
Lock-free Cuckoo Hashing

Nhan Nguyen, Philippas Tsigas
Chalmers University of Technology

Gothenburg, Sweden
Email: {nhann, tsigas}@chalmers.se

Abstract—This paper presents a lock-free cuckoo hashing
algorithm; to the best of our knowledge this is the first lock-
free cuckoo hashing in the literature. The algorithm allows
mutating operations to operate concurrently with query ones
and requires only single word compare-and-swap primitives.
Query of items can operate concurrently with others mutating
operations, thanks to the two-round query protocol enhanced
with a logical clock technique. When an insertion triggers a
sequence of key displacements, instead of locking the whole
cuckoo path, our algorithm breaks down the chain of relo-
cations into several single relocations which can be executed
independently and concurrently with other operations. A fine
tuned synchronization and a helping mechanism for relocation
are designed. The mechanisms allow high concurrency and
provide progress guarantees for the data structure’s operations.
Our experimental results show that our lock-free cuckoo
hashing performs consistently better than two efficient lock-
based hashing algorithms, the chained and the hopscotch hash-
map, in different access pattern scenarios.

I. OVERVIEW

A hash table is a fundamental data structure which offers
rapid storage and retrieval operations. Hash tables are widely
used in many computer systems and applications. Papers in
the literature have studied several hashing schemes which
differ mainly in their methods to resolve hash conflicts. As
multi-core computers become ubiquitous, many works have
also targeted the parallelization of hash tables to achieve
high performance and scalable concurrent ones.

Cuckoo hashing [1] is an open address hashing scheme
which has a simple conflict resolution. It uses two hash
tables that correspond to two hash functions. A key is stored
in one of the tables but not in both. The addition of a
new key is made to the first hash table using the first hash
function. If a collision occurs, the key currently occupying
the position is “kicked out”, leaving the space for the new
key. The “nestless” key is then hashed by the second function
and is inserted to the second table. The insertion process
continues until no key is “nestless”. Searching for a key
involves examining two possible slots in two tables. Deletion
is performed in the table where the key is stored. Search
and delete operations in cuckoo hashing have constant worst
case cost. Meanwhile, insertion operations with the cuckoo
approach have been also proven to work well in practice.
Cuckoo hashing has been shown to be very efficient for
small hash tables on modern processors [2].

In cuckoo hashing, the sequence of the evicted keys is
usually referred to as “cuckoo path”. It might happen that
the process of key evictions is a loop, causing the insertion
to fail. If this happens, the table needs to be expanded or
rehashed with two new hash functions. The probability of
such insertion failure is low when the load factor1 is lower
than 0.49 but increases significantly beyond that [1]. Recent
improvements address this issue by either using more hash
functions [3] or storing more than one key in a bucket -
known as bucketized cuckoo hashing [4] [5].

A great effort has been made to build high performance
concurrent hash tables running on multi-core systems. Lea’s
hash table from Java Concurrency Package [6] is an efficient
one. It is a closed address hash table based on chain hashing
and uses a small number of locks to synchronize concur-
rent accesses. Hopscotch hashing [7] is an open address
algorithm which combines linear probing with the cuckoo
hashing technique. It offers a constant worst case look-
up but insertion might requires a sequence of relocation
similar to the cuckoo hashing. The concurrent hopscotch
hashing synchronizes concurrent accesses using locks, one
per bucket. A concurrent version of cuckoo hashing found
in [8] is a bucketized cuckoo hash table using a stripe of
locks for synchronization. As lock-free programming has
been proved to achieve high performance and scalability
[9] [10], a number of lock-free hash tables have also been
introduced in the literature. Micheal, M. [11] presented an
efficient lock-free hash table with separated chaining using
linked lists. Shalev O. and Shavit N. [12] designed another
high performance lock-free closed address resizable hash
table. In [13], a lock-free/wait-free hash table is introduced,
which does not physically delete an item. Instead, all the
live items are moved to a new table when the table is full.

To the the best of our knowledge, there has not been any
lock-free cuckoo hashing introduced in the literature. There
are several reasons which can explain this fact. Because
a key can be stored in two possible independent slots in
two tables, synchronization of different operations becomes
a hurdle to overcome when using lock-freedom. As an
example, two insertion operations of a key with different
data can simultaneously and independently succeed; this can

1Load factor: the ratio between the total number of elements currently
in the table over its capacity.



cause both of them to co-exist, which is not aligned with
the common semantics of hash tables in the literature. In
addition, a relocation of a key from one table to another is a
combination of one remove and one insert operations, which
need to be combined in a lock-free way. While taking care
of that, the relocation of a key when it is being looked up
can cause the look-up operation to miss the key, though it
is just relocated between tables.

In this work, we address these challenges and present
a lock-free cuckoo hashing algorithm. We do not consider
bucketized cuckoo hashing. To the best of our knowledge,
this is the first lock-free cuckoo hashing algorithm in the
literature. Our algorithm tolerates any number of process
failures. The algorithm offers very high query throughput by
optimizing the synchronization between look-up and mod-
ification operations. Concurrency among insertions is also
high thanks to a carefully designed relocation operation. The
sequence of relocations during insertion is broken down into
several single relocations to allow higher concurrency among
operations. In addition, a fine tuned helping mechanism
for relocation operations is designed to guarantee progress.
Our evaluation results show that the new cuckoo hashing
outperforms the state-of-the-art hopscotch and lock-based
chained hash tables [14].

The rest of this paper is organized as follows. Section
II introduces our algorithm in a nutshell. The full design
together with a pseudo-code description is presented in
Section III. Section IV provides the proof of correctness
of the algorithm. Experiments and evaluation results are
presented in V. Finally, Section VI concludes our paper.

II. LOCK-FREE CUCKOO HASHING ALGORITHM

Our concurrent cuckoo hashing contains two hash tables,
hereafter called sub-tables, which correspond to two inde-
pendent hash functions. Each key can be stored at one of its
two possible positions, one in each sub-table. To distinguish
the two sub-tables, we refer to one as the primary and to the
other as the secondary. The look-up operation always starts
searching in the primary sub-table and then in the secondary
one. Because there are different use cases of looking-up
operations, we divide them into two types. One, search, is a
query-only one which asks for the existence of a key without
modifying the hash table. The other one is a query as a part
of another operation such as a deletion or an insertion. We
refer to it as find to distinguish it from the “real” search.

A search operation starts by examining the possible slots
in the primary sub-table first, and then in the secondary one,
and reports if the searched key is found in one of them. Such
a simple search, however, can miss an existing key and report
the key as not found. The reason is that the reading from two
slots is not performed in one atomic step and a relocation
operation might interleave in between. The searched key
can be relocated from the secondary to the primary sub-
table but is missed by the above reading operations. We

called such key a “moving key”. To deal with this issue, we
design a two round query protocol enhanced with a logical
clock based counter technique. Each hash table slot has a
counter attached to it to count the number of relocations
at the slot. The first round of the two round query reads
from the two possible slots and check for the existence of
the searched key like the mentioned simple search does.
In addition, it records the slot’s counter values. If the key
is not found, the second round does similar readings and
examination. The second round can discover the key if it was
relocated from the secondary to the primary sub-table, and
was missed by the first round query. However, it might also
miss the key if it has been relocated back and forth between
sub-tables several times and interleaved with the readings.
Therefore, the second round also records the counter values
and compares them with the values of the first round. If the
new values are at least two units higher than the previous
ones, there is a possibility that even the two round query
misses the key because two or more interleaving relocations
have happened. In this case, the search is reexecuted.

The insert operation of a key starts by invoking find to
examine if the key exists. If it does not, the insertion is made
to the primary sub-table first and, only if a collision occurs,
to the secondary sub-table. If both positions are occupied,
a relocation process is triggered to displace the existing
key to make space for the new key. The original cuckoo
approach [1] inserts the new key to the primary sub-table
by evicting a collided key and re-inserting it to the other
sub-table, as described in Section I. This approach, however,
causes the evicted key to be “nestless”, i.e. absent from both
sub-tables, until the re-insertion is completed. This might
be an issue in concurrent environments: the “nestless” key
is unreachable by other concurrent operations which want
to operate on it. One way to deal with this issue is to
make the whole relocation process atomic, which is not
efficient and scalable since it is going to result in coarse
grained synchronization. We approach the relocation process
differently. If an insertion requires relocation, an empty slot
is created before the new key is actually added to the table.
Our approach contains two steps. First, we search for the
cuckoo path, to find a vacant slot. Thereafter, the vacant slot
is “moved” backwards to the beginning of the cuckoo path
by “swapping” with the last key in the cuckoo path, then the
second last key and so forth. The new key is then inserted
to the empty slot using an atomic primitive. Each “swap”
step involves modifications of two slots in two sub-tables.
We can design a fine tuned synchronization for the “swap”
using single word Compare-And-Swap (CAS)2 primitives
by using the pointer’s Least-Significant-Bit (LSB) marking
technique. This technique, which takes advantages of aligned
memory addresses and is widely used in the literature,

2CAS is a synchronization primitive available in most modern processors.
It compares the content of a memory word to a given value and, only if
they are the same, modifies the content of that word to a given new value.



Insert <K2,V2>, including a relocation of <K1,V1>

K1,V1 *K1,V1 *K1,V1

K1,V1 K1,V1

K1,V1

K1,V0

K2,V2

K1,V1

Insert(K1,V1)

Insert(K1,V0)

Insert(K1,V1)

Remove(K1)

find(K1) & mark 
for relocation

relocate(K1,V1)

find(K1) & mark 
for relocation

Remove(K2)

Remove(K1)

Transition of states of two possible slots which K1 can be hashed to. 

copy K1 to 
the other 

slot

Delete the 
marked 

item

Figure 1: State transition of two possible positions of a key in the primary (upper) and secondary sub-tables

set the unused LSB for certain purposes. In our case, it
indicates one thread’s intention to relocate a table’s entry. A
helping mechanism is also designed so that other concurrent
operations can help finishing an on-going relocation.

Another issue with insertion operations is that a key can be
inserted to two sub-tables simultaneously. Since concurrent
insertions can operate independently on two sub-tables, they
can both succeed. This results in two existing instances of
one key, possibly mapped to different values. To prevent
such a case to happen, one can use a lock during insertion
to lock both slots so that only one instance of a key is
successfully added to the table at a time. As we aim for
high concurrency and strong progress guarantees, we solve
this problem differently. Our table allows, in some special
cases, two instances of a key to co-exist in two sub-tables.
The special cases are when the two instances have been
inserted to two sub-tables simultaneously. (It is noticed
that, concurrent insertions to the same sub-table operate and
linearize normally, which guarantees that only one instance
of a key exists in one sub-table). We design a mechanism to
delete one of the instances internally and as soon as possible
so that our table still provides the conventional semantic
in which one key is mapped to one value. The question
is: which instance between the two is to be deleted? Since
the two successful insertions which lead to the co-existence
must be concurrent, it is always possible to order them so
that the insertion to the secondary sub-table is linearized
before the insertion to the primary one. In this way, the latter
insertion “overwrites” the data inserted by the former one.
As a result, if the same key is found in both sub-tables at a
certain time, the key in the primary table is the only valid
one. Our mechanism to realize such duplication and remove
the overwritten key, i.e the one in the secondary sub-table,
will be described after discussing below the consequence of
such co-existence to the hash table’s operations.

We now analyze the consequence of the co-existence
of two instances of a key to the operations of the hash
table, beginning with the look-up operations. The query-only
search first examines the primary hash table, and can report
if the searched key is stored there immediately. In the cases
that two instances of a key co-exist in two sub-tables, search
always returns the one in the primary sub-table, which agrees

with the semantics described in the previous paragraph. The
find operation, on the other hand, is used at the beginning of
any insert or remove operation. The result of the invoked find ,
i.e the key exists in one or both sub-tables, affects the way
the invoker behaves. Therefore, if find discovers that two
instances of a key exist, it deletes the one in the secondary
sub-table, as being described in detail in the next section.
When an insert or a remove proceeds after find returns, there
is going to be one instance of the key in the table.

The remove operation of a key starts by invoking find to
locate the table’s slot where the key is being stored. Then
the key is removed by means of a CAS primitive.

Figure 1 shows the states of two possible positions on
two sub-tables where a key K1 can be hashed to. The states
change according to the operations performed. The oper-
ations are, for example, an insert(K1, V1), a remove(K1, V1),
two concurrent insert(K1, V0) and insert(K1, V1), and an
insert(K2, V2) (in the dashed rectangle) which requires a
relocation of < K1, V1 >. When find() is invoked, it can also
delete the duplicated key, i.e < K1, V0 > stored in the second
sub-table.

III. DETAILED ALGORITHMIC DESCRIPTION

We are now presenting the detailed description and
pseudo-code for the functions of our cuckoo hash table. The
pseudo-code follows the C/C++ language conventions.

A. Search operation

Searching for a key in our lock-free cuckoo hash table
includes querying for the existence of the key in two sub-
tables, as in Program 2. A key is available if it is found in one
of them. A search operation starts with the first query round
by reading from the possible slots in the primary sub-table
table[0] (lines 24-26), and then in the secondary sub-table
table[1] (lines 27-29). If the key is found in one of them, the
value mapped to key is returned.

As mentioned in section II, the above query can miss the
searched key which happens to be a “moving key”. The key
present in table[1] is relocated to table[0], meanwhile search
reads from table[0] and then table[1]. To avoid such missing,
search performs the second round query (lines 32-34).



Program 1 Data structure and support functions

1 HashEntry:
2 word key,
3 word value;

5 CountPtr:
6 <HashEntry*,int> <entry,counter>

8 int hash1(key)
9 int hash2(key)

10 bool checkCounter(int ts1, int ts2, int ts1x, int ts2x)
11 /*check the counter values to see if 2 relocations may

have taken place*/

13 class CuckooHashTable
14 EntryType *table[2][] //2 sub-tables
15 word find(word key, CountPtr &<e1,ts1>, CountPtr &<e2,

ts2>)
16 word search(word key)
17 insert(word key, word value)
18 remove(word key)
19 relocate(int which, int index)
20 help_relocate(int which, int index, bool initiator)
21 del_dup(idx1, <e1,ts1>, idx2 , <e2,ts2>)

Program 2 word search (word key)

22 //h1=hash1(key) and h2=hash2(key)
23 while (true)
24 <e1,ts1> ← table[0][h1] //read the element \& counter

25 if (e1 6=NULL ∧ e1→key = key)
26 return e1→value
27 <e2,ts2> ← table[1][h2]
28 if (e2 6=NULL ∧ e2→key = key)
29 return e2→value

31 //second round query
32 <e1x,ts1x> ← table[0][h1]
33 ...
34 <e2x,ts2x> ← table[1][h2]
35 ...

37 if (checkCounter(ts1, ts2, ts1x, ts2x))
38 continue
39 else
40 return NIL

This two-round query, however, still can miss an existing
key if the key is relocated back and forth between table[1]
and table[0] repetitively and alternatively when search reads
from each sub-table. The possibility of such continuously
relocation of a key is very rare but can not be ruled out. To
deal with that, we employ a technique based on Lamport’s
logical clocks [15]. The idea of this technique is to attach a
counter to each slot of the hash table to record the number of
relocations happening at that slot. Similar to a logical clock
whose value changes when a local event happens or when
a message is received, the value of the counter is changed
on the event of relocations. The counter is initialized to 0.
When an element stored in a slot is relocated, the slot’s
counter is incremented. When a slot serves as the destination
of a relocation, its counter is updated with the maximum
of its current counter value and the source’s counter value,
plus 1. The counter value of a slot remains even when the
element stored in that slot is deleted or relocated to the

Program 3 word find(word key, CountPtr& <e1,ts1>,
CountPtr& <e2,ts2>)

41 //h1=hash1(key) and h2=hash2(key)
42 word result; int counter
43

44 while (true)
45 <e1,ts1> ← table[0][h1]
46 if (e1 6= NULL)
47 if (e1 is marked)
48 help_relocate(0, h1, false)
49 continue
50 if (e1→key = key)
51 result ← FIRST
52

53 <e2,ts2> ← table[1][h2]
54 if (e2 6= NULL)
55 if (e2 is marked)
56 help_relocate(1, h2, false)
57 continue;
58 if (e2→key = key)
59 if (result = FIRST)
60 del_dup(h1,<e1, ts1>,h2,<e2, ts2>)
61 else
62 result ← SECOND
63

64 if (result=FIRST ∨ result=SECOND)
65 return result
66 /*second round query*/
67 <e1,ts1x> ← table[0][h1]
68 ...
69 <e2,ts2x> ← table[1][h2]
70 ...
71

72 if (checkCounter(ts1, ts2, ts1x, ts2x))
73 continue
74 else return NIL

other sub-table. For example, consider a key associated with
counter value t is stored at table[1][h2]. When key is relocated
to table[0][h1] which has counter t1, the new counter value
of table[0][h1] is max(t, t1) + 1 and that of table[1][h2] is
incremented to t+ 1.

By examining the above counters after the second round
query, a search can detect if it might have missed an existing
key. Such missing happens if: (i) Before the execution of line
24, the key is stored in the secondary table at table[1][h2], then
(ii) the key is relocated from table[1] to table[0] before the
second read at line 27, then (iii) relocated back to table[1]
before the next read at line 32, and finally (iv) relocated
again back to table[0] before line 34 . If it is so, the counter
value read at line 32 should be at least two units higher
than the one read at line 24. Similar condition is applied for
the counter values read at line 34 and line 27. In addition,
the counter value read at line 34 is at least 3 units higher
than the one read at line 24 because the counter increases
its value like a logical clock when a relocation happens. If
these conditions are satisfied, i.e checkCounter returns true,
the two-round query probably misses an item because of
alternative relocations, so the search restarts.

In practice, as each slot in the hash table is a pointer to a
table element, we can use the unused bits of pointer values
on x86 64 to store the counter value. Currently pointers on
x86 64 use only 48 lower bits of the available 64 bits. We
can use the 16 highest bits of the 64-bit pointer to store the



Program 4 insert(word key, word value)

75 //h1=hash1(key); h2=hash2(key)
76 HashEntry *newNode(key,value)
77 CountPtr *<ent1,ts1>, *<ent2,ts2>
78 start_insert:
79 int result ← find(key, <ent1,ts1>, <ent2,ts2>)
80 if (result=FIRST ∨ result=SECOND)
81 Update the current entry with new value
82 return

84 if (ent1=NULL)
85 if (¬CAS(&table[0][h1],<ent1,ts1>,<newNode,ts1>))
86 goto start_insert
87 return
88 if (ent2=NULL)
89 if (¬CAS(&table[1][h2],<ent2,ts2>,<newNode,ts2>))
90 goto start_insert
91 return

93 result ← relocate(0, h1)
94 if (result=true) goto start_insert
95 else
96 //rehash()

counter value, an approach which has been used in literature
[16]. This approach is efficient as the pointer to an element
and its counter can be loaded in one read operation. The
disadvantage of this technique is that the counter which
has been increased by 216 + k can be misinterpreted to be
increased by just k, where k is any counter value. However,
such increment of 216 + k can only be made by many
thousands of relocation operations happening at the same
slot. Moreover, it must have happened in a very short period
of time of a search operation to cause such misinterpretation.
With a good choice of hash functions, the possibility that
such misinterpretation happens is practically impossible.
Therefore, 16 bits are sufficient to store the counter value.

B. Find operation

Program 3 shows the pseudo code of the find operation,
which functions similar to the search. The find takes an
argument key and answers if, and in which sub-table, the
key exists. In addition, it also reports the current values (and
their associated counter values) stored at the two possible
positions of key. The logic flow of the find is similar to that
of the search, in the sense that it also uses a two round query.
However, it has 3 main differences compared to the search.
First, if it reads an entry who LSB is marked, indicating an
on-going relocation operation, it helps the operation (lines
47-48, and 55-56). Secondly, it examines both sub-tables
instead of returning immediately when key is found. This
is to discover if two instances of the key exist in two sub-
tables. When the same key is found on both sub-tables, the
one in the secondary sub-table table[1] is deleted (line 60),
as described in Section II. Finally, find returns also current
items which are stored at two possible slots where key should
be hashed to. This information is used by the invokers, i.e
insert or delete operations, as described in next subsections.

Program 5 remove(word key)

97 //h1=hash1(key); h2=hash2(key)
98 CountPtr *<ent1,ts1>, *<ent2,ts2>
99 while (true)

100 ret ← find(key,<ent1,ts1>,<ent2,ts2>)
101 if (ret = NULL) return
102 if (ret = FIRST)
103 if (CAS(&table[0][h1],<ent1,ts1>,<NULL,ts1>))
104 return
105 else if (ret = SECOND)
106 if (table[0][h1] 6=<ent1,ts1>)
107 continue
108 if (CAS(&table[1][h2],<ent2,ts2>,<NULL,ts2>))
109 return

C. Insert operation

The insertion of a key, Program 4, works as follows. First,
it invokes the find at line 79 to examine the state of the key:
if it exists in the sub-tables and what are the current entries
stored at the slots where the key can be hashed to. If the
key already exists, the current value associated with it is
updated with the new value and the insert returns (line 82).
Otherwise, the insert operation proceeds to store the new key.
If one of the two slots is empty (lines 84 and 88), the new
entry is inserted with a CAS. If both slots are occupied by
other keys, relocation process is triggered at line 93 to create
an empty slot for the new key. The relocation operation is
described in detail in Section III-E. If the relocation succeeds
to create an empty slot for the new key, the insertion retries.
Otherwise, which means the length of the relocation chain
exceeds the THRESHOLD, the insertion fails. In this case,
typical approaches in the literature of cuckoo hashing such
as a rehash with two new hash functions or an extension of
the size of the table can be used.

D. Remove operation

The remove operation also starts by invoking find at line
100. If the key is found, it is removed by a CAS, either at
line 103 or 108.

E. Relocation operation

When both slots which can accommodate a newly inserted
key are occupied by existing keys, one of them is relocated
to make space for the new key. This can trigger a sequence
of relocations as the other slot might be occupied too. The
relocate method presented in Program 6 performs such a
relocation process. As mentioned earlier, we use a relocation
strategy which can retain the presence of a relocated key
in the table without the need for expensive atomicity of
the whole relocation process. First, the cuckoo path is
discovered, lines 113-135. Then, the empty slot is moved
backwards to the beginning of the path, where the new key
is to be inserted, lines 137-154.

The path discovery starts from a slot index of one of the
sub-tables identified by which and runs at most THRESHOLD
steps along the path. If table[which][index] is an empty slot,
the discovery finishes (line 134). Otherwise, i.e the slot is



Program 6 int relocate(int which, int index)

110 int route[THRESHOLD] //storing cuckoo path
111 int start_level=0, tbl=which, idx=index

113 path_discovery:
114 bool found ← false
115 int depth ← start_level
116 do {
117 <e1,ts1> ← table[tbl][idx];
118 while (e1 is marked)
119 help_relocate(tbl, idx, false)
120 <e1,_> ← table[tbl][idx]
121 if (<pre,tsp>=<e1,ts1> ∨ pre→key=e1→key)
122 if (tbl = 0)
123 del_dup(idx,<e1,ts1>,pre_idx,<pre,tsp>)
124 else
125 del_dup(pre_idx,<pre,tsp>,idx,<e1,ts1>)
126 if (e1 6= NULL)
127 route[depth] = idx
128 key ← e1→key;
129 <pre,tsp> ← <e1,ts1>
130 pre_idx ← idx
131 tbl ← 1 - tbl
132 idx ← tbl = 0 ? hash1(key) : hash2(key)
133 else
134 found ← true
135 } while (!found ∧ ++depth<THRESHOLD)

137 if (found)
138 tbl ← 1 - tbl;
139 for (i ← depth-1; i>=0; --i, tbl ← 1-tbl)
140 idx ← route[i].index
141 <e1,ts1> ← table[tbl][idx]
142 if (e1 is marked)
143 help_relocate(tbl, idx, false)
144 <e1,ts1> ← table[tbl][idx]
145 if (e1 = NULL)
146 continue
147 dest_idx ← tbl=0?hash2(e1→key):hash1(e1→key)
148 <e2,ts2> ← table[1-tbl][dest_idx]
149 if (e2 6= NULL)
150 start_level ← i+1
151 idx ← dest_idx
152 tbl ← 1 - tbl
153 goto path_discovery
154 help_relocate(tbl, idx, false)
155 return found

occupied by a key (line 126), the key should be relocated
to its other slot in the other sub-table. The discovery then
continues with the other slot of key. If this slot is empty,
the discovery finishes. Otherwise, the discovery continues
similarly as before. Each element along the path is identified
by a sub-table and an index on that sub-table. Along the path,
the sub-tables that elements belong to alternatively change
between the primary and secondary ones. Therefore, the data
of the path which need to be stored are the indexes of the
elements along the path and the sub-table of the last element.

Once the cuckoo path is found, the empty slot is moved
backwards along the path by a sequence of “swaps” with the
respective preceding slot in the path. Each swap is actually a
relocation of the key in the latter slot, a.k.a the source, to the
empty slot, a.k.a the destination. Because of the concurrency,
the entry stored in the source might have changed. Thus,
the relocation operation needs to update the destination and
check for its emptiness (lines 148-149), and retry the path
discovery if the destination is no longer empty (line 153). If
the destination is empty, the relocation is performed in three

Program 7 Help relocation and delete duplication operations

156 void help_relocate(int which, int index, bool initiator)
157 while (true)
158 <src,ts1> ← table[which][index]
159 while (initiator && src is not marked)
160 if (src = NULL) return
161 CAS(&table[which][index)],<src,ts1>,<src|1,ts1>
162 <src,ts1> ← table[which][index]
163 if (src is not marked) return
164 /*hd=hash(src.key) where hash is hash function used

for table (1-which)*/
165 <dst,ts2> ← table[1-which][hd])
166 if (dst = NULL)
167 nCnt ← ts1>ts2 ? ts1 + 1 : ts2 + 1
168 if (<src,ts1> 6= table[which][index])
169 continue
170 if (CAS(&table[1-which][hd],<dst,ts2>,<src,nCnt>))
171 CAS(&table[which][index],<src,ts1>,<NULL,ts1+1>)
172 return
173 //dst is not null
174 if (src = dst)
175 CAS(&table[which][index)],<src,ts1>,<NULL,ts1+1>)
176 return
177 CAS(&table[which][index],<src,ts1>,<src&˜1,ts1+1>)
178 return false;

180 void del_dup(idx1, <e1,ts1>, idx2 , <e2,ts2>)
181 if (<e1,ts1> 6=table[0][idx1] ∧
182 <e2,ts2> 6=table[1][idx2])
183 return
184 if (e1→key 6= e2→key)
185 return
186 CAS(&table[1][idx2],<e2,ts2>,<NULL,ts2>)

steps in the help relocate operation presented in Program
7. First, the source entry’s LSB is marked to indicate the
relocation intention (line 161 ). Then, the entry is copied
to the destination slot (line 170), which has been made
empty. Finally, the source is deleted (line 171). Marking the
LSB allows other concurrent threads to help the on-going
relocation, for example at lines 119 and 143.

After a slot is marked in help relocation, the destination of
the relocation might have been changed and is no longer
empty. This can be because either other threads successfully
help relocating the marked entry, or a concurrent insertion
has inserted a new key to that destination slot. If it is the
former case (line 174), the source of the relocation is deleted
either by that helping thread (line 171) or by the current
thread (line 175). If it is the latter case, the help relocation
fails, unmarks the source (line 177) and returns. The reloca-
tion process then continues but might need to retry the path
discovery in the next loop.

IV. PROOF OF CORRECTNESS

In this section, we are going to prove that our cuckoo
hash table is linearizable and lock-free. At first, we prove
the linearizability under the assumption that a key exists in
only one sub-table. Later on, we prove that if there are two
instances of a key in two sub-tables, the linearizability is
not violated. Then we continue to prove the lock-freedom.
We provides proofs related to the search operation and the
full proofs can be found in the technical report [17]. In
the followings, we assume that a key can be stored in two
possible positions: table[0][h1] and table[1][h2].



Lemma 1: When help relocation(which, index) is invoked,
either it succeeds relocating the element pointed to by
table[which][index] to the other table, i.e table (1-which) and
unmarks the source slot; or if it fails doing that, the source
slot, i.e table[which][index] is unmarked.

Corollary 1: If help relocation succeeds relocating entry
in table[which][index] to the other sub-table, the counter values
of both source and destination increases by at least 1.

Following Corollary 1, it is easy to see that if there were
two relocations which had happened at one slot, the slot’s
counter would have been increased by at least 2 units.

Lemma 2: The search is linearizable.
Proof: The search operation returns a value only when

one of the keys in e1, e2, e1x, e2x (lines 24, 27, 32 or 34)
matches the searched key. In this case, search is linearized at
the respective line. We now consider the loop of the search
to see when it returns NIL.

As we discussed in Section III-A, during a search for key,
the two round query protocol misses the searched key only
when there is a sequence of relocations of key from table[1]
to table[0], back to table[1] and again to table[0], as described
in subsection III-A. Condition at line 40 can detect if such a
scenario may happen by examining the counter values of
table[0][h1] and table[1][h2], as described also in subsection
III-A. If the condition is satisfied, the search restarts. We
note that the condition is also satisfied if there are two
independent relocations of other keys which are stored in
the same slots; or if there is only one relocation at each
slot but the relocation increases the counter by two or more
units. In these cases, the search might restart unnecessarily
but its correctness is not violated.

Therefore, the search returns NIL when the key is not found
in any of the read entries: e1, e2, e1x, e2x and there is no
possibility that the key is relocated which forces the search
to reexecute the loop. Even though, there are cases that key
appears in one of the sub-tables at the time search performs a
reading from the other sub-table. In such cases, search might
still return NIL, but we can argue that it is totally correct.
We consider, as an example, a key exist in one sub-table as
search performs reading for the second round query at lines
32 and 34, and show the correct linearization points. Other
readings, e.g lines 24 and 27, can be argued in a similar
manner. If the key exists in the table when search executes
lines 32 and 34, and the search returns NIL:
• key must be inserted to table[0] after the reading from

that sub-table at line 32. The search can be linearized
at line 32 where key has not been inserted to the table.

• Or key exists in table[1] before the search starts and is
deleted before the search reads from it (line 34). The
search can then be linearized to line 34, when key has
been deleted.

• Or key exists in table[1] when the search reads from
table[0] (line 32), is deleted and then re-inserted to
table[0] before the search reads from table[1] (line 34).

In such scenario, neither line 32 or line 34 can be the
correct linearization point of the search. Because key
exists in the table at those points of time, in particular,
in the other sub-table than the one search reads from.
Even though, we notice that there is an interval between
when key is deleted from table[1] and when it is inserted
to table[0] (if these operations overlap, the re-insertion
would have failed), this period of time is inside the
duration that search executes line 32 to line 34. In
this interval, key does not exist anywhere in the table.
Therefore, we can always linearize search to a point of
time in that interval. This satisfies the requirement that
the linearization point must be between the time when
search is invoked and when it responds.

Henceforth, search is linearizable.
Lemma 3: The find operation is linearizable.
Lemma 4: The remove operation is linearizable.
Lemma 5: The insert operation is linearizable.
Now we consider the scenario where two instances of a

key co-exist in the table. When two concurrent insertions
try to insert the same key to two sub-tables, they might
both succeed and store it in two possible positions of that
key. As described in Section II, our hash table allows such
physical co-existence and then removes the instance in the
second sub-table before any mutating operations can operate
on these two positions. The subsequence operations can only
see one valid instance, i.e the one in the primary table.

Lemma 6: The correctness of the search operation is
immune of the concurrent physical existence of key in both
sub-tables.

The below propositions can be derived from the pseudo
code of find and relocate.

Proposition 1: If two instances of key co-exist in the
table when a find on key is invoked, it removes the instance
of the key in the second sub-table.

Proposition 2: If two instances of key co-exist in the
table when a relocate of key happens, it removes the instance
of the key in the second sub-table.

Now, we examine the effect of the existence of a dupli-
cated key to the correctness of insert/remove operations.

Lemma 7: The correctness of a remove and insert oper-
ation of a key in Lemma 4 and 5 holds even when two
instances of a key exist concurrently.

Theorem 1: The hash table algorithm is linearizable.
Proof: Each operation of the hash table is linearizable

follows Lemmas 2, 4, 5, and Lemmas 6, 7.
Now, we are ready to prove that the algorithm is lock-free.
Lemma 8: Either the help relocation operation finishes

after a finite number of steps or another operation must have
finished in a finite number of steps.

Lemma 9: If a help relocation operation finishes but fails
to relocate table[which][index], there must be another operation
making progress during that execution of the help relocation.



I(K3,V3) I(K5,V5) I(K7,V7)

S(K3,V4) S(K5,V5)

I(K3,V4) I(K5,V6) I(K7,V8)

S(K7,V7)

       I(K1,V1)

S(K1,V1)

I(K1,V2)

T1

T2

T3

Figure 2: Concurrent inserts can create the existence of two instances of a key in the table

We observe that help relocation can encounter an ABA
problem3 [8], even when we have a proper memory man-
agement to handle the hash table’s element. This scenario
can take place when there are threads executing line 166 to
relocate the same table[which][index]. Meanwhile, a new key
can be inserted to dst, and then deleted from dst. Some of
the threads doing relocation can observe that dst is pointing
to the inserted element, which leads to the CAS at line 170
to fail and the source of the relocation to be unmarked at
line 177. Meanwhile, other threads doing relocation might
perform the CAS at line 170 after the deletion, and therefore
succeed to copy table[which][index] to dst. As a result, the key
exists in two sub-tables. However, such co-existence caused
by the ABA does not hurt the correctness of our algorithm.
This is because our algorithm is capable of tolerating such
co-existence and can soon remove the one in the second sub-
table. Such removal is done by the calling thread performing
this help relocation, or any other thread doing find or relocate
which involves the slots storing the duplicated key (at line
60, 123 or 125, as discussed in Section II).

Lemma 10: The search operation finishes after a finite
number of steps, or another operation must have finished
after a finite number of steps.

Proof: The search operation has only one while loop
which, according to the proof of Lemma 2, repeats only
when there are relocations of keys stored in table[0][h1] and
table[1][h2]. Such relocations mean progress of the respective
operations performing them. This observation holds even
when the relocations move key(s) back and forth between two
sub-tables. In this case, the search might not make progress
but the relocation progresses towards the THRESHOLD num-
ber of relocation steps. When it reaches the THRESHOLD and
returns false, the insertion calling such a relocation fails and
proceeds with rehashing or resizing the hash table.

Lemma 11: A find operation finishes after a finite num-
ber of steps, or another operation must have finished after a
finite number of steps.

Lemma 12: An insert operation finishes after a finite
number of steps or another operation must have finished
after a finite number of steps.

Lemma 13: A remove operation finishes after a finite
number of steps or another operation must have finished
after a finite number of steps.

Theorem 2: The hash table algorithm is lock-free.

3ABA problem happens when an operation succeeds because the memory
location it read has not changed; but in fact, it has changed its value from
A to B and then back to A.

Proof: According to Lemmas 10, 12, 13, our cuckoo
hash table always makes progress after a finite number of
steps.

V. EXPERIMENTAL EVALUATION

This section evaluates the performance of our lock-free
cuckoo hash table and compares it with current efficient
hash tables. We use micro-benchmarks with several concur-
rent threads performing hash table’s operations, a standard
evaluation approach taken in the literature.

A. The Experimental Setup

We compare our lock-free cuckoo hashing with:
• A lock-based chained one: that uses a linked-list to store

keys hashed to the same bucket. A number of locks,
equal to the number of table segments, are used [14].

• Hopscotch hashing: a concurrent version of hopscotch
hashing, with each lock for a segment [7]. Thanks to
the kindness of the authors, we could obtain the original
source code of hopscotch hashing.

• LF Cuckoo: our new lock-free cuckoo hashing.
All the algorithms were implemented in C++ and com-

piled with the same flags. No customized memory manage-
ment was used. In all the algorithms, each bucket contains
either two pointers to a key and a value, or an entry to a
hash element, which contains a key and a value.

The experiments were performed on a platform of two
8-core Xeon E5-2650 at 2GHz with HyperThreading, 64GB
DDR3 RAM. In our evaluation, we sampled each test point
5 times and plotted the average. To make sure the tables did
not fit into the cache, we used a table-size of 223 slots. Each
test used the same set of keys for all the hash tables.

B. Results

Figure 3 presents the throughput result of the hash tables
in different distributions of actions. The commonly found
distribution is 90s/5i/5r, i.e 90% search, 5% insert and
5% remove. Other less common distributions were also
evaluated. One with more query-only operations: 94s/3i/3r.
Two others with more mutating operations: 80s/10i/10r and
60s/20i/20r. As it is commonly known that original cuckoo
hashing works with load factors lower than 49%, we used
the load-factor of 40%. The concurrency increased up to
32 threads, the maximum number of concurrent hardware
threads supported by the machines.

Our lock-free cuckoo hashing performs consistently better
than both the lock-based chained and the hopscotch hashing



0

20000

40000

60000

80000

100000

120000

4 8 12 16 20 24 28 32

o
p
s/
m
se
c

Threads

94% search, 3% insert, 3% remove

LF Cuckoo Hopscotch Chained

0

20000

40000

60000

80000

100000

120000

4 8 12 16 20 24 28 32

o
p
s/
m
se
c

Threads

90% search, 5% insert, 5% remove

LF Cuckoo Hopscotch Chained

0

20000

40000

60000

80000

100000

4 8 12 16 20 24 28 32

o
p
s/
m
se
cs

Threads

80% search, 10% insert, 10% remove

LF Cuckoo Hopscotch Chained

0

20000

40000

60000

80000

100000

4 8 12 16 20 24 28 32

o
p
s/
m
se
cs

Threads

60% search, 20% insert, 20% remove

LF Cuckoo Hopscotch Chained

0

20000

40000

60000

80000

100000

4 8 12 16 20 24 28 32

o
p
s/
m
se
cs

Threads

60% search, 20% insert, 20% remove

LF Cuckoo Hopscotch Chained

Figure 3: Throughput as a function of concurrency at load factor 40%

0

20000

40000

60000

80000

100000

120000

10 20 30 40

o
p
s/
m
se
c

Load factor

16 threads; 90% search, 5% insert, 5% remove

Cuckoo Hopscotch Chained

0

20000

40000

60000

80000

100000

120000

140000

10 20 30 40

o
p
s/
m
se
c

Load factor

32 threads; 90% search, 5% insert, 5% remove

Cuckoo Hopscotch Chained

Figure 4: Throughput as a function load factor at 16 and 32 threads

in all the access distribution patterns. This is because positive
searches need to examine either one or two table’s slots,
and negative searches need 3 read operations in most cases.
Cases that search might need to perform more read opera-
tions do happen but not often. This is because the possibility
that a relocation of a key happens concurrently as the key
is being queried is not high. In addition, our algorithm is
designed so that the search operations still make progress
concurrently with any other mutating operations. In contrast,
the lock-based chained and the hopscotch hashing lock the
bucket during insertion or removal.

Our lock-free cuckoo hashing maintains very high
throughput in scenarios with more mutating operations, i.e
10i/10r or 20i/20r, respectively. The insert operation in
cuckoo hashing might require relocations of existing keys

to make space for the new key. The algorithm, however,
has been fine designed to allow high concurrency between
relocation operations and other operations. Meanwhile, the
lock-based chained and the hopscotch hashing degrade
quickly when the percentage of mutating operations in-
creases, mainly because of their blocking designs.

Figure 4 presents throughput results as a function of load
factor. In cuckoo hashing, higher load factor means more re-
locations of existing keys during insertion. Therefore, we can
observe that the throughput of our lock-free cuckoo hashing
decreases when the load factor increases. Nevertheless, our
cuckoo hashing algorithm always achieve throughput 1.5−2
times as much as other algorithms, in both cases of 16 and
32 concurrent threads.

We now analyze the cache behavior of our lock-free



0

1

2

3

4

4 8 12 16 20 24 28 32

ca
ch

 m
is

se
s/

o
p

Threads

40% load factor; 90% insert, 5% insert, 5% remove

Cuckoo Hopscotch Chained

Figure 5: The number of cache-misses per operation.

cuckoo hashing. A positive search operation usually requires
reading 1 or 2 references and a negative one often requires
reading 3 references in the two-round query protocol, if no
concurrent relocation happens at the read slots. Otherwise,
search operations might need to perform more read oper-
ations, which might cause more cache misses. A removal
of a key often needs one additional CAS compared to a
search operation to delete the found element from the tables.
Insertion operations are more complicated. If an insertion
does not trigger any relocation, its behavior is similar to
the deletion operation. Otherwise, it can cause more cache
misses. We have recorded that the number of relocations is
approximately 2% of the total performed operations, in the
distribution of 90s/5i/5r. Therefore, we expect a higher
number of cache misses in our cuckoo hashing compared to
other hash tables. A measurement of number of cache misses
of our lock-free cuckoo hashing is presented in Figure 5. Our
lock-free cuckoo table triggers about 3 cache misses per op-
eration, a bit higher than hopscotch hashing and lock-based
chained hashing. Regardless of a slightly higher number of
cache misses, our lock-free cuckoo hashing has maintained
a good performance over the other algorithms, thanks to the
fine designed mechanism to handle concurrency.

VI. CONCLUSION

We have presented a lock-free cuckoo hashing algorithm
which, to the best of our knowledge, is the first lock-free
cuckoo hashing in the literature. Our algorithm uses atomic
primitives which are widely available in modern computer
systems. We have performed experiments that compares our
algorithm with the efficient parallel hashing algorithms from
the literature, in particular hopscotch hashing and optimized
lock-based chained hashing. The experiments show that our
implementation is highly scalable and outperform the other
algorithms in all the access pattern scenarios.

ACKNOWLEDGMENT

The authors would like to acknowledge the sup-
port of the European Union Seventh Framework Pro-
gramme (FP7/2007-2013) through the EXCESS Project
(www.excess-project.eu) under grant agreement 611183.

REFERENCES

[1] R. Pagh and F. F. Rodler, “Cuckoo hashing,” Journal of
Algorithms, vol. 51, no. 2, pp. 122 – 144, 2004.

[2] M. Zukowski, S. Héman, and P. Boncz, “Architecture-
conscious hashing,” in Proceedings of the 2nd International
Workshop on Data Management on New Hardware. ACM,
2006.

[3] D. Fotakis, R. Pagh, P. Sanders, and P. Spirakis, “Space
efficient hash tables with worst case constant access time,”
in Proceedings of the 20th Annual Symposium on Theoretical
Aspects of Computer Science (STACS), ser. LNCS, vol. 2607.
Springer Berlin Heidelberg, 2003, pp. 271–282.

[4] K. Ross, “Efficient hash probes on modern processors,” in
Proceedings of the IEEE 23rd International Conference on
Data Engineering (ICDE), 2007, pp. 1297–1301.

[5] A. Kirsch, M. Mitzenmacher, and U. Wieder, “More robust
hashing: Cuckoo hashing with a stash,” SIAM J. Comput.,
vol. 39, no. 4, pp. 1543–1561, Dec. 2009.

[6] D. Lea, “Hash table util.concurrent.concurrenthashmap,”
http://gee.cs.oswego.edu/cgi-bin/viewcvs.cgi/jsr166/src/main/
java/util/concurrent/, 2003.

[7] M. Herlihy, N. Shavit, and M. Tzafrir, “Hopscotch hashing,”
in The Proceedings of the 22nd International Symposium
on Distributed Computing (DISC), ser. LNCS, vol. 5218.
Springer Berlin Heidelberg, 2008, pp. 350–364.

[8] M. Herlihy and N. Shavit, The Art of Multiprocessor Pro-
gramming. San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc., 2008.

[9] P. Tsigas and Y. Zhang, “Evaluating the performance of
non-blocking synchronization on shared-memory multipro-
cessors,” SIGMETRICS Perform. Eval. Rev., vol. 29, no. 1,
pp. 320–321, Jun. 2001.

[10] D. Cederman, A. Gidenstam, P. H. Ha, H. Sundell, M. Papa-
triantafilou, and P. Tsigas, “Lock-free concurrent data struc-
tures,” in Programming Multi-Core and Many-Core Comput-
ing Systems, S. Pllana and F. Xhafa, Eds. Wiley-Blackwell,
2014.

[11] M. M. Michael, “High performance dynamic lock-free hash
tables and list-based sets,” in Proceedings of the 14th ACM
Symposium on Parallel Algorithms and Architectures (SPAA).
ACM, 2002, pp. 73–82.

[12] O. Shalev and N. Shavit, “Split-ordered lists: Lock-free
extensible hash tables,” Journal of the ACM, vol. 53, no. 3,
pp. 379–405, May 2006.

[13] C. Click, “A lock-free wait-free hash table,”
http://www.stanford.edu/class/ee380/Abstracts/070221
LockFreeHash.pdf, accessed: 2013-11-14.

[14] D. E. Knuth, The Art of Computer Programming, Volume 1
(3rd Ed.): Fundamental Algorithms. Redwood City, CA,
USA: Addison Wesley Longman Publishing Co., Inc., 1997.

[15] L. Lamport, “Time, clocks, and the ordering of events in a
distributed system,” Commun. ACM, vol. 21, no. 7, pp. 558–
565, Jul. 1978.

[16] M. Brunink, M. Susskraut, and C. Fetzer, “Boundless memory
allocations for memory safety and high availability,” in Pro-
ceedings of the 41st International Conference on Dependable
Systems Networks (DSN), 2011, pp. 13–24.

[17] N. Nguyen and P. Tsigas, “Lock-free cuckoo hashing,”
Chalmers University of Technology, Department of Computer
Science and Engineering, Tech. Rep. 2014:03, January 2014.


