
Using Actors in an Interactive Animation in a Graduate
Course on Distributed System*

Boris Koldehofe and Philippas Tsigas

Chalmers University of Technology
Computer Science Department

41296 Göteborg
Sweden

{khofer, tsigas}@cs.chalmers.se

Abstract
We describe and evaluate an experiment where actors were used
to simulate the behaviour of processes in a distributed system in
order to explain the concept of self-stabilisation in a graduate
course on distributed systems.
A self-stabilising system is one that ensures that the system’s
behaviour eventually stabilises to a safe subset of states regardless
of the initial state. Protocols satisfying this elegant property,
which enables a system to recover from transient failures that can
alter the state of the system, are often hard to understand,
especially for students that have not studied distributed computing
and systems before.
The experiment was part of an introductory course on distributed
computing and systems for graduates in October 2000. The
purpose of this interactive animation was to introduce to the
students the basic concepts behind self-stabilisation (eligible
states, transient faults, execution convergence) before their formal
introduction.
All of the students had a degree either in mathematics or
computing science and had taken a course on algorithms before.
However, most of the students did not have a background in
distributed systems or distributed algorithms. The latter was not
only the motivation for preparing this method of presentation but
also what made this a challenging effort.
The feedback from the class was that the concept and this
teaching method were very well received. We could observe that
their understanding evolved to the point that they were able to
successfully come up with ideas for solutions and argue for/prove

their correctness. As suggested in [1], dramatisation of executions
can help the students to understand new issues and complications.
This work shows that this is true even for graduate level courses.
In our experiment we could conclude that dramatisation can be
almost as powerful as a programming exercise in the teaching
process; sometimes even more efficient, especially when we need
to teach new concepts to an audience with diverse educational
backgrounds. In analysing the results of our method we make a
combination of the qualitative and quantitative approaches [4].

1 Introduction to self-stabilisation
The self-stabilisation paradigm, first introduced by Dijkstra [2],
defines a system as a self-stabilising one if it can recover
following the occurrence of a fault that puts the system in an
arbitrary state. The self-stabilising system will stabilise to a legal
system state within finite amount of steps when faults stop.
Hence, even though the system might be negatively affected by a
failure, e.g. a power failure or a malicious process, once the
failure ceases the system will start functioning again as desired
after a finite number of system steps. This property is of big
importance for systems like the Mars Polar Lander; for these
systems it is desirable that they have the capability to fulfil their
mission, in a timely manner, in the presence of failures, or
accidents with no need for human interaction.
Formally, we define self-stabilisation, for a system S, as a
property with respect to a predicate P over its set of
configurations. The predicate P depends on the task that the
system is executing. For instance, when the task is mutual
exclusion, the predicate P is: there is at most one processor in the
critical section. A system is self-stabilising with respect to
predicate P if starting in any configuration of S, the system is
guaranteed to reach a configuration satisfyin P within a finite
number of state transitions and P is a stabl property (closed)
under the execution of S [3][7].
Although self-stabilisation was introduced in
was not realised until 1983 when Lesley L
in [4] the importance of this work by Dijkst
stabilisation has evolved to one of the most a
in distributed computing and became an im
theoreticians and practitioners.
Traditionally, students dealing with distribut
particular self-stabilising protocols as introd

* This work is partially supported by the Swedish Research
Council for Engineering Sciences.
g

e

1973 its importance
amport emphasised
ra. Since then self-
ctive research fields
portant concept to

ed protocols and in
uced in this paper,

have problems understanding the representation of the algorithms
because of state explosion and the lack of a real-life metaphor.

2 Dijkstra's self-stabilising token-passing
algorithm

The algorithm that was presented to the students, first presented in
[2], assumes that processes are interconnected in a ring and each
one of them can access only information that is local or shared
with its direct neighbours (left, right). The algorithm has to ensure
mutual exclusion among the processes, i.e. that only one process
at a time can perform a special computation.
The solution uses the token passing method; there is one special
entity, called token, that processes can circulate among
themselves. A process has the privilege to perform this special
computation whenever it holds the token. After finishing, it passes
the token to one of its neighbours. There is a consistent direction
of flow of the token (say, anticlockwise), to guarantee fairness
among the way that the processes receive the token.
In an arbitrary state, the system may contain no tokens or more
than one tokens. A self-stabilising solution guarantees
convergence to the behaviour described in the previous paragraph,
with only one token in the system that flows anticlockwise. The
solution is as follows:

1. P1: do forever
2. if x1 = xn then x1:= (x1 + 1) mod (n+1)

3. Pi (i≠1): do forever

4. if xi ≠ xi-1 then xi = xi-1

The token is realised by the shared memory variables x1,…,xn.
The processes whose if-condition is true is the process holding the
token. The algorithm assumes the existence of a leader and that
processes have consistent sense of orientation that cannot be
affected by failures. Inconsistency due to faults i.e. more than one
processes are holding a token is resolved by all non-leader
processes Pi equalising the two values shared with their respective
neighbours. Hence, the algorithm converges to a situation where
x1=x2,…,xn-1=xn meaning only P1 holds the token i.e. the system
stabilises.

3 Dramatising Dijkstra's algorithm
The idea of the experiment was inspired by a children's game
where children seated in a cycle use apples to synchronise in order
to ensure that only one child is speaking at a time. The experiment
consisted out of several acts. Each act used the same
representation of the distributed system: a table with three actors
(processes), in which apples by each actress1 could be placed
between herself and the two neighbouring actresses into two small
baskets (variables xi, xi-1).

Act 1 (Perfect system)
In this act the actresses aimed at: i) introducing the non-stabilising
algorithm, ii) explaining the token-passing idea and iii) motivate
the problem. Initially, one apple was placed between two

1 We assume in this paper all our actors to be female.

actresses. The actress that found the apple in her left hand side
basket took the apple and started speaking (i.e. the actress holds
the token). While speaking the actress explained to the students
why she was allowed to speak and what were the next steps of the
protocol that she was going to follow. Having finished the actress
put the apple to her right hand side i.e. between herself and the
anticlockwise-next actress, thus forwarding the token. The next
actress was then enabled to act and repeated the same actions as
the previous actress. The three actresses continued this act for
some time.

Act 2 (Introducing transient faults into the system)
After a while the play moved on to the next act where one of the
actresses – we call her the evil actress - started maliciously either
adding new apples or removing apples thus bringing the system
into arbitrary states. The purpose was to introduce the problems
that arise when transient faults occur. Finally, the lecturer
discussed with the students these problems that occurred because
of the evil actress and the inability of the previous algorithm to
cope with them.

Act 3 (An attempt for stabilisation)

In the third act the actresses proposed a solution that could
potentially guarantee self-stabilisation (c.f. Figure 1). One
(predefined) actress became the leader, a property which could
not be affected by the evil actress. Initially, between each pair of
actresses there were no apples while in the middle of the table
there was a central basket with many apples (the latter is a
technicality, in order to give to the actresses an "unlimited"
number of apples to apply their rules of the game, so that they do
not have to worry for an additional constraint in attempt to come
up with stabilising rules). Recall that each actress can only see the
apples that are placed between herself and her immediate
neighbours. The leader first checked the number of apples in each
of her hand side baskets. If there were equally many apples in
both baskets (e.g. no apples at all, as it was initially the case in our

P2

P1

P3

x3 x1

x2

Central
Basket

with
Apples

Figure 1. The table with actresses P1, P2 and P3 where X1,X2 and
X3 denote the number of apples. Actress P1 is the leader.

experiment) the leader could start speaking i.e. she was holding
the token (in our experiment every actress was explaining to the
class what she was doing, the new rules in the system, etc). When
the leader finished her story, she took an apple from the middle of
the table and put it into the basket to her right, thus forwarding the
token to the right. Each of the other actresses was allowed to
speak only when the number of apples in her right side basket was
not equal to the number of apples in her left side basket. The rest
of the rules for them were, however, the same; after an actress
finished speaking (explained her acting), she had to add an apple
(taken from the pile in the middle) into the basket at her right
hand side. The actresses continued for a while with this behaviour
in order to give the audience the possibility to understand the
algorithm so far.
Next, the evil actress started adding/removing apples to/from her
left (evil actions), being able to speak at the same time while
another actress was speaking. However, the system could
converge to a stable state i.e. within some amount of time after the
evil actions stopped, only one actress at a time was able to speak.

Act 4: (Students find the "bug" and finalise the solution
themselves)

In this act the students had the ability to interact with the system
and introduce the faults themselves. After a short discussion, the
lecturer invited the students to place apples in a way that the
system would fail. However, the students could observe that the
system managed to recover apart from one critical scenario: a
student placed between the leader and her left neighbour apples
such that the leader had more apples to her left and the neighbour
had more to her right (c.f. Figure 2). For the system to stabilise,
the left neighbour of the leader should equalise the number of
apples on her left and right side. However, at the beginning we
used a simplified, “buggy” version of the algorithm not working
in this case. The students managed to encounter the problem and
fixed the "bug" by correcting the rule. Any non-leader actress was
now allowed to speak whenever the number of apples at her left
side was not equal to the number of apples at her right side, and
then the actress had to adjust the number of apples at her right
side to be equal to the number of apples at her left side. Having

P 2

P 1

P 3
Central
Basket
with
Apples

Figure 2. Deadlock situation due to wrong algorithm used by P3.

the possibility to interact directly with the system, the students
were also able to argue about the stabilising properties of the
algorithm also in presence of concurrent actions.

4 Evaluation
In analysing the results of our method we make a combination of
the qualitative and quantitative approaches.
In the course we had 13 students participating 11 of them handed
back the questionnaire that was given to them.
All of the students had a degree either in mathematics or
computing science and all of the students have had a course on
algorithms before. However, the majority of the students did not
study distributed systems or distributed algorithms before.
Our feedback from the class has been that the concept and the
method were very well received. We could observe that the
students' understanding evolved to the point that they were able to
successfully come up with ideas for solutions and argue for/prove
their correctness.
Knowing that many of the students were used to formal
representations and had a strong background on formal methods,
at the beginning, we were wondering whether our method could
help or would be appreciated. Seven students answered that the
dramatisation helped them a lot to understand the new concept,
while only three answered that the dramatisation helped them
fairly. None of them thought that it did not help at all or only a
little.
As a next step, we were interested to know which methods used in
the animation were the significant ones that helped the students
understanding. Before executing the experiment, we were
guessing that interactiveness would increase the effectiveness of
the animation.
The students’ answers (eight said that the interactive part helped,
while two said it helped only a little) seem to confirm this
hypothesis. One student wrote that the bug, which is described in
the previous section, leading to the correct and final version of the
algorithm helped the most.
Another aspect that we were interested in evaluating, was, how
much more efficient it was to have a dramatisation with human
beings, compared to an interactive computer animation like the
ones presented in [6][8][9]. To be able to answer this question we
also asked whether the students have seen any computer
animations before, which was true for seven and six of them were
also familiar with educational computer animations. The answers
(c.f. Figure 3), show that the majority was in favour of an
animation with human beings. Some of the comments indicate
that the spontaneous and not predefined reactions of human
beings provide more information.
When designing the experiment, we thought that by representing
the system and the protocol as a children’s game we could
enhance the effectiveness of the animation. The students seem to
disagree: seven students answered that the children's game
representation did not increase the effectiveness of the
dramatisation, while only two answered that this representation
actually helped them.
Since most of the students had a very positive attitude towards
this dramatisation, it was not a surprise that all students answered
that they believe that animations in general can be of big help in

understanding the behaviour of algorithms or distributed
algorithms.

1. How much did the animation help you to understand the
algorithm and the concept of self-stabilisation?

0
2
4
6
8

not at
all

little fairly a lot

2. During the animation you had the ability to interact with the

animation. Do you think that this helped you significantly to
understand the algorithm and the new concepts?

0
2
4
6
8

yes no a bit

3. Do you think that the fact that the animation was run by

human beings instead of programs helped you significantly
to understand the algorithm and the new concepts?

0
2
4
6
8

yes no other

4. Did the fact that the animation was presented as children’s

game helped you?

0
2
4
6
8

yes no other

Figure 3. Some of the questions and results from the
questionnaire handed out to the students.

5 Conclusion
Analysing further our experiment and the way it was received by
the students, we can conclude that dramatisation can be almost as
useful and powerful in the learning process as a programming
exercise even in graduate courses; sometimes even more efficient,
especially when we need to teach concepts to an audience with
different backgrounds. New ideas are transmitted faster, while the
students, by being active (and interactive) participants, have the
possibility to point out the issues, which they find confusing, and
to obtain more viable knowledge.
Although students seemed to favour a human animation we
cannot say for sure that computer animations cannot be as
powerful. We would like to continue this project by implementing
the dramatisation in a virtual environment in which students can
interact with virtual actors and apples.

Acknowledgements
We would like to thank: i) H. Sundell and Yi Zhang for being
such great actors, ii) M. Papatriantafilou for her big help during
the writing phase of the paper, and iii) the graduate students that
enthusiastically participated in the project.

References
[1] M. Ben-Ari, Y.B-D. Kolikant. Thinking Parallel: The

Process of Learning Concurrency. Proceedings of ACM
ITiCSE 1999, pp. 13-16.

[2] E.W. Dijkstra. Self-stabilizing Systems in Spite of
Distributed Control. Communications of the ACM, Vol. 17,
No. 11, Nov. 1974.

[3] S. Dolev. Self-stabilization, MIT Press, 2000.
[4] Y.B-D. Kolikant, M. Ben-Ari, S. Pollack. The Anthropology

of Semaphores. Proceedings of ACM ITiCSE 2000, pp. 21-
24.

[5] L. Lamport. Solved problems, unsolved problems and non-
problems in Concurrency. PODC84, pages 63-67, 1983.

[6] Lydian - An Educational Animation Environment for
Distributed Algorithms and Protocols (2000).
http://www.cs.chalmers.se/~lydian/

[7] M. Schneider. Self-Stabilization, ACM Computing Surveys,
1993.

[8] The VADE project (2000).
http://www.wisdom.weizmann.ac.il/~ulitsky/java/proj/

[9] ViSiDiA Project: Visualization and Simulation of
Distributed Algorithms (2000).
http://dept-info.labri.u-bordeaux.fr/~stefan/

	Chalmers University of Technology
	41296 Göteborg
	A
	Abstract
	Introduction to self-stabilisation
	Dijkstra's self-stabilising token-passing algorithm
	Dramatising Dijkstra's algorithm
	Evaluation
	Conclusion

	Acknowledgements
	References

