A Lock-Free Algorithm for Concurrent Bags

Hakan Sundell
School of Business and Informatics
University of Boras
501 90 Boras, Sweden
Hakan.Sundell@hb.se

Marina Papatriantafilou
Department of Computer Science and
Engineering
Chalmers University of Technology
412 96 Goteborg, Sweden
ptrianta@chalmers.se

ABSTRACT

A lock-free bag data structure supporting unordered buffering is
presented in this paper. The algorithm supports multiple producers
and multiple consumers, as well as dynamic collection sizes. To
handle concurrency efficiently, the algorithm was designed to thrive
for disjoint-access-parallelism for the supported semantics. There-
fore, the algorithm exploits a distributed design combined with
novel techniques for handling concurrent modifications of linked
lists using double marks, detection of total emptiness, and efficient
memory management with hazard pointer handover. Experiments
on a 24-way multi-core platform show significantly better perfor-
mance for the new algorithm compared to previous algorithms of
relevance.

Categories and Subject Descriptors

D.1.3 [Programming Techniques]: Concurrent Programming—
Parallel programming; E.1 [Data Structures]: Lists, stacks, and
queues

General Terms

Algorithms, Performance, Reliability, Experimentation

Keywords

concurrent, data structure, non-blocking, shared memory

1. INTRODUCTION

Concurrent producer/consumer collections (e.g. set, bag, pool)
are fundamental data structures that are key components in appli-
cations, algorithms, run-time and operating systems. This paper
presents an efficient lock-free and linearizable bag data structure
implementation for multiple producers and consumers, supporting

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SPAA’11, June 4-6, 2011, San Jose, California, USA.

Copyright 2011 ACM 978-1-4503-0743-7/11/06 ...$10.00.

Anders Gidenstam
School of Business and Informatics
University of Boras
501 90 Boras, Sweden
Anders.Gidenstam@hb.se

Philippas Tsigas
Department of Computer Science and
Engineering
Chalmers University of Technology
412 96 Goteborg, Sweden

tsigas@chalmers.se

the Add and the TryRemoveAny operations. The Add operation
adds an item to the collection and the TryRemoveAny operation
removes an item from the collection unless it is empty. The col-
lection allows any number of occurrences of an item and keeps no
information about the order in which items were inserted. A com-
mon use of this kind of collection is to communicate data items
between producers and consumers in the task of parallelizing ap-
plications. Speedup is a major goal in these scenarios where both
data and task parallelism are heavily exploited and the collection
merely constitutes the "glue" in the application design. Because of
this, it is essential that the collection implementation have as high
scalability and low overhead as possible. The new algorithm for
implementing a lock-free and linearizable bag is designed as a con-
nected set of local data structures in order to maximize parallelism
for disjoint accesses.

Non-blocking synchronization is often advocated for the emerg-
ing multicore architectures thanks to both its possible advantages in
performance and its progress properties. With respect to the latter,
the two most important non-blocking methods proposed in the lit-
erature are lock-free and wait-free [1]. Lock-free implementations
of shared data structures guarantee that at any point in time in any
possible execution some operation will complete in a finite number
of steps. In cases with overlapping accesses by concurrent opera-
tions, some of them might have to repeat steps in order to complete
the operation. However, real-time systems might have stronger re-
quirements on progress, and thus in wait-free implementations each
operation is guaranteed to complete in a bounded number of its own
steps, regardless of possible concurrent overlaps of the individual
steps and the relative execution speeds.

Producer/consumer collections are common means for imple-
menting pipelined design patterns in parallel applications, whereas
the proposed bag data structure fits directly when insertion-order
are of no importance. Also directly applicable for this kind of par-
allel design are concurrent LIFO stack, FIFO queue, and "pool"
data structures. Solutions for the load-balancing problem such as
work-stealing deques [2] have many resemblances to the producer-
consumer problem. However, due to different semantics, in order
to use these deque data structures as a producer-consumer collec-
tion, a new overall connecting algorithm is needed, and the required
and linearizable [3] overall semantics cannot be established without
significant modifications to the deque algorithms.

Most contemporary programming language frameworks support
multi-thread programming and their corresponding framework li-
braries include an increasing number of concurrent collection data

structures. For example, .NET 4.0 has defined the IProducer—
ConsumerCollection interface with semantics that guaran-
tees no insertion-order of items removed, as well as a concrete im-
plementation with the ConcurrentBag class. These data struc-
ture implementations, in the .NET and other frameworks, are using
various synchronization techniques that are primarily aiming for
efficiency. In this paper though, we focus exclusively on strictly
non-blocking collection algorithms as implementations being just
"concurrent" (while possibly efficient as e.g. "lock-less") are still
prone to problems as e.g. deadlocks. Absence of explicit locks
does not imply any non-blocking properties, unless the latter are
proven to be fulfilled.

A large number of lock-free stack and queue implementations
have appeared in the literature, e.g. [4][S][6][7][8][9] being the
most influential or most efficient results. These results all have a
number of specialties or drawbacks as e.g. static in size, requir-
ing atomic primitives not available on contemporary architectures,
and having a high overhead. Moreover, all stacks and queues are
inherently limiting the level of disjoint-access-parallelism [10] due
to the strict LIFO or FIFO ordering. Afek et al. [11] recently pre-
sented a concurrent "pool” implementation with semantics similar
to our proposed bag algorithm. Its design aims at allowing high
scalability and is also apparently lock-free (although not explicitly
stated in the paper), but not linearizable (e.g. it lacks a global state
indicating emptiness).

This paper improves on previous results by combining the un-
derlying approaches and designing the new algorithm to maximize
efficiency on contemporary multi-core platforms. Also very impor-
tantly, the paper aims to provide semantics that conform to a natu-
ral intuition of programmers, namely that a concurrent execution’s
outcome is as if the operations executed sequentially and consis-
tently with their actual time order. Consequently, the new lock-free
algorithm is fully linearizable, has no limitations on concurrency,
supports a high degree of disjoint-access-parallelism, has a cache-
aware design, is fully dynamic in size with efficient memory uti-
lization, and only requires atomic primitives available on contem-
porary platforms. Experiments on a 24-way multi-core platform
shows significantly better performance for the new algorithm com-
pared to all previous semantically compatible lock-free implemen-
tations.

The rest of the paper is organized as follows. Section 2 presents
the new algorithm together with intuitive arguments for lineariz-
ability. In Section 3, related works with lock-free producer/con-
sumer collections are discussed. In Section 4, some benchmark and
application experiments are shown. Finally, Section 5 concludes
this paper. The detailed implementation description are provided
in Appendix A. Corresponding proofs are outlined in more detail
in [12].

2. THE NEW LOCK-FREE ALGORITHM

A common and efficient [13, 4] approach for implementing non-
blocking collection data structures is to use a continuous (e.g. cyclic)
array, where each array element holds a pointer to the stored items.
In a concurrent environment, modifications (i.e., insertions and dele-
tions of items) to the array elements are handled by using the CAS'
atomic synchronization primitive. In ordered (e.g. stack and queue)
collections, concurrent insertions or deletions have to compete on

'The Compare-And-Swap (CAS) atomic primitive will update a
given memory word, if and only if the word still matches a given
value (e.g. the one previously read). CAS is generally available
in contemporary systems with shared memory, supported mostly
directly by hardware and in other cases in combination with system
software.

/ 3 wee
CAS
T4
cas
CAS

@
@
L
S
[T > [T T2 ([T, [T
=) =
S 3 T3
! ! 3 !
3 3
q <
<]
d)
> 3
3 Q
= <
£
=
~—

. Stored items
[] Empty (vuLL)

P e

S

Figure 1: A lock-free bag implemented using a linked list of
arrays, where each thread is normally working on its own array
block.

modifying the same array element (e.g. at the head or tail array in-
dex) due to the required ordering semantics, thus limiting the par-
allelism®. However, in the case of the bag data structure there is no
enforced ordering, and hence concurrent insertions and deletions
can chose to modify any arbitrary array element, anytime. There-
fore we propose to distribute the bag data structure by splitting the
array, such that each thread normally only operates on its own array
part. To enable dynamic growing and shrinking of the bag with-
out any limitations except system memory, each thread maintains
a linked list of fixed-size array blocks, where new array blocks are
added or removed as needed. Thus, the bag data structure is con-
structed out of a shared array of linked lists of array blocks, as
depicted in Figure 1.

The main algorithm steps of the Add and TryRemoveAny opera-
tions are shown in Algorithms 1 and 2 respectively. Each thread is
using thread-local storage (TLS), for storing the current active po-
sition (threadHead) for adding or removing items and a pointer to
the first block (threadBlock) in the thread’s linked list. In case this
list should be empty, the TryRemoveAny operation resorts to trying
to steal any item from any other linked list in the bag, as shown
in Algorithm 3. Each thread stores in TLS the last tried position
(stealHead) and the last tried block (stealBlock).

However, as presented, this simple algorithm has a number of
issues that need to be addressed:

e Dynamic capacity. As new array blocks are dynamically
allocated, old and empty blocks also need to be freed. See
section 2.1.

e Stealing should stop when bag is empty. As the bag is
using a distributed design there is no single shared variable
indicating emptiness. See section 2.2.

2Some optimizations are possible thanks to the definition of the
linearizability property, although the parallelism is only achieved
after observing contention on a certain array element.

e Memory. Lock-free and dynamic algorithms need lock-free
and efficient memory management to avoid dangling point-
ers. See section 2.3.

Algorithm 1 Add(item)

1: if thread Head has reached end of array then

2: Allocate new block and add it in the linked list before thread Block
and set threadBlock to it

3: threadHead + 0

4: end if

5: threadBlock[thread Head] + item

6: threadHead < threadHead + 1

Algorithm 2 T'ry Remove Any()

1: loop
if threadHead < O then

if threadBlock is last block in linked list then

return Steal()

end if

threadBlock <— next array block in list

threadHead < last array position
end if
item < threadBlock[thread Head)]
if item #* NULL and
CAS(threadBlock[threadHead), item, NULL) then
11: return item

SPVRXRDUNE WD

12: else

13: threadHead < threadHead — 1
14: endif

15: end loop

Algorithm 3 Steal()
1: loop

2: if steal Head has reached end of array then

3: steal Block < next block in linked list or next list

4. stealHead < 0

5: endif

6: item < stealBlock[steal Head]

7. if item #* NULL and
CAS(steal Block[steal Head), item, NULL) then

8: return item

9: else

10: steal Head < stealHead + 1

11: endif

12: end loop

2.1 Linked list handling

Whenever any of the array blocks becomes empty (due to own
TryRemoveAny or concurrent Steal operations), its memory should
be freed. To handle concurrent deletions of linked list, the same
main strategy as used by Harris [14] could be used where next
pointers are augmented with a special mark (mark1) that indicates
logical deletion. The logical deletion is done using CAS and any
operation (current or concurrent) that observes this mark should try
to perform the actual removal from the linked list of the block using
CAS.

The Steal operations cannot safely (i.e., ensuring emptiness) del-
ete the array blocks on the first position in a linked list, as con-
current Add operations would invalidate the performed scan of the
array elements. Therefore, the first block should only be deleted
by the owning TryRemoveAny operation. However, even blocks on
the second or further position might be unsafe for Steal operations

v [HE = {ITE = - -

<
o Lo+ IR O - -

&
| MIIE s —AIINE a—HE_-5— -

N4
|~ IIE st—1INIE s —NNEE_-=— -
&

T

T

Cas Cas

v o~

Figure 2: Multiple-step process for marking and deleting
blocks (e.g. the middle block) noted to be empty. Another block
(in red) might also concurrently be going through the same pro-
cedure.

to delete, as these blocks might have become the first block due to
concurrent deletions of previous blocks. Our solution is to add an
additional mark (mark2) that is set on the next pointer of the pre-
vious block using CAS, then indicating that the referenced block
is logically deleted. Any operation (current or concurrent) that ob-
serves this mark should try to set mark1 on the referenced block
using CAS, as seen in Figure 2. Note that between steps II and III
a concurrent operation might succeed with its own steps I and II,
and therefore causes an extra step between step III and IV where
the current operation needs to propagate the observed mark further
on to the next block before proceeding with step I'V.

Algorithm 4 Delete Block()
1: if steal Prev # NULL then

2: if CAS(stealPrev.next, steal Block, steal Block + mark2)
then

3: Set mark1 on steal Block.next using CAS

4: if steal Block.next has mark2 then

5: Set markl on steal Block.next.next using CAS

6: end if

7: repeat

8: if steal Prev.next is not referencing steal Block then

9: UpdateSteal Prev()

10: end if

11: until steal Prev = NULL or
CAS(steal Prev.next, steal Block +
mark2, steal Block.next — mark1)

12: steal Block < next block in linked list or next list

13: endif

14: UpdateSteal Prev()

15: else

16: steal Prev < steal Block
17: stealBlock < next block in linked list or next list
18: end if

To keep track of the previous block, the additional TLS-variable
stealPrev is used and should be continuously set to reference the
block preceding stealBlock. Whenever stealBlock is on a new list,
stealPrev should be reset to NULL. The steps for conditionally delet-
ing a block whenever a Steal operation has scanned all array ele-
ments to be empty, is described in Algorithm 4. Line 3 of Al-
gorithm 3 should be replaced to a call to DeleteBlock. The pur-

I
I
|
}
|

% é NotifyAll() }
|
I
I
I

JL Notitystart(

ST

om

Figure 3: An atomic notification structure for registration of
concurrent Add operations.

pose of the UpdateStealPrev procedure is to update stealPrev such
that it references the block preceding stealBlock. To achieve this, it
might have to search from the start of the linked list, and also apply
helping of steps III-IV of concurrent operations whenever mark1 or
mark2 is noticed on the traversed blocks. If the search fails, steal-
Prev is set to NULL. Similar helping should also be performed dur-
ing the deletion (using only mark1) that should take place in Line 6
of Algorithm 2.

2.2 Linearizability and global emptiness de-
tection

To be correct, the algorithm should implement full semantics and
for the caller, concurrent operations should appear to take effect
atomically, i.e., the algorithm should be linearizable [3]. If the
bag is totally empty, the TryRemoveAny should terminate and re-
turn failure (e.g. NULL). For ensuring total emptiness, the Steal
operation needs to continuously scan the whole data structure, in
combination with some ability to detect concurrent changes due to
Add operations. Figure 3 illustrates how each individual thread can
"subscribe" on pending Add operations on a particular block® by
setting the corresponding bit in a bit array using CAS. If an Add
operation is initiated on this block, it clears the whole bit array by
simply writing zero to the memory words, before line 5 of Algo-
rithm 1. By doing so, it notifies all subscribed threads on the pend-
ing insert (which will be done in line 6). However, there can be
pending inserts that actually have taken place during the scanning,
but were initiated before the scanning thread started subscribing.
Therefore, we can only ensure total emptiness after having scanned
the whole bag (while continuously ensuring no pending inserts and
that all array elements are NULL) for as many repetitions as there
are threads. The intuition behind this is that each thread can only
have up to one pending insert, and thus the bag must have been
empty during one of the repetitions. The extension steps to the
Steal operation are shown in Algorithm 5.

We can now define the specific statements in the algorithm where
the operations appear to take effect, i.e., the linearizability points:

e The Add operation, takes effect at the write statement in line
6 of Algorithm 1. This follows by the definition how array
elements represent items belonging to the bag.

e The TryRemoveAny operation returning an item, takes effect
at the successful CAS statement in line 10 of Algorithm 2 or
line 7 of Algorithm 3. This follows by the definition how
array elements represent items belonging to the bag.

3We chose to place this notification structure per block instead of
per linked list, in order to reduce the number of cache lines inval-
idated by an Add operation. As a consequence of this choice, the
last block in a linked list is never deleted, and notification state is
propagated downwards whenever blocks are removed.

Algorithm 5 Steal() — Extension
1: fori =0to NR_THREADS + 1do

2: repeat

3: Perform the steps of the Steal algorithm for one block at a time

4: if i = 1 then

5: Set the corresponding bit for this thread in the notification ar-
ray of the block using CAS

6: else if ¢ > 1 then

7: if The bit for this thread in the notification array is clear or a
non-empty array element has been found then

8: i+ 0

9: end if

10: end if

11: until All lists in the bag have been scanned

12: end for

13: return NULL

e The TryRemoveAny operation returning NULL, takes effect
at the read statement of the set notification bit in line 7 of
Algorithm 5 during one of the repetitions. This follows by
the previous reasoning about detecting total emptiness.

2.3 Memory management

Whenever an empty array block has been fully removed (e.g. af-
ter the successful CAS in line 11 of Algorithm 4) from the linked
list, its memory should be freed and be made available for system
allocation. However, other threads are concurrently traversing the
linked list, and might consequently have TLS or local variables that
reference the deleted block. For handling this problem, we build
on the efficient and lock-free memory management scheme pro-
posed by Michael [9] which makes use of shared "hazard" point-
ers. Throughout the whole bag algorithm, whenever a new block is
visited and its memory address stored in a variable, a correspond-
ing hazard pointer must be set. The memory management system
will then make sure that a block of memory is not reused until no
hazard pointers are referencing it. Note that memory of a deleted
block might be reused even though there are next pointers from
other blocks pointing to it.

However, this becomes a problem when trying to dereference a
next pointer with mark1. As the next pointer belongs to a block
that is being deleted, it is not possible to acquire a safe pointer to
the block referenced by the next pointer. On the other hand, this
is something that the bag algorithm needs to do, e.g. line 5 of Al-
gorithm 4. To meet this requirement, our solution is to extend the
memory management scheme [9] such that it can handle a "hand-
over" of a hazard pointer between two or more threads. This works
in the way that before removing the block from the linked list with
CAS, the current thread sets a hazard pointer to the block referenced
by the next pointer. After having performed the full removal of the
block containing the marked next pointer, the next pointer is set to
NULL. Before clearing the hazard pointer (holding a reference to
the block after the deleted one), it signals to the memory manage-
ment system to perform another scan of hazard pointers, as another
thread might now have set a hazard pointer to the same block. In
this way, any other thread may now safely dereference also next
pointers with mark1.

3. RELATED WORK DISCUSSION

Treiber presented a lock-free stack (a.k.a. IBM Freelist), which
was later efficiently fixed from the ABA* problem by Michael [9].

*The ABA problem is due to the inability of CAS to detect concur-
rent changes of a memory word from a value (A) to something else
(B) and then again back to the first value (A).

Hendler et al. [8] presented an extension where randomized elimi-
nation® is used as a back-off strategy and for increasing scalability
when contention on the stack’s head is noticed via failed CAS at-
tempts.

Tsigas and Zhang [4] presented a lock-free queue that is an ex-
tension of [13] for multiple producers and consumers, where syn-
chronization is done both directly on the array elements and the
shared head and tail indices using CAS. In order to avoid the ABA
problem when updating the array elements, the algorithm exploits
using two (or more) null values. Moreover, for lowering the mem-
ory contention the algorithm alternates every other operation be-
tween scanning and updating the shared head and tail indices. Mich-
ael and Scott [5] presented a lock-free queue based on a linked list.
Synchronization is done via shared pointers indicating the current
head and tail node as well via the next pointer of the last node, all
updated using CAS. The queue is fully dynamic as more nodes are
allocated as needed when new items are added. The original pre-
sentation used unbounded version counters, and therefore required
double-width CAS which is not supported on all contemporary plat-
forms. The problem with the version counters can easily be avoided
by using some memory management scheme as e.g. [9]. Moir
et al. [6] presented an extension where randomized elimination
is used as a back-off strategy and for increasing scalability when
contention on the queue’s head or tail is noticed via failed CAS at-
tempts. However, elimination is only possible when the queue is
close to be empty during the operation’s invocation. Hoffman et
al. [7] takes another approach to increase scalability by allowing
concurrent Enqueue operations to insert the new node at adjacent
positions in the linked list if contention is noticed during the at-
tempted insert at the very end of the linked list. To enable these
"baskets" of concurrently inserted nodes, removed nodes are logi-
cally deleted before the actual removal from the linked list, and as
the algorithm traverses through the linked list it requires stronger
memory management than [9] and a strategy to avoid long chains
of logically deleted nodes.

In resemblance to [4] the new algorithm uses CAS and arrays to
store (pointers to) the items. Moreover, shared indices are avoided
and scanning [4] is always used for finding empty or occupied ar-
ray elements. In contrast to [4] the array is not static or cyclic, but
instead more arrays are dynamically allocated as needed when new
items are added, making our bag fully dynamic. In resemblance
to [5][6][7] the new algorithm is dynamic, and in resemblance to
[7] removed blocks are logically deleted and blocks are being tra-
versed. In contrast to [7], the new algorithm suffice with a slightly
modified version of [9] for memory management purposes.

Afek et al. [11] presented a pool data structure, where the col-
lection is consisting of several lock-free queues on which the load
is distributed. The pool is using randomized elimination combined
with diffraction in a tree-like manner, where elimination is used
for increasing disjoint-access-parallelism. In resemblance to [11]
the new algorithm uses several underlying data structures, but in-
stead of randomization it is improving disjoint-access-parallelism
inherently by its algorithmic design and avoiding global synchro-
nization. In addition, the new algorithm is linearizable.

Fomitchev and Ruppert [15] extended the linked list structure by
Harris [14] with having an additional mark on pointers, where the
new mark was used on the node preceding the node to be marked
ordinarily, in order to earlier inform concurrent operations travers-
ing the linked list about the ongoing node removal. In contrast to
[15], the new algorithm are using the additional mark in order to

SIf not conflicting with linearizability, two concurrent and match-
ing operations might be eliminated by exchanging data directly
without passing through the main data structure.

distinguish between logical deletions done by the owner thread and
the stealing threads respectively.

Arora et al. [2] presented an efficient and lock-free work-stealing
deque based on arrays. It was later improved to handle dynamic
sizes by Hendler et al. [16] that used a doubly-linked list of arrays,
where each array can be dynamically allocated. In resemblance to
[2][16], the new algorithm assign each thread its own data structure,
uses arrays as the basic representation for storing items, and CAS is
only used for updates that can be concurrently updated by several
threads. In resemblance to [16], additional array blocks are dy-
namically allocated when needed, although the new algorithm only
maintains a single-linked list. In contrast to [2][16], the new algo-
rithm provides linearizable bag semantics; e.g. provides a global
state indicating emptiness.

Cache-aware algorithms for non-blocking data structures have
attended an increasing interest, with several recent results in the
literature, e.g. [17].

4. EXPERIMENTAL STUDY

We have evaluated the performance of our new lock-free bag
implementation by the means of some custom micro-benchmarks.
The purpose is to estimate how well the implementation compares
with other known lock-free compatible implementations under high
contention and increasing concurrency. The benchmarks are the
following:

1. Random 50%/50%. Each thread is randomly (the sequence
is decided beforehand) executing either an Add or TryRe-
moveAny operation.

2. 1 Producer / N-1 Consumers. Each thread (out of N) is ei-
ther a producer or consumer, throughout the whole experi-
ment. The producer is repeatedly executing Add operations,
whereas the consumers are executing TryRemoveAny.

3. N-1 Producers / 1 Consumer. Performed as the previous
benchmark, except with another distribution of producers and
consumers.

4. N/2 Producers / N/2 Consumers. Performed as the previ-
ous benchmark, except with another distribution of produc-
ers and consumers.

We have also evaluated the performance of our new implementa-
tion in the scope of real applications. For this purpose we chose to
compute and render an image of the Mandelbrot set [18] in parallel
using the producer/consumer pattern. The program uses a shared
collection data structure that is used for communication between
the program’s two major phases:

e Phase 1 consists of computing the number (with a maximum
of 255) of iterations for a given set of points within a chosen
region of the image. The results for each region together with
its coordinates are then put in the collection data structure.

e Phase 2 consists of, for each computed region stored in the
collection, computing the RGB values for each contained
point and draw these pixels to the resulting image. The col-
ors for the corresponding number of iterations are chosen ac-
cording to a rainbow scheme, where low numbers are ren-
dered within the red and high numbers are rendered within
the violet spectrum.

Phase 1 is performed in parallel with phase 2, i.e., like a pipeline.
Half of the threads perform phase 1 and the rest perform phase

Bag - Dual Intel Xeon X5660 2.8 GHz, Win7
Random 50%/50%

1000 .

New Algo‘rithm —

Queue - Tsigas-Zhang —s<—

—h— _ Queue - Elimination —x+—
o ey v 4 S

Queue - Basket
Stack - Michael —e— o
Stack - Elimination

Pool - EDTree —a—

Successful Operations/s (*1000000)

Threads

Bag - Dual Intel Xeon X5660 2.8 GHz, Win7
1 Producer N-1 Consumers

1000 .

New Algorithm ——
Queue - Tsigas-Zhang —<—
Queue - Elimination —x«—
Queue - Michael-Scott —s— |
Queue - Basket
74\/ Stack - Michael —o
Stack - Elimination
7 T Roolr EDTree it

100 |-

Transfered Items/s (*1000000)
5
T

0.1 I I I I

Threads

Transfered Items/s (*1000000)

Transfered Items/s (*1000000)

Bag - Dual Intel Xeon X5660 2.8 GHz, Win7
N/2 Producers N/2 Consumers

1000 ¢ :

New Algo‘rithm —
Queue - Tsigas-Zhang ——
Queue - Elimination —x—
Queue - Michael-Scott —=—

Queue - Basket
Stack - Michael —e— o

Stack - Elimination

T Reol EQTrge oo |

100 |-

Threads

Bag - Dual Intel Xeon X5660 2.8 GHz, Win7
N-1 Producers 1 Consumer

1000 ¢ :

New Algorithm ——
Queue - Tsigas-Zhang ——
Queue - Elimination —x«—
Queue - Michael-Scott —=—
Queue - Basket
Stack - Michael —e— o
Stack - Elimination
~+—+—+——+—tPool - EDTrde —=— 1

—~—— —
—

S
ﬁzﬁhﬂ:@ﬁ#—t’ —R=f—a

P S S S

1 I I I I
0 5 10 15 20

Threads

Figure 4: Benchmark experiments on a 24-way Dual Intel Xeon processor system.

2. We have implemented this application in C, for the purpose of
rendering a 32-bit color image of 2048 times 2048 pixels. The size
of each square-shaped region is chosen to be one of 16x16 (i.e.,
16 by 16), 8x8, 4x4, or 2x2 pixels. The whole image is divided
into a number (equal to the number of threads) of larger parts®,
where each producer thread (i.e., phase 1) work sequentially on the
regions contained within its own part. The consumer threads (i.e.,
phase 2) render the regions got from the collection in the order that
they were obtained, until the producer threads have finished and the
collection is empty.

For comparison we have implemented the dynamic lock-free que-
ue by Michael and Scott [5], the same with elimination [6], the bas-
kets queue [7], and the static cyclic array lock-free queue presented
in [4]. For comparison, we also implemented the lock-free stack by
Michael [9], and the same with elimination by Hendler et al. [8].
Moreover, we implemented the ED-tree based lock-free (although
not linearizable) pool by Afek et al. [11].

All dynamic stacks, queues and pools (as well as the new bag
algorithm) have been implemented to support collection sizes only
limited by the system’s memory, i.e., using lock-free management
schemes [9] or [19] and lock-free free-lists where appropriate. For
the new implementation, the size of the array block (RBLOCK_SIZE)
is chosen to fit within one cache line. All implementations are writ-
ten in C and compiled with the highest optimization level. For
all implementations, synchronization hotspots were padded with

®Due to the nature of the Mandelbrot set, this way of deciding each
part might not be fair in respect of workload per thread. As can be
seen in the experimental results, this partition pattern causes that
3 parts take longer time than 2 parts in parallel, because the total
execution time depends on the slowest part.

dummy bytes in order to avoid false sharing. In our benchmark ex-
periments, each concurrent thread is started at the very same time
and each benchmark runs for one second for each implementation.
Exactly the same sequence of operations was performed per thread
for all different implementations compared. A clean-cache opera-
tion was also performed just before each run, and final results are
taken as an average over 10 runs. All benchmark and application
experiments have been executed on a dual Intel Xeon X5660 2.8
GHz with 12 GB DDR3 1333 MHz system running Windows 7 64-
bit. Each of the two processors has 6 cores, each core being capable
of executing 2 threads each, making up to 24 hardware threads in
total.

The results from the benchmark experiments with up to 24 threads
are shown in Figure 4. Note that the results are shown in logarith-
mic scale, due to the very large difference in performance for the
different implementations. The results of benchmarks 1 show the
number of successful (failed TryRemoveAnys, Pops or Dequeues
are not counted) operations executed per second in the system in
total. The results of benchmarks 2-4 show the number of items per
second that have passed through the collection (i.e., the number of
successful TryRemoveAny, Pop or Dequeue operations). Interest-
ingly, the new algorithm performs significantly, often with a mag-
nitude, better than all the other implementations. The superior per-
formance and scalability can be explained by the distributed design
and the low synchronization overhead. The declining scalability
with increasing number of threads (a behavior shared with the pool
implementation) can be explained being in major due to memory
bandwidth saturation.

The results from the application experiments with up to 24 threads
are shown in Figure 5. As the Mandelbrot set is known as being an

Mandelbrot Application - Region Size: 16x16

New Alborithm —
5000 - Queue - Michael-Scott —«— 7
Queue - Tsigas-Zhang —«—
Queue - Basket —5—
4000 - Queue - Elimination]
Stack - Michael —
- Stack - Elimination
£ 3000 - Pool - EDTree —=— 7
g
= 2000 | 8
1000 - 7
0
0 5 10 15 20 25
Threads
Mandelbrot Application - Region Size: 4x4
New Alborithm —
5000 - Queue - Michael-Scott —«— 7
Queue - Tsigas-Zhang —*—
Queue - Basket —=—
4000 - Queue - Elimination 7
Stack - Michael —=
& Stack - Elimination
£ 3000 Pool - EDTree —+— 7
E
= 2000 + 7
1000]
0 . I I I
0 5 10 15 20 25

Threads

Time (ms)

Time (ms)

Mandelbrot Application - Region Size: 8x8

New Alborithm —
5000 - Queue - Michael-Scott —«— 7
Queue - Tsigas-Zhang —+—
Queue - Basket ——
4000 - Queue - Elimination]
Stack - Michael —s—
Stack - Elimination
3000 - Pool - EDTree —=—
2000 - 4
1000 | T——
0 L L L L
0 5 10 15 20 25
Threads
Mandelbrot Application - Region Size: 2x2
New Alborithm ——
5000 (- Queue - Michael-Scott —«— 7
Queue - Tsigas-Zhang —*—
Queue - Basket —=—
4000 Queue - Elimination 7
- Stack - Michael —-—
\/ Mwac - Elimination
3000 - _ - PG DTreg —=— 1
2000 + 4
1000]
0 L L L L
0 5 10 15 20 25

Threads

Figure 5: Application experiments on a 24-way Dual Intel Xeon processor system.

embarrassingly parallel problem, the amount of communication is
relatively low, and therefore the impact of the choice of collection
implementation is expected to be of minor importance. For ex-
ample, this behavior is apparent with the experiment using 16x16-
sized regions. However, as regions get smaller the amount of com-
munication increases, and the performance of the collection will
have a bigger impact on the overall performance. Consequently, as
can be started to be seen with 4x4 and then with the 2x2 region size,
the new algorithm is fast even in cases where there is no significant
contention, and as contention becomes higher in more communica-
tion intensive instances the new algorithm shows its good parallel
behavior.

5. CONCLUSIONS

We have presented a new algorithm for implementing a lock-
free producer/consumer collection data structure. To the best of
our knowledge, this is the first lock-free bag algorithm with all of
the following properties:

e Distributed design, allowing disjoint-access-parallelism.
e Exploiting thread-local static storage.
e Dynamic in size via lock-free memory management.

e Only requires atomic primitives available in contemporary
systems.

The algorithm has been shown to be lock-free and linearizable.
Experiments on a contemporary multi-core platform shows signif-
icantly better performance for the new algorithm compared to pre-
vious state-of-the-art lock-free implementations of data structures

that can serve as producer/consumer platforms. We believe that our
implementation should be of highly practical interest to contempo-
rary and emerging multi-core and multi-processor system thanks to
both its high performance and its strong progress and consistency
guarantees.

6.
(1]

REFERENCES

M. Herlihy, “Wait-free synchronization,” ACM Transactions
on Programming Languages and Systems, vol. 11, no. 1, pp.
124-149, Jan. 1991.

N. S. Arora, R. D. Blumofe, and C. G. Plaxton, “Thread
scheduling for multiprogrammed multiprocessors,” in ACM
Symposium on Parallel Algorithms and Architectures, 1998,
pp. 119-129.

M. Herlihy and J. Wing, “Linearizability: a correctness
condition for concurrent objects,” ACM Transactions on
Programming Languages and Systems, vol. 12, no. 3, pp.
463-492, 1990.

P. Tsigas and Y. Zhang, “A simple, fast and scalable
non-blocking concurrent FIFO queue for shared memory
multiprocessor systems,” in Proceedings of the 13th annual
ACM Symposium on Parallel Algorithms and Architectures,
2001, pp. 134-143.

M. M. Michael and M. L. Scott, “Simple, fast, and practical
non-blocking and blocking concurrent queue algorithms,” in
Proceedings of the 15th annual ACM Symposium on
Principles of Distributed Computing, 1996, pp. 267-275.
M. Moir, D. Nussbaum, O. Shalev, and N. Shavit, “Using
elimination to implement scalable and lock-free fifo queues,”

(2]

(3]

[4

—_

(3]

(6]

in Proceedings of the 17th annual ACM Symposium on
Parallelism in Algorithms and Architectures, 2005, pp.
253-262.

[7] M. Hoffman, O. Shalev, and N. Shavit, “The baskets queue,”
in Proceedings of the 11th International Conference on
Principles of Distributed Systems, ser. Lecture Notes in
Computer Science, vol. 4878. Springer, 2007, pp. 401-414.

[8] D. Hendler, N. Shavit, and L. Yerushalmi, “A scalable
lock-free stack algorithm,” Journal of Parallel and
Distributed Computing, vol. 70, no. 1, pp. 1-12, 2010.

[9] M. M. Michael, “Hazard pointers: Safe memory reclamation

for lock-free objects,” IEEE Transactions on Parallel and

Distributed Systems, vol. 15, no. 8, Aug. 2004.

A. Israeli and L. Rappoport, “Disjoint-access-parallel

implementations of strong shared memory primitives,” in

Proceedings of the 13th annual ACM symposium on

Principles of Distributed Computing, Aug. 1994.

Y. Afek, G. Korland, M. Natanzon, and N. Shavit, “Scalable

producer-consumer pools based on elimination-diffraction

trees,” in Euro-Par 2010, ser. Lecture Notes in Computer

Science. Springer, 2010, vol. 6272, pp. 151-162.

H. Sundell, A. Gidenstam, M. Papatriantafilou, and P. Tsigas,

“A lock-free algorithm for concurrent bags,” Department of

Computer Science and Engineering, Chalmers University of

Technology, Tech. Rep. 2011:01, January 2011.

L. Lamport, “Specifying concurrent program modules,”

ACM Trans. Program. Lang. Syst., vol. 5, no. 2, pp. 190-222,

1983.

T. L. Harris, “A pragmatic implementation of non-blocking

linked lists,” in Proceedings of the 15th International

Symposium of Distributed Computing, Oct. 2001, pp.

300-314.

M. Fomitchev and E. Ruppert, “Lock-free linked lists and

skip lists,” in Proceedings of the 23rd annual symposium on

Principles of Distributed Computing, Jul. 2004, pp. 50-59.

D. Hendler, Y. Lev, M. Moir, and N. Shavit, “A

dynamic-sized nonblocking work stealing deque,”

Distributed Computing, vol. 18, no. 3, pp. 189-207, 2006.

A. Braginsky and E. Petrank, “Locality-conscious lock-free

linked lists,” in ICDCN, ser. Lecture Notes in Computer

Science, M. K. Aguilera, H. Yu, N. H. Vaidya, V. Srinivasan,

and R. R. Choudhury, Eds., vol. 6522. Springer, 2011, pp.

107-118.

B. B. Mandelbrot, “Fractal aspects of the iteration of

z = Az(1 — z) for complex X and z,” Annals of the New

York Academy of Sciences, vol. 357, pp. 249-259, 1980.

A. Gidenstam, M. Papatriantafilou, H. Sundell, and P. Tsigas,

“Efficient and reliable lock-free memory reclamation based

on reference counting,” IEEE Transactions on Parallel and

Distributed Systems, vol. 20, no. 8, pp. 1173-1187, 2009.

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

APPENDIX
A. ALGORITHM DETAILS

The specific fields of each array block are described in Program
1 as it is used in this implementation.

In the algorithm, there is no shared information about which
array index that is currently being the next active for the Add or
TryRemoveAny operation. Instead each thread is storing related in-
formation in separate memory using thread-local storage (TLS), its
own index (threadID) into the global shared array, and pointers in-
dicating the last known (by this thread) first block (threadBlock)

®© N U R W -

s
3

Program 1 The block structure and auxiliary functions.

struct blockp_t {

block_t * p; bool mark2 :1; bool markl :1;
Vi
struct block_t : public node_t {

void * nodes|[BLOCK_SIZE];

long notifyAdd[NR_THREADS/WORD_SI

blockp_t next;

ZE];

}i
void MarklBlock (block_t =xblock) {
for(;;) {
blockp_t next = block->next;
if (next.p == NULL || next.markl || CAS(&block->
next, next, {next.p,next.mark2,true})) break;
}
}
block_t * NewBlock() {
block_t * block = NewNode (sizeof (block_t));
block->next = NULL;
NotifyAll (block) ;
for (int i=0; i<BLOCK_SIZE;i++) block->nodes[i]=NULL;
return block;
}
void NotifyAll (block_t xblock) {
for (int i=0; i<NR_THREADS/W
block->notifyAdd[i]

}
void NotifyStart (block_t xblock, int Id) {
do {
long old = block->notifyAdd[Id/W
} while (!CAS(ck->notifyAdd[Id/WORD
| (1<< (Id$WORD_SIZE)));

IZE];
ZE],o0ld, 0ld

}
bool NotifyCheck (block_t =xblock, int Id) {
return (block->notifyAdd[Id/WORD_SIZE]& (1<<(Id%
WORD_SIZE)))==0;
}
void InitBag() {
for (int i=0;i<NR_THREADS; i++) globalHeadBlock [i]=NULI
}
void InitThread() {
threadBlock = globalHeadBlock[threadID];
threadHead = BLOCK_SIZE;
stealIndex =
stealBlock =
stealHead =

LL; stealPrev = NI

{_SIZE;

JLL;

}

// Shared variables

block_t * globalHeadBlock [NR THREADS];

// Thread-local storage

block_t % threadBlock, stealBlock, stealPrev;
bool foundAdd;

int threadHead, stealHead, steallndex;

int threadID; // Unique number between 0 ... NR_THREADS

as well as active indices (threadHead) for inserting and removing
items. In addition, each thread also keeps track of the last block
(stealBlock), the corresponding index (stealHead), and its preced-
ing block (stealPrev) used for "stealing" items from other thread’s
(i.e., the thread with global index steallndex) linked lists.

When an array block gets fully empty, the block itself should
be removed from the corresponding linked list. As this can happen
concurrently with insertions and removals of other blocks, we apply
the method introduced in [14] where blocks are first marked (using
bit 0 of the next pointer) and then removed from the linked list us-
ing CAS. Concurrent operations that observe the mark are obliged
to "help" by also trying to fulfill the full removal, and thus sup-
porting the lock-free property. However, detection of a block to be
fully empty is not straight-forward, as the first block of each linked
list can have concurrent Add operations, adding new items directly
after a stealing TryRemoveAny operation have found the array el-
ements at the corresponding array indices to be empty during its

1
2
3
4
5
6
7
8
9

11

Program 2 The new Add operation.

Program 3 The new TryRemoveAny operation.

void Add(void xitem) {
int head = threadHead;

block_t % block = threadBlock;
for (;;) {
if (head==BLOCK_SIZE) ({

block_t =*oldblock =
block = NewBlock () ;
block->next=oldblock;

globalHeadBlock [threadID]=block;

block;

threadBlock = block;
head = 0;
}
else if (block->nodes[head]==NULL) {

NotifyAll (block) ;
block->nodes [head]=item;
threadHead = head+l;
return;

}

else head+t++;

scan. Moreover, even though blocks on second or further position
in a linked list cannot have concurrent Add operations, the block
itself might concurrently change position in the linked list, and ac-
tually become the first block. Therefore, detection of emptiness
and marking for removal must be done in one atomic step that also
includes the verification of the block not being the first in the linked
list. To enable this, stealPrev is set to reference the previous block
in the linked list, before starting the scan of the array elements of
the current block. If all array elements were empty, we now need
to verify that the next pointer of stealPrev is still pointing to the
current block (if there exists a previous block, the current block
cannot be the first) and at the same time marking the next pointer
of the current block. As this cannot be done using the available
single-word CAS, we instead introduce a second mark (bit 1 of the
next pointer) indicating that the next block is marked for removal,
and thus we can atomically verify the next pointer of stealPrev ref-
erencing the current block and also setting the second mark of it
by using CAS. The further steps are then to mark the actual block
of interest for removal and then proceed with the removal from the
linked list, something also required to be done by any concurrent
operation that have observed the second mark to be set.

As the data structure is based on array blocks where each array
element can contain an item or not, these blocks are not always
fully utilized. From a system perspective it is therefore necessary
to maximize the overall utilization and as well provide a lower
bound on minimal utilization of memory. Therefore, an essential
rule for TryRemoveAny operations that need to "steal" items from
other thread’s linked lists, is to never leave a visited array block
until all items (including the array block itself) have been removed,
whenever this rule is possible to fulfill.

If the data structure is totally empty, the TryRemoveAny should
terminate and return failure (e.g. NULL). However, as the data
structure is highly distributed, there is no single variable for iden-
tification of global emptiness. Instead, the operation needs to scan
the whole data structure step by step, in combination with some
ability to detect if something has changed (i.e., concurrent Add op-
erations) since it started the global scanning. Figure 3 illustrates
how each individual thread can "subscribe" on pending Add oper-
ations on a particular block by setting the corresponding bit in a
bit array. If an Add operation is initiated on this block, it clears
the whole bit array, thus "notifying" all subscribed threads on the
pending insert. However, as there can be pending inserts that actu-

1
2
3
4
5
6

void * TryRemoveAny () {

int head = threadHead-1;
block_t * block = threadBlock;
int round = 0;
for(;i) {
if (block == NULL || (head<0 && block->next.p ==
NULL)) {
do {
int 1=0;
do {
void xresult = TryStealBlock (round) ;
if (result!=NULL) return result;
if (foundAdd) {
round=0; 1i=0;
}
else if (stealBlock==NULL) i++;
} while (i<NR_THREADS) ;
} while (++round<=NR_THREADS) ;
return NULL;

}
if (head<0) {
MarklBlock (block) ;
for(;;) {
blockp_t next=DeReflink (&block->next);
if (next.mark2) MarklBlock (next.p);
if (next.markl) {
if (next.p) NotifyAll (next.p);
if (CAS (&globalHeadBlock [threadId],
block,next.p)) {
block->next = {NULL, false,true};
DeleteNode (block); ReScan (next);
block=next.p;
}
else block=DeRefLink (&globalHeadBlock
[threadId]) ;
}
else break;
}
threadBlock =
threadHead
head = BIL(

block;

}
else {
void xdata = block->nodes[head];
if (data==NULL) head--;
else if (CAS(&block->nodes[head],data,NULL)) {
threadHead = head;
return data;

ally have taken place during the scanning, but were initiated before
the scanning thread started subscribing, the whole scanning proce-
dure has to repeated globally a certain number of times to ensure
global emptiness. Note that even though this implies a relatively
long time for detecting global emptiness, it does not affect the time
for a TryRemoveAny operation to find and remove items added by
concurrent Add operations during the scanning.

For our implementation of the new lock-free bag algorithm, we
have selected a slightly modified version of the lock-free memory
management scheme proposed by Michael [9] which makes use
of shared "hazard" pointers. The interface defined by the memory
management scheme is listed in Program 4. Using this scheme we
can assure that an array block can only be reclaimed when there
are no local references to it from pending concurrent operations or
from pointers in thread-local storage. The ReScan operation is an
extension to the original scheme by [9]. The purpose of this oper-
ation is to force a re-scan of a deleted node, in order to avoid the
problem of a normal scan possibly missing hazard pointers "mov-
ing" from one thread to another (i.e., avoiding the scenario when

woE W -

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

Program 4 The functionality supported by the memory manage-
ment scheme.

node_t x NewNode (int size);

void DeleteNode (node_t =node);
node_t * DeReflink (node_t =*x1link);
void ReleaseRef (node_t *node);
void ReScan (node_t +node);

Program 5 The auxiliary TryStealBlock function.

void x TryStealBlock (int round) {

int head = stealHead;

block_t % block = stealBlock;

foundAdd = false;

if (block==NULL) {
block = DeReflink (&globalHeadBlock[stealIndex]) ;
stealBlock = block;
stealHead = head = 0;

}
if (head==BLOCK_SIZE) {
stealBlock = block = NextStealBlock (block);
head = 0;
}
if (block==NULL) {
stealIndex = (stealIndex+l)$%NR_THREADS;
stealHead = 0;
stealBlock = NULL; stealPrev = NULL;
return NULL;
}
if (round==1) NotifyStart (block, threadId);
else if (round>1 && NotifyCheck (block,threadId))
foundAdd = true;
for(;;) {
if (head==BLOCK_SIZE) {
stealHead = head;
return NULL;

}
else {
void *data = block->nodes[head];
if (data==NULL) head++;
else if (CAS (&block->nodes[head],data,NULL)) {
stealHead = head;
return data;

there are first one active hazard pointer by thread ¢ and then one
by thread j with a small overlap in time where both are active,
although both are missed during the concurrent scan and conse-
quently the node is wrongly reclaimed).

In order to simplify the description of our new algorithm, we
have omitted some of the details of applying the operations of the
memory management [9]. In actual implementations, ReleaseRef
calls should be inserted at appropriate places whenever a variable
holding a safe pointer goes out of scope or is reassigned. The de-
tailed descriptions of the Add and TryRemoveAny operations are
listed in Programs 2 and 3 respectively, with the auxiliary functions
TryStealBlock and NextStealBlock used by TryRemoveAny listed in
Programs 5 and 6. The purpose of the TryStealBlock function is to
continue to try stealing from the last tried index (stealHead) in the
current block of stealing (stealBlock), and either return the removed
item or NULL in case the current block was found to be empty. The
purpose of the NextStealBlock function is to try removing the cur-
rent block, unless it should not do so (e.g., if it was the first or last
block in the list), and then advance stealBlock to the next block. If
the current block could not be removed due to concurrent changes
in the linked list, it returns the current block without advancing.

1
2
3
4
5

16

20
21
22

24
25
26
27

28

29
30
3

32
33
34

35
36
37
38
39

40
41
42
43
44
45

47
48
49
50
51
52
53
54
55
56
57
58

Program 6 The auxiliary NextStealBlock function.

block_t * NextStealBlock (block_t xblock) {

blockp_t next;
for(;;) |
if (block==NULL) {
block = DeReflink (&globalHeadBlock[stealIndex
1)
break;
}
next = DeReflink (&block->next);
if (next.mark2) MarklBlock (next.p);
if (stealPrev == NULL || next.p == NULL) {
if (next.markl) {
if (next.p) NotifyAll (next.p);
if (CAS (&globalHeadBlock[stealIndex],block
,next.p)) {
block->next = {NULL, false,true};
DeleteNode (block); ReScan (next);
}
else {
stealPrev = NULL;
block = DeReflink (&globalHeadBlock [
stealIndex]);
continue;
}
}
else stealPrev = block;
}
else {
if (next.markl) {
blockp_t prevnext = {block,stealPrev->
next.mark2, false};
if (CAS (&stealPrev->next,prevnext,next.p))
{
block->next = {NULL, false,true};
DeleteNode (block); ReScan (next);
}
else {
stealPrev = NULL;
block = DeReflink (&globalHeadBlock [
stealIndex]);
continue;
}
}
else if (block==stealBlock) {
if (CAS (&stealPrev->next,block, {block, true
,false})) {
MarklBlock (block) ;
continue;
}
else {
stealPrev = NULL;
block = DeReflink (&globalHeadBlock [
stealIndex]);
continue;

}

else stealPrev = block;

}

if (block == stealBlock || next.p == stealBlock) {
block=next.p;
break;

}
block=next.p;
}
return block;

