelpInsert function
in R6, which updates the prev pointer of the next node. After the new node has
been successfully inserted, it tries in lines P1-P13 to update the prev pointer
of the next node, following the same scheme as in the PushLeft operation. The
linearizability point of the PushRight operation is the successful CAS operation
in line R10.
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union Link
: word
〈p, d〉: 〈pointer to Node, boolean〉

structure Node
value: pointer to word
prev: union Link
next: union Link

// Global variables
head, tail: pointer to Node
// Local variables
node,prev,prev2,next,next2: pointer to Node
last,link1: union Link

function CreateNode(value: pointer to word)
:pointer to Node

C1 node:=MALLOC NODE();
C2 node.value:=value;
C3 return node;

procedure TerminateNode(node: pointer to
Node)

RR1 REL(node.prev.p);
RR2 REL(node.next.p);

procedure PushLeft(value: pointer to word)
L1 node:=CreateNode(value);
L2 prev:=COPY(head);
L3 next:=DEREF(&prev.next);
L4 while T do
L5 if prev.next �= 〈next,F〉 then
L6 REL(next);
L7 next:=DEREF(&prev.next);
L8 continue;
L9 node.prev:=〈prev,F〉;
L10 node.next:=〈next,F〉;
L11 if CAS(&prev.next,〈next,F〉
,〈node,F〉) then

L12 COPY(node);
L13 break;
L14 Back-Off
L15 PushCommon(node,next);

procedure PushRight(value: pointer to word)
R1 node:=CreateNode(value);
R2 next:=COPY(tail);
R3 prev:=DEREF(&next.prev);
R4 while T do
R5 if prev.next �= 〈next,F〉 then
R6 prev:=HelpInsert(prev,next);
R7 continue;
R8 node.prev:=〈prev,F〉;
R9 node.next:=〈next,F〉;
R10 if CAS(&prev.next,〈next,F〉
,〈node,F〉) then

R11 COPY(node);
R12 break;
R13 Back-Off
R14 PushCommon(node,next);

procedure MarkPrev(node: pointer to Node)
MP1 while T do
MP2 link1:=node.prev;
MP3 if link1.d = T or CAS(&node.prev
,link1,〈link1.p,T〉) then break;

procedure PushCommon(node, next: pointer
to Node)

P1 while T do
P2 link1:=next.prev;
P3 if link1.d = T or node.next �=
〈next,F〉 then

P4 break;
P5 if CAS(&next.prev,link1
,〈node,F〉) then

P6 COPY(node);
P7 REL(link1.p);
P8 if node.prev.d = T then
P9 prev2:=COPY(node);
P10 prev2:=HelpInsert(prev2,next);
P11 REL(prev2);
P12 break;
P13 Back-Off
P14 REL(next);
P15 REL(node);

function PopLeft(): pointer to word
PL1 prev:=COPY(head);
PL2 while T do
PL3 node:=DEREF(&prev.next);
PL4 if node = tail then
PL5 REL(node);
PL6 REL(prev);
PL7 return ⊥;
PL8 link1:=node.next;
PL9 if link1.d = T then
PL10 HelpDelete(node);
PL11 REL(node);
PL12 continue;
PL13 if CAS(&node.next,link1
,〈link1.p,T〉) then

PL14 HelpDelete(node);
PL15 next:=DEREF D(&node.next);
PL16 prev:=HelpInsert(prev,next);
PL17 REL(prev);
PL18 REL(next);
PL19 value:=node.value;
PL20 break;
PL21 REL(node);
PL22 Back-Off
PL23 RemoveCrossReference(node);
PL24 REL(node);
PL25 return value;

function PopRight(): pointer to word
PR1 next:=COPY(tail);
PR2 node:=DEREF(&next.prev);
PR3 while T do
PR4 if node.next �= 〈next,F〉 then
PR5 node:=HelpInsert(node,next);
PR6 continue;
PR7 if node = head then
PR8 REL(node);
PR9 REL(next);
PR10 return ⊥;
PR11 if CAS(&node.next,〈next,F〉
,〈next,T〉) then

PR12 HelpDelete(node);
PR13 prev:=DEREF D(&node.prev);
PR14 prev:=HelpInsert(prev,next);
PR15 REL(prev);
PR16 REL(next);

Fig. 5. The algorithm, part 1(2)
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The PopLeft operation, see Figure 5, tries to delete and return the value of
the leftmost node in the deque. The algorithm first repeatedly tries in lines PL2-
PL22 to mark the leftmost node (node) as deleted. Before trying to update the
next pointer, it first assures in line PL4 that the deque is not empty, and sec-
ondly in line PL9 that the node is not already marked for deletion. If the deque
was detected to be empty, the function returns. If node was marked for deletion,
it tries to update the next pointer of the prev node by calling the HelpDelete
function, and then node is updated to be the leftmost node. If the prev pointer
of node was incorrect, it tries to update it by calling the HelpInsert function.
After the node has been successfully marked by the successful CAS operation in
line PL13, it tries in line PL14 to update the next pointer of the prev node by
calling the HelpDelete function, and in line PL16 to update the prev pointer of
the next node by calling the HelpInsert function. After this, it tries in line PL23
to break possible cyclic references that includes node by calling the RemoveCross-
Reference function. The linearizability point of a PopLeft operation that fails, is
the read operation of the next pointer in line PL3. The linearizability point of
a PopLeft operation that succeeds, is the read operation of the next pointer in
line PL3.

The PopRight operation, see Figure 5, tries to delete and return the value
of the rightmost node in the deque. The algorithm first repeatedly tries in lines
PR2-PR19 to mark the rightmost node (node) as deleted. Before trying to update
the next pointer, it assures i) in line PR4 that the node is not already marked
for deletion, ii) in the same line that the prev pointer of the tail (next) node
is correct, and iii) in line PR7 that the deque is not empty. If the deque was
detected to be empty, the function returns. If node was marked for deletion
or the prev pointer of the next node was incorrect, it tries to update the prev
pointer of the next node by calling the HelpInsert function, and then node is
updated to be the rightmost node. After the node has been successfully marked
it follows the same scheme as the PopLeft operation. The linearizability point
of a PopRight operation that fails, is the read operation of the next pointer in
line PR4. The linearizability point of a PopRight operation that succeeds, is the
CAS sub-operation in line PR11.

3.4 Helping and Back-Off

The HelpDelete sub-procedure, see Figure 6, tries to set the deletion mark of
the prev pointer and then atomically update the next pointer of the previous
node of the to-be-deleted node, thus fulfilling step 2 and 3 of the overall node
deletion scheme. The algorithm first ensures in line HD1 that the deletion mark
on the prev pointer of the given node is set. It then repeatedly tries in lines
HD6-HD38 to delete (in the sense of a chain of next pointers starting from the
head node) the given marked node (node) by changing the next pointer from the
previous non-marked node. First, we can safely assume that the next pointer of
the marked node is always referring to a node (next) to the right and the prev
pointer is always referring to a node (prev) to the left (not necessarily the first).
Before trying to update the next pointer with the CAS operation in line HD34,
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it assures in line HD6 that node is not already deleted, in line HD7 that the next
node is not marked, in line HD14 that the prev node is not marked, and in HD28
that prev is the previous node of node. If next is marked, it is updated to be the
next node. If prev is marked we might need to delete it before we can update

PR17 value:=node.value;
PR18 break;
PR19 Back-Off
PR20 RemoveCrossReference(node);
PR21 REL(node);
PR22 return value;

procedure HelpDelete(node: pointer to Node)
HD1 MarkPrev(node);
HD2 last:=⊥;
HD3 prev:=DEREF D(&node.prev);
HD4 next:=DEREF D(&node.next);
HD5 while T do
HD6 if prev = next then break;
HD7 if next.next.d = T then
HD8 MarkPrev(next);
HD9 next2:=DEREF D(&next.next);
HD10 REL(next);
HD11 next:=next2;
HD12 continue;
HD13 prev2:=DEREF(&prev.next);
HD14 if prev2 = ⊥ then
HD15 if last �= ⊥ then
HD16 MarkPrev(prev);
HD17 next2:=DEREF D(&prev.next);
HD18 if CAS(&last.next,〈prev,F〉
,〈next2,F〉) then REL(prev);

HD19 else REL(next2);
HD20 REL(prev);
HD21 prev:=last;
HD22 last:=⊥;
HD23 else
HD24 prev2:=DEREF D(&prev.prev);
HD25 REL(prev);
HD26 prev:=prev2;
HD27 continue;
HD28 if prev2 �= node then
HD29 if last �= ⊥ then REL(last);
HD30 last:=prev;
HD31 prev:=prev2;
HD32 continue;
HD33 REL(prev2);
HD34 if CAS(&prev.next,〈node,F〉
,〈next,F〉) then

HD35 COPY(next);
HD36 REL(node);
HD37 break;
HD38 Back-Off
HD39 if last �= ⊥ then REL(last);
HD40 REL(prev);
HD41 REL(next);

function HelpInsert(prev, node: pointer to
Node): pointer to Node

HI1 last:=⊥;
HI2 while T do
HI3 prev2:=DEREF(&prev.next);
HI4 if prev2 = ⊥ then
HI5 if last �= ⊥ then
HI6 MarkPrev(prev);
HI7 next2:=DEREF D(&prev.next);
HI8 if CAS(&last.next,〈prev,F〉
,〈next2,F〉) then REL(prev);

HI9 else REL(next2);
HI10 REL(prev);
HI11 prev:=last;
HI12 last:=⊥;
HI13 else
HI14 prev2:=DEREF D(&prev.prev);
HI15 REL(prev);
HI16 prev:=prev2;
HI17 continue;
HI18 link1:=node.prev;
HI19 if link1.d = T then
HI20 REL(prev2);
HI21 break;
HI22 if prev2 �= node then
HI23 if last �= ⊥ then REL(last);
HI24 last:=prev;
HI25 prev:=prev2;
HI26 continue;
HI27 REL(prev2);
HI28 if link1.p = prev then break;
HI29 if prev.next = node and CAS(
&node.prev,link1,〈prev,F〉) then

HI30 COPY(prev);
HI31 REL(link1.p);
HI32 if prev.prev.d �= T then break;
HI33 Back-Off
HI34 if last �= ⊥ then REL(last);
HI35 return prev;

procedure RemoveCrossReference(
node: pointer to Node)

RC1 while T do
RC2 prev:=node.prev.p;
RC3 if prev.prev.d = T then
RC4 prev2:=DEREF D(&prev.prev);
RC5 node.prev:=〈prev2,T〉;
RC6 REL(prev);
RC7 continue;
RC8 next:=node.next.p;
RC9 if next.prev.d = T then
RC10 next2:=DEREF D(&next.next);
RC11 node.next:=〈next2,T〉;
RC12 REL(next);
RC13 continue;
RC14 break;

Fig. 6. The algorithm, part 2(2)
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prev to one of its previous nodes and proceed with the current deletion. This
extra deletion is only attempted if a next pointer from a non-marked node to
prev has been observed (i.e. last is valid). Otherwise if prev is not the previous
node of node it is updated to be the next node.

The HelpInsert sub-function, see Figure 6, tries to update the prev pointer of a
node and then return a reference to a possibly direct previous node, thus fulfilling
step 2 of the overall insertion scheme or step 4 of the overall deletion scheme. The
algorithm repeatedly tries in lines HI2-HI33 to correct the prev pointer of the
given node (node), given a suggestion of a previous (not necessarily the directly
previous) node (prev). Before trying to update the prev pointer with the CAS
operation in line HI29, it assures in line HI4 that the prev node is not marked,
in line HI19 that node is not marked, and in line HI22 that prev is the previous
node of node. If prev is marked we might need to delete it before we can update
prev to one of its previous nodes and proceed with the current deletion. This
extra deletion is only attempted if a next pointer from a non-marked node to prev
has been observed (i.e. last is valid). If node is marked, the procedure is aborted.
Otherwise if prev is not the previous node of node it is updated to be the next
node. If the update in line HI29 succeeds, there is though the possibility that the
prev node was deleted (and thus the prev pointer of node was possibly already
updated by the concurrent Pop operation) directly before the CAS operation.
This is detected in line HI32 and then the update is possibly retried with a new
prev node.

Because the HelpDelete and HelpInsert are often used in the algorithm for
“helping” late operations that might otherwise stop progress of other concurrent
operations, the algorithm is suitable for pre-emptive as well as fully concurrent
systems. In fully concurrent systems though, the helping strategy as well as heavy
contention on atomic primitives, can downgrade the performance significantly.
Therefore the algorithm, after a number of consecutive failed CAS operations
(i.e. failed attempts to help concurrent operations) puts the current operation
into back-off mode. When in back-off mode, the thread does nothing for a while,
and in this way avoids disturbing the concurrent operations that might other-
wise progress slower. The duration of the back-off is initialized to some value
(e.g. proportional to the number of threads) at the start of an operation, and
for each consecutive entering of the back-off mode during one operation invoca-
tion, the duration of the back-off is changed using some scheme, e.g. increased
exponentially.

3.5 Avoiding Cyclic Garbage

The RemoveCrossReference sub-procedure, see Figure 6, tries to break cross-
references between the given node (node) and any of the nodes that it references,
by repeatedly updating the prev and next pointer as long as they reference a
fully marked node. First, we can safely assume that the prev or next field of
node is not concurrently updated by any other operation, as this procedure is
only called by the main operation that deleted the node and both the next and
prev pointers are marked and thus any concurrent update using CAS will fail.
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Before the procedure is finished, it assures in line RC3 that the previous node
(prev) is not fully marked, and in line RC9 that the next node (next) is not fully
marked. As long as prev is marked it is traversed to the left, and as long as next
is marked it is traversed to the right, while continuously updating the prev or
next field of node in lines RC5 or RC11.

3.6 General Operations of Doubly Linked Lists and Correctness
Proofs

Due to page restrictions, the detailed description of the general operations of
a doubly linked list (i.e. traversals and arbitrary inserts and deletes) as well
as detailed proofs of correctness of the lock-free and linearizability criteria are
described in an extended version of this paper [20].

4 Experimental Evaluation

In our experiments, each concurrent thread performed 1000 randomly chosen
sequential operations on a shared deque, with a distribution of 1/4 PushRight,
1/4 PushLeft, 1/4 PopRight and 1/4 PopLeft operations. Each experiment was
repeated 50 times, and an average execution time for each experiment was esti-
mated. Exactly the same sequence of operations were performed for all different
implementations compared. Besides our implementation, we also performed the
same experiment with the lock-free implementation by Michael [11] and the im-
plementation by Martin et al. [9], two of the most efficient lock-free deques that
have been proposed. The algorithm by Martin et al. was implemented together
with the corresponding memory management scheme by Detlefs et al. [14]. How-
ever, as both [9] and [14] use the atomic operation CAS2 which is not available
in any modern system, the CAS2 operation was implemented in software us-
ing two different approaches. The first approach was to implement CAS2 using
mutual exclusion (as proposed in [9]). The other approach was to implement
CAS2 using one of the most efficient software implementations of CASN known
that could meet the needs of [9] and [14], i.e. the implementation by Harris
et al. [15].

A clean-cache operation was performed just before each sub-experiment using
a different implementation. All implementations are written in C and compiled
with the highest optimization level. The atomic primitives are written in assem-
bly language.

The experiments were performed using different number of threads, varying
from 1 to 28 with increasing steps. Three different platforms were used, with
varying number of processors and level of shared memory distribution. To get
a highly pre-emptive environment, we performed our experiments on a Compaq
dual-processor Pentium II PC running Linux, and a Sun Ultra 80 system run-
ning Solaris 2.7 with 4 processors. In order to evaluate our algorithm with full
concurrency we also used a SGI Origin 2000 system running Irix 6.5 with 29 250
MHz MIPS R10000 processors. The results from the experiments are shown in
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Figure 7. The average execution time is drawn as a function of the number of
threads.

Our results show that both the CAS-based algorithms outperform the CAS2-
based implementations for any number of threads. For the systems with low
or medium concurrency and uniform memory architecture, [11] has the best
performance. However, for the system with full concurrency and non-uniform
memory architecture our algorithm performs significantly better than [11] from
2 threads and more, as a direct consequence of the nature of our algorithm to
support parallelism for disjoint accesses.
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Fig. 7. Experiment with deques and high contention. Logarithmic scales in the right
column
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5 Conclusions

We have presented the first lock-free algorithmic implementation of a concurrent
deque that has all the following features: i) it supports parallelism for disjoint
accesses, ii) uses a fully described lock-free memory management scheme, iii)
uses atomic primitives which are available in modern computer systems, and iv)
allows pointers with full precision to be used, and thus supports dynamic deque
sizes. In addition, the proposed solution also implements all the fundamental
operations of a general doubly linked list data structure in a lock-free manner.
The doubly linked list operations also support deterministic and well defined
traversals through even deleted nodes, and are therefore suitable for concurrent
applications of linked lists in practice.

We have performed experiments that compare the performance of our algo-
rithm with two of the most efficient algorithms of lock-free deques known, using
full implementations of those algorithms. The experiments show that our imple-
mentation performs significantly better on systems with high concurrency and
non-uniform memory architecture.

We believe that our implementation is of highly practical interest for multi-
processor applications. We are currently incorporating it into the NOBLE [21]
library.
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