Lock-Free and Practical Doubly Linked List-Based Deques Using Single-Word Compare-and-Swap

Håkan Sundell and Philippas Tsigas

Department of Computing Science, Chalmers University of Technology and Göteborg University, 412 96 Göteborg, Sweden {phs, tsigas}@cs.chalmers.se http://www.cs.chalmers.se/~{phs, tsigas}

Abstract. We present an efficient and practical lock-free implementation of a concurrent deque that supports parallelism for disjoint accesses and uses atomic primitives which are available in modern computer systems. Previously known lock-free algorithms of deques are either based on non-available atomic synchronization primitives, only implement a subset of the functionality, or are not designed for disjoint accesses. Our algorithm is based on a general lock-free doubly linked list, and only requires single-word compare-and-swap atomic primitives. It also allows pointers with full precision, and thus supports dynamic deque sizes. We have performed an empirical study using full implementations of the most efficient known algorithms of lock-free deques. For systems with low concurrency, the algorithm by Michael shows the best performance. However, as our algorithm is designed for disjoint accesses, it performs significantly better on systems with high concurrency and non-uniform memory architecture. In addition, the proposed solution also implements a general doubly linked list, the first lock-free implementation that only needs the single-word compare-and-swap atomic primitive.

1 Introduction

A deque (i.e. double-ended queue) is a fundamental data structure. For example, deques are often used for implementing the ready queue used for scheduling of tasks in operating systems. A deque supports four operations, the *PushRight*, the *PushLeft*, and the *PopLeft* operation. The abstract definition of a deque is a list of values, where the *PushRight/PushLeft* operation adds a new value to the right/left edge of the list. The *PopRight/PopLeft* operation correspondingly removes and returns the value on the right/left edge of the list.

To ensure consistency of a shared data object in a concurrent environment, the most common method is mutual exclusion, i.e. some form of locking. Mutual exclusion degrades the system's overall performance [1] as it causes blocking, i.e. other concurrent operations can not make any progress while the access to the shared resource is blocked by the lock. Mutual exclusion can also cause deadlocks, priority inversion and even starvation.

In order to address these problems, researchers have proposed non-blocking algorithms for shared data objects. Non-blocking algorithms do not involve mutual exclusion, and therefore do not suffer from the problems that blocking could generate. Lock-free implementations are non-blocking and guarantee that regardless of the contention caused by concurrent operations and the interleaving of their sub-operations, always at least one operation will progress. However, there is a risk for starvation as the progress of some operations could cause some other operations to never finish. Wait-free [2] algorithms are lock-free and moreover they avoid starvation as well, as all operations are then guaranteed to finish in a limited number of their own steps. Recently, some researchers also include obstruction-free [3] implementations to the non-blocking set of implementations. These kinds of implementations are weaker than the lock-free ones and do not guarantee progress of any concurrent operation.

The implementation of a lock-based concurrent deque is a trivial task, and can preferably be constructed using either a doubly linked list or a cyclic array, protected by either a single lock or by multiple locks where each lock protects a part of the shared data structure. To the best of our knowledge, there exists no implementations of wait-free deques, but several lock-free implementations have been proposed. However, all previous lock-free deques lack in several important aspects, as they either only implement a subset of the operations that are normally associated with a deque and have concurrency restrictions¹ like Arora et al. [4], or are based on atomic hardware primitives like Double-Word Compare-And-Swap $(CAS2)^2$ which is not available in modern computer systems. Greenwald [5] presented a CAS2-based deque implementation as well as a general doubly linked list implementation [6], and there is also a publication series of a CAS2-based deque implementation [7],[8] with the latest version by Martin et al. [9]. Valois [10] sketched out an implementation of a lock-free doubly linked list structure using Compare-And-Swap (CAS)³, though without any support for deletions and is therefore not suitable for implementing a deque. Michael [11] has developed a deque implementation based on CAS. However, it is not designed to allow parallelism for disjoint accesses as all operations have to synchronize, even though they operate on different ends of the deque. Secondly, in order to support dynamic maximum deque sizes it requires an extended

¹ The algorithm by Arora et al. does not support push operations on both ends, and does not allow concurrent invocations of the push operation and a pop operation on the opposite end.

² A CAS2 operations can atomically read-and-possibly-update the contents of two non-adjacent memory words. This operation is also sometimes called DCAS in the literature.

³ The standard CAS operation can atomically read-and-possibly-update the contents of a single memory word.

CAS operation that can atomically operate on two adjacent words, which is not available 4 on all modern platforms.

In this paper we present a lock-free algorithm for implementing a concurrent deque that supports parallelism for disjoint accesses (in the sense that operations on different ends of the deque do not necessarily interfere with each other). An earlier description of this algorithm appeared as a technical report [12] in March 2004. The algorithm is implemented using common synchronization primitives that are available in modern systems. It allows pointers with full precision, and thus supports dynamic maximum deque sizes (in the presence of a lock-free dynamic memory handler with sufficient garbage collection support), still using normal CAS-operations. The algorithm is described in detail later in this paper, together with the aspects concerning the underlying lock-free memory management. In the algorithm description the precise semantics of the operations are defined and a proof that our implementation is lock-free and linearizable [13] is also given.

We have performed experiments that compare the performance of our algorithm with two of the most efficient algorithms of lock-free deques known; [11] and [9], the latter implemented using results from [14] and [15]. Experiments were performed on three different multiprocessor systems equipped with 2,4 or 29 processors respectively. All three systems used were running different operating systems and were based on different architectures. Our results show that the CAS-based algorithms outperforms the CAS2-based implementations⁵ for any number of threads and any system. In non-uniform memory architectures with high contention our algorithm, because of its disjoint access property, performs significantly better than the algorithm in [11].

The rest of the paper is organized as follows. In Section 2 we describe the type of targeted systems. The actual algorithm is described in Section 3. The experimental evaluation is presented in Section 4. We conclude the paper with Section 5.

2 System Description

Each node of the shared memory multi-processor system contains a processor together with its local memory. All nodes are connected to the shared memory via an interconnection network. A set of co-operating tasks is running on the system performing their respective operations. Each task is sequentially executed on one of the processors, while each processor can serve (run) many tasks at a time. The co-operating tasks, possibly running on different processors, use shared

⁴ It is available on the Intel IA-32, but not on the Sparc or MIPS microprocessor architectures. It is neither available on any currently known and common 64-bit architecture.

⁵ The CAS2 operation was implemented in software, using either mutual exclusion or the results from [15], which presented an software CASn (CAS for n non-adjacent words) implementation.

data objects built in the shared memory to co-ordinate and communicate. Tasks synchronize their operations on the shared data objects through sub-operations on top of a cache-coherent shared memory. The shared memory may not though be uniformly accessible for all nodes in the system; processors can have different access times on different parts of the memory.

3 The New Lock-Free Algorithm

The algorithm is based on a doubly linked list data structure, see Figure 1. To use the data structure as a deque, every node contains a value. The fields of each node item are described in Figure 5 as it is used in this implementation. Note that the doubly linked list data structure always contains the static head and tail dummy nodes.

In order to make the doubly linked list construction concurrent and nonblocking, we are using two of the standard atomic synchronization primitives, Fetch-And-Add (FAA) and Compare-And-Swap (CAS). Figure 2 describes the specification of these primitives which are available in most modern platforms.

To insert or delete a node from the list we have to change the respective set of prev and next pointers. These have to be changed consistently, but not necessarily all at once. Our solution is to treat the doubly linked list as being a singly linked list with auxiliary information in the prev pointers, with the next pointers being updated before the prev pointers. Thus, the next pointers always form a consistent singly linked list, but the prev pointers only give hints for where to find the previous node. This is possible because of the observation that a "late" non-updated prev pointer will always point to a node that is directly or some steps before the current node, and from that "hint" position it is always

Fig. 1. The doubly linked list data structure

procedure FAA(address:pointer to word, number:integer)
 atomic do
 *address := *address + number;

function CAS(address:pointer to word, oldvalue:word, newvalue:word):boolean
atomic do
 if *address = oldvalue then *address := newvalue; return true;
 else return false;

Fig. 2. The Fetch-And-Add (FAA) and Compare-And-Swap (CAS) atomic primitives

Fig. 3. Concurrent insert and delete operations can delete both nodes

possible to traverse 6 through the next pointers to reach the directly previous node.

One problem, that is general for non-blocking implementations that are based on the singly linked list data structure, arises when inserting a new node into the list. Because of the linked list structure one has to make sure that the previous node is not about to be deleted. If we are changing the next pointer of this previous node atomically with a CAS operation, to point to the new node, and then immediately afterwards the previous node is deleted - then the new node will be deleted as well, as illustrated in Figure 3. There are several solutions to this problem. One solution is to use the CAS2 operation as it can change two pointers atomically, but this operation is not available in any modern multiprocessor system. A second solution is to insert auxiliary nodes [10] between every two normal nodes, and the latest method introduced by Harris [16] is to use a deletion mark. This deletion mark is updated atomically together with the next pointer. Any concurrent insert operation will then be notified about the possibly set deletion mark, when its CAS operation will fail on updating the next pointer of the to-be-previous node. For our doubly linked list we need to be informed also when inserting using the prev pointer.

In order to allow usage of a system-wide dynamic memory handler (which should be lock-free and have garbage collection capabilities), all significant bits of an arbitrary pointer value must be possible to be represented in both the next and prev pointers. In order to atomically update both the next and prev pointer together with the deletion mark as done by Michael [11], the CAS-operation would need the capability of atomically updating at least 30 + 30 + 1 = 61 bits on a 32-bit system (and 62 + 62 + 1 = 125 bits on a 64-bit system as the pointers are then 64 bit). In practice though, most current 32 and 64-bit systems only support CAS operations of single word-size.

However, in our doubly linked list implementation, we never need to change both the prev and next pointers in one atomic update, and the pre-condition associated with each atomic pointer update only involves the pointer that is changed. Therefore it is possible to keep the prev and next pointers in separate

⁶ As will be shown later, we have defined the deque data structure in a way that makes it possible to traverse even through deleted nodes, as long as they are referenced in some way.

words, duplicating the deletion mark in each of the words. In order to preserve the correctness of the algorithm, the deletion mark of the next pointer should always be set first, and the deletion mark of the prev pointer should be assured to be set by any operation that has observed the deletion mark on the next pointer, before any other updating steps are performed. Thus, full pointer values can be used, still by only using standard CAS operations.

3.1 The Basic Steps of the Algorithm

The main algorithm steps, see Figure 4, for inserting a new node at an arbitrary position in our doubly linked list will thus be as follows: I) Atomically update the next pointer of the to-be-previous node, II) Atomically update the prev pointer of the to-be-next node. The main steps of the algorithm for deleting a node at an arbitrary position are the following: I) Set the deletion mark on the next pointer of the to-be-deleted node, II) Atomically update the prev pointer of the to-be-deleted node, II) Set the deletion mark on the prev pointer of the to-be-deleted node, II) Atomically update the next pointer of the previous node of the to-be-deleted node, IV Atomically update the prev pointer of the next node of the to-be-deleted node. As will be shown later in the detailed description

Fig. 4. Illustration of the basic steps of the algorithms for insertion and deletion of nodes at arbitrary positions in the doubly linked list, as described in Section 3.1

of the algorithm, helping techniques need to be applied in order to achieve the lock-free property, following the same steps as the main algorithm for inserting and deleting.

3.2 Memory Management

As we are concurrently (with possible preemptions) traversing nodes that will be continuously allocated and reclaimed, we have to consider several aspects of memory management. No node should be reclaimed and then later re-allocated while some other process is (or will be) traversing that node. For efficiency reasons we also need to be able to trust the prev and the next pointers of deleted nodes, as we would otherwise be forced to re-start the traversing from the head or tail dummy nodes whenever reaching a deleted node while traversing and possibly incur severe performance penalties. This need is especially important for operations that try to help other delete operations in progress. Our demands on the memory management therefore rule out the SMR or ROP methods by Michael [17] and Herlihy et al. [18] respectively, as they can only guarantee a limited number of nodes to be safe, and these guarantees are also related to individual threads and never to an individual node structure. However, stronger memory management schemes as for example reference counting would be sufficient for our needs. There exists a general lock-free reference counting scheme by Detlefs et al. [14], though based on the non-available CAS2 atomic primitive.

For our implementation, we selected the lock-free memory management scheme invented by Valois [10] and corrected by Michael and Scott [19], which makes use of the FAA and CAS atomic synchronization primitives. Using this scheme we can assure that a node can only be reclaimed when there is no prev or next pointer in the list that points to it. One problem though with this scheme, a general problem with reference counting, is that it can not handle cyclic garbage (i.e. 2 or more nodes that should be recycled but reference each other, and therefore each node keeps a positive reference count, although they are not referenced by the main structure). Our solution is to make sure to break potential cyclic references directly before a node is possibly recycled. This is done by changing the next and prev pointers of a deleted node to point to active nodes, in a way that is consistent with the semantics of other operations.

The memory management scheme should also support means to de-reference pointers safely. If we simply de-reference a next or prev pointer using the means of the programming language, it might be that the corresponding node has been reclaimed before we could access it. It can also be that the deletion mark that is connected to the prev or next pointer was set, thus marking that the node is deleted. The scheme by Valois et al. supports lock-free pointer de-referencing and can easily be adopted to handle deletion marks.

The following functions are defined for safe handling of the memory management:

function MALLOC_NODE() :pointer to Node function DEREF(address:pointer to Link) :pointer to Node function DEREF_D(address:pointer to Link) :pointer to Node

function COPY(node:pointer to Node) :pointer to Node procedure REL(node:pointer to Node)

The functions *DEREF* and *DEREF_D* atomically de-references the given link and increases the reference counter for the corresponding node. In case the deletion mark of the link is set, the *DEREF* function then returns NULL. The function *MALLOC_NODE* allocates a new node from the memory pool. The function *REL* decrements the reference counter on the corresponding given node. If the reference counter reaches zero, the function then calls the *TerminateNode* function that will recursively call *REL* on the nodes that this node has owned pointers to, and then it reclaims the node. The *COPY* function increases the reference counter for the corresponding given node.

As the details of how to efficiently apply the memory management scheme to our basic algorithm are not always trivial, we will provide a detailed description of them together with the detailed algorithm description in this section.

3.3 Pushing and Popping Nodes

The PushLeft operation, see Figure 5, inserts a new node at the leftmost position in the deque. The algorithm first repeatedly tries in lines L4-L14 to insert the new node (node) between the head node (prev) and the leftmost node (next), by atomically changing the next pointer of the head node. Before trying to update the next pointer, it assures in line L5 that the *next* node is still the very next node of head, otherwise next is updated in L6-L7. After the new node has been successfully inserted, it tries in lines P1-P13 to update the prev pointer of the next node. It retries until either i) it succeeds with the update, ii) it detects that either the next or new node is deleted, or iii) the next node is no longer directly next of the new node. In any of the two latter, the changes are due to concurrent Pop or Push operations, and the responsibility to update the prev pointer is then left to those. If the update succeeds, there is though the possibility that the new node was deleted (and thus the prev pointer of the *next* node was possibly already updated by the concurrent Pop operation) directly before the CAS in line P5, and then the prev pointer is updated by calling the *HelpInsert* function in line P10. The linearizability point of the PushLeft operation is the successful CAS operation in line L11.

The *PushRight* operation, see Figure 5, inserts a new node at the rightmost position in the deque. The algorithm first repeatedly tries in lines R4-R13 to insert the new node (*node*) between the rightmost node (*prev*) and the tail node (*next*), by atomically changing the next pointer of the *prev* node. Before trying to update the next pointer, it assures in line R5 that the *next* node is still the very next node of *prev*, otherwise *prev* is updated by calling the *HelpInsert* function in R6, which updates the prev pointer of the *next* node. After the new node has been successfully inserted, it tries in lines P1-P13 to update the prev pointer of the next node, following the same scheme as in the *PushLeft* operation. The linearizability point of the *PushRight* operation is the successful CAS operation in line R10.

union Link : word $\langle p, d \rangle$: (**pointer to** Node, **boolean**) structure Node value: pointer to word prev: union Link next: union Link // Global variables head, tail: pointer to Node // Local variables node, prev, prev2, next, next2: pointer to Node last,link1: union Link function CreateNode(value: pointer to word) :pointer to Node C1node:=MALLOC_NODE(); C2node.value:=value; C3return node; procedure TerminateNode(node: pointer to Node) RR1REL(node.prev.p); RR2 REL(node.next.p); procedure PushLeft(value: pointer to word) node:=CreateNode(value); L1 L2prev:=COPY(head); L3next:=DEREF(&prev.next); L4while T do L5if prev.next $\neq (\text{next}, \mathbf{F})$ then REL(next); L6L7next:=DEREF(&prev.next); L8 continue; L9node.prev:= $\langle \text{prev}, \mathbf{F} \rangle$; L10node.next:= $\langle next, \mathbf{F} \rangle$; L11 if CAS(&prev.next, $\langle next, \mathbf{F} \rangle$ $(\text{node}, \mathbf{F})$ then L12 COPY(node); L13 break: L14Back-Off L15PushCommon(node,next); procedure PushRight(value: pointer to word) PL23 RemoveCrossReference(node); **R**.1 node:=CreateNode(value); next:=COPY(tail); R2R3 prev:=DEREF(&next.prev); R4while T do R5if prev.next $\neq (\text{next}, \mathbf{F})$ then R6 prev:=HelpInsert(prev,next); R7continue: R8 node.prev:= $\langle \text{prev}, \mathbf{F} \rangle$; **R**9 node.next:= $\langle next, \mathbf{F} \rangle$; R10 if CAS(&prev.next, (next, F) $(\text{node}, \mathbf{F})$ then COPY(node); **R11** R12break; **B13** Back-Off PushCommon(node,next); R14 procedure MarkPrev(node: pointer to Node) MP1 while T do MP2link1:=node.prev;

MP3 if link1.d = T or CAS(&node.prev $,link1,(link1.p,\mathbf{T}))$ then break;

procedure PushCommon(node, next: pointer to Node) P1 while T do P2link1:=next.prev; P3if link1.d = T or node.next \neq $\langle next, \mathbf{F} \rangle$ then P4break: if CAS(&next.prev,link1 P5 $(\text{node}, \mathbf{F})$ then P6COPY(node); P7REL(link1.p); P8if node.prev.d = T then P9prev2:=COPY(node); P10 prev2:=HelpInsert(prev2,next); P11 REL(prev2); P12break; Back-Off P13 P14 REL(next); P15REL(node); function PopLeft(): pointer to word prev:=COPY(head); PL1 while T do PL2node:=DEREF(&prev.next); PL3 PL4 if node = tail thenPL5REL(node); PL6 REL(prev); return \perp ; PL7PL8link1:=node.next; if link1.d = T then PL9 HelpDelete(node); PL10 **PL11** REL(node); PL12 continue; PL13 if CAS(&node.next,link1 $\langle \text{link1.p}, \mathbf{T} \rangle \rangle$ then PL14 HelpDelete(node); PL15next:=DEREF_D(&node.next); PL16 prev:=HelpInsert(prev,next); REL(prev); PL17**PL18** REL(next); PL19 value:=node.value; PL20break; REL(node); PL21 Back-Off PL22PL24 REL(node); PL25 return value; function PopRight(): pointer to word PR1 next:=COPY(tail); PR2node:=DEREF(&next.prev); PR3 while T do PR4 if node.next $\neq (\text{next}, \mathbf{F})$ then PR5node:=HelpInsert(node,next); PR6 continue; $\mathbf{if} \ \mathrm{node} = \mathrm{head} \ \mathbf{then}$ PR7 PR8REL(node); PR9REL(next); **PR10** return \perp ; PR11 if CAS(&node.next, $\langle next, \mathbf{F} \rangle$ $(next, \mathbf{T})$ then $\dot{PR12}$ HelpDelete(node); prev:=DEREF_D(&node.prev); PR13 **PR14** prev:=HelpInsert(prev,next); PR15REL(prev);

Fig. 5. The algorithm, part 1(2)

PR16

REL(next);

The *PopLeft* operation, see Figure 5, tries to delete and return the value of the leftmost node in the deque. The algorithm first repeatedly tries in lines PL2-PL22 to mark the leftmost node (*node*) as deleted. Before trying to update the next pointer, it first assures in line PL4 that the deque is not empty, and secondly in line PL9 that the node is not already marked for deletion. If the deque was detected to be empty, the function returns. If node was marked for deletion, it tries to update the next pointer of the *prev* node by calling the *HelpDelete* function, and then *node* is updated to be the leftmost node. If the prev pointer of node was incorrect, it tries to update it by calling the *HelpInsert* function. After the node has been successfully marked by the successful CAS operation in line PL13, it tries in line PL14 to update the next pointer of the prev node by calling the *HelpDelete* function, and in line PL16 to update the prev pointer of the *next* node by calling the *HelpInsert* function. After this, it tries in line PL23 to break possible cyclic references that includes *node* by calling the *RemoveCross*-*Reference* function. The linearizability point of a *PopLeft* operation that fails, is the read operation of the next pointer in line PL3. The linearizability point of a PopLeft operation that succeeds, is the read operation of the next pointer in line PL3.

The *PopRight* operation, see Figure 5, tries to delete and return the value of the rightmost node in the deque. The algorithm first repeatedly tries in lines PR2-PR19 to mark the rightmost node (*node*) as deleted. Before trying to update the next pointer, it assures i) in line PR4 that the node is not already marked for deletion, ii) in the same line that the prev pointer of the tail (*next*) node is correct, and iii) in line PR7 that the deque is not empty. If the deque was detected to be empty, the function returns. If *node* was marked for deletion or the prev pointer of the *next* node was incorrect, it tries to update the prev pointer of the *next* node by calling the *HelpInsert* function, and then *node* is updated to be the rightmost node. After the node has been successfully marked it follows the same scheme as the *PopLeft* operation. The linearizability point of a *PopRight* operation that fails, is the read operation that succeeds, is the CAS sub-operation in line PR11.

3.4 Helping and Back-Off

The *HelpDelete* sub-procedure, see Figure 6, tries to set the deletion mark of the prev pointer and then atomically update the next pointer of the previous node of the to-be-deleted node, thus fulfilling step 2 and 3 of the overall node deletion scheme. The algorithm first ensures in line HD1 that the deletion mark on the prev pointer of the given node is set. It then repeatedly tries in lines HD6-HD38 to delete (in the sense of a chain of next pointer starting from the head node) the given marked node (*node*) by changing the next pointer from the previous non-marked node. First, we can safely assume that the next pointer of the marked node is always referring to a node (*next*) to the right and the prev pointer is always referring to a node (*prev*) to the left (not necessarily the first). Before trying to update the next pointer with the CAS operation in line HD34,

value:=node.value:

PR17

it assures in line HD6 that *node* is not already deleted, in line HD7 that the *next* node is not marked, in line HD14 that the *prev* node is not marked, and in HD28 that *prev* is the previous node of *node*. If *next* is marked, it is updated to be the next node. If *prev* is marked we might need to delete it before we can update

PR18	break;
PR19	Back-Off
PR20	RemoveCrossReference(node);
PR21	REL(node):
PR22	return value:
proce	dure HelpDelete(node: pointer to Node)
HD1	MarkPrev(node):
HD2	$last:=\perp$:
HD3	prev:=DEREF_D(&node.prev);
HD4	next:=DEBEF D(&node next):
HD5	while T do
HD6	if prev = next then break
HD7	if next next $d = T$ then
HD8	MarkPrev(next):
нро	pext2:=DEBEE D(lenevt pext):
HD10	BEL(next):
HD11	next:-next?
HD12	continuo:
HD12	prov2:-DEREE(<i>laprov</i> post):
HD14	$\frac{1}{10000000000000000000000000000000000$
HD15	if last $\neq \perp$ then
IID10	$\operatorname{Max}_{\mathcal{F}} \perp \operatorname{then}$
IID10	$p_{\text{markf}} = p_{\text{markf}} p$
	if CAS(block point (prov. IEX);
пD18 /шан	$(\mathbf{r}_{\mathbf{r}})$
, (nex)	$(2,\mathbf{r})$ then $\operatorname{REL}(\operatorname{prev});$
HD19	else REL(next2);
HD20	REL(prev);
HD21	prev:=last;
HD22	$last:=\perp;$
HD23	else
HD24	prev2:=DEREF_D(&prev.prev);
HD25	REL(prev);
HD26	prev:=prev2;
HD27	continue;
HD28	if prev2 \neq node then
HD29	if last $\neq \perp$ then REL(last);
HD30	last:=prev;
HD31	prev:=prev2;
HD32	continue;
HD33	REL(prev2);
HD34	if CAS(&prev.next, $\langle node, \mathbf{F} \rangle$
, (next	$\mathbf{t}, \mathbf{F} \rangle$) then
HD35	COPY(next);
HD36	REL(node);
HD37	break;
HD38	Back-Off
HD39	if last $\neq \perp$ then REL(last);
HD40	REL(prev);
HD41	REL(next);

function HelpInsert(prev, node: pointer to Node): pointer to Node HI1 $last:=\perp;$ HI2while T do HI3 prev2:=DEREF(&prev.next); if $prev2 = \perp$ then HI4 if last $\neq \perp$ then HI5 MarkPrev(prev);) HI6 HI7next2:=DEREF_D(&prev.next); HI8 if CAS(&last.next, (prev, F) $\langle next2, \mathbf{F} \rangle$) then REL(prev); HI9 else REL(next2); HI10 REL(prev); HI11prev:=last; HI12 $last:=\perp;$ HI13 elseHI14 prev2:=DEREF_D(&prev.prev); HI15 REL(prev); HI16 prev:=prev2; HI17continue; link1:=node.prev; HI18 if link1.d = T then HI19 HI20 REL(prev2); HI21break: HI22if prev2 \neq node then if last $\neq \perp$ then REL(last); HI23 HI24 last:=prev; HI25prev:=prev2; continue; HI26 HI27REL(prev2); if link1.p = prev then break; HI28HI29 if prev.next = node and CAS(&node.prev,link1, $(\text{prev}, \mathbf{F})$) then COPY(prev); HI30 HI31 REL(link1.p); HI32if prev.prev.d \neq T then break; HI33 Back-OffHI34 if last $\neq \perp$ then REL(last); HI35 return prev; procedure RemoveCrossReference(node: pointer to Node) RC1 while T do RC2 prev:=node.prev.p; RC3 if prev.prev.d = T then RC4prev2:=DEREF_D(&prev.prev); RC5node.prev:= $\langle \text{prev2}, \mathbf{T} \rangle$; RC6 REL(prev); RC7continue; next:=node.next.p; RC8 RC9 if next.prev.d = T then next2:=DEREF_D(&next.next); RC10 node.next:= $\langle next2, \mathbf{T} \rangle;$ RC11 RC12REL(next); RC13continue; RC14 break;

Fig. 6. The algorithm, part 2(2)

prev to one of its previous nodes and proceed with the current deletion. This extra deletion is only attempted if a next pointer from a non-marked node to *prev* has been observed (i.e. *last* is valid). Otherwise if *prev* is not the previous node of *node* it is updated to be the next node.

The *HelpInsert* sub-function, see Figure 6, tries to update the prev pointer of a node and then return a reference to a possibly direct previous node, thus fulfilling step 2 of the overall insertion scheme or step 4 of the overall deletion scheme. The algorithm repeatedly tries in lines HI2-HI33 to correct the prev pointer of the given node (node), given a suggestion of a previous (not necessarily the directly previous) node (*prev*). Before trying to update the prev pointer with the CAS operation in line HI29, it assures in line HI4 that the *prev* node is not marked, in line HI19 that node is not marked, and in line HI22 that prev is the previous node of *node*. If *prev* is marked we might need to delete it before we can update prev to one of its previous nodes and proceed with the current deletion. This extra deletion is only attempted if a next pointer from a non-marked node to prev has been observed (i.e. *last* is valid). If *node* is marked, the procedure is aborted. Otherwise if *prev* is not the previous node of *node* it is updated to be the next node. If the update in line HI29 succeeds, there is though the possibility that the prev node was deleted (and thus the prev pointer of node was possibly already updated by the concurrent Pop operation) directly before the CAS operation. This is detected in line HI32 and then the update is possibly retried with a new prev node.

Because the *HelpDelete* and *HelpInsert* are often used in the algorithm for "helping" late operations that might otherwise stop progress of other concurrent operations, the algorithm is suitable for pre-emptive as well as fully concurrent systems. In fully concurrent systems though, the helping strategy as well as heavy contention on atomic primitives, can downgrade the performance significantly. Therefore the algorithm, after a number of consecutive failed CAS operations (i.e. failed attempts to help concurrent operations) puts the current operation into back-off mode. When in back-off mode, the thread does nothing for a while, and in this way avoids disturbing the concurrent operations that might otherwise progress slower. The duration of the back-off is initialized to some value (e.g. proportional to the number of threads) at the start of an operation, and for each consecutive entering of the back-off mode during one operation invocation, the duration of the back-off mode using some scheme, e.g. increased exponentially.

3.5 Avoiding Cyclic Garbage

The *RemoveCrossReference* sub-procedure, see Figure 6, tries to break crossreferences between the given node (*node*) and any of the nodes that it references, by repeatedly updating the prev and next pointer as long as they reference a fully marked node. First, we can safely assume that the prev or next field of *node* is not concurrently updated by any other operation, as this procedure is only called by the main operation that deleted the node and both the next and prev pointers are marked and thus any concurrent update using CAS will fail. Before the procedure is finished, it assures in line RC3 that the previous node (prev) is not fully marked, and in line RC9 that the next node (next) is not fully marked. As long as *prev* is marked it is traversed to the left, and as long as *next* is marked it is traversed to the right, while continuously updating the prev or next field of *node* in lines RC5 or RC11.

3.6 General Operations of Doubly Linked Lists and Correctness Proofs

Due to page restrictions, the detailed description of the general operations of a doubly linked list (i.e. traversals and arbitrary inserts and deletes) as well as detailed proofs of correctness of the lock-free and linearizability criteria are described in an extended version of this paper [20].

4 Experimental Evaluation

In our experiments, each concurrent thread performed 1000 randomly chosen sequential operations on a shared deque, with a distribution of 1/4 PushRight, 1/4 PushLeft, 1/4 PopRight and 1/4 PopLeft operations. Each experiment was repeated 50 times, and an average execution time for each experiment was estimated. Exactly the same sequence of operations were performed for all different implementations compared. Besides our implementation, we also performed the same experiment with the lock-free implementation by Michael [11] and the implementation by Martin et al. [9], two of the most efficient lock-free deques that have been proposed. The algorithm by Martin et al. was implemented together with the corresponding memory management scheme by Detlefs et al. [14]. However, as both [9] and [14] use the atomic operation CAS2 which is not available in any modern system, the CAS2 operation was implemented in software using two different approaches. The first approach was to implement CAS2 using mutual exclusion (as proposed in [9]). The other approach was to implement CAS2 using one of the most efficient software implementations of CASN known that could meet the needs of [9] and [14], i.e. the implementation by Harris et al. [15].

A clean-cache operation was performed just before each sub-experiment using a different implementation. All implementations are written in C and compiled with the highest optimization level. The atomic primitives are written in assembly language.

The experiments were performed using different number of threads, varying from 1 to 28 with increasing steps. Three different platforms were used, with varying number of processors and level of shared memory distribution. To get a highly pre-emptive environment, we performed our experiments on a Compaq dual-processor Pentium II PC running Linux, and a Sun Ultra 80 system running Solaris 2.7 with 4 processors. In order to evaluate our algorithm with full concurrency we also used a SGI Origin 2000 system running Irix 6.5 with 29 250 MHz MIPS R10000 processors. The results from the experiments are shown in Figure 7. The average execution time is drawn as a function of the number of threads.

Our results show that both the CAS-based algorithms outperform the CAS2based implementations for any number of threads. For the systems with low or medium concurrency and uniform memory architecture, [11] has the best performance. However, for the system with full concurrency and non-uniform memory architecture our algorithm performs significantly better than [11] from 2 threads and more, as a direct consequence of the nature of our algorithm to support parallelism for disjoint accesses.

Fig. 7. Experiment with deques and high contention. Logarithmic scales in the right column

5 Conclusions

We have presented the first lock-free algorithmic implementation of a concurrent deque that has all the following features: i) it supports parallelism for disjoint accesses, ii) uses a fully described lock-free memory management scheme, iii) uses atomic primitives which are available in modern computer systems, and iv) allows pointers with full precision to be used, and thus supports dynamic deque sizes. In addition, the proposed solution also implements all the fundamental operations of a general doubly linked list data structure in a lock-free manner. The doubly linked list operations also support deterministic and well defined traversals through even deleted nodes, and are therefore suitable for concurrent applications of linked lists in practice.

We have performed experiments that compare the performance of our algorithm with two of the most efficient algorithms of lock-free deques known, using full implementations of those algorithms. The experiments show that our implementation performs significantly better on systems with high concurrency and non-uniform memory architecture.

We believe that our implementation is of highly practical interest for multiprocessor applications. We are currently incorporating it into the NOBLE [21] library.

References

- 1. Silberschatz, A., Galvin, P.: Operating System Concepts. Addison Wesley (1994)
- Herlihy, M.: Wait-free synchronization. ACM Transactions on Programming Languages and Systems 11 (1991) 124–149
- Herlihy, M., Luchangco, V., Moir, M.: Obstruction-free synchronization: Doubleended queues as an example. In: Proceedings of the 23rd International Conference on Distributed Computing Systems. (2003)
- Arora, N.S., Blumofe, R.D., Plaxton, C.G.: Thread scheduling for multiprogrammed multiprocessors. In: ACM Symposium on Parallel Algorithms and Architectures. (1998) 119–129
- 5. Greenwald, M.: Non-Blocking Synchronization and System Design. PhD thesis, Stanford University, Palo Alto, CA (1999)
- Greenwald, M.: Two-handed emulation: how to build non-blocking implementations of complex data-structures using DCAS. In: Proceedings of the twenty-first annual symposium on Principles of distributed computing, ACM Press (2002) 260– 269
- Agesen, O., Detlefs, D., Flood, C.H., Garthwaite, A., Martin, P., Shavit, N., Steele Jr., G.L.: DCAS-based concurrent deques. In: ACM Symposium on Parallel Algorithms and Architectures. (2000) 137–146
- Detlefs, D., Flood, C.H., Garthwaite, A., Martin, P., Shavit, N., Steele Jr., G.L.: Even better DCAS-based concurrent deques. In: International Symposium on Distributed Computing. (2000) 59–73
- Martin, P., Moir, M., Steele, G.: DCAS-based concurrent deques supporting bulk allocation. Technical Report TR-2002-111, Sun Microsystems (2002)
- Valois, J.D.: Lock-Free Data Structures. PhD thesis, Rensselaer Polytechnic Institute, Troy, New York (1995)

- 11. Michael, M.M.: CAS-based lock-free algorithm for shared deques. In: Proceedings of the 9th International Euro-Par Conference. Lecture Notes in Computer Science, Springer Verlag (2003)
- Sundell, H., Tsigas, P.: Lock-free and practical deques using single-word compareand-swap. Technical Report 2004-02, Computing Science, Chalmers University of Technology (2004)
- Herlihy, M., Wing, J.: Linearizability: a correctness condition for concurrent objects. ACM Transactions on Programming Languages and Systems 12 (1990) 463–492
- Detlefs, D., Martin, P., Moir, M., Steele Jr, G.: Lock-free reference counting. In: Proceedings of the 20th Annual ACM Symposium on Principles of Distributed Computing. (2001)
- Harris, T., Fraser, K., Pratt, I.: A practical multi-word compare-and-swap operation. In: Proceedings of the 16th International Symposium on Distributed Computing. (2002)
- 16. Harris, T.L.: A pragmatic implementation of non-blocking linked lists. In: Proceedings of the 15th International Symposium of Distributed Computing. (2001) 300–314
- Michael, M.M.: Safe memory reclamation for dynamic lock-free objects using atomic reads and writes. In: Proceedings of the 21st ACM Symposium on Principles of Distributed Computing. (2002) 21–30
- Herlihy, M., Luchangco, V., Moir, M.: The repeat offender problem: A mechanism for supporting dynamic-sized, lock-free data structure. In: Proceedings of 16th International Symposium on Distributed Computing. (2002)
- Michael, M.M., Scott, M.L.: Correction of a memory management method for lockfree data structures. Technical report, Computer Science Department, University of Rochester (1995)
- 20. Sundell, H.: Efficient and Practical Non-Blocking Data Structures. PhD thesis, Department of Computing Science, Chalmers University of Technology (2004)
- Sundell, H., Tsigas, P.: NOBLE: A non-blocking inter-process communication library. In: Proceedings of the 6th Workshop on Languages, Compilers and Runtime Systems for Scalable Computers. (2002)