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Abstract. In this paper we revisit the design of concurrent data struc-
tures – specifically queues – and examine their performance portability
with regard to the move from conventional CPUs to graphics proces-
sors. We have looked at both lock-based and lock-free algorithms and
have, for comparison, implemented and optimized the same algorithms
on both graphics processors and multi-core CPUs. Particular interest
has been paid to study the difference between the old Tesla and the new
Fermi and Kepler architectures in this context. We provide a compre-
hensive evaluation and analysis of our implementations on all examined
platforms. Our results indicate that the queues are in general perfor-
mance portable, but that platform specific optimizations are possible
to increase performance. The Fermi and Kepler GPUs, with optimized
atomic operations, are observed to provide excellent scalability for both
lock-based and lock-free queues.

1 Introduction

While multi-core CPUs have been available for years, the use of GPUs as efficient
programmable processing units is more recent. The advent of CUDA [1] and
OpenCL [2] made general purpose programming on graphics processors more
accessible to the non-graphics programmers. But still the problem of efficient
algorithmic design and implementation of generic concurrent data structures for
GPUs remains as challenging as ever.

Much research has been done in the area of concurrent data structures. There
are efficient concurrent implementations of a variety of common data structures,
such as stacks [3], queues [4–9] and skip-lists [10]. For a good overview of several
concurrent data structures we refer to the chapter by Cederman et al. [11].

But while the aforementioned algorithms have all been implemented and eval-
uated on many different multi-core architectures, very little work has been done
to evaluate them on graphics processors. Data structures targeting graphics ap-
plications have been implemented on GPUs, such as the kd-tree [12] and oc-
tree [13]. A C++ and Cg based template library [14] has been provided for random
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access data structures for GPUs. Load balancing schemes on GPUs [15] using
different data structures have been designed. A set of blocking synchronization
primitives for GPUs [16] has been presented that could aid in the development
or porting of data structures.

With the introduction of atomic primitives on graphics processors, we hypoth-
esize that many of the existing concurrent data structures for multi-core CPUs
could be transferred to graphics processors, perhaps without much change in
the design. To evaluate how performance portable the designs of already exist-
ing common data structure algorithms are, we have, for this paper, implemented
a set of concurrent FIFO queues with different synchronization mechanisms on
both graphics processors and on multi-core CPUs. We have performed exper-
iments comparing and analyzing the performance and cache behavior of the
algorithms. We have specifically looked at how the performance changes by the
move from NVIDIA’s Tesla architecture to the newer Fermi [17] and Kepler
(GK104) [18] architectures.

The paper is organized as follows. In section 2, we introduce the concurrent
data structures and describe the distinguishing features of the algorithms con-
sidered. Section 3 presents a brief description of the CUDA programming model
and different GPU architectures. In section 4, we present the experimental setup.
A detailed performance analysis is presented in section 5. Section 6 concludes
the paper.

2 Concurrent Data Structures

Depending on the synchronization mechanism, we broadly classify concurrent
data structures into two categories, namely blocking and non-blocking. In block-
ing synchronization, no progress guarantees are made. For non-blocking synchro-
nization, there are a number of different types of progress guarantees that can be
assured. The two most important ones are known as wait-free and lock-free. Wait-
free synchronization ensures that all the non-faulty processes eventually succeed
in finite number of processing steps. Lock-free synchronization guarantees that
at least one of the non-faulty processes out of the contending set will succeed in
a finite number of processing steps. In practice, wait-free synchronization is usu-
ally more expensive and is mostly used in real-time settings with high demands
on predictability, while lock-free synchronization targets high-performance com-
puting.

Lock-free algorithms for multiple threads require the use of atomic primitives,
such as Compare-And-Swap (CAS). CAS can conditionally set the value of a
memory word, in one atomic step, if at the time, it holds a value specified as
a parameter to the operation. It is a powerful synchronization primitive, but is
unfortunately also expensive compared to normal read and write operations.

In this paper we have looked at different types of queues to evaluate their per-
formance portability when moved from the CPU domain to the GPU domain.
The queue data structures that we have chosen to implement are representa-
tive of several different design choices, such as being array-based or linked-list-
based, cache-aware or not, lock-free or blocking. We have divided them up into
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two main categories, Single-Producer Single-Consumer (SPSC) and Multiple-
Producer Multiple-Consumer (MPMC).

2.1 SPSC Queues

In ’83, Lamport presented a lock-free array-based concurrent queue for the
SPSC case [19]. For this case, synchronization can be achieved using only atomic
read and write operations on shared head and tail pointers. No CAS operations
are necessary. Having shared pointers cause a lot of cache thrashing however,
as both the producer and consumer need to access the same variables in every
operation.

The FastForward algorithm lowered the amount of cache thrashing by keep-
ing the head and tail variables private to the consumer and producer, respec-
tively [4]. The synchronization was instead performed using a special empty
element that was inserted into the queue when an element was dequeued. The
producer would then only insert elements when the next slot in the array con-
tained such an element. Cache thrashing does however still occur when the pro-
ducer catches up with the consumer. To lower this problem it was suggested
to use a small delay to keep the threads apart. The settings used for the delay
function are however so application dependant that we decided not to use it in
our experiments.

The BatchQueue algorithm divides the array into two batches [5]. When the
producer is writing to one batch, the consumer can read from the other. This
removes much of the cache thrashing and also lowers the frequency at which
the producer and consumer need to synchronize. The major disadvantage of this
design is that a batch must be full before it can be read, leading to large latencies
if elements are not enqueued fast enough. A suggested solution to this problem
was to at regular intervals insert null elements into the queue. We deemed this as
a poor solution and it is not used in the experiments. To take better advantage of
the graphics hardware, we have also implemented a version of the BatchQueue
where we copy the entire batch to the local shared memory, before reading
individual elements from it. We call this version Buffered BatchQueue.

The MCRingBuffer algorithm is similar to the BatchQueue, but instead of
having just two batches, it can handle an arbitrary number of batches. This can
be used to find a balance between the latency caused by waiting for the other
threads and the latency caused by synchronization. As for the BatchQueue we
provide a version that copies the batches to the local shared memory. We call
this version Buffered MCRingBuffer.

2.2 MPMC Queues

For the MPMC case we used the lock-free queue by Michael and Scott, henceforth
called the MS-Queue [7]. It is based on a linked-list and adds items to the queue
by using CAS to swap in a pointer at the tail node. The tail pointer is then moved
to point to the new element, with the use of a CAS operation. This second step
can be performed by the thread invoking the operation, or by another thread that
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needs to help the original thread to finish before it can continue. This helping
behavior is an important part of what makes the queue lock-free, as a thread
never has to wait for another thread to finish.

We also used the lock-free queue by Tsigas and Zhang, henceforth called the
TZ-Queue, which is an array-based queue [8]. Elements are here inserted into
the array using CAS. The head and tail pointers are also moved using CAS, but
it is done lazily, after every x:th element instead of after every element. In the
experiments we got the best performance doing it every second operation.

To compare lock-free synchronization with blocking, we used the lock-based
queue by Michael and Scott, which stores elements in a linked-list [7]. We used
both the standard version, with separate locks for the enqueue and dequeue
operation, and a simpler version with a common lock for both operations. For
locks we used a basic spinlock, which spins on a variable protecting a critical
section, until it can acquire it using CAS. As CAS operations are expensive, we
also implemented a lock that does not use CAS, the bakery-lock by Lamport
[20].

3 GPU Architectures

Graphics processors are massively parallel shared memory architectures excel-
lently suitable for data parallel programs. A GPU has a number of stream multi-
processors (SMs), each having many cores. The SMs have registers and a local
fast shared memory available for access to threads and thread blocks (group of
threads) respectively, executing on them. The global memory, the main graph-
ics memory, is shared by all the thread blocks and the access is relatively slow
compared to that of the local shared memory.

In this work we have used CUDA for all GPU implementations. CUDA is a
mature programming environment for programming on GPUs. In CUDA threads
are grouped into blocks where all threads in a specific block execute on the
same SM. Threads in a block are in turn grouped into so called warps of 32
consecutive threads. These warps are then scheduled by the hardware scheduler.
Exactly how the scheduler schedules warps is unspecified. This is problematic
when using locks, as there is a potential for deadlocks if the scheduler is unfair.
For lock-free algorithms this is not an issue, as they are guaranteed to make
progress regardless of the scheduler.

The different generations of CUDA programmable GPUs are categorized in
compute capabilities (CC) and are identified more popularly by their archi-
tecture’s codename. CC 1.x are Tesla, 2.x are Fermi and 3.x are Kepler. The
architectural features depend on the compute capability of the GPU. In par-
ticular the availability of atomic functions has been varying with the compute
capabilities. In CC 1.0 there were no atomic operations available, from CC 1.1
onwards there are atomic operations available on the global memory and from
CC 1.2 also for the shared memory. An important addition to the GPUs in the
Fermi and Kepler architectures is the availability of a unified L2 cache and a
configurable L1 cache. The performance of the atomic operations significantly
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increased in Fermi, with the atomic unit working on the L2 cache, instead of on
the global memory [16]. The bandwidth of L2 cache increased in Kepler so that
it is now 73% faster than that in Fermi [18]. The speed of atomic operations has
also been significantly increased in Kepler as compared to Fermi.

4 Experimental Setup

The experiments were performed on four different types of graphics processors,
with different memory clock rates, multiprocessor counts and compute capabil-
ities. To explore the difference in performance between CPUs and GPUs, the
same experiments were also performed on a conventional multi-core system, a
12-core Intel system (24 cores with HyperThreading). See Table 1 for an overview
of the platforms used.

Table 1. Platforms used in experiments. Counting multiprocessors as cores in GPU.

Name Clock speed Memory clock rate Cores Cache Architecture(CC)

GeForce 8800 GT 1.6GHz 1.0GHz 14 0 1.1 (Tesla)
GeForce GTX 280 1.3GHz 1.1GHz 30 0 1.3 (Tesla)
Tesla C2050 1.2GHz 1.5GHz 14 786 kB 2.0 (Fermi)
GeForce GTX 680 1.1GHz 3.0GHz 8 512 kB 3.0 (Kepler)

Intel E5645 (2x) 2.4GHz 0.7GHz 24 12MB

In the experiments we only consider communication between thread blocks,
not between individual threads in a thread block.

For the SPSC experiments, a thread from one thread block was assigned the
role of the producer and another thread from a second block the role of the
consumer. The performance was measured by counting the number of successful
enqueue/dequeue operations per ms that could be achieved when communicat-
ing a set of integers from the producer to the consumer. Enqueue operations on
full queues or dequeue operations on empty queues were not counted. Local vari-
ables, variables that are only accessed by either the consumer or the producer,
are placed in the shared memory to remove unnecessary communication with the
global memory. For buffered queues, 32 threads were used for memory transfer
between global and shared memory to take advantage of the hardware’s coalesc-
ing of memory accesses. All array-based queues had a maximum length of 4096
elements. The MCRingBuffer used a batch size of 128 whereas the BatchQueue
by design has batches of size as of half the queue size, in this case 2048. For
the CPU experiments care was taken to place the consumer and producer on
different sockets, to emphasize the penalty taken by using an inefficient memory
access strategy.

For the MPMC experiments a varying number of thread blocks were used,
from 2 up to 60. Each thread block performed 25% enqueue operations and
75% dequeue operations randomly, using a uniform distribution. Two scenarios
were used, one with high contention, where operations were performed one after
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another, and one with low contention, in which a small amount of work was per-
formed between the operations. The performance was measured in the number
of successful operations per ms in total.

5 Performance Analysis

5.1 SPSC Queues

Figure 1(a) depicts the result from the experiments on the CPU system. It is
clear from the figure that even the small difference in access pattern between the
Lamport and the FastForward algorithms has a significant impact on the perfor-
mance. The number of operations per ms differ by a factor of four between the
two algorithms. The cache access profile in Figure 1(b) shows that the number
of cache misses goes down dramatically when the head and tail variables are no
longer shared between processes. It goes down even further when the producer
and the consumer are forced to work on different memory locations. The figure
also shows that the number of stalled cycles per instructions matches the cache
misses relatively well. The reason for the performance difference between the
BatchQueue and the MCRingBuffer, which both have a similar number of cache
misses, lies in the difference between the size of the batches. This causes more fre-
quent reads and writes of shared variables compared to the BatchQueue. It was
observed that increasing the batch size lowers the synchronization overhead and
the number of stalled cycles and improves the performance of the MCRingBuffer
and brings it close to that of the BatchQueue.
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(b) Cache profile.

Fig. 1. Comparison of SPSC queues on the CPU based system

Figure 2 shows the results for the same experiment performed on the graphics
processors. On the Tesla processors there are no cache memories available, which
removes the problem of cache thrashing and causes the Lamport and FastFor-
ward algorithms to give similar results. In contrast to the CPU implementations,
here the MCRingBuffer is actually faster than the BatchQueue. This is due to
the fact that the BatchQueue enqueuer is faster than the dequeuer and has to
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Fig. 2. Comparison of SPSC queues on four different GPUs

wait for a longer time for the larger batches to be processed. The smaller batch
size in MCRingBuffer thus has an advantage here. The two buffered versions
lower the overhead, as for most operations the data will be available locally
from the shared memory. It is only at the end of a batch that the shared vari-
ables and the elements stored in the queue need to be accessed. This access is
done using coalesced reads and writes, which speeds up the operation. When the
queues are buffered, the BatchQueue becomes faster than the MCRingBuffer.
Thus the overhead of the more frequent batch copies became more dominant.
The performance on the Fermi and Kepler graphics processor is significantly bet-
ter compared to the other processors, benefiting from the faster memory clock
rate and the cache memory. The speed of the L2 cache is however not enough
to make the unbuffered queues comparable with the buffered ones on the Fermi
processor. On the Kepler processor, on the other hand, with its faster cache and
higher memory clock rate, the unbuffered MCRingbuffer performs similarly to
the buffered queues. The SPSC queues that we have examined thus need to be
rewritten to achieve maximum performance on most GPUs. This might however
change with the proliferation of the Kepler architecture.

5.2 MPMC Queues

All MPMC queue algorithms, except the ones that used the bakery-lock, make
use of the CAS primitive. To visualize the behavior of the CAS primitive we
measured the number of CAS operations that could be performed per thread
block per ms for a varying number of thread blocks. The result is available in
Figure 3. We see in Figure 3(a) that when the contention increases for the Tesla
processors the number of CAS operations per ms drops quickly. However, it is
observed that the CAS operations scale well on the Fermi, for up to 40 thread
blocks, at high speed. The increased performance of the atomic primitives was
one of the major improvements done when creating the Fermi architecture. The
atomic operations are now handled at the L2 cache level and no longer need
to access the global memory [16]. The Kepler processor has twice the memory
clock rate of the Fermi processor and we can see that the CAS operations scales
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Fig. 3. Visualization of the CAS behavior on the GPUs and the CPU

perfect despite increased contention. Figure 3(b) shows that on the conventional
system the performance is quite high when few threads perform CAS operations,
but the performance drops rapidly as the contention increases.

Figure 4 shows the performance of the MPMC queues on the CPU-based
system. Looking first at the topmost graphs, which shows the result using just
lock-based queues, we see that for a low number of threads the dual spinlock
based queue clearly outperforms the bakery lock based queues. The bakery lock
does not use any expensive CAS operation, but the overhead of the algorithm is
still too high, until the number of threads goes above the number of cores and
starts to use hyperthreading. The difference between dual and single spinlock
is insignificant, however between the dual and the single bakery lock there is a
noticeable difference.

The lower two graphs show the comparison results for the two lock-free queues
together with the best lock-based one, the dual spinlock queue. The lock-free
queues clearly outperform the lock-based one for all number of threads and for
both contention levels. The array-based TZ-queue exhibits better results for the
lower range of threads, but it is quickly overtaken by the linked-list based MS-
queue. When hyperthreading kicks in, the performance does not drop any more
for any of the queues.

The measurements taken for the lock-based queues on the Fermi and one of
the Tesla graphics processors are shown in Figure 5. Just as in the CPU ex-
periments the dual spinlock queue excels among the lock-based queues. There is
however a much clearer performance difference between the dual and single spin-
lock queues in all graphs, although not for the low contention cases when using
few thread blocks. The peak in the result in Figure 5(a) is due to the overhead
of the benchmark and the non-atomic parts of the queue. When contention is
lowered, as in Figure 5(b), the peak moves to the right. After the peak the cost
of the atomic operations become dominant, and the performance drops. For the
Fermi-processor, in Figure 5(c), the performance for the spinlock based queues
is significantly higher, while at the same time scaling much better. As we could
see in Figure 3(a), this is due to the much improved atomic operations of the
Fermi-architecture.
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Fig. 4. Comparison of MPMC queues on the Intel 24-core system under high and low
contention scenarios
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(c) Tesla C2050 (High Contention)
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Fig. 5. Comparison of lock-based MPMC queues on two GPUs under high and low
contention scenarios
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(e) Tesla C2050 (High Contention)
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Fig. 6. Comparison of the best lock-based and lock-free MPMC queues on four GPUs
under high and low contention scenarios
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Comparing the dual spinlock queue with the lock-free queues, in Figure 6
we see that the lock-free queues scale much better than the lock-based one and
provides the best performance when the thread block count is high. The spinlock
queue does however achieve a better result on all graphics processors for a low
number of thread blocks. As the contention is lowered, it remains useful for a
higher number of threads. The array-based TZ-queue outperforms the linked-
list based MS-queue on both the Tesla processors, but falls short on the Fermi
and Kepler processors, Figure 6(e). When contention is lowered on the Fermi-
processor, Figure 6(f), there is no longer any difference between the lock-based
and the lock-free queues.

6 Conclusion and Future Work

In this paper we have examined the performance portability of common SPSC
and MPMC queues. From our experiments on the SPSC queues we found that
the best performing queues on the CPU were also the ones that performed well
on the GPUs. It was however clear that the cache on the Fermi-architecture was
not enough to remove the benefit of redesigning the algorithms to take advantage
of the local shared memory. For the MPMC queue experiments we saw similar
results in scalability for the GPU-versions on the Tesla processors as we did for
the CPU-version. On the Fermi processor the result was surprising however. The
scalability was close to perfect and for low contention there was no difference
between the lock-based and the lock-free queues. The Fermi architecture has
significantly improved the performance of atomic operations and this is an indi-
cation that new algorithmic designs should be considered to more properly take
advantage of this new behavior. The Kepler architecture has continued in this
direction and now provides atomic operations with performance competitive to
that of conventional CPUs.

We will continue this work by studying the behavior of other concurrent data
structures with higher potential to scale than queues, such as dictionaries and
trees. Most queue data structures suffer from the fact that only two operations
can succeed concurrently in the best case, whereas for a dictionary there are no
such limitations.
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