
Theoretical Computer Science 411 (2010) 2459–2466

Contents lists available at ScienceDirect

Theoretical Computer Science

journal homepage: www.elsevier.com/locate/tcs

Game authority for robust and scalable distributed selfish-computer
systemsI

Shlomi Dolev a, Elad M. Schiller b,∗, Paul G. Spirakis c, Philippas Tsigas b
a Department of Computer Science, Ben-Gurion University of the Negev, 84105, Israel
b Department of Computing Science, Chalmers University of Technology and Göteborg University, Rännvägen 6B Göteborg, S-412 96, Sweden
c Research Academic Computer Technology Institute, N. Kazantzakis Street, University Campus, 265 00 Rio, Patras, Greece

a r t i c l e i n f o

Article history:
Received 24 October 2008
Received in revised form 22 April 2009
Accepted 12 February 2010
Communicated by editor J. Díaz

Keywords:
Distributed computing
Game theory
Game authority
Self-stabilization

a b s t r a c t

Distributed algorithm designers often assume that system processes execute the same
predefined software. Alternatively, when they do not assume that, designers turn to non-
cooperative games and seek an outcome that corresponds to a rough consensus when no
coordination is allowed. We argue that both assumptions are inapplicable in many real
distributed systems, e.g., the Internet, and propose designing self-stabilizing and Byzantine
fault-tolerant distributed game authorities. Once established, the game authority can
secure the execution of any complete information game. As a result, we reduce costs that
are due to the processes’ freedom of choice. Namely, we reduce the price of malice.

© 2010 Elsevier B.V. All rights reserved.

‘‘Capitalism is the best economic system in the world because it demands and rewards hard work. It challenges us to
be excellent.
But like everything else in life, capitalism can be perverted and exploited. Bad people can findways to cheat. That’s

why the federal government oversees theAmerican economy tomake sure there is some justice andhonesty in pursuit
of profit.’’ [Bill O’Reilly, September 18, 2008 in FOX NEWS].

1. Introduction

Game theory analyzes social structures of agents that have freedomof choicewithin amoral code. Society allows freedom
and selfishnesswithin thismoral code, which is enforced by existing social structures, i.e., legislative, executive, and judicial.
Social rules encourage individual profit fromwhich the entire society gains. Distributed computer systems can improve their
scalability and robustness by using explicit social structures. We propose using a game authority middleware to enforce the
rules of the game, which the honest majority decides upon.
The power of game theory is in predicting the game outcome for specific assumptions. The prediction holds as long as

the players cannot tamper with the social structure or change the rules of the game, e.g., the prisoner cannot escape from
prison in the classical prisoner dilemma. Therefore, we cannot predict the game outcome without suitable assumptions on
failures and honest selfishness.
There are attempts to define various aspects of selfish-computer systems: the selfish MAC Layer that does not back off

in [5], the Byzantine Nash equilibrium of a replicated state-machine in [2], and the selfish mechanism for virus inoculation
in the presence of malicious agents in [21], to name a few. In fact, [21] discovers that the performance ratio between selfish

I Also appeared in Dolev et al. (2007)[9], Dolev et al. (2006) [12] and Dolev et al. (2006) [13].
∗ Corresponding author. Fax: +46 31 772 3663.
E-mail addresses: dolev@cs.bgu.ac.il (S. Dolev), elad@chalmers.se (E.M. Schiller), spirakis@cti.gr (P.G. Spirakis), tsigas@chalmers.se (P. Tsigas).

0304-3975/$ – see front matter© 2010 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2010.02.014

http://www.elsevier.com/locate/tcs
http://www.elsevier.com/locate/tcs
mailto:dolev@cs.bgu.ac.il
mailto:elad@chalmers.se
mailto:spirakis@cti.gr
mailto:tsigas@chalmers.se
http://dx.doi.org/10.1016/j.tcs.2010.02.014

2460 S. Dolev et al. / Theoretical Computer Science 411 (2010) 2459–2466

mechanisms that do and do not havemalicious agents (named the price of malice, PoM), are as important as the performance
ratio between selfish mechanisms and centralistic mechanisms (named, respectively, the price of anarchy (PoA) [18,17] and
the price of stability (PoS) [3]). We study these performance ratios in the presence of game authority implementation and
discover significant improvements.
We argue that when designing distributed selfish-computer systems it is unsuitable to assume that all software

layers and components act selfishly. Under this strong assumption, the designer has to consider a complex game among
all selfish agents, which has many possible software actions and imprecise cost (utility) in the presence of failures.
Moreover, not all games have a predictable outcome; many games have very long stabilization periods and incomplete
information games1 deteriorate the system efficiency. Consequently, designers cannot predict the outcome without a
suitable perspective on the various system aspects.
This paper explains how to implement a game authority so that the middleware can recover after the occurrence of

transient failures.

1.1. The middleware services

The game authority facilitates interaction among agents of the (higher) application layer, where users control programs.
The middleware implements a social structure that relies on the common moral code of the majority of entities, and
overcomes the non-moral Byzantine behavior of minorities.2 Our social structure follows the principle of power separation.
The key middleware services are as follows.

• The legislative service, which allows agents to set up the rules of the game in a democratic manner, e.g., robust
voting [14], which can facilitate a democratic decision about a preferable outcome for the majority.
• The judicial service, which audits the agents’ actions and orders the executive service to punish agents following their
foul play.
• The executive service, which executes actions and manages their associated information: publishing utilities, collecting
choice of actions, and announcing the play outcome. Moreover, by order of the judicial service, this service restricts the
action of dishonest agents.

In this paper, we focus on the implementation of the judicial service. Our design of the game authority is presented in
order to demonstrate the proof of existence, rather than the most efficient implementation. Further research can improve
the design and allow better scalability (e.g., using auditing, rather than constant monitoring) and perhaps design to fit
incomplete information games. Our main goal is to demonstrate the middleware’s proof of existence and its potential
benefits in the context of distributed systems of selfish computers.
One of the design enhancements that we consider is the recovery from transient faults. Self-stabilizing systems [7,8] can

recover after the occurrence of transient faults. These systems are designed to automatically regain their consistency from
any starting state of the automaton. The arbitrary state may be the result of violating the assumptions of the gamemodel or
the system settings. The correctness of a self-stabilizing system is demonstrated by considering every sequence of actions
that follows the last transient fault and is, therefore, proved assuming an arbitrary starting state of the automaton.

1.2. Our contribution

In this paper, we suggest the game authority as a middleware, and demonstrate its existence and its potential benefits
in the context of distributed systems of selfish computers.

• Reducing the price of malice (PoM [21]). We consider an example of performance degradation due to malicious
manipulation.We explain how the game authority can detectmanipulation bymalicious agents and then punish them for
their foul play. This example illustrates the importance of the manipulation resiliency property that the game authority
provides.
• Self-stabilization. We explain how to implement a game authority that can recover from the occurrence of transient
failures.

The new ability of the honest majority to vote for its preferable game requires a new cost criterion that better evaluates
games in selfish-computer systems.

• Multi-round anarchy cost.Wepresent a new cost criterion that better captures repeated gameswith selfish agents (that
are restricted to playing by the rules).We consider an example of a resource allocation game and study our new criterion:
multi-round anarchy cost. We demonstrate that our resource allocation game is asymptotic optimal with respect to the
new criterion. Thus, the agents’ society may choose to play this particular resource allocation game.

1 Game theory uses this term to describe a game where individual agents may not be able to predict (precisely) the effect their actions will have on the
other agents.
2 Assuming standard requirements for a Byzantine agreement, i.e., more than two-thirds of the processes are (selfish but) honest, and authentication
utilizes a Byzantine agreement that needs only a majority. Moreover, the communication graph is not partitioned; e.g., there are 2f + 1 vertex disjoint
paths between any 2 processes, in the presence of at most f Byzantine processes.

S. Dolev et al. / Theoretical Computer Science 411 (2010) 2459–2466 2461

2. Preliminaries

In this paper, the game theory related definitions and notations follow those of [23]. The computational game model
consists of a set, N , of computing and interacting entities, which we call agents. We associate every agent with a unique
processor and allow the communication system to facilitate their actions.
A game Γ = 〈N, (Πi)i∈N , (ui)i∈N〉 in its strategic form is defined by a finite set of agents N = {1, . . . , n}, a finite set of

strategiesΠi (i.e., applicable actions) for each agent i ∈ N , and by a cost function (utility) ui : Π → R for each agent, where
Π ≡ ×i∈NΠi is the set of pure strategy profiles (PSPs).
The social cost of a PSP, π ∈ Π , is the sum of all individual costs, ui(π), of honest agents i ∈ N . The freedom of choice

principle implies that a selfish agent i ∈ N unilaterally deviates from PSP π to a different PSP, π ′, because its individual cost
ui(π ′) is smaller than ui(π).
A pure Nash equilibrium (PNE) is a pure strategy profile π = (π1, . . . πn) such that, for each agent i, ui(π) ≤

ui(π1, . . . , π ′i , . . . , πn) for any π
′

i ∈ Πi. A game may not possess a PNE at all. However, if we extend the game to include
mixed strategy by allowing each agent to choose her/his applicable actions with certain probabilities (and if we extend the
cost functions ui to capture expectation), then an equilibrium is guaranteed to exist [22].
Given a PSP (πi, π−i) ∈ Π (pure or mixed), the strategy of an agent is denoted by πi, where i ∈ N . Given π−i, we assume

that the best response, πi, of agent i to π−i can be efficiently computed (in polynomial time). Namely, given π−i, the strategy
πi produces an outcome that is the most favorable to i.

3. The middleware

The task of the game authority is to verify that all agents play the game by its rules. This can be achieved by verifying
that all agents follow the rules of the game in each play. Namely, before the start of every play, the agents make sure that
there is a majority of (honest but selfish) agents that agree on their cost functions and on the result of the previous play (if
there was such a play). The agents then play the game and the system publishes the outcome of the play to all agents. Once
the outcome is published, the game authority can audit the actions of the agents and punish the agents that did not play by
the rules. We organize the middleware of game authority by using the three services (legislative, judicial and executive).

3.1. The legislative service

A key decision that the legislative service makes is about the rules of the game. In more detail, the service is required
to guarantee coherent game settings, i.e., all honest agents agree on the game Γ = 〈N, (Πi)i∈N , (ui)i∈N〉. In particular, the
service defines the cost (utility) functions (ui)i∈N .
We note that existing manipulation resilience voting algorithms can facilitate these decisions (see [14]). For the sake of

simplicity, we assume that the agents have fixed preferences throughout the system run and consider a predefined game Γ ,
which the society elects before starting the system.We note that a possible design extension can follow the agents’ changing
preferences and repeatedly reelect the system’s game.

3.2. The judicial service

The task of the judicial service is to audit the actions that the agents take in every play. Moreover, the judicial service
orders the executive service to punish agents that do not play honestly.
In more detail, the service is required to guarantee the following: (1) Legitimate action choice. Every honest agent i ∈ N

chooses actionsπi only from its set of applicable actionsΠi. (2) Private and simultaneous action choice. The choice of actions of
all honest agents is taken simultaneously, i.e., the system does not reveal the choice of agent i ∈ N before all have committed
to their actions. (3) Foul plays. Action πi ∈ Πi of agent i ∈ N is foul if πi is not i’s best response to π−i, where (π ′i , π−i) is the
PSP of the previous play. The judicial service should instruct the executive service to punish the agents that make foul plays.

3.3. The implementation

We start by considering the cases in which agents follow merely pure strategies before we turn to considering mixed
strategies (in Section 5).
The algorithm relies on a Byzantine agreement protocol (BAP) and cryptographic primitives such as commitment

schemes (see [4]). Moreover, we use a Byzantine common pulse generator (similar to the one of [11]) to synchronize the
different services. Moreover, the Byzantine common pulse generator allows the system to repeat a sequence of activating
the different instantiations of the Byzantine agreement protocol.
Requirements (1) to (3) can be guaranteed. Upon a pulse, all agents start a new play of the game that is carried out by a

sequence of several activations of the Byzantine agreement protocol. The play starts by announcing the outcome, π ∈ Π , of
the previous play (if there was such a play). Here the Byzantine agreement protocol is used to assure that all agents agree
on π . Next, every agent chooses its best response, π ′i ∈ Πi, to π−i and uses a commitment scheme in order to announce

2462 S. Dolev et al. / Theoretical Computer Science 411 (2010) 2459–2466

its commitment on π ′i without revealing π
′

i . Again, we use the Byzantine agreement protocol in order to ensure that all
agents agree on the set of commitments. Once all commitments are agreed upon, the agents reveal their PSP of the play,
π ′. Moreover, all agents audit the PSP of the play and use the Byzantine agreement protocol to agree on the set, N ′ ⊂ N , of
agents that have made a foul play. Lastly, the judicial service orders the executive service to punish N ′ and to play according
to π ′.

3.4. The executive service

The task of the executive service is to carry out the agents’ actions. The service manages the associated information of
the actions: announcing the play outcome, publishing the utilities and collecting the choice of actions. Moreover, by order
of the judicial service, this service restricts the action of dishonest agents according to the punishment scheme.
Punishment schemes. Effective punishment is an essential mechanism for reducing the price of malice (PoM [21]) when
considering detectable manipulation. However, punishment is useful when there is a price that the dishonest agent is not
willing to pay. In other words, a complete Byzantine agent bears any punishment while aiming at maximizing the social
cost. Therefore, it seems that the only effective option is to disconnect Byzantine agents from the network (see [6]). We note
that there are punishment schemes based on agent reputation or real money deposits. Other approaches consider more
elaborate punishment schemes in which dishonest agents can be deterred (see [10]).
We assume that the executive service is trustworthy. This assumption is common in the game theory literature under

the name of a trusted third party, e.g., the taxation services in mechanism design (see [15]). We note that [1] facilitates such
assumptions.

4. Self(ish)-stabilizing

Wenow shift focus to show an implementation of the game authority that can recover from transient failures and periods
during which the agents act upon short-lived myopic logic. We name the combination of these two properties self(ish)-
stabilization.
The game authority can be coded in the form of a do forever loop that is supported by a self-stabilizing Byzantine pulse

synchronization algorithm (that is similar to [11]). Thus, by showing that every service is self-stabilizing, we show that the
entire middleware is self(ish)-stabilizing.
It is easy to see that the legislative service is stateless and therefore self-stabilizing. We note that not every judicial

service is self-stabilizing, because the Byzantine agreement protocol (BAP) has an internal state (e.g., epoch numbers).
We demonstrate that the judicial service can be self-stabilizing by showing the existence of a self-stabilizing Byzantine
agreement algorithm. We remark that the executive service is application dependent, and therefore should be made self-
stabilizing on a case basis.
The self-stabilizing Byzantine agreement algorithm is a composition of two distributed algorithms. We use the self-

stabilizing Byzantine clock synchronization algorithm of [11]. Whenever the clock value reaches the value 1, the self-
stabilizing Byzantine agreement algorithm invokes the Byzantine agreement protocol (BAP) of [16,19], for example. We
take the clock size, logM , to be large enough to allow exactly one Byzantine agreement, where M is the number of clock
values.

Theorem 1. The algorithm described above is a self-stabilizing Byzantine agreement protocol.

We call the self-stabilizing Byzantine agreement described above SSBA.

4.1. The settings of a distributed system

We formally describe self-stabilizing distributed systems that stabilize in the presence of Byzantine faults before we turn
to demonstrating the proof.
The system consists of a set of computing and communicating entities, which we call processors. We denote the set of

processors by P , where |P | is finite. The graph G(V, E) denotes the communication graph of the system, where V is the
set of processors, and where there is an edge in E between every pair of processors pi and pj that can directly communicate.
Every such pi and pj are called neighbors. We assume that every processor has a unique identifier.
In the proposed system, every processor emulates an agent, which is a program that encodes an agent in a strategic game.

The program of a processor pi consists of a sequence of steps. For ease of description, we assume a synchronous model in
which all processors execute steps automatically and simultaneously. The state si of a processor pi consists of the values of
all processor variables (including its control variables such as the value of its program counter).
A common pulse triggers each step of pi. The step starts sending messages to neighboring processors, receiving all

messages sent by the neighbors and changing its state accordingly.
A processor is Byzantine if it does not follow its program, i.e., does not execute the agent or does not participate correctly

in implementing the game authority middleware. We assume standard requirements for Byzantine protocols, i.e., more
than two-thirds of the processes are (selfish but) honest, and authentication utilizes a Byzantine agreement that needs only

S. Dolev et al. / Theoretical Computer Science 411 (2010) 2459–2466 2463

a majority. Moreover, the communication graph is not partitioned, i.e., there are 2f + 1 vertex disjoint paths between any
2 processes, in the presence of at most f Byzantine processes.
We describe the global state of the system, the system configuration, by the vector of the state of the processors

(s1, s2, . . . , sn), where each si is the state of processor pi. We describe the system configuration in the instance in which
the pulse is triggered, when there are no messages in transit. We define an execution E = c0, c1, . . . as a sequence of
system configurations ci, such that each configuration ci+1 (except the initial configuration c0) is reached from the preceding
configuration ci by an execution of steps by all the processors.
The task τ of a distributed system is defined by a set of executions LE called legal executions. For example, task τ may

be defined by the correct game behavior of agents which are carried out according to the rules of the game, and in which
the set of enabled agents present rational behavior. By enabled agents, we mean that rational agents may decide to punish
mischievous agents and disable their foul plays.
Self-stabilizing distributed systems [7,8] can recover after the occurrence of transient faults. The system is designed

to automatically regain its consistency from any starting configuration. The arbitrary configuration may be the result of
unexpected faults caused by the environment and/or mischievous agents’ behavior.
The correctness of a self-stabilizing system is demonstrated by considering every execution that follows the last transient

fault and is, therefore, proved by assuming an arbitrary starting configuration. The system should exhibit the desired
behavior (of task τ) in an infinitely long period after a finite convergence period.
A configuration c is safe with regard to a task τ and to the distributed system if every nice execution that starts from c

belongs to LE. We say that the algorithm satisfies its task τ when its execution is in LE (the property of closure). An algorithm
is self-stabilizing if, starting froman arbitrary configuration, it reaches a safe configurationwithin a finite convergence period
(the property of convergence).

4.2. The proof of Theorem 1

We define the set of legal executions, with respect to the task of the self-stabilizing Byzantine agreement protocol (BAP),
as the set of executions, LE, in which the Byzantine agreement protocol (BAP) properties hold (i.e., termination, validity, and
agreement). Let E be an execution, and c ∈ E be a configuration, such that (1) all the clock values are 1, and (2) the Byzantine
agreement protocol (BAP) is at its starting configuration (e.g., identical epoch and round numbers).

Lemma 2 (Convergence). Starting from an arbitrary configuration, we reach a safe configurationwithin O(n(n−f)) of clock pulses.
Proof. Starting from an arbitrary configuration, within an expected O(n(n−f)) clock pulses, a configuration c is reached in
which all clock values are 1 (see [11]). In the atomic step that immediately follows c , all processes invoke the Byzantine
agreement protocol (BAP) before changing their clock value. Hence, c is safe. �

Lemma 3 (Closure). Let E be an execution that starts in a safe configuration. Then, E ∈ LE.
Proof. Starting from a safe configuration, there is a period of M pulses, in which no process assigns 1 to its clock. During
this period, the Byzantine agreement protocol (BAP) is executed for a long enough time that allows exactly one Byzantine
agreement. Moreover, at the end of this period, all processes assign 1 to their clocks. Thus, there is an infinite sequence of
such periods in which the Byzantine agreement protocol (BAP) reaches Byzantine agreements. �

Lemmas 2 and 3 imply Theorem 1.

5. Auditing mixed strategies

So far, we have explained that the game authority can audit agents that use only pure strategies. In this section we
consider mixed strategies. We start by exploring scenarios in which mixed strategies raise troubling questions and then we
propose a solution. We explore these scenarios by looking into the well-known game ofmatching pennies.
Matching pennies is a game for two agents, A and B, where each agent has two strategies: heads and tails. The agents

choose their actions secretly and then reveal their choices simultaneously. If the pennies match (both heads or both tails),
agent A receives 1 from agent B. If the pennies do not match (one heads and one tails), agent B receives 1 from agent A.
This game has no PNE, but there is a unique Nash equilibrium in mixed strategies: each agent chooses heads or tails with
equal probability. This way each agent makes the other indifferent between choosing heads or tails, so neither agent has an
incentive to try a different strategy.

5.1. Hidden manipulative strategies

Suppose that agent B has a hidden manipulation for the heads strategy; the manipulation has no effect on the game
whenever the pennies match or when B plays tails. However, whenever the pennies do not match and B chooses the heads
strategy with manipulation, then A pays 9 to B. The new game is presented in Fig. 1. Clearly, since agent B knows that agent
A plays each of the two strategies with probability 1/2, then B plays the manipulated heads strategy with probability 1.
The manipulation by B is successful, because B is able to increase its expected profit from 0 to 4, while A has decreased its
expected profit from 0 to−4.

2464 S. Dolev et al. / Theoretical Computer Science 411 (2010) 2459–2466

A�B Heads Tails Manipulate
Heads (+1,−1) (−1,+1) (+1,−1)
Tails (−1,+1) (+1,−1) (−9,+9)

Fig. 1. Matching pennies with a hidden manipulation strategy.

5.2. Validating random choices

The above hiddenmanipulative strategies can be extended to amore general form. Namely, we consider dishonest agents
that deviate from an equilibrium by selecting actions that, according to the game model, should decrease their benefit, i.e.,
are not the best response. The challenge is in verifying that a sequence of random choices follow a distribution of a credible
mixed strategy.

5.3. The solution

In every round of the game, the agents use a private pseudo-randomgenerator for privately selecting actions according to
the PSP of the round. We ensure that an action is indeed random by taking Blum’s approach [4]. Namely, the agents commit
to their PSP using a cryptographic commitment scheme. Before the play and after all agents have received all commitments,
the agents publicly reveal their private action selection. Therefore, just before the next play starts, the honest majority can
detect any foul play using the Byzantine agreement protocol (BAP).
We note that in our implementation of the judicial service, we take the simplest auditing approach; the agents audit each

other’s actions in every round of the game. A possible extension can consider any bounded number of rounds. Here, for the
sake of efficiency, the agents commit to the private seed that they use for their pseudo-random generator; they reveal their
seed at the end of the sequence of rounds and then audit each other’s actions. In practice, one may consider several auditing
techniques (see [20]) and decide to verify the honest selfishness of agents that raise suspicion among the honest majority.

5.4. Benefit: Reduced price of malice

By auditing the choices of the agents the game authority clearly reduces the ability of dishonest agents to manipulate.

6. Multi-round anarchy cost

The agent society is composed of individuals with different goals and wishes regarding the preferable outcome. The
opportunity to select a game that the honest majority prefers shifts the perspective of the distributed system designer.
Transitionally, the designer should aim at modeling the system precisely and consider all possible failures. Using the
proposed middleware of game authority, the distributed system designer can virtually set the rules of the game, because
the game authority can guarantee that these rules are followed.
In this new situation, there is a need to estimate the eventual performance criteria of repeated games, rather than the

cost in a particular play, e.g., the price of anarchy (PoA) [18,17] that considers the worst Nash equilibrium and the price of
stability (PoS [3]) that considers the best Nash equilibrium.
We consider an example of a repeated resource allocation (RRA) scenario in which a consortium of Internet companies

shares licenses for advertisement clips on video Web sites. We note that the unpredictable loads on the hosts cause service
availability issues. There are many complex ways to model this scenario. One simple way is as follows. In every play, each
agent places a (single unit) demand for a resource. We assume that at the end of every play all agents know the load that
exists on the resources. The load of a resource determines the time it takes to service the demands for this resource. Every
agent wishes to minimize the time it takes to service its demands for the resources that it chooses. We assume that the
number of plays is unknown, i.e., every play could be the last one. Thus, selfish agents choose resources in an ad hocmanner.
In other words, the choices are according to a repeated Nash equilibrium; independent in every round.
Corollary 4 claims that the simplest game of RRA is optimal. Therefore, it could be that the consortium majority prefers

backlog size as the host’s only selection criterion (and rejects criteria such as video content and attempts of synchronized
advertisement). In this case, the game authority can support the agent society’s preferences, whereas in the case of more
complex selection criteria, the game outcomemay be hard to predict, or the multi-round anarchy cost might be higher. The
multi-round anarchy cost is defined as the (eventually) expected ratio between the cost of the worst-case equilibrium and
of the optimal (centralistic) solution.

Corollary 4 (Supervised RRA). A game authority that supervises the RRA game can guarantee an O(1)multi-round anarchy cost.

Thus, there is a clear motivation for the distributed system designer to use the proposed game authority. By virtually
setting these rules, the designer can simplify the protocols and perhaps improve the efficiency of the system.
We now turn to demonstrate Corollary 4 and show that the repeated resource allocation (RRA) game has an

asymptotically optimal cost whenever the game authority assures that all agents are honestly selfish. Let B (bins) be a set of
resources (|B| = b > 1), `a(k) the load of a ∈ B (after k rounds),M(k) = max{`a(k)}a∈B, m(k) = min{`a(k)}a∈B, and EM(k)

S. Dolev et al. / Theoretical Computer Science 411 (2010) 2459–2466 2465

the expectation ofM(k) after a sequence S = π(0), π(1), . . ., whereπ(k) ∈ Π is a result of a Nash equilibriumway to select
resources on round k. The k-round cost of anarchy is the ratio R(k) = SC(k)/OPT (k), where SC(k) is the worst-case EM(k)
over all possible sequences S, and OPT (k) is the optimal solution. As for the repeated resource allocation, Σa∈B`a(k) = nk,
OPT (k) = bnkc/b + 1, and R(k) ≤ SC(k)b/nk. Lastly, let R = limk→∞ R(k) be the asymptotic cost of anarchy (if it exists,
R = lim supk→∞ R(k)).
The initial zero demand for all resources is assumed (when considering the asymptotic behavior of the repeated resource

allocation service). Therefore, by information completeness, the loads on every resource are knownafter kplays and repeated
Nash equilibrium is be formed throughout the play.

Theorem 5 (Replaces Corollary 4). When the game authority supervises the repeated resource allocation service, it holds that
∀k : R(k) ≤ 1+ 2b/k, and R = 1.

Proof. For a particular play k, define xai to be the probability that agent i places its demand on resource a ∈ B (Σa∈Bx
a
i = 1).

Suppose that agent i places its demand on resource a. The expected load on resource a ∈ B is λai = 1+Σi6=jx
a
j +`a(k). (Since

agents make independent choices, we use the subscript notation to represent agent i’s perspective.)

Lemma 6. ∆(k) = M(k)− `a(k) ≤ 2n− 1 (∀a ∈ B).

Proof. Suppose, in contradiction, that the assertion of the lemma does not hold in round k. Let k′ ≤ k be the first round
at which ∆(k) > 2n − 1, and without loss of generality, assume that ∆(k) > 2n − 1 in any round between k′ and k. At
round k + 1, we denote a′ ∈ B to be a resource with maximal load, and i0 ∈ N to be an agent with xai0 , x

a′
i0
> 0 (a, a′ ∈ B).

The Nash equilibrium selection requires that λai0 = λa
′

i0
, which implies that 1 + Σi6=i0x

a
i + `a(k) = 1 + Σi6=i0x

a′
i + `a′(k);

1+Σi6=i0x
a
i = 1+Σi6=i0x

a′
i +∆(k), and∆(k) = Σi6=i0(x

a
i − x

a′
i). The lemma is established becauseΣi6=i0(x

a
i − x

a′
i) ≤ n− 1

contradicts n < ∆(k). �

Thus, no agent supports both a and a′ in her/his play, i.e., if a has any support, then all agents place their demand solely on
a. By Lemma6, (b−1)∆(k) ≤ (b−1)(2n−1), and by the definition of∆(k), we get (b−1)M(k)−Σa6=a′`a(k) ≤ (b−1)(2n−1)
(denoted as Eq1). We also know that Σa∈B`a(k) = M(k) + Σa6=a′`a(k) and M(k) + Σa6=a′`a(k) = nk (denoted as Eq2). By
adding equations Eq1 and Eq2, we get bM(k) ≤ nk+ (b− 1)(2n− 1), which implies thatM(k) ≤ (nk+ (b− 1)(2n− 1))/b.
Since OPT (k) ≤ nk/b, then R(k) = EM(K)/OPT (k) ≤ (nk+ (b− 1)(2n− 1))/nk = 1+ (b− 1)(2n− 1)/nk ≤ 1+ 2b/k. �

7. Conclusions

Distributed algorithm designers often assume that processes execute identical software. Alternatively, when they do not
assume this, designers turn to non-cooperative games. The gameauthoritymiddleware places itself between these extremes,
enabling the majority of the system processes to vote for and enforce the rules of the game.
Interestingly, the experience gained in structuring human society proves that scalability and advancement are gained

by promoting honest selfishness and freedom of choice for individuals. The individual participates in forming the
infrastructures that establish social rules and in their enforcement. The chosen rules promote competitiveness and individual
gain from individual creativity and effort. Creativity and effort are imperative for the success of both individuals and society.
Therefore, an honest majority with a beneficial attitude designs the rules in a way that individual success is driven by the
individual actions whose outcome advances society.
Our game authority design is a step towards forming computer system structures that are inspired by a successful

democratic society. We believe that such a middleware infrastructure is essential for the advancement and scalability of
Internet-wide societies.

References

[1] I. Abraham, D. Dolev, J.Y. Halpern, Lower bounds on implementing robust and resilient mediators, in: R. Canetti (Ed.), TCC, in: Lecture Notes in
Computer Science, vol. 4948, Springer, 2008, pp. 302–319.

[2] A.S. Aiyer, L. Alvisi, A. Clement, M. Dahlin, J.-P. Martin, C. Porth, Bar fault tolerance for cooperative services, SIGOPS Oper. Syst. Rev. 39 (5) (2005)
45–58.

[3] E. Anshelevich, A. Dasgupta, J.M. Kleinberg, É. Tardos, T. Wexler, T. Roughgarden, The price of stability for network design with fair cost allocation,
in: FOCS, IEEE Computer Society, 2004, pp. 295–304.

[4] M. Blum, Coin flipping by telephone a protocol for solving impossible problems, SIGACT News 15 (1) (1983) 23–27.
[5] M. Cagalj, S. Ganeriwal, I. Aad, J.-P. Hubaux, On selfish behavior in csma/ca networks, in: INFOCOM, IEEE, 2005, pp. 2513–2524.
[6] A. Clement, J. Napper, H.C. Li, J.-P. Martin, L. Alvisi, M. Dahlin, Theory of bar games, in: I. Gupta, R. Wattenhofer (Eds.), PODC, ACM, 2007, pp. 358–359.
[7] E.W. Dijkstra, Self-stabilizing systems in spite of distributed control, Commun. ACM 17 (11) (1974) 643–644.
[8] S. Dolev, Self-stabilization, MIT Press, Cambridge, MA, USA, 2000.
[9] S. Dolev, E.M. Schiller, P.G. Spirakis, P. Tsigas, Brief announcement: Game authority for robust and scalable distributed selfish-computer systems,
in: PODC’07, 2007, p. 356.

[10] S. Dolev, E.M. Schiller, P.G. Spirakis, P. Tsigas, Strategies for repeated gameswith subsystem takeovers implantable by deterministic and self-stabilizing
automata. Tech. Rep. 2008:11, Department of Computer Science and Engineering, Chalmers University of Technology and Göteborg University, April
2008.

[11] Shlomi Dolev, Jennifer L. Welch, Self-stabilizing clock synchronization in the presence of byzantine faults, J. ACM 51 (5) (2004) 780–799.
[12] Shlomi Dolev, Elad M. Schiller, Paul G. Spirakis, Game authority: For robust distributed selfish-computer systems, Tech. rep., DELIS, 2006. Accessible

via http://delis.upb.de/docs/.

http://delis.upb.de/docs/

2466 S. Dolev et al. / Theoretical Computer Science 411 (2010) 2459–2466

[13] Shlomi Dolev, EladM. Schiller, Paul G. Spirakis, Game authority: For robust distributed selfish-computer systems, Tech. rep., Department of Computer
Science and Engineering, Chalmers University of Technology and Göteborg University, March 2006.

[14] E. Elkind, H. Lipmaa, Hybrid voting protocols and hardness of manipulation., in: X. Deng, D.-Z. Du (Eds.), ISAAC, in: LNCS, vol. 3827, Springer, 2005,
pp. 206–215.

[15] J. Feigenbaum, S. Shenker, Distributed algorithmic mechanism design: Recent results and future directions, in: DIALM ’02: Proceedings of the 6th
International Workshop on Discrete Algorithms and Methods for Mobile Computing and Communications, 2002, pp. 1–13.

[16] J.A. Garay, Y. Moses, Fully polynomial byzantine agreement for processors in rounds, SIAM J. Comput. 27 (1) (1998) 247–290.
[17] E. Koutsoupias, C.H. Papadimitriou, Worst-case equilibria, in: C. Meinel, S. Tison (Eds.), STACS, in: Lecture Notes in Computer Science, vol. 1563,

Springer, 1999, pp. 404–413.
[18] E. Koutsoupias, C.H. Papadimitriou, Worst-case equilibria, Comput. Sci. Rev. 3 (2) (2009) 65–69.
[19] L. Lamport, R. Shostak, M. Pease, The byzantine generals problem, ACM Trans. Program. Lang. Syst. 4 (3) (1982) 382–401.
[20] T.F. Lunt, Automated audit trail analysis and intrusion detection: A survey, in: Proceedings of the 11th National Computer Security Conference, 1988,

pp. 65–73. URL: http://www.csl.sri.com/papers/survey88/.
[21] T. Moscibroda, S. Schmid, R. Wattenhofer, When selfish meets evil: Byzantine players in a virus inoculation game, in: E. Ruppert, D. Malkhi (Eds.),

PODC, ACM, 2006, pp. 35–44.
[22] J. Nash, Equilibrium points in n-person games, Proc. National Academy of Sciences of USA 36 (1950) 48–49.
[23] M. Osborne, A. Rubinstein, A Course in Game Theory, MIT Press, 1994.

http://www.csl.sri.com/papers/survey88/

	Game authority for robust and scalable distributed selfish-computer systems
	Introduction
	The middleware services
	Our contribution

	Preliminaries
	The middleware
	The legislative service
	The judicial service
	The implementation
	The executive service

	Self(ish)-stabilizing
	The settings of a distributed system
	The proof of Theorem 1

	Auditing mixed strategies
	Hidden manipulative strategies
	Validating random choices
	The solution
	Benefit: Reduced price of malice

	Multi-round anarchy cost
	Conclusions
	References

