
A Consistency Framework for Iteration Operations in Concurrent Data Structures

Yiannis Nikolakopoulos∗, Anders Gidenstam†, Marina Papatriantafilou∗, Philippas Tsigas∗
∗ Chalmers University of Technology, Gothenburg, Sweden

{ioaniko,ptrianta,tsigas}@chalmers.se
† University of Borås, Borås, Sweden

anders.gidenstam@hb.se

Abstract—Concurrent data structures provide the means
to multi-threaded applications to share data. Data structures
come with a set of predefined operations, specified by the
semantics of the data structure. In the literature and in several
contemporary commonly used programming environments,
the notion of iteration has been introduced for collection
data structures, as a bulk operation enhancing the native
set of operations. Iterations in several of these contexts have
been treated as sequential in nature and may provide weak
consistency guarantees when running concurrently with the
native operations of the data structures.

In this work we study iterations in concurrent data struc-
tures in the context of concurrency with the native operations
and the guarantees that they provide. Besides linearizability,
we propose a set of consistency specifications for such bulk
operations, including also concurrency-aware properties by
building on Lamport’s systematic definitions for registers.
Furthermore, by using queues and composite registers as case-
studies of underlying objects, we provide a set of construc-
tions of iteration operations, satisfying the properties and
showing containment relations. Besides the trade-off between
consistency and throughput, we point out and study trade-
off between the overhead of the bulk operation and possible
support (helping) by the native operations of the data structure.

Keywords-concurrency; data structures; iteration; consis-
tency; lock-free

I. INTRODUCTION

Concurrent data structures and in particular collections
are an essential part of software libraries, to extend the
support for parallelism [1]–[3]. The research community
has provided efficient concurrent implementations for the
commonly used data structures. However, when such solu-
tions become part of libraries, more functionalities may be
added, such as traversing through the data structure elements
– commonly called iteration or enumeration and provided
via constructs such as iterators, enumerators or generators.

In programming languages, iterators have been widely
used both for user-level convenience (mainly for assigning
values to a for-loop) and as building blocks for other
language functionalities (e.g. [4], [30]). Therefore there has
been noticeable support in the language level, mainly in
two different ways, object-based and control-based iter-
ators [30]. In the object-based iterators the state of the
traversal of the main collection has to be logged in a
separate data structure. The subsequent steps of the iteration

procedure have to be decided based on this recorded state.
In these cases no special language support is needed, but
the more complex the data structure is, the more difficult
the implementation of the iterator gets. The control-based
iterators on the other hand are based on specific language
constructs and mechanisms that give value to a loop variable
and suspend the execution until another value is needed.

The main issue in the aforementioned work is that con-
currency is not taken under consideration. Suspending an
execution is the exact opposite to what we ask for in a
concurrent environment. The semantics of iterators change
when shifting from sequential to concurrent executions.
Furthermore, in data structure implementations, allowing
operations to execute concurrently through fine-grain syn-
chronization [17], enables to utilize the system parallelism
with anticipated benefits in efficiency.

It is understood that in concurrent data structure im-
plementations, there are non-trivial trade-offs among the
throughput, the consistency and the ease-of-use by the
programmer. Strong guarantees such as linearizability and
sequential consistency [17] imply more intuitive usage for
the user of the data structure. At the same time, they usually
imply larger complexity on the algorithmic implementation
of the data structure. Some contemporary implementations
in well-used programming environments (cf. Sec. II) provide
weaker consistency, but their semantics (consistency prop-
erties) have not been described to match definitions in the
literature.

Taking the above into account, together with the fact
that iterations are bulk operations on the data structures,
natural questions involve the strength and the cost of the
required consistency in the presence of concurrency. How
can we characterize concurrency-related behavior through
consistency specifications? Alternatively, does linearizability
have to be very expensive?

In this work we study these questions. After presenting
the system and problem model (Sec. III), we propose a
set of consistency specifications for iteration operations,
including also concurrency-aware properties, by building
on Lamport’s definitions for registers [20] (Sec. IV). We
also observe that universal constructions of lock-free objects
provide the means for universal iteration implementations
(Sec. V). Further, we show two case-studies (Sec. V): (i) a



simpler one using composite registers where we demonstrate
how the specifications proposed apply to already existent
solutions of the related problem of snapshots (ii) we further
illustrate the framework and the trade-offs through the more
interesting case-study of concurrent queues. We present a
series of constructions of snapshot-iteration operations for
queues, satisfying the proposed specifications and showing
containment relations between the latter. Besides the trade-
off between consistency and throughput, we point out and
study the trade-off between the overhead of the bulk op-
eration and the overhead of possible support (helping) by
the native operations implementation of the data structure
(Sec. VI).

An important issue is that while in the sequential case it is
easy to give access directly to the memory locations of the
traversed elements, this is not the case when the data struc-
ture is subject to changes by concurrent threads. The seman-
tics of an iteration in a concurrent environment are closely
related to the calling application. In the literature, both
snapshot-like approaches and raw traversals – with weaker
consistency guarantees – are found [2], [29]. Prompted by all
the above, here we focus on snapshot iterations that return
references to the elements of the data structure. It is up
to the library programmer whether these should be copied
or directly accessed; the proposed definitions framework is
independent of the iteration implementation.

II. RELATED WORK AND STATE OF THE ART

Iterators have been an important design pattern in object-
oriented languages, to provide sequential access to a col-
lection of objects without exposing the underlying repre-
sentation. Noble [25] presents a range of designs for itera-
tor objects studying through their encapsulation properties,
arguing that iterators can be by definition at odds with
encapsulation. Boyland et al [9] discuss iterator validity in
terms of ownership rights and alias control.

None of the above though considers multithreaded exe-
cutions. In light of this observation and the need motivated
by definitions of iterations in commonly used programming
environments, there is increased attention to the topic, by
both the scientific community and practitioners. Prokopec
et al [29] are the first to introduce a concurrent data
structure integrating an iteration operation based on snap-
shots. They present a concurrent trie, implemented in Scala
using the DoubleCompareSingleSwap (RDCSS) software
primitive [13]. Their snapshot operation is considered as
constant-time (O(1)), given that the trie is implemented as a
persistent data structure with immutable states where every
update needs to recreate the data. Thus, roughly speaking,
a snapshot operation borrows “for free” the previous gen-
eration of the data structure, which needs to be recreated
at every operation. In a recent work concurrent with the
work in this paper1, Petrank and Timnat [27] present an
iteration for set-like data structures of key-value pairs and

in particular for implementations using ordered linked-lists.
In providing linearizability, the commutativity properties of
the operations on sets are exploited, which is not applicable
in cases of data structures with non-commutative operations
like FIFO queues that this paper addresses. The iteration
execution time is bounded by the size of the linked list
that constitutes the main data structure, though this list can
dynamically increase by updates interfering the iteration.
Another aspect of iterators is addressed in [28] by Prokopec
et al, introducing a framework for parallelizing iteration
operations in collection data structures. Instead of sequential
access to the elements of the collection, they enable paral-
lelization allowing multiple threads to access the elements
and thus distributing the workload. The framework does not
focus on the interaction of the iteration with other concurrent
operations but gives direct support for parallel programming
patterns such as map/reduce or parallel looping.

Contemporary programming environments, such as C++,
Java and the .NET platform, include in their standard
libraries collection data structures that support concurrent
operations. These often support iteration over their contents
while other operations may concurrently change the data
structure. Java’s snapshot style [2] and .NET’s moment-
in-time snapshots [3] can be expected to be linearizable
(or nearly so). The consistency of Java’s weakly consistent
iterators, which vary in detail for each implementation, and
the unspecified thread-safe iterators in .NET and TBB [1]
provide weaker consistency guarantees that we match with
our definition of weak regularity (introduced in Sec. IV).

In the context of snapshots, Afek et al [6] use snapshot
objects to implement Java’s size method for concurrent
collections. They extend earlier work [5], [19] and exploit
the fact that only meta-data, i.e. the size, are needed rather
than the data structure itself.

III. SYSTEM AND PROBLEM MODELING

The system consists of a set of processes that commu-
nicate via shared memory. It provides implementations of a
concurrent container abstract data type (ADT) that represents
a collection of items together with a set of update operations
to modify them according to its specification. A run ρ (or
history) is an execution of an arbitrary number of operations
on the ADT according to the respective protocol that imple-
ments the ADT. In such an execution, for each operation
a on the ADT there exists a time interval [sa, fa] called its
duration (sa and fa being the starting and finishing times of
a). There is a precedence relation on operations which is a
strict partial order (denoted by→). For two operations a and
b, a→ b means that fa occurs before sb. If two operations
are incomparable under →, they are said to overlap. We
consider only runs of complete executions, where there are

1A first version of this work [24] had been submitted for reviewing before
the publication of [27].



no pending operations. In a sequential history ρ, where
no operations overlap, we denote as prefρ(a), a prefix of
ρ ending with operation a. We define stateρ(a) as the
postcondition of the ADT after the operation a, i.e. the items
that exist in the collection after the execution of a in ρ.

A history is linearizable [18] if it is equivalent to a se-
quential history – also called a linearization σ – including the
same operations, whose total order respects the partial order
→. Thus, a run ρ of a linearizable ADT implementation
induces a set of total orders, denoted with ⇒σ for each
linearization σ of ρ, that extend the partial order → in a
compatible way with the sequential semantics of the ADT.
For every operation a in a linearizable run ρ we respectively
define stateσ(a), in a prefix of some linearization σ of ρ that
ends with a, as the postcondition of the ADT after operation
a. In this notation we will drop the parameter σ when it is
clear from the context.

For a given linearizable ADT implementation consider the
set of all its possible states; a state S from this set is defined
to be valid with respect to a linearizable execution ρ, if ∃
a linearization σ of ρ such that there exists a prefσ(a) and
S = stateσ(a).

The ADT includes update operations that can add or
remove items in the collection in accordance to the spec-
ification of the ADT. Our purpose is to extend the ADT
and linearizable implementations of them, adding bulk op-
erations that will return a state of the ADT and in particular
the items that are contained in it. We will call these iteration
operations and define the following sequential specification:

Definition 1. In a sequential execution ρ, a valid iteration
Itr returns the items contained in stateρ(a), where a
is the latest update operation preceding Itr, i.e. Itr :
stateρ(a),where a→ Itr ∧ @ update operation a′ s.t. a→
a′ → Itr.

Given a run ρ, we can define the reduced run ρ̃, that does
not include the iteration operations.

Regarding progress guarantees of concurrent ADT im-
plementations, we follow the standard definitions in the
literature [14], [16], [17]: Wait-freedom ensures that any
process can complete an operation in a finite number of
its own steps, independently of any other process. An
implementation is bounded wait-free if there exists a bound
on the number of steps any process takes to complete an
operation. In a lock-free object implementation it is ensured
that at least one of the contending operations makes progress
in a finite number of its own steps. It is common in lock-free
implementations of ADTs that an operation is implemented
through fail-retry loops: a retry needs to take place due to
one or more interfering operations among the contending
ones. A weaker guarantee is obstruction freedom: progress is
only ensured for any process that eventually runs in isolation,
i.e. in absence of interferences from other operations. It
is also interesting to note that there can be distinguishable

differences in progress guarantees between the different
components of a data structure implementation. For example
in Section V, we show that while a queue implementation
is lock-free, i.e. at least one of the contending enqueue or
dequeue operation makes progress, the iteration operation
is obstruction-free with respect to the native enqueue and
dequeue operations (i.e. it can be obstructed by them). Over-
all, the lock-free guarantee still stands (cf. Theorem 7). As
indicated by Michael [21], careful selection of such designs
can be proved valuable from the application perspective.

IV. CONSISTENCY SPECIFICATIONS

We define the following properties, building on the
consistency-related definitions by Lamport [20] and Herlihy
and Wing [18]. We assume that the reduced run ρ̃ that does
not include the iteration operations is linearizable and thus
for each linearization σ of ρ̃ the respective ⇒σ is defined.

Definition 2. (i) Let Itr ∈ ρ be an iteration operation,
not overlapping with any other operation in ρ̃. Itr is
safe if it returns a valid state S = stateσ(a) for some
linearization σ of ρ̃ and some operation a, such that: Itr
9 a and @ update operation a′ : a ⇒σ a′ → Itr. If Itr
is overlapping with any operations of ρ̃, it can return any
arbitrary state of the object.
(ii) Let Itr∈ρ be an iteration operation possibly overlapping
some a∈ ρ̃. Itr is regular if it returns a valid state S =
stateσ(a) for some linearization σ of ρ̃ and some operation
a, such that: Itr 9 a and @ update operation a′ : a ⇒σ

a′ → Itr, i.e. S is neither “future” nor “overwritten”.
(iii) The monotonicity property states that for any two itera-
tion operations Itr1, Itr2 that return valid states stateσ(a1)
and stateσ(a2) respectively for some linearization σ of ρ̃,
if Itr1 → Itr2, then a1 ⇒σ a2 or a1 = a2. 2

(iv) Itr is linearizable if it is regular and the run ρ is
equivalent to some sequential history, that includes the same
operations, whose total order respects the partial order of
the original run ρ.

Intuitively, safeness guarantees that an iteration imple-
mentation returns recent and consistent states only if it does
not overlap with other modification operations, otherwise
any arbitrary state might be returned (e.g., empty). Regu-
larity improves by ensuring that a meaningful, recent and
not future state will be returned. Thus, a regular Itr1 might
or might not include in the returned state the effect of an
overlapping modification operation a. It is interesting to
note that another regular Itr2, such that Itr1 → Itr2 but
Itr2 still overlapping a, might return a state according to
the definition of regularity but different – even preceding–

2Dwork et al [10] in the context of composite registers used two notions
of monotonicity, for scans and for updates. Notice that a regular Itr
also satisfies the monotonicity of updates property, i.e. for two linearized
updates, an Itr that ”observes” the effects of the latter update, should also
”observe” the effects of the preceding update.



from the one returned by Itr1. Monotonicity is an additional
property that clarifies such behavior. Furthermore, motivated
by implementations in contemporary programming environ-
ments (cf. Sec. II) we define one consistency guarantee lying
between safeness and regularity:

Definition 3. Consider an iteration operation Itr∈ρ and
the reduced linearizable run ρ̃. Let a be the latest update
operation finished before sItr, and prefσ(a) the respective
prefix for some linearization σ of ρ̃. A weakly regular
Itr returns a state S such that S = stateτ (b), for some
operation b in a run τ = prefσ(a) ∪ ops[sItr,fItr], that
extends the prefσ(a) with ops[sItr,fItr], i.e. an arbitrary
number of operations that are overlapping with the execution
interval [sItr, fItr].

Weak regularity is a more relaxed definition that allows
implementations to capture only part of the update opera-
tions that are concurrent with an iteration.

V. PROPERTIES AND TRADE-OFFS IN THE CONSISTENCY
FRAMEWORK

In this section we demonstrate the framework and the
tractability and containment of the defined consistency spec-
ifications, through the well-understood problem of atomic
snapshots of composite registers [5], [8], [10], [12], [17],
[19] (and references therein), and then through a test case of
a linearizable lock-free concurrent queue [22]. Before that,
we relate iteration with universal constructions of concurrent
data structures.

By reflecting on the literature on concurrent ADT imple-
mentations a natural question is the following: Can universal
constructions, such as [15] and [7], that transform any
sequential data object to a lock-free or wait-free linearizable
concurrent one support iteration?

Observation 1. The universal constructions transform or
“lift” the operations of the sequential data object to lock-
free or wait-free linearizable operations on the resulting
concurrent object. Hence, if a sequential iteration operation
can be provided for a particular sequential data object, it,
too, can be lifted to the resulting linearizable concurrent
data object just like any other operation of the sequential
data object.

A. Relating with snapshots on composite registers

A composite register is an array of read/write registers. A
snapshot of them is an iteration operation. A first straightfor-
ward approach for acquiring a snapshot matches the weakest
of the presented specifications:

Lemma 1. An iteration implemented as a set of reads of
all the entries of the composite register array satisfies the
safeness condition.

Stronger consistency properties are guaranteed by wait-
free snapshot algorithms that use handshaking methodology
like [10], [19].

Lemma 2. A time-lapse snapshot as in [10], or a snapshot
satisfying the atomicity criterion of [19] is regular and
monotonic as defined in Section IV.

The proof of this lemma is based on a sequence of trans-
formations that match formalism presented in [19] and [10].
Based solely on definition 2 we show the following theorem
that stands for any object:

Theorem 1. An implementation of an iteration operation,
where iteration operations do not overlap with each other,
is linearizable, if it satisfies the regularity and monotonicity
properties.

Proof: We assume an execution ρ that includes non-
overlapping iteration operations satisfying the properties of
regularity and monotonicity and its reduced linearizable
run ρ̃ that does not include any iteration operations. We
can linearize every iteration operation Itr ∈ ρ within its
duration and right after the linearization point of the re-
spective operation a that matches the regularity definition,
for some linearization σ of ρ̃. Regularity guarantees that
@a′ ∈ ρ̃ : a ⇒σ a′ → Itr, i.e. the state S = stateσ(a)
that Itr returns is no “future” and not “overwritten” and
therefore each iteration operation Itr is correctly ordered
with any overlapping operation a. In case that one or
more operations a overlap with two subsequent iterations,
monotonicity guarantees the total order.

The latter theorem demonstrates the containment rela-
tionships of the consistency definitions (cf. Def. 2) as a
linearizable iteration is also a regular one. Furthermore, it
confirms the correctness criteria and the results of the above
algorithms for composite registers (Lem. 2). In cases of
possibly overlapping iterations only regularity is guaranteed.

Finally, linearizability is the strongest guarantee, accord-
ing to which the iteration operation appears to have occurred
instantaneously at some moment in time within its dura-
tion. A well known method to achieve this is the double
collect [26]. If a reader manages to collect twice the same
timestamped values of all registers then this collection is
a snapshot, though guaranteeing only obstruction freedom.
Extending this idea with using the updaters of the register
to also do a double collect in order to help the snapshot
operation, Afek et al [5] presented a wait-free solution. More
snapshot constructions can be found in [12], [17].

Lemma 3. An iteration operation implemented as a snap-
shot [5] of a composite register implementation, satisfies
linearizability.

Iterating finite-domain add-remove containers One can
observe that simple container data structures to store and
remove items coming from a finite domain set can be



implemented using composite registers. Every item of the
domain can be represented by an entry register of the shared
array. The add and remove operations of the set can merely
be implemented through update operations on the respective
entry register. Thus, the problem of iterating the data struc-
ture concurrently with update operations is transformed to
that of obtaining a snapshot. The latter also provides a way
to get the items of the container or implement a contains
operation that is usually provided by the interface of a set
ADT. Regarding concurrent iterations on a linearizable set
implementation, the reader is referred to [27].

B. Iterating concurrent queues

The next case-study, in which we investigate the trade-
offs of the presented consistency definitions, is that of
iteration operations in concurrent linked-list based queues.
As a running example, we use the lock-free linked-list based
queue by Michael and Scott [22], since it is a classic, simple
construction that can be efficiently implemented in several
platforms. More complex designs deploying flat-combining
techniques [11], or allowing modify operations to spuriously
fail [23], show interesting directions for future work.

The goal of this section and the presented algorithms is
to study the inherent difficulties in achieving the different
consistency levels. The efficiency of the presented algo-
rithms is not the main point and it can be improved once
several implementation assumptions are done (e.g. memory
management). Some aspects of the latter are discussed
in section VI as well as in the discussion part of this
section (Sec. V-B4). We present the algorithms at a level
of abstraction that can be followed independently of the
implementation details of the underlying construction. To
overcome differences regarding memory management and
whether references to the contained items or copies of
them should be returned, in the presentation of our iteration
algorithms we consider a simple auxiliary ADT where each
of the iterated nodes is added. We will refer to this ADT as
stateToReturn and we consider it providing the intuitive
add and initialize methods. The functionality of this
ADT can be mapped to different techniques depending
on the implementation environment. We should also note
that in the iteration methods presented in the rest of this
section, when we argue about the correctness as well as
the progress guarantees of each method, we always assume
the correctness of the underlying linearizable, lock-free,
concurrent queue implementation.

1) Weakly regular Scan&Return iteration: Independently
of the ADT properties, a simple and intuitive algorithm
would be to scan the entire collection, though such a naive
scanning of the collection and returning its state is ineffective
in the general case. Specifically for the queue case we can
achieve a weakly regular iteration by simply traversing the
nodes of the list (Alg. 2).

Algorithm 1 Collect function
1: function COLLECT(curHead, curTail, *stateToReturn)
2: stateToReturn.add(curHead)
3: curNode ← curHead.next
4: stateToReturn.add(curNode)
5: while curNode 6= curTail do
6: curNode ← curNode.next
7: stateToReturn.add(curNode)

Algorithm 2 Scan&Return-iteration
1: stateToReturn.initialize()
2: curHead ← Head
3: curTail ← Tail
4: COLLECT(curHead, curTail, &stateToReturn)
5: return stateToReturn

In the original queue implementation [22] the Tail might
not be up to date and have fallen behind. For presentation
simplicity we ignore this in the presented algorithms, as
it is easy to be addressed since the difference will be
only one node. Notice that during the traversal any newer
dequeues will not be captured, while any enqueue operations
linearized before the first read of Tail will be reflected to
the state returned.

Theorem 2. Algorithm 2 implements a weakly regular
iteration operation on the concurrent queue implementation.

Proof: In absence of interferences the algorithm will
return a valid state of the data structure, stateσ(a), the
one after the most recent linearized enqueue or dequeue
operation a, for some linearization σ of the reduced run not
containing the iteration operation. Otherwise, the prefσ(a)
will be extended as follows: in case enqueue operations are
linearized in the duration of the iteration operation: any
nodes enqueued between the execution of lines 2 and 3
will also be returned; enqueue operations linearized after
the execution of line 3 will not be reflected in the returned
state. Any nodes dequeued concurrently by updates that
are linearized after line 2 will actually be returned and the
dequeue operations will not be reflected in the returned state.

Theorem 3. 3 Algorithm 2 implements a wait-free iteration
operation on the concurrent queue implementation.

Note that Scan&Return is not bounded wait-free as there
is no fixed bound for the queue size4. Furthermore, since
Alg. 2 does not interfere with the enqueue and dequeue
operations of the original queue implementation, and given
the previous theorem it is easy to see that:

Theorem 4. The lock-free concurrent queue implementation
extended with the iteration operation of Algorithm 2 remains
lock-free.

3Due to space constraints some of the proofs had to be omitted.
4According to the strict definition of bounded wait-freedom it may not

be possible to have bounded wait-free iterations on unbounded size data
structures.



Algorithm 3 Double-Collect-based-iteration
1: while True do
2: stateToReturn.initialize()
3: curHead ← Head
4: curTail ← Tail
5: COLLECT(curHead, curTail, &stateToReturn)
6: if curHead = Head ∧ curTail = Tail then
7: return stateToReturn

2) Linearizable Double-Collect-based iteration: This al-
gorithm (Alg. 3) is inspired by classic snapshot constructions
with double collect [5], [17], with the additional observation
that the queue’s inherent structure imposes an order amongst
its elements. Hence, after the first collect it suffices to check
Head and Tail pointers. If they have not changed, then due
to the inherent order of the queue’s elements the rest of the
queue will not have changed.

Theorem 5. Algorithm 3 implements a linearizable iteration
on the concurrent queue implementation.

Lemma 4. Algorithm 3 will fail to return only if it is
interfered by an unbounded number of update operations.

Theorem 6. Algorithm 3 implements an obstruction-free
iteration operation on the concurrent queue implementation.

Proof: Lemma 4 implies that algorithm 3 will terminate
if it runs solo long enough.

Theorem 7. The lock-free concurrent queue implementation
extended with the iteration operation of Algorithm 3 remains
lock-free.

Proof: No shared variables of the original data structure
implementation are modified by the iteration in algorithm
3. Thus, the iteration operation will not interfere with
any of the original enqueue or dequeue operations of the
underlying queue implementation. Therefore, at least one
process operating on the data structure will make progress
(enqueue, dequeue, iteration).

By observing theorems 2, 5, 6 and the respective algo-
rithms we can see that:

Corollary 1. A linearizable obstruction-free iteration opera-
tion on the lock-free queue construction can be implemented
using a weakly regular wait-free iteration of the same queue
construction.

The latter corollary implies containment in the definition
sets, as algorithm Scan&Return-iteration is used in algo-
rithm Double-Collect-based-iteration. Intuitively, a lineariz-
able implementation is also a weakly regular one.

3) Linearizable iteration with helping techniques: The
trade-off between no interference and helping by enqueue
and/or dequeue will be explored in the next algorithms.
The high level approach is to use some form of handshak-
ing between the modification operations and the iteration
operations, so that the latter will be able to distinguish

Algorithm 4 DCSS semantics
1: function DCSS(addr1, old1, addr2, old2, new2)
2: if *addr1 6= old1 ∨ *addr2 6= old2 then
3: return False
4: *addr2 ← new2
5: return True

Algorithm 5 MCDS semantics
1: function MCDS(addr1, old1, addr2, old2, new2, addr3,

old3, new3)
2: if *addr1 6= old1 ∨ *addr2 6= old2 ∨ *addr3 6= old3

then
3: return False
4: *addr2 ← new2
5: *addr3 ← new3
6: return True

the appropriate nodes to return according to their specific
linearization point.

For presenting these algorithms we need to involve parts
of the actual construction of our test case based on [22].
Still, for presentation simplicity we skip some checks and
parts of the code that are used for optimization but we
include the key points. The helping algorithms make use
of two synchronization constructs, the DoubleCompareSin-
gleSwap (DCSS) and MultipleCompareDoubleSwap (MCDS)
(Algorithms 4 and 5) that can be implemented using the
CompareAndSwap hardware primitive (CAS), e.g. following
the lines of the lock-free constructions in [13]. These con-
structions conditionally update, in an atomic manner, one or
two memory words based on the value of a control word and
the values of the memory words. We further make use of
the FetchAndAdd (FAA) hardware primitive that atomically
increments the value of a counter, returning the old value to
the calling thread.

Enqueuers helping iteration: In this construction, pre-
sented in Algorithms 6 and 7, the enqueue operation pro-
vides information through the queue nodes in order to help
the iteration operations. This enables the latter to decide
whether the node should be included in their result or not.
A shared counter serves as a logical timestamp, that is
increased by each iteration.

An enqueue operation (Alg. 6) differs from the origi-
nal [22] in the part where in addition to the Tail pointer, the
value of the shared counter is also read (line 7). This value
is used to tag the appropriate field in the new node (line 8),
which is then enqueued using the DCSS primitive. DCSS in
line 9 assures that the node is connected to the list while the
value of the shared counter has not changed. The latter
remains the linearization point as it is when the enqueue
operation takes effect. An iteration operation (Alg. 7) is
associated with a value of the shared counter as it begins.
This is done by tying together the read of the Head pointer
and the counter’s value with a double collect that confirms
that the Head has not changed while atomically fetching and
incrementing the counter’s value (lines 1-4). The iterator
will stop as soon as it encounters a tag higher than the
value fetched when it started or when it reaches the end of



the list. As a result, no nodes that were enqueued after the
successful update of the shared counter and the read of
Head will be returned, making this the linearization point of
the operation. If instead of DCSS only a single CAS was used
for connecting the node, then possible differences between
the time the enqueue took effect and the timestamp value
could result in iteration operations returning inconsistent
states not compatible with the sequential semantics of the
operation.

Theorem 8. Algorithm 7 implements a linearizable iteration
and the linearization point is the last call of FAA on line 3.

Lemma 5. Algorithm 7 will fail to return only if it is
interfered by an unbounded number of dequeue operations,
while executing the loop in lines 1-4.

Theorem 9. Algorithm 7 is an obstruction-free implemen-
tation of an iteration operation on the modified concurrent
queue implementation.

Proof: Lemma 5 implies that algorithm 7 will terminate
if it runs solo long enough.

Theorem 10. The concurrent queue implementation inte-
grating the modified enqueue Algorithm 6 and the iteration
operation of Algorithm 7 is lock-free.

Proof: We assume the lock-free property of the original
queue implementation. The enqueue operation will retry,
additionally to the conditions in the original implementation,
if the DCSS in line 9 fails when the shared counter is
different from the previously fetched localTS value. That
will happen only if an iteration operation has made progress
in between. An iteration operation will fail to exit the loop
in lines 1-4 only if a dequeue operation makes progress and
updates the Head pointer.

By helping the iteration operation the possibilities that
it will retry are reduced, compared to Alg. 3; this will
happen only if dequeue operations make progress. However
this comes at the cost of the iteration obstructing enqueue
operations. Unbounded interferences of iterations may starve
an enqueue operation.

Helping by both enqueue and dequeue: In this con-
struction, in addition to the enqueue operation (Alg. 6)
also the dequeue assists the iteration (Alg. 8 and 9 re-
spectively). Besides sharing the helping between enqueue
and dequeue operations, this further reduces the iterator’s
cost by eliminating the need for a double collect of the
shared counter and the Head, though increasing the
communication overhead.

An iteration operation first reads the Head pointer and
then atomically fetches and increments the value of the
shared counter. The latter is the linearization point of the
iteration. An enqueue operation is the same as in Alg. 6 in
the previous construction. The dequeue operation also reads
the counter and writes its value in the dequeueTag

Algorithm 6 Enqueue operation with helping
1: initialize newNode
2: while True do . Repeat until success
3: lastNode ← Tail
4: if lastNode.next 6= null then . Help update Tail
5: CAS(&Tail, lastNode, lastNode.next)
6: continue
7: localTS ← read counter
8: newNode.enqueueTag ← localTS
9: if DCSS(&counter, localTS, &lastNode.next, null,

newNode) then
10: CAS(&Tail, lastNode, newNode) . Try update Tail
11: return

Algorithm 7 Iteration helped by enqueue operations
1: repeat
2: curHead ← Head
3: localTS ← FAA(&counter, 1)
4: until Head = curHead
5: curNode ← curHead
6: while curNode 6= null ∧ curNode.enqueueTag <= localTS

do
7: stateToReturn.add(curNode)
8: curNode ← curNode.next
9: return stateToReturn

Algorithm 8 Dequeue operation with helping
1: repeat . Repeat until success
2: curHead ← Head
3: newHead ← curHead.next
4: value ← curHead.value
5: localTS ← read counter
6: until MCDS(&counter, localTS, &Head, curHead, newHead,

&curHead.dequeueTag, ∞, localTS)
7: return value

Algorithm 9 Iteration helped by both enqueue and dequeue
1: curHead ← Head
2: localTS ← FAA(&counter, 1)
3: curNode ← curHead
4: while curNode 6= null ∧ curNode.enqueueTag <= localTS

do
5: if curNode.dequeueTag > localTS then
6: stateToReturn.add(curNode)
7: curNode ← curNode.next
8: return stateToReturn

of the dequeued node, at the same time as it updates the
Head pointer. The initial value of a node’s dequeueTag
is set to a special infinity value. The updates are performed
atomically by the MCDS operation.

The timestamps help the iteration operation to ignore the
effects of update operations that started after the atomic
increment of the shared counter. In order though to make
sure that the timestamp values written are the more recent
ones, to help for the case the enqueue or dequeue operation
is delayed, the CAS of the original enqueue and dequeue
algorithms is replaced with DCSS and MCDS respectively.

Theorem 11. Algorithm 9 implements a linearizable itera-
tion and the linearization point is on line 2.

Theorem 12. Algorithm 9 implements a wait-free iteration
operation on the modified concurrent queue implementation.

Lemma 6. A dequeue operation (Alg. 8) may be forced to
retry due to an arbitrary overlapping iteration operation at



most once.

Lemma 7. An enqueue operation (Alg. 6) may be forced to
retry due to an arbitrary overlapping iteration operation at
most once.

Theorem 13. The concurrent queue implementation inte-
grating the modified enqueue and dequeue Algorithms 6
and 8 respectively, along with the iteration operation of
Algorithm 9 is lock-free.

The proof of the latter theorem is easily derived by the the
fact that the original implementation is lock-free and using
lemmas 6 and 7. Therefore, at least one contending process
will make progress (enqueue, dequeue, iteration).

4) Discussion: The goal of the presented algorithms is to
explore the algorithmic and communication (helping) trade-
offs that exist, in an implementation oblivious manner. Their
efficiency can be greatly improved once specific assumptions
are made, especially regarding aspects like memory manage-
ment. Collecting a chain of nodes can be significantly easier
in a garbage collected environment since we can assume that
once we keep a reference to a node we can reach it even
in case of arbitrary delays. Thus we can have more efficient
versions of algorithms like 2 or 3 (cf. Sect. VI). Under such
assumptions more designs can be provided, e.g. simplifying
and improving Alg. 7 by using a reference to the current
head as a timestamp instead of a counter, or using an atomic
read for both the Head and Tail pointers. The former case
would still require a DCSS for the enqueue, while the latter
would serialize enqueue, dequeue and iteration operations.
The assumptions required for such cases are not general
enough for the approach of this paper.

With these algorithms we complete the picture of the
trade-offs involved in enhancing a concurrent data struc-
ture with iteration operations. Taking a step back we can
observe that the concurrent queue has two different points
of contention, the Head and the Tail. These are the two
points that allow for concurrent operations to take place.
When no helping methods are involved, the stronger the
consistency guarantees we try to provide, the more is the
cost that has to be beared by the iteration in terms of
progress guarantees and possibilities of retrying. When we
try to improve this with helping techniques, the modification
operations are forced to communicate with the iteration, thus
inherently limiting the concurrency of the data structure
(even if DCSS,MCDS were available in hardware). Even
under assumptions that would allow us an atomic read of
Head and Tail, such an operation would be serialized
between modifications of Head and Tail.

Finally, we showed the tractability of the proposed frame-
work in different case studies, possible trade-offs, and con-
tainment properties of the definitions. The landscape of iter-
ation implementations, by both practitioners and researchers,
further motivates this work by already including relaxed

forms of iteration [1]–[3] (cf. Section II), while the broader
distributed systems area has showed that weaker consistency
can be proved useful in several contexts.

VI. IMPLEMENTATIONS AND EXPERIMENTAL STUDY

In order to study the properties of the implementations
following the framework, we implemented iteration methods
for the case of a concurrent queue. The goal is to investigate,
from a practical perspective also, the qualitative impact
of the different consistency guarantees on the throughput
performance of iteration operations. Furthermore we are
interested in the way the iteration implementations affect the
performance of the native operations of the data structure,
especially across the different iteration implementations that
may or may not use helping techniques.

Implementations: Our implementations consist of the
lock-free queue by Michael and Scott [22] extended with
iterator constructions presented in section V-B, implemented
in Java. Specifically, we implemented two versions of the
linearizable double-collect based iteration as seen in sec-
tion V-B2, the DCOLLECT and DCOL-FULL. The first
exploits the garbage-collected environment of Java for easier
collection of the nodes. References only to Head and Tail
are collected, since this is enough to prevent the chain of
nodes in between from being garbage collected and thus
being able to traversed after the return of the method. The
DCOL-FULL (full double collect) traverses the entire chain
of nodes during the iterator’s construction (as in Alg. 3), in
order to emulate the delays that would be present in an un-
managed memory environment, where it would be required
to explicitly hold references to all the nodes to be returned.
For the Scan&Return method presented in section V-B1,
we provide the SNR and SNR-FULL implementations, that
exploit garbage collection and emulate a full traversal re-
spectively. For iterations with helping techniques, limited
to hardware support, we used a software version of the
DCSS primitive based on [13] and implemented the iteration
with helping from the enqueue operations (HELP-ENQ) that
we presented in section V-B3. Finally we also compared
with Java’s implementation of the Michael and Scott queue,
ConcurrentLinkedQueue in the concurrent pack-
age. In this case the iterator provided, to which we will refer
as JAVA-SNR, is implemented following the Scan&Return
style too, but with differences regarding the management
of nodes that result into “gaps” in the returned state. In
particular when a node is dequeued it is disconnected from
the linked list by referencing itself. JAVA-SNR collects the
Head and advances through the next pointers until the end
of the queue is reached. In case the current node is dequeued
(and possibly nodes following), JAVA-SNR moves on to
the current Head, skipping this way all nodes dequeued in
between (cf. Fig 3). Thus, there is a qualitative difference
between the two implementations, since SNR returns a state



Figure 1. Iterations per millisecond in high contention, with a queue
initialized empty (upper) and with 2000 items (lower).

that is a logically continuous chain of nodes as they were
connected during the queue’s lifetime duration.

Experiment setup: For more consistent comparison the
iteration methods were used in order to construct an object
that implemented Java’s Iterator interface. Afterwards
the thread that had created the Iterator consumed the
iterated nodes method until the iteration was finished. Mean-
while, N − 1 “worker” threads were running enqueue and
dequeue operations at random with equal probability and 1
thread continuously iterated the queue. Each experiment was
run for 10 seconds, for values of N = 4, 8, 12, 16 and 24,
on a workstation with 2 sockets of 6-core Xeon E5645
processors with Hyper Threading (24 logical threads in
total), running version 3.2 of the Linux kernel. Other pa-
rameters that we varied in the experiments, are the size of
the initial queue (empty, 2000, 5000 items) and the level
of contention (by introducing dummy work between data
structure operations). We present the mean of 10 repetitions
of each experiment along with 95% confidence intervals.

Summarising the observations from the experiments, in
each implementation the existence of a thread iterating the
queue did not have a significant impact in the usual through-
put of enqueue and dequeue operations (Fig. 2). Iteration
throughput, as expected, comes at a cost of consistency
guarantees (Fig. 1). Exploiting the underlying memory man-
agement can lead to impressive performance improvements
(SNR, SNR-FULL) or even revive otherwise unusable tech-
niques (DCOLLECT, DCOL-FULL). When both consistency
and progress are important, helping methods (HELP-ENQ)
can assist in balancing the linearizable iteration cost and
provide fairer progress for all the contending processes
on the data structure. The overhead induced on the native
helping operations is non-negligible and appears mainly

Figure 2. Throughput (enq. and deq.) of queue implementations in medium
(upper) and high contention (lower), with a queue initialized with 2000
items. On the right column, one of the threads runs iteration operations.

Figure 3. Min, max and median of skipped items in 10 runs of
JAVA-SNR in high contention and a queue initialized with 2000 items.

in the cases of high contention (Fig. 2). In fact, cases
of lower contention can benefit from stronger consistency
with different methods depending on the implementation
environment. Finally weaker consistency implementations
(SNR,JAVA-SNR) can have different qualitative character-
istics. Figure 3 shows the effect of “gaps” in the returned
state for JAVA-SNR, i.e. skipped nodes during the iteration.

VII. CONCLUSION AND FUTURE WORK

Iterators have been an important design pattern in object
oriented languages used to provide sequential access to a
collection of objects without exposing its underlying repre-
sentation. Contemporary programming environments include
collection data structures in their standard libraries that
support concurrent operations and iterators for some of them
The semantics of the iterators in the presence of concurrency
are often imprecise and not universal. Weaker consistency
in the broader distributed systems area, as well as weakly
consistent iteration implementations that already exist, show
the need for a more formal description of such behavior.

In this work we:
i) propose a set of consistency specifications for iteration

operations, also paving the way for future research in



bulk operations on data structures
ii) investigate whether efficient alternatives exist at a

variety of consistency guarantees that can be desired
or adequate

iii) show that the proposed definitions support contain-
ment relations, also through the algorithmic imple-
mentations of the queue case study

iv) experimentally study the trade-off between consis-
tency and throughput, and the overhead imposed by
the bulk operation to the native operations implemen-
tation of the data structure.

Overall, providing strong consistency iteration operations
varies from affecting the complexity and progress of the
iteration itself, to the native operations of the data structure.

Applying the consistency framework in more complex
data structures, where the iteration implementations might be
even more challenging, is one of our future work directions.
Finally, the tractability of the framework can be extended to
other bulk operations that can arise from the continuously
increasing parallel and concurrent applications.

ACKNOWLEDGEMENTS The research leading to these results has re-
ceived funding from the European Union 7th Framework Programme (FP7)
under grant agreement 611183 (EXCESS Project, www.excess-project.eu)
and by the Swedish Research Council project Contract nr. 621-2010-4801.
We are thankful to Panagiota Fatourou for her feedback in earlier stages of
this work.

REFERENCES

[1] Intel threading building blocks documentation.
http://software.intel.com/sites/products/documentation/
doclib/tbb sa/help/index.htm. Retrieved 2012-11-27.

[2] Java platform standard edition 7 documentation.
http://docs.oracle.com/javase/7/docs/index.html.
Retrieved 2012-12-06.

[3] .NET framework class library documentation.
http://msdn.microsoft.com/en-us/library/gg145045.aspx.
Retrieved 2013-05-10.

[4] Python v2.7.5 documentation.
http://docs.python.org/2/library/itertools.html.
Retrieved 2013-09-10.

[5] Y. Afek, H. Attiya, D. Dolev, E. Gafni, M. Merritt, and
N. Shavit. Atomic snapshots of shared memory. J. ACM,
40(4):873–890, Sept. 1993.

[6] Y. Afek, N. Shavit, and M. Tzafrir. Interrupting snapshots
and the java size method. Journal of Parallel and Distributed
Computing, 72(7):880–888, July 2012.

[7] J. Anderson and M. Moir. Universal constructions for large
objects. In 9th Int’l Workshop on Distributed Algorithms,
volume 972 of LNCS, pages 168–182. Springer, 1995.

[8] J. H. Anderson. Multi-writer composite registers. Distributed
Computing, 7(4):175–195, May 1994.

[9] J. Boyland, W. Retert, and Y. Zhao. Iterators can be indepen-
dent from their collections. In IWACO, in conjunction with
ECOOP 2007.

[10] C. Dwork, M. Herlihy, S. Plotkin, and O. Waarts. Time-lapse
snapshots. SIAM J. Comput., 28(5):18481874, May 1999.

[11] P. Fatourou and N. D. Kallimanis. A highly-efficient wait-
free universal construction. SPAA ’11, pages 325–334, New
York, NY, USA, 2011. ACM.

[12] F. Fich. How hard is it to take a snapshot? In SOFSEM 2005:
Theory and Practice of Computer Science, volume 3381 of
LNCS, pages 28–37. Springer, 2005.

[13] T. L. Harris, K. Fraser, and I. A. Pratt. A practical multi-word
compare-and-swap operation. In Distributed Computing,
number 2508 in LNCS, pages 265–279. Springer, 2002.

[14] M. Herlihy. Wait-free synchronization. ACM Trans. Program.
Lang. Syst., 13(1):124–149, Jan. 1991.

[15] M. Herlihy. A methodology for implementing highly con-
current data objects. ACM Trans. Program. Lang. Syst.,
15(5):745–770, Nov. 1993.

[16] M. Herlihy, V. Luchangco, and M. Moir. Obstruction-free
synchronization: Double-ended queues as an example. ICDCS
’03. IEEE Computer Society, 2003.

[17] M. Herlihy and N. Shavit. The Art of Multiprocessor
Programming. Morgan Kaufmann, 2008.

[18] M. P. Herlihy and J. M. Wing. Linearizability: a correctness
condition for concurrent objects. ACM Trans. Program. Lang.
Syst., 12(3):463492, July 1990.

[19] L. Kirousis, P. Spirakis, and P. Tsigas. Reading many
variables in one atomic operation: solutions with linear or
sublinear complexity. IEEE Trans. Parallel Distrib. Syst.,
5(7):688 –696, jul 1994.

[20] L. Lamport. On interprocess communication. Distributed
Computing, 1(2):86–101, June 1986.

[21] M. M. Michael. The balancing act of choosing nonblocking
features. Commun. ACM, 56(9):4653, Sept. 2013.

[22] M. M. Michael and M. L. Scott. Simple, fast, and practical
non-blocking and blocking concurrent queue algorithms. In
Proc. 15th ACM Symp. on PODC, pages 267–275, 1996.

[23] A. Morrison and Y. Afek. Fast concurrent queues for x86
processors. PPoPP ’13, pages 103–112, New York, NY, USA,
2013. ACM.

[24] Y. Nikolakopoulos, A. Gidenstam, M. Papatriantafilou, and
P. Tsigas. Enhancing concurrent data structures with concur-
rent iteration operations: Consistency and algorithms. Tech-
nical report, Chalmers University of Technology, 2013.

[25] J. Noble. Iterators and encapsulation. In TOOLS 33.
Proceedings, pages 431–442, 2000.

[26] G. L. Peterson and J. E. Burns. Concurrent reading while
writing II: the multi-writer case. In , 28th Annual Symposium
on Foundations of Computer Science, 1987, pages 383–392.

[27] E. Petrank and S. Timnat. Lock-free data-structure iterators.
In Distributed Computing, number 8205 in LNCS, pages 224–
238. Springer, 2013.

[28] A. Prokopec, P. Bagwell, T. Rompf, and M. Odersky. A
generic parallel collection framework. In Euro-Par 2011,
number 6853 in LNCS, pages 136–147. Springer, 2011.

[29] A. Prokopec, N. G. Bronson, P. Bagwell, and M. Odersky.
Concurrent tries with efficient non-blocking snapshots. PPoPP
’12, pages 151–160. ACM, 2012.

[30] S. M. Watt. A technique for generic iteration and its
optimization. WGP ’06, pages 76–86. ACM, 2006.


