
CONCURRENCY AND COMPUTATION: PRACTICE AND EXPERIENCE
Concurrency Computat.: Pract. Exper. (2011)
Published online in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/cpe.1801

Scalable group communication supporting configurable levels
of consistency

Anders Gidenstam 1, Boris Koldehofe 2, Marina Papatriantafilou 3 and
Philippas Tsigas 3,*,†

1University of Borås, Sweden
2University of Stuttgart, Germany

3Chalmers University of Technology, Sweden

SUMMARY

Group communication is deployed in many evolving Internet-scale cooperative applications such as mul-
tiplayer online games and virtual worlds to efficiently support interaction on information relevant to a
potentially very large number of users or objects. Especially peer-to-peer based group communication pro-
tocols have evolved as a promising approach to allow intercommunication between many distributed peers.
Yet, the delivery semantics of robust and scalable protocols such as gossiping is not sufficient to support con-
sistency semantics beyond eventual consistency because no relationship on the order of events is enforced.
On the other hand, traditional consistency models provided by reliable group communication providing
causal or even total order are restricted to support only small groups.

This article proposes the cluster consistency model which bridges the gap between traditional and cur-
rent approaches in supporting both scalability and ordered event delivery. We introduce a dynamic and fault
tolerant cluster management method that can coordinate concurrent access to resources in a peer-to-peer
system and can be used to establish fault-tolerant configurable cluster consistency with predictable reliabil-
ity, running on top of decentralised probabilistic protocols supporting scalable group communication. This
is achieved by a general two-layered architecture that can be applied on top of the standard Internet commu-
nication layers and offers a modular, layered set of services to the applications that need them. Further, we
present a fault-tolerant method implementing causal cluster consistency with predictable reliability, running
on top of decentralised probabilistic protocols supporting group communication.

This paper provides analytical and experimental evaluation of the properties regarding the fault toler-
ance of the approach. Furthermore, our experimental study, conducted by implementing and evaluating the
two-layered architecture on top of standard Internet transport services, shows that the approach scales well,
imposes an even load on the system, and provides high-probability reliability guarantees. Copyright © 2011
John Wiley & Sons, Ltd.

Received 12 May 2011; Accepted 27 May 2011

KEY WORDS: Gossiping; Group communication; Optimistic causal order

1. INTRODUCTION

Collaborative environments such as distributed interactive simulation [1–3], virtual worlds [4] and
massively scalable online multiplayer games [5,6] allow a possibly large set of concurrently joining
and leaving processes to share and interact on a set of common replicated objects. State changes
on the objects are distributed among the processes by update messages (also known as events).
Providing the infrastructure to support such applications and systems places demands for group

*Correspondence to: Philippas Tsigas, Chalmers University of Technology, S-412 96 Göteborg, Sweden.
†E-mail: tsigas@chalmers.se

Contract/grant sponsor: Publishing Arts Research Council; contract/grant number: 98–1846389

Copyright © 2011 John Wiley & Sons, Ltd.

A. GIDENSTAM ET AL.

communication, with guarantees on reliability, consistency and scalability, even in the presence of
failures and variable connectivity of the peers in the system.

Because these properties are in general conflicting, research in group communication has so far
investigated two main classes of group communication services: reliable group communication and
peer-to-peer-based group communication. Reliable group communication [7–10] has contributed a
lot to provide fault-tolerant group communication services and support for consistency, by address-
ing both causal order as well as total order delivery semantics. However, their scalability and
robustness to frequently changing groups of processes is limited.

In contrast, peer-to-peer-based group communication [11–20] has reduced the requirements with
respect to reliability and consistency by mainly focusing on highly dynamic group memberships
and dissemination strategies. Although approaches like gossip-based group communication proto-
cols [17–20] are promising to increase their robustness [21], peer-to-peer group communication
protocols do not provide any guarantees on the order at which messages are delivered. Hence, they
are not suited for stronger guarantees than eventual consistency.

Because the decisions of collaborative applications often depend on the input of multiple events,
such applications could highly benefit from an event delivery service that satisfies the causal order
relation; that is, it satisfies the ‘happened before’ relation as originally introduced by Lamport [22].
However, supporting scalable detection of causal relations between events is a challenging task,
because the corresponding timestamps induces a large overhead that grows linear with the number
of processes eligible to send events [23, 24]. Especially dynamic changes in the group membership
require additional mechanisms to coordinate the sending of updates for large groups of processes.

In this paper, we propose a consistency management method denoted by causal cluster consis-
tency, providing optimistic causal delivery of update messages to a large set of processes. Causal
cluster consistency takes into account that for many applications, the number of processes which are
interested in performing updates can be low compared with the overall number of processes which
are interested in receiving updates and maintaining replicas of the respective objects. Therefore, the
number of processes that are entitled to perform updates at the same time is restricted to n, which
also corresponds to the maximum size of the timestamps used. However, the set of processes entitled
to perform updates is configurable and may change dynamically.

We address this problem by first proposing a distributed cluster management. A cluster repre-
sents a region of interest in a peer-to-peer system, for example, it may consist of a set of resources
or objects which processes would like to access. In our context, it is used to coordinate the man-
agement of entries to a vector clock by means of a ticketing mechanism. Each peer entitled to
disseminate a message will receive a ticket corresponding to a unique vector clock entry. The clus-
ter management ensures that never two processes will perform an action with respect to the same
ticket. Still, the cluster management supports a decentralised organisation of the cluster and allows
dynamic re-assignment of vector timestamps in the presence of failures and churn; that is, peers can
continuously join and leave the cluster.

Furthermore, we present a two-layer architecture implementing causal cluster consistency. The
approach can use lightweight communication algorithms like gossiping which can in turn run using
standard Internet (or other) transport services. Our method is also designed to tolerate a bounded
number of process failures, by using a combined push-and-pull (recovery) method. We also present
an implementation and experimental evaluation of the proposed method and its potential with
respect to reliability and scalability, by building on recently evolved large-scale and lightweight
probabilistic group communication protocols. Our implementation and evaluation have been carried
out in a real network and also in competition with concurrent network traffic by other users.

Structure of the article
In Section 2, we discuss related work on resource management in peer-to-peer applications. In
Section 3, we describe the problem and introduce notation and definitions. Then we present two
algorithms implementing a dynamic cluster management. The protocol of Section 4.1 works in
the absence of failures and illustrates the basic idea, whereas Section 4.2 describes and proves a
fault-tolerant membership protocol. In Section 5, we introduce a layered architecture for achieving

Copyright © 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2011)
DOI: 10.1002/cpe

CONSISTENCY MANAGEMENT FOR SCALABLE GROUP COMMUNICATION

causal cluster consistency and the two-layered protocol implementing it. Section 6 discusses the
implementation and experimental evaluation of the proposed protocol running on top of standard
Internet transport services. We conclude with a discussion of the presented results and future work.

2. RELATED WORK

A large set of applications can be classified as collaborative environments. Originally deployed in
the context of military simulations [1], they have been looked from the perspective of distributed
interactive simulations [1–3] and more recently in the context of virtual worlds (e.g. [4]) and mas-
sively scalable distributed online games (e.g. [5, 6]). In general, they can be applied in many more
settings such as education, social networks, control of business processes and many more. A char-
acteristic for such applications is that the transfer of the full state of objects is costly in terms of
bandwidth and latency. Therefore, distributed interactive simulations and distributed online games
typically maintain replicas of objects locally and interact by sending update events.

This has early raised the question of the communication paradigm to exchange the updates such
that consistency of the replicas is ensured. Although some applications try to resolve inconsistencies
at the application level, for instance, by dead reckoning on position information, work in distributed
simulation has realised already at an early stage the reliable group communication supporting causal
and total order semantics is attractive in establishing such guarantees.

Research in distributed computing has come up with robust solutions for achieving reliable causal
delivery in the occurrence of faults [7–10]. However, these approaches are not suitable to cope with
variations in needs and behaviour. Further, because the causal order semantic requires that an event
is delivered only after all causally preceding events have been delivered, the need to always recover
lost messages can lead to long latencies for events, whereas applications often need short delivery
latencies. Moreover, the latency in large groups can also become large because a causal reliable
delivery service needs to add timestamp information, whose size grows with the size of the group,
to every event.

To improve on latency, optimistic causal order [25, 26] can be suitable for systems where events
are associated with deadlines. In contrast to the strict causal order semantics, optimistic causal order
only ensures that no events that causally precede an already delivered event are delivered. Events
that have become obsolete do not need to be delivered and may be dropped. Nevertheless, optimistic
causal order algorithms aim at minimising the number of lost events. In order to determine the pre-
cise causal relation between pairs of events in the system processes can use vector clocks [27, 28],
which also allow detection of missing events and their origin. However, because the size of the
vector timestamps grows linearly with the number of processes in the system, one may need to
introduce some bound on the growing parameter to ensure scalability.

Peer-to-peer based application layer multicast and group communication protocols such
as [11–15, 17–20] aim to support large groups of dynamically changing processes. In general, these
approaches can be classified in groups whose goal is (i) to built in a decentralised manner a dis-
semination tree [11, 12, 15, 16] or mesh [16] by relying on unstructured peer-to-peer networks; (ii)
to embed a dissemination tree into a structured peer-to-peer overlay [13]; or (iii) to rely on a ran-
dom graph topology [17–20] for robust event dissemination. Although dissemination trees perform
most efficient in terms of message overhead, they are vulnerable to message loss during periods
of failures. Birman et al. [17] have proposed gossiping as a paradigm to ensure reliable and scal-
able dissemination in the presence of failures. Subsequent work [18, 19] has also shown how to
provide decentralised group membership for gossiping by relying on a partial view on the whole
system. Moreover, the robustness of gossiping has been intensively analysed (cf. [21, 29] and sev-
eral improvements accounting for aspects like buffer management [20] and security [30] have been
proposed. In [5], it is shown that probabilistic group communication protocols can perform well also
in the context of collaborative environments. However, per se, approaches to scalable and reliable
group communication do not provide any ordering guarantees. To provide guarantees for ordered
delivery, one needs control mechanisms that coordinate the concurrent dissemination of events as
achieved by the cluster management protocol of this article.

Copyright © 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2011)
DOI: 10.1002/cpe

A. GIDENSTAM ET AL.

The way structured peer-to-peer systems share information in the system (cf. e.g. [31–35]) has
been of relevance and inspiration to this work. Note, however, that uniform hashing, as used in many
peer-to-peer systems, is not suitable to solve the cluster management problem because the number
of processes is expected to be larger than the number of available tickets in a cluster. Even in the
situation of network partitioning, the cluster management needs to ensure that no two processes will
create an event with respect to the same ticket.

One may notice some similarity between the problem in this article and the l-exclusion prob-
lem [36, 37] which allows at most l concurrent processes to enter the critical section. In contrast,
the cluster management allows in a dynamically evolving set of processes to associate each process
with a unique ticket. Nevertheless, the solution to the cluster management problem proposed here
could also serve as solution basis to the l-exclusion problem.

Our approach integrates and builds on earlier of our work for multipeer systems [20, 29, 38, 39].
The aim of these work has been on providing predictable reliability; that is, guaranteeing that a
certain condition holds at a set of destinations with high-probability.

3. NOTATION AND PROBLEM STATEMENT

Throughout the article, we will use the following model of a collaborative application (cf. Figure 1).
The application is made up of a group denoted by G D fp1,p2, : : :g of dynamically joining and
leaving processes. Furthermore, B D fb1, b2, : : :g denotes the set of replicated objects used by the
collaborative application. Processes maintain their replicas of interest locally. Furthermore, we con-
sider that B is partitioned into disjoint clusters C1,C2, : : : with [iCi � B , where for each cluster
Ci all peers are interested in updates messages. Let C denote a cluster and p a process in G, then
we write p 2 C if p is interested in objects of C . Note that the clustering of objects is very specific
to the application. For instance, in a multiplayer game like Planet …4 [40], a simple partitioning
according to the virtual coordinates of objects is applied. This ensures that state updates of objects
like moving planes are only disseminated in a limited region of interest. The scalability of the game
is increased by reducing the number of messages within a cluster. In order to be useful in a game,
it is important that such a clustering supports dynamically changing interest as well as support the
scalable, reliable and ordered dissemination of update messages.

Causal cluster consistency allows any processes in C to maintain the state of replicated objects in
C by applying updates in optimistic causal order. However, at most n processes (n is assumed to be
known to all processes in C) are eligible to propose updates to the objects in C at the same time. In
the aforementioned game, this means, that the application unit sending update message for a specific
plane should be a member of the cluster which coordinates the updates of the geographic region in
which the plane is currently moving. At most n processes are eligible to send concurrently update

leave

join

objects / replicas

response

create/modify/delete

Application

processes

Figure 1. Illustration on the interaction between processes and objects in a collaborative application.

Copyright © 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2011)
DOI: 10.1002/cpe

CONSISTENCY MANAGEMENT FOR SCALABLE GROUP COMMUNICATION

messages for objects associated with this region. The updates of the plane can be observed by any
process joining the cluster. In particular, update messages will respect the causal order relationship.
For instance, given a plane has landed at an airport, then events of passengers leaving the plane will
be guaranteed to be delivered after the causally preceding landing event.

Processes which are eligible to propose updates for the objects of a cluster C are called coordi-
nators of C . To become a coordinator of C in our cluster model, a process needs to obtain a ticket.
Correspondingly, a cluster manages a maximum of n tickets according to the number of coordi-
nators. The set of coordinators of C is denoted by CoreC . The set of coordinators is configurable
and can change dynamically over time. Throughout the article, we will use the term events when
referring to update messages sent or received by processes in a cluster.

The propagation of events in each cluster is achieved by multicast communication. It is not
assumed that all processes of a cluster will receive an event which was multicast, nor does the mul-
ticast need to provide any ordering by itself. Any lightweight probabilistic group communication
protocol in the literature [18–20] would be suitable. We refer to such protocols as PrCast. PrCast is
assumed to provide the following properties:

� an event is delivered to all destinations with high probability; and
� decentralised and lightweight group membership, that is, a process can join and leave a mul-

ticast group in a decentralised way and processes do not need to know all the members of the
group.

Within each cluster, we apply vector timestamps of the type used in [41]. Let the coordinator
processes in CoreC be assigned to unique identifiers in f1, : : : ,ng (a process which is assigned to an
identifier is also said to own this identifier). Then a time stamp t is a vector whose entry t Œj � corre-
sponds to the t Œj �th event send by a process that owns index j or a process that owned index j before
(this is because processes may leave and new processes may join CoreC). A vector time stamp t1 is
said to be smaller than vector timestamp t2 if 8i 2 f1, : : : ,ng t1Œi � 6 t2Œi � and 9i 2 f1, : : : ,ng such
that t1Œi � < t2Œi �. In this case, we write t1 < t2.

For any multicast event e, we write te for the corresponding timestamp of e. Let e1 and e2 denote
two multicast events in C , then e1 causally precedes e2 if te1 < te2 , whereas e1 and e2 are said to
be concurrent if neither te1 < te2 nor te2 < te1 . Further, we denote the index owned by the creator
of event e as index.e/ and the event id of event e as hindex.e/, teŒindex.e/�i.

Throughout the article, it is assumed that each process p maintains for each cluster C , a cluster-
consistency-tailored logical vector clock (for brevity also referred to as a CCT-vector clock) denoted
by clockCp . A CCT-vector clock is defined to consist of a vector time stamp and a sequence num-
ber. We write T Cp when referring to the timestamp and seqCp when referring to sequence number

of clockCp . T Cp is the timestamp of the latest delivered event, whereas seqCp is the sequence num-
ber of the last multicast event performed by p. In Section 5, when describing the implementation
of causal cluster consistency, we explain how these values are used. Note, whenever we look at a
single cluster C at a time, we write for simplicity clockp , Tp and seqp instead of clockCp , T Cp and
seqCp , respectively.

In this article, we seek to address the following two main questions:

� How to manage for a cluster C , such that CoreC can evolve dynamically and robust against
process crashes as well as partitions of the network.
� How to design a generic dissemination mechanism in combination with the cluster management

in order to provide efficiently the optimistic causal order relation.

4. DYNAMIC CLUSTER MANAGEMENT

In the following, we present a method that allows interleaved cjoin and cleave operations. The main
idea of our approach is to make every process in the core of the cluster the coordinator of a subset
of the tickets f0 : : : n � 1g. We will ensure that there are never two processes that simultaneously
own or coordinate the same ticket. The basic idea is first discussed in Section 4.1, where we assume

Copyright © 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2011)
DOI: 10.1002/cpe

A. GIDENSTAM ET AL.

that communication is reliable and processes do not fail. In Section 4.2, we show how to extend
the presented ideas under a realistic failure model. Sections 4.3 and 4.4 analyse the algorithm with
respect to correctness and liveness properties.

4.1. Basic algorithm

We assume that tickets form a cyclic relation according to their number; that is, the succeeding ticket
to ticket i is ticket i�1 mod n, whereas the preceding ticket to ticket i is ticket iC1 mod n. Each
process which becomes coordinator of the cluster will own one ticket. Let i be the ticket owned
by process p, also denoted as ticket .p/ D i . The successor of p is the closest process which can
be reached by following the chain of succeeding tickets to i . Accordingly, the predecessor of p is
the closest process which can be reached by following the chain of preceding tickets. Moreover, we
denote q the d th closest successor (predecessor) of p if the process q is reachable in d steps from
p by following the chain of successors (predecessors) starting at p.

In order to manage free tickets, the processes which own tickets also become the coordinators of
a subset of all tickets maintained in a cluster. We define the set of tickets which is coordinated by
a process in terms of successor and predecessor. Let p and q denote two processes owning tickets
i and j , respectively and let q be the successor of p. Process p coordinates its own ticket i and all
tickets succeeding its own ticket and preceding ticket j . Let the coordinated set, Sp , denote the set
of tickets coordinated by p. Formally, we write

Sp D f l j l D i � k mod n, 06 k <
minfm j j D i �m mod n, m> 0gg.

Figure 2 gives an example of how processes maintain and coordinate tickets, for example p2 owns
ticket 4 and coordinates the tickets f2, 3g.

Lemma 4.1
Let C denote a cluster with CoreC ¤ ; and no two processes own the same tickets. Then

� for p, q 2 CoreC and p ¤ q) Sp \ Sq D ;,
� [p2CoreCSp D f0, : : : ,n� 1g.

t3

t4

t5

t6

t7

t10

t9

t8

t2

t11

t0

t1

p2

p3

p4

p5 p1

Figure 2. Illustration on how processes maintain and coordinate tickets of a cluster. An arrow from process
pi to a ticket indicates that pi is the respective coordinator.

Copyright © 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2011)
DOI: 10.1002/cpe

CONSISTENCY MANAGEMENT FOR SCALABLE GROUP COMMUNICATION

Proof
The lemma follows immediately from the definition of coordinated set by a process. �

Algorithm 1 presents a decentralised solution which can coordinate the tickets of a cluster if no
failures occur. The algorithm ensures that no two processes coordinate the same tickets at the same
time; the key to achieve this is by preserving the successor/predecessor relation between coordina-
tors. A process p which wishes to become coordinator in the cluster selects an arbitrary coordinator.
To enforce a good load balance of requests to coordinators, the selection by p could take the coordi-
nator of a ticket chosen uniformly at random from the set of available tickets (this can be known by
contacting any coordinator in the cluster). Let q be the selected coordinator and p send a cjoin mes-
sage to q. Before responding to p’s request, q will first serve all previous cjoin and cleave operations
it received earlier by other processes. In this way, interleaving cjoin and cleave requests with respect
to the same coordinator become serialised. If q has decided to perform a cleave operation or does
not have any available tickets, it will reply negatively to p. If q is ready to serve the cjoin request by
p, it will assign a ticket t 2 Sq to p (possibly reflecting the random choice when determining q as
a suitable coordinator). Let r be q’s successor. Process q will send a message ACKCJOIN to p with
information about t and r to p and will select p as its new successor.

When p receives the message ACKCJOIN, p will select q as its predecessor and r as its new
successor. In order to allow process r to leave the cluster and maintain its predecessor information
correctly, p must, before being able to perform as a coordinator, send a message NEWSUCC to
process r . If r is not intending to leave the cluster, it will reply by sending an acknowledgement
ACKSUCC to p and update its predecessor to be p. Process p can then perform as a coordinator of
the cluster.

In the case a process r intends to leave the cluster, it first processes all previously received cjoin
and cleave requests and sends afterwards a CLEAVE message including information of the succes-
sor of r , say s, to its predecessor, say q. If r receives afterwards from another process p, a message
NEWSUCC, it will again send a message CLEAVE to p. Process r only leaves the cluster after it has
received a message ACKCLEAVE.

A process p serves a cleave message by r only if r is the current successor of p. In this case,
p will send a message ACKCLEAVE to r . Thereafter, p sets s as its new successor and sends a
message NEWSUCC to s. Note that p may have to subsequently serve CLEAVE messages from its
new successor until finally receiving a message ACKSUCC from a successor. However, after each
ACKCLEAVE, a process coordinates a larger amount of tickets and hence, the number of subsequent
NEWSUCC messages before a process can perform as a coordinator is bounded.

Once a process may perform as a coordinator, it also PrCasts that it became a coordinator in
CoreC and that it owns ticket t . Note that the PrCast operation is only of relevance to inform other
processes about p being a coordinator, but it is not necessary to prevent any pair of distinct processes
from maintaining the same ticket.

In order to verify correctness of the protocol as stated in Theorem 4.1, recall that according
to Lemma 4.1 correctly preserving the relation among successors and predecessors, suffices to
guarantee unique assignment of processes to tickets. This is shown in Lemma 4.2.

Lemma 4.2
Let q be a coordinator in CoreC with successor r , serving a cjoin operation of p. Then

� any interleaving cjoin operation will take effect earliest after processes p and q successfully
updated their successor and predecessor,
� an interleaving cleave operation of r will successfully be managed at p and therefore preserve

the predecessor successor relation of CoreC correctly.

Theorem 4.1
Let † WD �1, : : : , �m denote a sequence of potentially interleaved operations on a cluster C where
�i corresponds to a cleave or cjoin operation. If † maintains CoreC to include at least one process,
the algorithm guarantees for any p, q 2 CoreC

Copyright © 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2011)
DOI: 10.1002/cpe

A. GIDENSTAM ET AL.

Algorithm 1 Cluster management in the absence of failures
VAR

Cviewp: vector of processes
ImmedSuccp: immediate successor of process p
ImmedPredp: immediate predecessor of process p
statep: state variable
ticketp: the ticket owned by process p

Message types:
CJOIN, CLEAVE, ACKJOIN, ACKSUCC, ACKCLEAVE, REJECT

Initp:
ticketp WD ?
statep WD joining
Send hCJOIN,pi to a known coordinator in CoreC .

Initialisation of variables when cjoin accepted

On process p receives hACKCJOIN, i , j , Cviewi from process q
Cviewp WD Cview
p becomes the coordinator for all tickets from i down to j C 1
statep WD coordinator
ticketp WD i
ImmedSuccp WD CviewŒj �
ImmedPredp WD q
Send hNEWSUCCi to CviewŒj �

Successor acknowledged

On process p receives hACKSUCCi from process q
ImmedSuccp WD q

Receiving a cjoin request

On process p being coordinator of tickets i down to j C 1 receives hCJOINi from process q
if statep ¤ coordinator then

Send hREJECTi to q
else

Process all previously received CJOIN and CLEAVE requests
if jSpj> 1 then

Select ticket t 2 Sp n fig.
CviewŒt� WD q
ImmedSuccp WD q
Send hACKCJOIN, t , j , Cviewi to q

else
Send hREJECTi to q

end if
end if

A new predecessor

On process p being coordinator of tickets i down to j C 1 receives hNEWSUCCi from q
if statep D leaving then

Send hCLEAVE, CviewŒj �i to q
else

Send hACKSUCCi to q
ImmedPredp WD q

end if
Leaving the cluster

On process p being coordinator of tickets i down to j C 1 decides to leave the cluster
statep WD leaving
Serve all previously received cjoin and cleave requests
Send hCLEAVE, CviewŒj �i to ImmedPredp

Receiving a cleave request

On process p being coordinator of tickets i down to j C 1 receives hCLEAVE, ri from q
if qD ImmedSuccp and p is not serving any cjoin and statep ¤ leaving then

Send hACKCLEAVE,qi
Send hNEWSUCC, ri
ImmedSuccp WD r

end if
Receiving a cleave acknowledgement

On process p being coordinator of tickets i down to j C 1 receives hACKLEAVE,pi from q
if statep D leaving then

statep WD not_a_coordinator
ticketp WD ?

end if

Copyright © 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2011)
DOI: 10.1002/cpe

CONSISTENCY MANAGEMENT FOR SCALABLE GROUP COMMUNICATION

� unless p D q, Sp \ Sq D ;;
� unless p D q, p and q maintain different tickets.

4.2. Supporting link and process failures

In the following, we present an algorithm which extends the previous framework of Section 4 to
deal with link and process failures. It is assumed that processes fail by stopping, we do not con-
sider Byzantine faults. Links may be slow or failing. Communication between pairs of processes is
connection oriented. Let ı denote the maximum tolerated message delay and let p and q denote pro-
cesses. Connection oriented communication guarantees: if p sends a message,M , to q, p expects to
receive a status aboutM not later than time ı. If status ofM is OK, then q has received M not later
than time ı. Otherwise p has no knowledge whether q received the message or not; we say then that
p weakly detects q as faulty. Because the algorithm works in rounds, we also assume that processes
have clocks which maintain approximately the same speed. Let T denote a time period larger than
the maximum tolerated message delay. If m processes periodically with period T send messages to
p , then p will receive m� � < m0 < mC � messages during any time interval of length T which
starts after p has received the messages sent in the previous period by the m sources, when none of
the m processes failed.

Algorithm 2 Decentralised and fault tolerant cluster management
VAR
Lp: set consisting of 2kC 1 predecessors p received from its immediate predecessor
Rp: set consisting of p and 2k predecessors successfully sent to its immediate successor
ALIVEp: set of processes which p received an ALIVE message from during a round
Cviewp: vector of processes
ImmedSuccp: immediate successor of p
ImmedPredp: immediate predecessor of p
TempRoundsp: indicates the number of rounds for which a process is not sending UPDATE messages
statep: state variable
ticketp: the ticket owned by process p
Pexclude: probability to start exclusion algorithm after weakly detecting a faulty successor

Message types:
CJOIN, ALIVE, UPDATE, ACKJOIN, EXCLUDE, REQCOORD, ACKEXCLUDE

Initp:
ticketp WD ?
statep WD joining
Send hCJOIN,pi to a known coordinator in CoreC .

Main Loop of the coordinator algorithm:

Do in every round (duration longer than PrCast) while statep D coordinator
if jALIVEp \Lpj< kC 1 then

statep WD disconnected
ticketp WD ?
exit loop

end if
Send hALIVE,pi to 2kC 1 closest successors in Cview.
if TempRoundsp D 0 then
R WD fr 2Lp j r is among the 2k closest predecessors of pg [p
STATUS := Send hUPDATE,Ri to ImmedSuccp
if STATUS is OK then
Rp WDR

else
Run exclusion algorithm with probability Pexclude

end if
else

TempRoundsp WD TempRoundsp � 1
end if

Copyright © 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2011)
DOI: 10.1002/cpe

A. GIDENSTAM ET AL.

Algorithm 3 Handling of messages
Initialisation of variables when cjoin succeeds

On process p receives hACKCJOIN,L, i , j , Cviewi from q
Cviewp WD Cview
Lp WDL
Rp WD ;
process p becomes the coordinator for all tickets i down to j C 1
ticketp WD i
ImmedSuccp WD CviewŒj �
ImmedPredp WD q
TempRoundsp WD 0
Send hALIVE,pi to 2kC 1 closest successors in Cviewp .

Handling of UPDATE messages

On process p receiving hUPDATE,Ri
Lp WDR

Receiving a cjoin request

On process p being coordinator of tickets i down to j C 1 receives hCJOINi from q
if .jSpj> 1/^ .TempRoundsp D 0/ then

Select ticket t 2 Sp .
CviewŒt� WD q
ImmedSuccp WD q
R WD fr 2Lp j r is among the 2k closest predecessors of pg [p
STATUS := Send hACKCJOIN,R, t , j , Cviewi
if STATUS is OK then
Rp WDR

else
Run exclusion algorithm with probability Pexclude

end if
else

Send hREJECTi to q
end if

The algorithm performs in rounds, where the time between two consecutive rounds is assumed to
be long enough to host a PrCast; that is, to inform members of the cluster C about a successful cjoin
operation (if any has happened). The fault tolerance of the algorithm is controlled by the parameter
k. In a round of the algorithm, a process can tolerate in its 2kC1 neighbourhood up to k process or
communication failures. The algorithm is described in pseudocode (cf. Algorithms 2, 3 and 4) and
below, we present the ideas informally. During a round, the algorithm maintains the following two
invariants:

� Any nonfaulty process p in CoreC which does not perform a cleave operation remains in CoreC
as long as p knows that at least k C 1 of its 2k C 1 closest predecessors have not experienced
any process or link failures.
� Failed processes will eventually be excluded from CoreC and processes which perform cjoin

subsequently may re-use the respective tickets.

The first invariant is achieved by the processes in CoreC sending ALIVE messages to their 2kC1
closest successors in each round. A process that receives less than k C 1 ALIVE messages during
a round thinks that it is considered as failed and immediately stops being a coordinator and leaves
CoreC (cf. Algorithm 2 and Figure 3(I)–(II)).

In order to manage the exclusion scheme (cf. Algorithms 3, 4 and Figure 3(III)), a process p
maintains two sets denoted by Lp and Rp . The set Lp is used to store p’s ‘knowledge’ of its 2kC1
predecessors (this information is received from its immediate predecessor), whereas Rp contains
the information in p’s last successful UPDATE message to p’s immediate successor containing the
2k closest predecessors of p and p itself. Both sets are needed to determine whether a range of coor-
dinators can be excluded. When p joins CoreC , Lp is initialised by the coordinator performing the
cjoin operation for p. The set Rp is initially empty. Each process also maintains an array denoted
by Cviewp which is p’s local view on the set of coordinators CoreC ; that is, if CviewpŒi �D q holds,
then p assumes q to be the coordinator owning ticket i .

Copyright © 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2011)
DOI: 10.1002/cpe

CONSISTENCY MANAGEMENT FOR SCALABLE GROUP COMMUNICATION

Algorithm 4 Exclusion Algorithm
Do

STATUS := FALSE
while (p¤ succ(ImmedSucc)) ^ (STATUS is FALSE) do

ImmedSucc := succ(ImmedSucc) {Finds the next possible successor from Cview}
STATUS := SendhEXCLUDE,pi to ImmedSucc

end while
if (STATUS is True) ^ (p receives hACKEXCLUDE,Lqi from q) then
Epq := all tickets succeeding ticket.p/ and preceding ticket.q/
Send hREQCOORD,Epqi to all processes in Lq \Rp
Wait for time 2ı for replies of type ACKCOORD
if p receives > kC 1 replies of type ACKCOORD then

{Do not send UPDATE messages while some excluded processes may still be alive}
TempRoundsp WD dist.p,q/� 1

else
statep WD disconnected
ticketp WD ?
exit loop

end if
else

statep WD disconnected
ticketp WD ?
exit loop

end if

On q receives hEXCLUDE,pi
ReplyhACKEXCLUDE,Lqi

On r receives < REQCOORD,Epq >
if r 62Epq then

Send hACKCOORDi to p
Remove processes inEpq from Cview

end if

a b c d e f g

(II) 2k+1 ALIVE 2k+1 ALIVE

a b c d e f g

L = {a,b,c}
R = {b,c,d}
ImmedSucc = e

UPDATE({b,c,d})

(I)

a b c d e f g

(III)
1. EXCLUDE(d)

2. ACKEXCLUDE({c,d,e})

Lf = {c,d,e}

3.REQCOORD({e})

4.ACKCOORD
Ld = {a,b,c}
Rd = {b,c,d}

Figure 3. Example of the fault-tolerant cluster management algorithm with k D 1 focusing on the process
d . (I) and (II) UPDATE messages and ALIVE messages under normal operation. (III) Message exchanges

during an exclusion of d ’s immediate successor e.

In each round, p proceeds if it has received, during a round, at least kC 1 ALIVE messages from
processes in Lp , otherwise p thinks that it is considered as failed (cf. below for this case). If p also
successfully received an UPDATE message from its direct predecessor proposing a new set L0p ,
which includes 2kC 1 predecessors of p, then p sets Lp D L0p .

Copyright © 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2011)
DOI: 10.1002/cpe

A. GIDENSTAM ET AL.

If p may proceed, it creates 2k C 1 ALIVE messages and sends them to the 2k C 1 closest
successors known from Cviewp . Moreover, it sends an UPDATE message to its direct successor
containing a set denoted R0p . The set R0p contains the 2k closest predecessors in Lp and p itself. If
p’s transmission of the message UPDATE(R0p) to its direct successor is successful, then p will set
Rp DR

0
p .

Assume a process weakly detects its successor r to be faulty, for instance, because it could not
establish a connection to r for some time. In order to release the tickets owned and coordinated by
r , which is potentially faulty, p will try to contact the next closest successor in Cviewp reachable;
that is, not detected as weakly faulty. Let q be the next closest successor reachable by p then q will
reply by sending Lq . Process p will request from all processes inRp\Lq to be the new coordinator
of all tickets succeeding p and preceding q denoted by Epq . Only if p receives kC1 acknowledge-
ment messages from destinations in Rp \Lq , p becomes the temporary coordinator of the tickets,
otherwise p thinks it is considered as failed.

Although being a temporary coordinator, p behaves like an ordinary coordinator; however, it does
not attempt to change Lq by sending an UPDATE message and it does not serve cjoin requests. All
processes inEpq which neither have failed nor think they are considered to have failed are said to be
alive. Once there does not exist any alive processes in Epq , p behaves like an ordinary coordinator
again. Note that the time for a process remaining a temporary coordinator is bounded by at most
the distance between p’s and q’s tickets because in every round, the closest alive process in Epq is
guaranteed to think that it is considered to have failed at the end of the round.

Processes which are requested to acknowledge an exclusion interval Epq only acknowledge if
their ticket is not contained in Epq . Processes which acknowledged the exclusion of a process will
remove processes in Epq from Cview and prevent any updates of tickets corresponding to Epq for
dist.p, q/ rounds.

4.3. Correctness of the cluster management method

In order to prove correctness of the membership algorithm of Section 4.2, we need to show that
even in the occurrence of failures, (i) two processes will never create conflicting events; and (ii) the
algorithm invariants are maintained.

In Lemma 4.3, we first consider the behaviour of the algorithm when no failures occur.

Lemma 4.3
Let neither process failures, link failures, or slow links occur and processes always receive suffi-
ciently many ALIVE messages. For any sequence of interleaving cjoin operations, the membership
scheme is equivalent to the membership protocol of Section 4.

Proof
Both algorithms show only different behaviour if p executing Algorithm 2 weakly detects its imme-
diate successor r to be faulty. Because neither processes, nor links do fail p must have detected r
as faulty because r thinks it has been considered to be failed. This implies that r did not receive
sufficiently many ALIVE messages or decided to leave the cluster, which is a contradiction to our
assumption. �

The critical case to analyse is after process p initiated the exclusion of Epq . Lemma 4.4 states
that during a round, the closest successor in Epq will fail.

Lemma 4.4
Let Epq denote the set of processes to be excluded, where p coordinates the exclusion and q is
the new successor of p. Further, let A denote the set of processes which received sufficiently many
ALIVE messages in the current round. Let r denote the closest process in Epq which is still alive.
Then

A\ .Lr �Epq �Rp/D ;.

Copyright © 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2011)
DOI: 10.1002/cpe

CONSISTENCY MANAGEMENT FOR SCALABLE GROUP COMMUNICATION

Proof
We can associate the passing of an UPDATE message with a token. We say process q received a
token from p if there is a chain of consecutive UPDATE messages originating in p and ending in
q. We define a relation �, where p � q if q has received a token from p when it was created (i.e.
the time it performed the cjoin operation), whereas p 6� q if q did not receive a token from p at the
time it was created.

Consider case p � r : In this case, Lr � Epq � Rp is either empty or it contains destinations
which where in a previous Cview of p. However, when p successfully updated Rp , the respective
destinations were guaranteed to be excluded by the predecessors of p. Hence, this case yields

A\ .Lr �Epq �Rp/D ;

Let p 6� r : Any token originated by p and received by q must have been received by r . In par-
ticular, if Cview of q was influenced by p, also r must have received influence by p. Then we can
reason the same as before.

The difficult case remains, where q did not receive any influence from p. We define for two pro-
cesses p0 and q0, p0 to be the parent of q0 if p0 coordinated q0 to enter the cluster. Further, we define
ancestor by the transitive closure of the parent relation. If q did not receive any token from p, but
share a common influence, then q must have received a token from an ancestor of p. Let s denote
the ancestor of p which succeeded last in sending a token to q.

Case r received the respective token: If r received the respective token, then it shares the
same influence as q. Every consecutive token which origins from set Epq has no impact on
A \ .Lr �Epq �Rp/. However, every token originating outside Epq by transitivity will affect
Lp once p has joined the cluster. Hence, no vertices inLr�Epq�Rp are alive after p determined
its set Rp .
Case r did not receive the respective token: There must be an ancestor which received the respec-
tive token. If there was not, we would conclude Epq D ;. Then again p on its creation would
share all influence by s on the ancestor of r and by transitivity to r itself. Hence, again, all tokens
which did not influence p originate from the set Epq . Therefore, no processes in Lr �Epq �Rp
are alive, once p has updated Rp .

�

Lemma 4.4 immediately implies Corollary 4.1 which states how long a process p needs to be
temporary coordinator until at least i alive processes in Epq have failed.

Corollary 4.1
The i th successor of p in Epq will fail the latest i rounds after p was acknowledged.

Proof
The immediate successor r of p clearly fails because all ALIVE messages r can expect according to
Lemma 4.4 are from processes inside Rp (suppose p maintains a copy of send Lp) and at most, k
messages did not acknowledge p. Assume now that until round i � 1, the closest i � 1 successors
have failed. Then in round i , the only candidates for sending ALIVE messages are in L. However,
there are at most k candidates which did not acknowledge the exclusion of the i th successor. �

Theorem 4.2
Algorithm 2 guarantees that two processes never have common tickets; they either own or
coordinate.

Proof
Lemma 4.3 shows that only exclusion could cause any such conflicts. Assume that during an execu-
tion, two alive processes r and s are processes coordinating common tickets. This implies that one
process, say r , failed to be excluded, whereas s was inserted. Let p be the process which failed to
exclude r and inserted s.

Copyright © 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2011)
DOI: 10.1002/cpe

A. GIDENSTAM ET AL.

After p initiated the exclusion of Epq with r , s 2 Epq , p switches state to become temporary
coordinator for dist.p, q/ rounds. During this time, p could not have inserted s. However, when p
switches state to become active coordinator and inserts s, Corollary 4.1 guarantees that r by that
time thinks it is considered to have failed, contradicting that both r and s were active. �

4.4. Performance and liveness properties of the cluster management method

Message overhead. Note that the duration of a round is assumed to be longer than the time of a
PrCast. PrCast is used to inform all processes which joined a cluster about an
event regarding the resources of the cluster. The overhead which is induced by
the membership protocol corresponds to the number of sent ALIVE messages.
In each round, a process sends and receives at most 2k C 1 messages. Hence,
the cluster management protocol can be considered as lightweight; that is, it
only adds a low number of additional messages while performing in combi-
nation with an application using the cluster management protocol. In addition,
every successful ticket acquisition is followed by a PrCast which involves all
processes which joined the cluster.

Availability. An interesting performance measure is how well the algorithm manages to
grant new processes access to tickets in the occurrence of failures and depen-
dent on the amount of tickets maintained by nonfaulty processes. Let ˛ denote
the fraction of tickets taken by nonfaulty processes. Moreover, let pf denote
the probability for a process to fail in a round. Whenever a process q fails, the
predecessor, say p, is trying to reclaim the tickets maintained by q. Although
running the exclusion algorithm, p performs as a temporary coordinator and
does not release any tickets.

Observe that CoreC consists of the processes which have not been excluded
and processes which perform correctly, that is, we know jCoreC j > ˛n.
Because there exists at most n tickets, the expected number of tickets main-
tained by each coordinator of CoreC is smaller or equal to 1=˛. Hence, the
time to reclaim tickets from a failing process is expected to take time less or
equal to 1=˛.

Assume that (i) ˛ remains constant and (ii) the exclusion algorithm needs
1=˛ rounds. Then the expected number of failing processes which needs to
be excluded is pf n because in each round, ˛pf n processes are expected to
fail. By applying the Chernoff bound [42], one can bound the probability that
in a round of the algorithm’s execution, there exist more than 2pf n faulty
processes. The probability is strictly smaller than .e=4/2pf n. That means a
process which attempts to acquire a ticket succeeds w.h.p. if pf <

1
2
.1� ˛/.

5. LAYERED ARCHITECTURE FOR OPTIMISTIC CAUSAL DELIVERY

This section proposes a layered protocol for achieving optimistic causal delivery. Here, we assume
that the set of coordinators of a cluster is maintained with the fault-tolerant configurable cluster man-
agement method described earlier. Using this method, each coordinator is assigned to a unique entry
in the vector clock, and furthermore, all coordinators know each other via the cluster management
protocol.

5.1. Method for clustered causal delivery

The first of the two layers uses PrCast in order to multicast events inside the cluster (cf. pseudo-code
description Algorithm 5). The second layer, the causality layer, implements the optimistic causal
delivery service. The causal delivery protocol is inspired by the protocol by Ahamad et al. [41] and

Copyright © 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2011)
DOI: 10.1002/cpe

CONSISTENCY MANAGEMENT FOR SCALABLE GROUP COMMUNICATION

is adapted and enhanced to provide the optimistic delivery service of the causal cluster consistency
model and the recovery procedure for events that may be missed because of PrCast.

Each process in a cluster interested in observing events in optimistic causal order (which is always
true for a coordinator), maintains a queue of events denoted byHC

p . For any arriving event e, one can
determine from T Cp and the event’s timestamp te whether there exist any events which (i) causally
precede e; (ii) have not been delivered; and (iii) could still be deliverable according to the optimistic
causal order property. More precisely, we define this set of not yet delivered deliverable events as

to_deliver_before.e/D fe0 j te0 < te ^:.te0 < T
C
p /g

and their event ids, which can be used for recovery, can be calculated as follows

to_deliver_before_ids.e/D fhi , j i j .8i ¤ index.e/ . T Cp Œi � < j 6 teŒi �/
_ .i D index.e/^ T Cp Œi � < j < teŒi �/g.

If there exist any such events, e will be enqueued in HC
p until those events have been delivered or e

is about to become obsolete at which point e will be delivered. (Prior to that process, p may ‘pull’
missing events.) Otherwise, p delivers e to the application.

When a process p delivers an event e referring to cluster C , the CCT-vector clock clockCp is
updated by setting 8i T Cp Œi �Dmax.teŒi �,T Cp Œi �/. Process p also checks whether any events in Hp
or recovered events now can be dequeued and delivered. Before a coordinator p in CoreC , owning
the j th vector entry, multicasts an event it updates clockCp by incrementing seqCp by one. The event
is then stamped with a vector timestamp t such that t Œi �D T pC Œi � for i ¤ j and t Œj �D seqCp .

Although PrCast delivers events with high probability, a process may need to recover some events.
The recovery procedure, which is invoked when an event e in Hp is close to become obsolete,
sends recovery messages for the missing events that precede e. The time before e becomes obsolete
depends the amount of time because the start of the dissemination of e is assumed to be larger than
the duration of a PrCast (which is estimated by the number of hops that an event needs to reach all
destinations with w.h.p.) and the time it takes to send a recovery message and receive an acknowl-
edgement. At the time e 2Hp becomes obsolete, p delivers all recovered events and events in Hp
that causally precede e and e in their causal order. A simple recovery method is to contact the sender
of the missing event. For this purpose, the sender has a recovery buffer which stores events until no
more recovery messages are expected (this is e.g. the case if 8i teŒi � < T Cp Œi �). In the following,
we will present and analyse another recovery method that enhances the throughput and the fault
tolerance.

5.2. Properties of the basic protocol and fault-tolerant extensions

The PrCast protocol provides a delivery service that guarantees that an event will reach all its des-
tinations with high probability; that is, PrCast can achieve high message stability. When an event
needs recovery, the number of processes that did not receive the event is expected to be low. Thus,
a process multicasting an event is expected to receive a low number of recovery messages.

First, consider the case when there are no failures in the system. If there are no process, link or
timing failures, reliable point to point communication succeeds in recovering all missing events,
and thus provides causal order without any message loss. The following lemma is straightforward,
following the analysis in [41].

Lemma 5.1
An execution of the two-layer protocol guarantees causal delivery of all events disseminated to a
cluster if neither processes nor links are slow or fail.

When there are timing or other failures, the method can deal with them in the following way,
which not only guarantees fault tolerance but also influences the throughput in a positive way. To
introduce redundancy in the recovery protocol, all processes are required to keep a history of some
of the observed events, so that a process only needs to contact a fixed number of other processes to

Copyright © 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2011)
DOI: 10.1002/cpe

A. GIDENSTAM ET AL.

Algorithm 5 Two-Layer protocol
VAR
Hp : set of received events that can not be delivered yet
R: set of recovered events that can not be delivered yet
B: fixed size recovery buffer with FIFO replacement.
seqCp : sequence number of the last event created by a process owning

the identifier p in CoreC .
TCp : vector timestamp indicating the causal present for p.

On process p in CoreC creates the event e
seqCp WD seqCp C 1; te WD TCp ; teŒp� WD seqCp /* Create timestamp te */
PrCast(he, tei)
Insert e into recovery buffer B

On process p receives he, tei
Insert e into recovery buffer B
if e can be delivered then

deliver(e)
for all e0 2Hp [R that can be delivered

deliver(e0)
else

if e is not delivered or obsolete then
delay(e, time_to_terminate)

end if
end if

On timeout(e, time_to_terminate)
for all eid 2 to_deliver_before_ids.e/ not inHp [R and eid not already under recovery

send(hRECOVER, eidi) to source(eid) or to k arbitrary processes in cluster
delay(e, time_to_recover)

On timeout(e, time_to_recover)
for all e0 2 to_deliver_before.e/\ .Hp [R/ that can be delivered

deliver(e0)
deliver(e)
for all e0 2Hp that can be delivered

deliver(e0)
On process p receives hRECOVER, eidi from process q

if p has e with identifier eid in its buffer then
respond(hACKRECOVER, e, tei) to process q

end if
On process p receives hACKRECOVER, e, tei

Insert e into recovery buffer
if e can be delivered then

deliver(e)
for all e0 2R[Hp that can be delivered

deliver(e0)
else

if e is not delivered or obsolete then
R WDR[feg

end if
end if

On deliver(e)
8i TCp Œi� WDmax.teŒi�,TCp Œi�/ /* Update TCp */
Remove e from R andHp
Deliver e to the application

recover an event. Further, such redundancy could help the recovery of a failed process. As it is desir-
able to bound the size of this buffer, we analyse the recovery buffer size and number of processes to
contact such that the recovery succeeds with high probability.

Following [20], we describe a model suitable to determine the probability for availability of events
that are deliverable and may need recovery in an arbitrary system consisting of a cluster C of n pro-
cesses that communicate using the two-layer protocol. Let C denote this system, and T denote the
time determined by the number of rounds an event stays at most in C. Note the similarity of the
buffer system to a single-server queueing system, where new events are admitted to the queue as a
random process. However, unlike common queueing systems, the service time (time needed for all
processes in C to get the event using the layered protocol) in this model depends on the arrival times
of events. The service time is such that every event stays in the queue at least as long as it needs to
stay in the buffer of C in order to guarantee delivery/recovery (i.e. whether the queue is stable is not

Copyright © 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2011)
DOI: 10.1002/cpe

CONSISTENCY MANAGEMENT FOR SCALABLE GROUP COMMUNICATION

an issue here). In the following, we estimate the probability that the length of the queue exceeds the
choice of the length for the recovery buffer of C.

If ai denotes the arrival time of an event ei , the ‘server’ processes each event at time si D aiCT .
Observe that if the length of the buffer in C is greater than the maximum length of the queue within
the time interval Œai , si �, then C can safely deliver ei .

Consider Œta, ts� denoting an interval of length T and the random variable Xi ,j denoting the event
that at time ta C i , process j inserts a new event in the system. Further, assume that all Xi ,j occur
independently, and that PrŒXi ,j D 1� D p and PrŒXi ,j D 0� D 1 � p. The number of admitted
events in the system can be represented by the random variable X WD

Pn
jD1

PT
iD1Xi ,j ; hence, the

random process describing the arrival rate of new events is a binomial distribution and the expected
number of events in the queue in an arbitrary time interval Œta, ts� equals EŒX�D npT . Clearly, the
length of the recovery buffer must be at least as large as EŒX�, or we are expected to encounter a
large number of events that cannot be recovered.

Now, using the Chernoff bound [20, 42], we bound the buffer size so that the probability of an
event that needs recovery not to be present in the recovery buffer of any arbitrary process becomes
low.

Theorem 5.1
Let e be an event admitted to a system C executing the two-layered protocol, where each event is
required to stay in C for T rounds. Each of the n processes in the system admits a new event to C in
a round with probability p. Then C can guarantee the availability of e in the recovery buffer of an

arbitrary process with probability strictly greater than 1�
�
e
4

�npT
if the size of the buffer is chosen

greater than or equal to 2npT .

Proof
Following the Chernoff bound for binomial distributions, for any ı > 0 it is the case that

Pr[X > .1C ı/npT]<
�

eı

.1Cı/ıC1

�npT
. By choosing ı D 1, the result follows. �

To estimate T , we can use the estimated duration of a PrCast, for example as in [20]. Let
PrCastTime denote this time. An event e is likely to be needed in C for (i) PrCastTime rounds
(to be delivered to all processes with high probability); (ii) plus PrCastTime rounds, if missed,
to be detected as missing by the reception of a causally related event (note that this is relevant
under high load, because in low loads PrCast algorithms are even more reliable); (iii) plus the time
t ime_to_terminateC t ime_to_recover spent before and after requesting recovery.

Further, because processes may fail, a process that needs to recover some event(s) should contact
a number of other processes to guarantee recovery with high probability. Assume that processes fail
independently with probability pf , and letXf be the random variable denoting the number of faulty
processes in the system. Then EŒXf � D pf n. By applying the Chernoff bound as in Theorem 5.1,
we get:

Lemma 5.2
If, in a system of n processes where each one may fail independently with probability pf , we con-
sider an arbitrary process subset of size greater than or equal to 2npf , with probability strictly
greater than 1�

�
e
4

�npf , there will be at least one nonfailed process in the subset.

Proof
Following the Chernoff bound for binomial distributions, for any ı > 0, it is the case that

PrŒX > .1C ı/npf � <
�

eı

.1Cı/ıC1

�npf
. By choosing ı D 1, the result follows. �

This implies that if a process requests recovery from RD 2pf n processes, then w.h.p., there will
be at least one nonfaulty to reply.

Copyright © 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2011)
DOI: 10.1002/cpe

A. GIDENSTAM ET AL.

Theorem 5.2
In a system of n processes, where each one may fail independently with probability pf 6 k=.2n/
for fixed k, an arbitrary process that needs to recover events according to the two-layer protocol will
get a reply with high probability if it requests recovery from k processes.

Proof
From Lemma 5.2, we know that if a process requests recovery from at least 2pf n processes, then
w.h.p., there will be at least one nonfaulty process among them, which can answer. So we choose
k > 2pf n, thereby for a given k high probability guarantee holds for pf 6 k=.2n/. �

Note that requesting recovery only once and not propagating the recovery messages is good
because in cases of high loss because of networking problems, we do not flood the network with
recovery messages. Compared with recovery by asking the originator of an event, this method may
need k times more recovery messages. However, the advantages are tolerance of failures and process
departures, as well as distributing the load of the recovery in the system.

Regarding replacement of events in the recovery buffer, the simplest option is first-in first-out
replacement. Another option is an aging scheme, for example, based on the number of hops the
event has made. As shown in [20], an aging scheme may improve performance from the relia-
bility point of view. However, to employ such a scheme here, we need to sacrifice the separation
between the consistency layer and the underlying dissemination layer to access this information.
Instead, note that using a dissemination algorithm such as the Estimated-Time-To-Terminate-Balls-
and-Bins(ETTB)-gossip algorithm [20] that uses an aging method to remove events from process
buffers and guarantees very good message stability implies that the reliability is improved because
fewer processes may need to recover events.

6. EXPERIMENTAL EVALUATION OF THE TWO-LAYER PROTOCOL

In this section, we investigate the scalability of causal cluster consistency and the reliability and
throughput effects of the optimistic causality layer in the two-layer protocol. We refer to a mes-
sage/event as lost if it was not received or could not be delivered without violating optimistic causal
order.

6.1. System and implementation

The evaluation of the two-layer protocol was done on 125 networked computers at Chalmers Uni-
versity of Technology. The computers were Sun Ultra 10 and Blade workstations running Solaris
9 and PC’s running Linux distributed over a few different subnetworks of the university network.
The average round-trip-time for a 4KB IP-ping message was between 1ms and 5ms. As we did not
have exclusive access to the computers and the network, other users might potentially have made
intensive use of the network concurrently with the experiments.

The Two-Layer protocol is implemented in an object oriented, modular manner in C++. The
implementation of the causality layer follows the description in Section 5.1 and can be used with
several group communication objects within our framework. Our PrCast is the ETTB-dissemination
algorithm described in [20] together with the membership algorithm of lpbcast [43]. TCP was used
as message transport (UDP is also supported). Multi-threading allows a process to send its gossip
messages in parallel and a timeout ensures that the communication round has approximately the
same duration for all processes.

6.2. Scalability results

Our first experiment evaluates how the number of coordinators affects throughput, latency and mes-
sage size. In our test application a process acts either as a coordinator, which produces a new event
with probability p in each PrCast round, or as an ordinary cluster member. The product of the
number of coordinators and p was kept constant (at 6).

Copyright © 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2011)
DOI: 10.1002/cpe

CONSISTENCY MANAGEMENT FOR SCALABLE GROUP COMMUNICATION

To focus on the performance of the causality layer the PrCast was configured to satisfy the goal
of each event reaching 250 processes w.h.p. (the fan-out was 4 and the event termination time
was 5 hops). PrCast was allowed to know all members to avoid side effects of the membership
scheme. The maximum number of events transported in each gossip message was 20. The size of
the history buffer was 40 events, which according to [20] is high enough to prevent w.h.p. PrCast
from delivering the same event twice. The duration of each PrCast round was tuned so that all
experiments had approximately the same rate of TCP connection failures (namely 0.2%). Figure 4
compares three instances of the Two-Layer protocol: the full-updater instance where all processes

0

10

20

30

40

50

60

20 40 60 80 100 120

M
es

sa
ge

s
pe

r
se

co
nd

Processes

Throughput, under low communication failures and event loss

5 Updater Gossip/TCP
25 Updater Gossip/TCP

Full Updater Gossip/TCP

(a) Throughput

0

200

400

600

800

1000

1200

1400

20 40 60 80 100 120

D
el

ay
 in

 m
s

Processes

Latency, under low communication failures and event loss

5 Updater Gossip/TCP
25 Updater Gossip/TCP

Full Updater Gossip/TCP

(b) Latency

0

1000

2000

3000

4000

5000

6000

20 40 60 80 100 120

Si
ze

 in
 b

yt
es

Processes

Message size, under low communication failures and event loss

5 Updater Gossip/TCP
25 Updater Gossip/TCP

Full Updater Gossip/TCP

(c) Message size

Figure 4. Throughput and latency with increasing number of cluster members

Copyright © 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2011)
DOI: 10.1002/cpe

A. GIDENSTAM ET AL.

act as coordinators, the 5-updater and the 25-updater instances with 5 and 25 coordinators, respec-
tively. The causality layer used the first recovery method, described in Section 5.1. The results
show the impact of the size of the vector clock on the overall message size and throughput. For
the protocols using a constant number of coordinators message sizes even decreased slightly with
growing group size since the dissemination distributes the load of forwarding events better then,
i.e. for large groups a smaller percentage of processes performs work on an event during the ini-
tial gossip rounds. However, for the full updater protocol messages grow larger with the number
of coordinators which influences the observed latency and throughput. For growing group size the
protocols with a fixed number of coordinators experience only a logarithmic increase in message
delay and throughput remains constant while for the full-updater protocol latency increases linearly
and throughput decreases.

6.3. Comparison of recovery schemes

Our second set of experiments studies the effects of the causality layer and the recovery schemes
in the Two-Layer protocol. Figure 5 compares the gossip protocol and the Two-Layer protocol with
and without recovery. The recovery is done in two ways, both described in Section 5.2: (i) from the
originator (marked “R1 recovery”) and (ii) from k arbitrary processes (marked “R4 recovery” as
the recovery fan-out k was 4). The recovery buffer size follows the analysis in Section 5.2, with the
timeout-periods set to the number of rounds of the PrCast. Unlike the first experiment, the number
of coordinators and processes was fixed to 25; instead varying values of p were used, to study the
behaviour of the causality layer under varying load. Larger p values imply increased load in the
system; at the right edge of the diagrams approximately n=2 new events are multicast in each round.
As the load increases, more events are reordered by the dissemination layer and message losses
begin to occur due to buffer overflows, thus putting the causality layer protocols under stress. The
results in Figure 5(b) show that the causality layer significantly reduces the amount of lost (ordered)
events, in particular when the number of events disseminated in the system is high. With the recov-
ery schemes almost all events could be delivered in optimistic causal order. With increasing load
latency grows only slowly (cf. Figure 5(a)), thus manifesting scalability. The causality layer adds
a small overhead by delaying events in order to respect the causal order. The recovery schemes do
not add much overhead with respect to latency, while they significantly reduce the number of lost
events. At higher loads the recovery schemes even improve latency since by recovering missing
events causally subsequent events in Hp can be delivered before they time out. Figure 5(c) shows
the success rate for the recovery attempts. The number of recovery attempts increase as the load in
the system increases, when the load is low very few events need recovery (cf. the event loss without
the causality layer in Figure 5(b)). There are three likely causes for a recovery to fail: (i) the reply
arrives too late; (ii) the process(es) asked did not have the event; and (iii) the reply or request(s)
messages were lost. The unexpectedly low success rate during low load for the R4 method could
be because a PrCast may reach very few processes when a gossip message is lost early in the prop-
agation of an event. Also note that as the load is low the number of missing events and recovery
attempts is very small. However, as load and the number of recovery attempts increase the success
rate converges towards the predicted outcome.

7. CONCLUSION

We have proposed lightweight causal cluster consistency, a hierarchical layer-based structure for
multi-peer collaborative applications. To this end, we have presented and analysed a solution for a
dynamic and fault-tolerant cluster management for event-based peer-to-peer dissemination systems.
Since the protocol guarantees that never two processes perform some action corresponding to the
same ticket of a cluster, the protocol is not only suitable to support the consistent management for
distributed objects, but also for other common coordination tasks, such as resource management,
controlling the number of concurrently disseminated events. The cluster management can be inte-
grated at low cost in the two-level architecture. The duration of a round is longer than the time of a

Copyright © 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2011)
DOI: 10.1002/cpe

CONSISTENCY MANAGEMENT FOR SCALABLE GROUP COMMUNICATION

0

200

400

600

800

1000

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55
D

el
ay

 in
 m

s

Probability to create a new event

Latency

Causal layer with R4 recovery
Causal layer with R1 recovery
Causal layer without recovery

No Causal layer

(a) Latency

0

2

4

6

8

10

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55

Pe
rc

en
ta

ge
 o

f
kn

ow
n

ev
en

ts
 lo

st

Probability to create a new event

Event loss

Causal layer with R4 recovery
Causal layer with R1 recovery
Causal layer without recovery

No Causal layer

(b) Message loss

0

20

40

60

80

100

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55Pe
rc

en
t o

f
re

co
ve

ry
 a

tte
m

pt
s

su
cc

es
sf

ul
l

Probability to create a new event

Event recovery success

Causal layer with R4 recovery
Causal layer with R1 recovery

(c) Percentage of successful recovery attempts

Figure 5. Event latency, loss and recovery behaviour under varying load with and without the causality layer.

multicast and in each round only a low number of messages are sent. Moreover we have shown how
the protocol guarantees access to tickets in spite of failing processes.

The presented two-level architecture is a general architecture that can be applied on top of the
standard Internet transport-layer services, and offers a layered set of services to the applications
that need them. We presented a two-layer protocol for causal cluster consistency running on top
of decentralised probabilistic protocols supporting group communication. Our experimental study,
conducted by implementing and evaluating the proposed architecture as a two-layered protocol that
uses standard Internet transport communication, shows that the approach scales well, imposes an
even load on the system, and provides high-probability reliability guarantees.

Copyright © 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2011)
DOI: 10.1002/cpe

A. GIDENSTAM ET AL.

REFERENCES

1. Miller DC, Thorpe JA. SIMNET:the advent of simulator networking. Proceedings of the IEEE 1995; 83(8):
1114–1123.

2. Greenhalgh C, Benford S. A multicast network architecture for large scale collaborative virtual environments. In
Proceedings of the Second European Conference on Multimedia Applications, Services and Techniques, Vol. 1242.
Springer: Heidelberg, 1997; 113–128.

3. Carlsson C, Hagsand O. DIVE - a multi-user virtual reality system. Proceedings of the IEEE Annual International
Symposium on Virtual Reality, Seattle, 1993; 394–400.

4. Rymaszewski M, et al. Second life: The official guide, 2nd edn. Sybex, 2007.
5. Pereira J, Rodrigues L, Monteiro MJ, Kermarrec AM. NEEM: Network-friendly epidemic multicast. Proceedings of

the 22nd symposium on reliable distributed systems, 2003; 15–24.
6. Lehn M, Triebel T, Leng C, Buchmann AP, Effelsberg W. Performance evaluation of peer-to-peer gaming overlays.

Proceedings of Peer-to-Peer Computing, 2010; 1–2.
7. Birman KP, Joseph TA. Reliable communication in the presence of failure. ACM Transactions on Computer Systems

1987; 5(1):47–76.
8. Birman KP, Schiper A, Stephenson P. Lightweight causal and atomic group multicast. ACM Transactions on

Computer Systems 1991; 9(3):272–314.
9. Raynal M, Schiper A, Toueg S. The causal ordering abstraction and a simple way to implement it. Information

Processing Letters 1991; 39(6):343–350.
10. Kshemkalyani AD, Singhal M. Necessary and sufficient conditions on information for causal message ordering and

their optimal implementation. Distributed Computing 1998; 11:91–111.
11. Chu Y-h, Rao SG, Zhang H. A case for end system multicast (keynote address). In Proceedings of the ACM Inter-

national Conference on Measurement and Modeling of Computer Systems (SIGMETRICS 2000). ACM Press: New
York, NY, 2000; 1–12.

12. Jannotti J, Gifford DK, Johnson KL, Kaashoek MF, O’Toole JW, Jr. Overcast: reliable multicasting with on over-
lay network. In Proceedings of the 4th Conference on Symposium on Operating System Design & Implementation -
Volume 4. USENIX Association: Berkeley, CA, USA, 2000; 14.

13. Rowstron AIT, Kermarrec A-M, Castro M, Druschel P. SCRIBE: The design of a large-scale event notification
infrastructure. In Proceedings of the Third International COST264 Workshop, Vol. 2233. Springer-Verlag: London,
UK, 2001; 30–43.

14. Zhuang SQ, Zhao BY, Joseph AD, Katz RH, Kubiatowicz JD. Bayeux: an architecture for scalable and fault-tolerant
wide-area data dissemination. In Proceedings of the 11th International Workshop on Network and Operating Systems
Support for Digital Audio and Video. ACM: New York, NY, USA, 2001; 11–20.

15. Tran DA, Hua KA, Do TT. A peer-to-peer architecture for media streaming. IEEE Journal on Selected Areas in
Communications 2004; 22(1):121–133.

16. Kostić D, Rodriguez A, Albrecht J, Vahdat A. Bullet: high bandwidth data dissemination using an overlay mesh. In
Proceedings of the 19th ACM Symposium on Operating Systems Principles, Vol. 37, SOSP ’03. ACM Press: New
York, Bolton Landing, NY, USA, 2003; 282–297.

17. Birman KP, Hayden M, Ozkasap O, Xiao Z, Budiu M, Minsky Y. Bimodal multicast. ACM Transactions on
Computer Systems 1999; 17(2):41–88.

18. Eugster PT, Guerraoui R, Handurukande SB, Kermarrec AM, Kouznetsov P. Lightweight probabilistic broadcast.
ACM Transaction on Computer Systems 2003; 21(4):341–374.

19. Kermarrec AM, Massoulié L, Ganesh AJ. Probabilistic reliable dissemination in large-scale systems. IEEE
Transactions on Parallel and Distributed Systems 2003; 14(3):248–258.

20. Koldehofe B. Buffer management in probabilistic peer-to-peer communication protocols. Proceedings of the 22nd
Symposium on Reliable Distributed Systems (SRDS ’03), 2003; 76–85.

21. Alvisi L, Doumen JM, Guerraoui R, Koldehofe B, Li H, van Renesse R, Tredan G. How robust are gossip-based
communication protocols?. ACM SIGOPS Operating Systems Review 2007; 41(5):14–18.

22. Lamport L. Time, clocks, and the ordering of events in a distributed system. Communications of the ACM 1978;
21(7):558–565.

23. Charron-Bost B. Concerning the size of logical clocks in distributed systems. Information Processing Letters 1991;
39(1):11–16.

24. Ådahl J. Shared resource for collaborative editing over a wireless network. Master’s Thesis, Chalmers University of
Technology, 2011.

25. Baldoni R, Prakash R, Raynal M, Singhal M. Efficient �-causal broadcasting. International Journal of Computer
Systems Science and Engineering 1998; 13(5):263–271.

26. Rodrigues L, Baldoni R, Anceaume E, Raynal M. Deadline-constrained causal order. Proceedings of the Third IEEE
International Symposium on Object-Oriented Real-Time Distributed Computing (ISORC 2000), 2000; 234–241.

27. Mattern F. Virtual time and global states of distributed systems. Proceedings of the International Workshop on
Parallel and Distributed Algorithms, 1989; 215–226.

28. Fidge CJ. Timestamps in message-passing systems that preserve partial ordering. Proceedings of the 11th Australian
Computer Science Conference, 1988; 56–66.

29. Koldehofe B. Simple gossiping with balls and bins. Studia Informatica Universalis 2004; 3(1):43–60.

Copyright © 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2011)
DOI: 10.1002/cpe

CONSISTENCY MANAGEMENT FOR SCALABLE GROUP COMMUNICATION

30. Li HC, Clement A, Wong EL, Napper J, Roy I, Alvisi L, Dahlin M. Bar gossip. Proceedings of the 7th symposium
on Operating systems design and implementation OSDI ’06, 2006; 191–204.

31. Stoica I, Morris R, Karger D, Kaashoek F, Balakrishnan H. Chord: A scalable Peer-To-Peer Lookup Service for
Internet Applications. In Proceedings of the ACM SIGCOMM 2001 Conference. ACM Press: New York, August
2001; 149–160.

32. Alima LO, Ghodsi A, Brand P, Haridi S. Multicast in DKS(N; k; f) overlay networks. In Proceedings of the 7th
International Conference on Principles of Distributed Systems (OPODIS ’03), Vol. 3144. Springer-Verlag, 2003;
83–95.

33. Ratnasamy S, Francis P, Handley M, Karp R, Shenker S. A scalable content-addressable network. ACM SIGCOMM
Computer Communication Review 2001; 31:161–172.

34. Rowstron A, Druschel P. Pastry: scalable, decentralized object location and routing for large-scale peer-to-
peer systems. In Proceedings of the 18th IFIP/ACM International Conference on Distributed Systems Platforms
(Middleware), Vol. 2218. Springer-Verlag: London, UK, 2001.

35. Zhao BY, Huang L, Stribling J, Rhea SC, Joseph AD. Tapestry: A resilient global-scale overlay for service
deployment. IEEE Journal on Selected Areas in Communications 2004; 22(1):41–53.

36. Abraham U, Dolev S, Herman T, Koll I. Self-stabilizing l-exclusion. Theoretical Computer Science 2001;
266(1-2):653–692. DOI: 10.1016/S0304-3975(00)00325-X.

37. Afek Y, Dolev D, Gafni E, Merritt M, Shavit N. A bounded first-in, first-enabled solution to the l-exclusion problem.
ACM Transactions on Programming Languages and Systems 1994; 16(3):939–953.

38. Gidenstam A, Koldehofe B, Papatriantafilou M, Tsigas P. Dynamic and fault-tolerant cluster management.
Proceedings of the 5th IEEE International Conference on Peer-to-Peer Computing, 2005; 237–244.

39. Gidenstam A, Koldehofe B, Papatriantafilou M, Tsigas P. Lightweight causal cluster consistency. In Proceedings
of the Conference on Innovative Internet Community Systems (I 2CS ’05), Vol. 3908, Lecture Notes in Computer
Science. Springer: Heidelberg, 2005; 17–28.

40. Koch GG, Tariq MA, Koldehofe B, Rothermel K. Event processing for large-scale distributed games. In Proceedings
of the 4th ACM International Conference on Distributed Event-Based Systems. ACM Press: New York, NY, 2010.

41. Ahamad M, Neiger G, Kohli P, Burns JE, Hutto PW. Casual memory: Definitions, implementation and programming.
Distributed Computing 1995; 9(1):37–49.

42. Motwani R, Raghavan P. Randomized algorithms. Cambridge University Press: Cambridge, 1995.
43. Eugster PTh, Guerraoui R, Handurukande SB, Kermarrec A-M, Kouznetsov P. Lightweight probabilistic broadcast.

Proceedings of the International Conference on Dependable Systems and Networks, 2001; 443–452.

Copyright © 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2011)
DOI: 10.1002/cpe

