
Multi-word Atomic Read/Write Registers on
Multiprocessor Systems�

Andreas Larsson, Anders Gidenstam, Phuong H. Ha, Marina Papatriantafilou,
and Philippas Tsigas

Department of Comp. Science, Chalmers University of Technology, SE-412 96
Göteborg, Sweden

Abstract. Modern multiprocessor systems offer advanced synchroniza-
tion primitives, built in hardware, to support the development of efficient
parallel algorithms. In this paper we develop a simple and efficient algo-
rithm for atomic registers (variables) of arbitrary length. The simplicity
and better complexity of the algorithm is achieved via the utilization of
two such common synchronization primitives. In this paper we also eval-
uate the performance of our algorithm and the performance of a practical
previously know algorithm that is based only on read and write prim-
itives. The evaluation is performed on 3 well-known, parallel architec-
tures. This evaluation clearly shows that both algorithms are practical
and that as the size of the register increases our algorithm performs
better, accordingly to its complexity behavior.

1 Introduction

In multiprocessing systems cooperating processes may share data via shared data
objects. In this paper we are interested in designing and evaluating the perfor-
mance of shared data objects for cooperative tasks in multiprocessor systems.
More specifically we are interested in designing a practical wait-free algorithm
for implementing registers (or memory words) of arbitrary length that could be
read and written atomically. (Typical modern multiprocessor systems support
words of 64-bit size.)

The most commonly required consistency guarantee for shared data objects
is atomicity, also known as linearizability. An implementation of a shared object
is atomic or linearizable if it guarantees that even when operations overlap in
time, each of them appears to take effect at an atomic time instant which lies
in its respective time duration, in a way that the effect of each operation is in
agreement with the object’s sequential specification. The latter means that if
we speak of e.g. read/write objects, the value returned by each read equals the
value written by the most recent write according to the sequence of “shrunk”
operations in the time axis.

� This work was supported by computational resources provided by the Swedish Na-
tional Supercomputer Centre (NSC).

S. Albers and T. Radzik (Eds.): ESA 2004, LNCS 3221, pp. 736–748, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Multi-word Atomic Read/Write Registers on Multiprocessor Systems 737

The classical, well-known and simplest solution for maintaining consistency
of shared data objects enforces mutual exclusion. Mutual exclusion protects the
consistency of the shared data by allowing only one process at time to access it.
Mutual exclusion causes large performance degradation especially in multipro-
cessor systems [1] and suffers from potential priority inversion in which a high
priority task can be blocked for an unbounded time by a lower priority task [2].

Non-blocking implementation of shared data objects is an alternative ap-
proach for the problem of inter-task communication. Non-blocking mechanisms
allow multiple tasks to access a shared object at the same time, but without
enforcing mutual exclusion to accomplish this. They offer significant advantages
over lock-based schemes because i) they do not suffer from priority inversion;
ii) they avoid lock convoys; iii) they provide high fault tolerance (processor fail-
ures will never corrupt shared data objects); and iv) they eliminate deadlock
scenarios involving two or more tasks both waiting for locks held by the other.

Non-blocking algorithms can be lock-free or wait-free. Lock-free implementa-
tions guarantee that regardless of the contention and the interleaving of concur-
rent operations, at least one operation will always make progress. However, there
is a risk that the progress of other operations might cause one specific operation
to take unbounded time to finish. In a wait-free algorithm, every operation is
guaranteed to finish in a limited number of steps, regardless of the actions of
the concurrent operations. Non-blocking algorithms have been shown to be of
big practical importance [3,4], and recently NOBLE, which is a non-blocking
inter-process communication library, has been introduced [5].

The problem of multi-word wait-free read/write registers is one
of the well-studied problems in the area of non-blocking synchro-
nization [6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21]. The main goal of
the algorithms in these results is to construct wait-free multiword
read/write registers using single-word read/write registers and not other
synchronization primitives which may be provided by the hardware in a system.
This has been very significant, providing fundamental results in the area of
wait-free synchronization, especially when we consider the nowadays well-known
and well-studied hierarchy of shared data objects and their synchronization
power [22]. A lot of these solutions also involve elegant and symmetric ideas
and have formed the basis for further results in the area of non-blocking
synchronization.

Our motivation for further studying this problem is as follows: As the afore-
mentioned solutions were using only read/write registers as components, they
necessarily have each write operation on the multi-word register write the new
value in several copies (roughly speaking, as many copies as we have readers in
the system), which may be costly. However, modern architectures provide hard-
ware synchronization primitives stronger than atomic read/write registers, some
of them even accessible at a constant cost-factor away from read/write accesses.
We consider it a useful task to investigate how to use this power, to the benefit
of designing economical solutions for the same problem, which can lead to struc-

738 A. Larsson et al.

tures that are more suitable in practice. To the best of our knowledge, none of
the previous solutions have been implemented and evaluated on real systems.

In this paper we present a simple, efficient wait-free algorithm for imple-
menting multi-word n-reader/single writer registers of arbitrary word length. In
the new algorithm each multi-word write operation only needs to write the new
value in one copy, thus having significantly less overhead. To achieve this, the al-
gorithm uses synchronization primitives called fetch-and-or and swap [1], which
are available in several modern processor architectures, to synchronize n readers
and a writer accessing the register concurrently. Since the new algorithm is wait-
free, it provides high parallelism for the accesses to the multi-word register and
thus significantly improves performance. We compare the new algorithm with
the wait-free one in [23], which is also practical and simple, and two lock-based
algorithms, one using a single spin-lock and one using a readers-writer spin-lock.
We design benchmarks to test them on three different architectures: UMA Sun-
Fire-880 with 6 processors, ccNUMA SGI Origin 2000 with 29 processors and
ccNUMA SGI Origin 3800 with 128 processors.

The rest of this paper is organized as follows. In Section 2 we describe the
formal requirements of the problem and the related algorithms that we are using
in the evaluation study. Section 3 presents our protocol. In Section 4, we give
the proof of correctness of the new protocol. Section 5 is devoted to the perfor-
mance evaluation. The paper concludes with Section 6, with a discussion on the
contributed results and further research issues.

2 Background

System and Problem Model. A shared register of arbitrary length [23,24] is
an abstract data structure that is shared by a number of concurrent processes
which perform read or write operations on the shared register. In this paper we
make no assumption about the relative speed of the processes, i.e. the processes
are asynchronous. One of the processes, the writer, executes write operations and
all other processes, the readers, execute read operations on the shared register.
Operations performed by the same process are assumed to execute sequentially.

An implementation of a register consists of: (i) protocols for executing the
operations (read and write); (ii) a data structure consisting of shared subregis-
ters and (iii) a set of initial values for these. The protocols for the operations
consist of a sequence of operations on the subregisters, called suboperations.
These suboperations are reads, writes or other atomic primitives, such as fetch-
and-or or swap, which are either available directly on modern multiprocessor
systems or can be implemented from other available synchronization primitives
[22]. Furthermore, matching the capabilities of modern multiprocessor systems,
the subregisters are assumed to be atomic and to support multiple processes.

A register implementation is wait-free [22] if it guarantees that any process
will complete each operation in a finite number of steps (suboperations) regard-
less of the execution speeds of the other processes.

Multi-word Atomic Read/Write Registers on Multiprocessor Systems 739

For each operation O there exists a time interval [sO, fO] called its duration,
where sO and fO are the starting and ending times, respectively. We assume
that there is an precedence relation on the operations that form a strict partial
order (denoted ’→’). For two operations a and b, a → b means that operation a
ended before operation b started. If two operations are incomparable under →,
they are said to overlap.

A reading function π for a register is a function that assigns a high-level write
operation w to each high-level read operation r such that the value returned by
r is the value that was written by w (i.e. π(r) is the write operation that wrote
the value that the read operation r read and returned).

Criterion 1. A shared register is atomic iff the following three conditions hold
for all possible executions:

1. No-irrelevant. There exists no read r such that r → π(r).
2. No-past. There exists no read r and write w such that π(r) → w → r.
3. No N-O inversion. There exist no reads r1 and r2 such that r1 → r2 and

π(r2) → π(r1).

Peterson’s Shared Multi-Word Register. In [23] Peterson describes an im-
plementation of an atomic shared multi-word register for one writer and many
readers. The protocol does not use any other atomic suboperations than reads
and writes and is described below.

The idea is to use n + 2 shared buffers, which each can hold a value of the
register, together with a set of shared handshake variables to make sure that
the writer does not overwrite a buffer that is being read by some reader and
that each reader chooses a stable but up-to-date buffer to read from. The shared
variables are shown in Fig. 1 and the protocols for the read and write operations
are shown in Fig. 2.

Peterson’s implementation is simple and efficient in most cases, however, a
high-level write operation potentially has to write n + 2 copies of the new value
and all high-level reads read at least two copies of the value, which can be quite
expensive when the register is large. Our new register implementation uses these
additional suboperations to implement high-level read and write operations that
only need to read or write one copy of the register value.

We have decided to compare our method with this algorithm because: (i)
they are both designed for the 1-writer n-reader shared register problem; (ii)
compared to other more general solutions based on weaker subregisters (which
are much weaker than what common multiprocessor machines provide) this one
involves the least communication overhead among the processes, without requir-
ing unbounded timestamps or methods to bound the unbounded version .
Mutual-Exclusion Based Solutions. For comparison we also evaluate the
performance of two mutual-exclusion-based register implementations, one that
uses a single spin-lock with exponential back-off and another that uses a readers-
writers spin-lock [1] with exponential back-off to protect the shared register. The
readers-writers spin-lock is similar to the spin-lock but allows readers to access
the register concurrently with other readers.

740 A. Larsson et al.

Fig. 1. The shared variables used by Peterson’s algorithm. The number of readers is
n. BUF1 holds the initial register value. All other variables are initialized to 0 or false.

Read operation by reader r.
READING[r] = !WRITING[r];
flag1 = WFLAG;
sw1 = SWITCH;
read BUF1;
flag2 = WFLAG;
sw2 = SWITCH;
read BUF1;
bad1 = (sw1 != sw2) || flag1 || flag2;
if(READING[r] == WRITING[r]) {

return the value in COPYBUF[r];
} else if(bad1) {

return the value read from BUF2;
} else {

return the value read from BUF1;
}

Write operation.
WFLAG = true;
write to BUF1;
SWITCH = !switch;
WFLAG = false;
for(each reader r) {

if(READING[r] != WRITING[r]) {
write to COPYBUF[r];
WRITING[r] = READING[r];

}
}
write to BUF2;

Fig. 2. Peterson’s algorithm. Lower-case variables are local variables.

3 The New Algorithm

The idea of the new algorithm is to remove the need for reading and writing
several buffers during read and write operations by utilizing the atomic synchro-
nization primitives available on modern multiprocessor systems. These primitives
are used for the communication between the readers and the writer. The new
algorithm uses n + 2 shared buffers that each can hold a value of the register.
The number of buffers is the same as for Peterson’s algorithm which matches the
lower bound on the required number of buffers. The number of buffers cannot be
less for any wait-free implementation since each of the n readers may be reading
from one buffer concurrently with a write, and the write should not overwrite
the last written value (since one of the readers might start to read again before
the new value is completely written).

The shared variables used by the algorithm are presented in Fig. 3. The
shared buffers are in the (n + 2)-element array BUF. The atomic variable SYNC
is used to synchronize the readers and the writer. This variable consists of two
fields: (i) the pointer field, which contains the index of the buffer in BUF that
contains the most recent value written to the register and (ii) the reading-bit field,

Multi-word Atomic Read/Write Registers on Multiprocessor Systems 741

Fig. 3. The constants and shared variables used by the new algorithm. The number of
readers is n. Initially BUF[0] holds the register value and SYNC points to this buffer
while all reader-bits are 0.

Read operation by reader r.
R1 readerbit = 1 << (r + PTRFIELDLEN)
R2 rsync = fetch_and_or(&SYNC,readerbit)
R3 rptr = rsync & PTRFIELD
R4 read(BUF[rptr])

Write operation.
W1 choose newwptr such that newwptr != oldwptr and

newwptr != trace[r] for all r;
W2 write(BUF[newwptr]);
W3 wsync = swap(&SYNC, 0 | newwptr); /* Clears all reading bits */
W4 oldwptr = wsync & PTRFIELD;
W5 for each reader r {
W6 if (wsync & (1 << (r + PTRFIELDLEN))) {
W7 trace[r] = oldwptr;
W8 }
W9 }

Fig. 4. The read and write operations of the new algorithm. The trace-array and
oldwptr are static, i.e. stay intact between write operations. They are all initialized to
zero.

which holds a handshake bit for each reader that is set when the corresponding
reader has followed the value contained in the pointer field.

A reader (Fig. 4) uses fetch-and-or to atomically read the value of SYNC and
set its reading-bit. Then it reads the value from the buffer pointed to by the
pointer field.

The writer (Fig. 4) needs to keep track of the buffers that are available for
use. To do this it stores the index of the buffer where it last saw each reader, in
a n-element array trace, in persistent local memory. At the beginning of each
write the writer selects a buffer index to write to. This buffer should be different
from the last one it used and with no reader intending to use it. The writer writes
the new value to that buffer and then uses the suboperation swap to atomically
read SYNC and update it with the new buffer index and clear the reading-bits.
The old value read from SYNC is then used to update the trace array for those
readers whose reading-bit was set.

742 A. Larsson et al.

The maximum number of readers is limited by the size of the words that
the two atomic primitives used can handle. If we are limited to 64-bit words we
can support 58 readers as 6 bits are needed for the pointer field to be able to
distinguish between 58+2 buffers.

4 Analysis

We first prove that the new algorithm satisfies the conditions in Lamport’s cri-
terion [12] (cf. Criterion 1 in section 2), which guarantee atomicity.

Lemma 1. The new algorithm satisfies condition “No-irrelevant”

Proof. A read r reads the value that is written by the write π(r). Therefore r’s
read(BUF [j]) operation (line R4 in Fig. 4) starts after π(r)’s write(BUF [j])
operation (line W2 in Fig. 4) starts. On the other hand, the starting time-point
of the read(BUF [j]) operation is before the ending time-point of r and the
starting time-point of the write(BUF [j]) operation is after the starting time-
point of π(r), so the ending time-point of r must be after the starting time-point
of π(r), or r �→ π(r). ��

Lemma 2. The new algorithm satisfies condition “No-past”

Proof. We prove the lemma by contradiction. Assume there are a read r and a
write w such that π(r) → w → r, which means i) write π(r) ends before write
w starts and write w ends before read r starts and ii) r reads the value written
by π(r). Because π(r) → w → r, the value of SY NC that r reads (line R2 in
Fig. 4) is written by a write w′ using the swap primitive (line W3 in Fig. 4),
where w′ = w or w → w′ → r, i.e. w′ �= π(r) because π(r) → w. On the
other hand, because r reads the buffer that is pointed by SY NC (lines R2-R4),
r would read the buffer that has been written completely by w′ �= π(r). That
means r does not read the value written by π(r), a contradiction. ��

Lemma 3. The new algorithm satisfies condition “No N-O inversion”

Proof. We prove the lemma by contradiction. Assume there are reads r1 and r2
such that r1 → r2 and π(r2) → π(r1). Because i) π(r1) always keeps track of
which buffers are used by readers in the array trace[] (lines W4-W7 in Fig. 4)
and ii) the buffer π(r1) chooses to write to is different from those recorded in
trace[] as well as the last buffer the writer has written, wptr (lines W1-W2), r1
reads the value written by π(r1) only if r1 has read the correct value of SY NC
(line R2 in Fig. 4) that has been written by π(r1) (line W3 in Fig. 4).

On the other hand, because r1 → r2, the value of SY NC that r2 reads must
be written by a write wk where wk = π(r1) or π(r1) → wk, i.e. wk �= π(r2)
because π(r2) → π(r1). Moreover, because r2 reads the buffer that is pointed by
SY NC (lines R2-R4), r2 would read the buffer that has been written completely
by wk �= π(r2) (lines W2-W3). That means r2 reads the value that has not been
written by π(r2), a contradiction. ��

Multi-word Atomic Read/Write Registers on Multiprocessor Systems 743

Complexity. The complexity of a read operation is of order O(m), where m is
the size of the register, for both the new algorithm and Peterson’s algorithm [23].
However, in Peterson’s algorithm the reader may have to read the value up to 3
times, while in our algorithm the reader will only read the value once and has to
use the fetch-and-or suboperation. A write operation in the new algorithm writes
one value of size m and then traces the n readers. The complexity of the write
operation is therefore of order O(n + m). For Peterson’s algorithm however, the
writer must in the worst case write to n+2 buffers of size m, thus its complexity
is of order O(n · m). As the size of registers and the number of threads increase,
the new algorithm is expected to perform significantly better than Peterson’s
algorithm with respect to the writer. With respect to the readers the handshake
mechanism used in the new algorithm can be more expensive compared to the
one used by Peterson’s, but on the other hand the new algorithm only needs
to read one m-word buffer, whereas Peterson’s need to read at least two and
sometimes three buffers.

Using the above, we have the following theorem:

Theorem 1. A multi-reader, single-writer, m-word sized register can be con-
structed using n + 2 buffers of size m each. The complexity of a read operation
is O(m). The complexity of a write operation is O(n + m).

5 Performance Evaluation

The performance of the proposed algorithm was tested against: i) Peterson’s
algorithm [23], ii) a spinlock-based implementation with exponential backoff and
iii) a readers-writers spinlock with an exponential backoff [1].
Method. We measured the number of successful read and write operations
during a fixed period of time. The higher this number the better the performance.
In each test one thread is the writer and the rest of the threads are the readers.
Two sets of tests have been done: (i) one set with low contention and (ii) one
set with high contention. During the high-contention tests each thread reads or
writes continuously with no delay between successive accesses to the multi-word
register. During the low-contention tests each thread waits for a time-interval
between successive accesses to the multi-word register. This time interval is much
longer than the time used by one write or read. Tests have been performed for
different number of threads and for different sizes of the register.
Systems. The performance of the new algorithm has been measured on both
UMA (Uniform Memory Architecture) and NUMA (Non Uniform Memory Ar-
chitecture) multiprocessor systems. The difference between UMA and NUMA is
how the memory is accessed. In a UMA system all processors have the same la-
tency and bandwidth to the memory. In a NUMA system, processors are placed
in nodes and each node has some of the memory directly attached to it. The
processors of one node have fast access the memory attached to that node, but
accesses to memory on another node has to be made over a network and is
therefore significantly slower. The three different systems used are:

744 A. Larsson et al.

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 4 16 64 256 1024 4096

T
u

rn
s

Words

The new algorithm
Peterson’s register

Spinlock
Readers/writers lock

(a) 16 threads, high contention.

 1000

 10000

 100000

 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

T
u

rn
s

Threads

The new algorithm
Peterson’s register

Spinlock
Readers/writers lock

(b) 8192 words, high contention.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 4 16 64 256 1024 4096

T
u

rn
s

Words

The new algorithm
Peterson’s register

Spinlock
Readers/writers lock

(c) 16 threads, low contention.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

T
u

rn
s

Threads

The new algorithm
Peterson’s register

Spinlock
Readers/writers lock

(d) 8192 words, low contention.

Fig. 5. Average number of reads or writes per process on the UMA SunFire 880.

– An UMA Sun SunFire 880 with 6 900MHz UltraSPARC III+ (8MB L2
cache) processors running Solaris 9.

– A ccNUMA SGI Origin 2000 with 29 250MHz MIPS R10000 (4MB L2 cache)
processors running IRIX 6.5.

– A ccNUMA SGI Origin 3800 with 128 500MHz MIPS R14000 (8MB L2
cache) processors running IRIX 6.5.

The systems were used non-exclusively, but for the SGI systems the batch-
system guarantees that the required number of CPUs was available. The swap
and fetch-and-or suboperations were implemented by the swap hardware in-
struction [25] and a lock-free subroutine using the compare_and_swap hard-
ware instruction on the SunFire machine. On the SGI Origin machines swap
and fetch-and-or were implemented by the __lock_test_and_set and the
__fetch_and_or synchronization primitives provided by the system [26], re-
spectively.

Multi-word Atomic Read/Write Registers on Multiprocessor Systems 745

 1000

 10000

 100000

 1e+06

 1e+07

 4 16 64 256 1024 4096

T
u

rn
s

Words

The new algorithm
Peterson’s register

Spinlock
Readers/writers lock

(a) All. 14 threads, high contention.

 1000

 10000

 100000

 2 3 4 5 6 7 8 9 10 11 12 13 14

T
u

rn
s

Threads

The new algorithm
Peterson’s register

Spinlock
Readers/writers lock

(b) All. 8192 words, high contention.

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 4 16 64 256 1024 4096

T
u

rn
s

Words

The new algorithm
Peterson’s register

Spinlock
Readers/writers lock

(c) Writer. 14 threads, high con-
tention.

 10

 100

 1000

 10000

 100000

 2 3 4 5 6 7 8 9 10 11 12 13 14

T
u

rn
s

Threads

The new algorithm
Peterson’s register

Spinlock
Readers/writers lock

(d) Writer. 8192 words, high con-
tention.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

 4 16 64 256 1024 4096

T
u

rn
s

Words

The new algorithm
Peterson’s register

Spinlock
Readers/writers lock

(e) All. 14 threads, low contention.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 2 3 4 5 6 7 8 9 10 11 12 13 14

T
u

rn
s

Threads

The new algorithm
Peterson’s register

Spinlock
Readers/writers lock

(f) All. 8192 words, low contention.

Fig. 6. Average number of reads or writes per process on NUMA Origin 2000

746 A. Larsson et al.

 1000

 10000

 100000

 1e+06

 1e+07

 4 16 64 256 1024 4096

T
u

rn
s

Words

The new algorithm
Peterson’s register

Spinlock
Readers/writers lock

(a) 16 threads, high contention.

 1000

 10000

 100000

 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

T
u

rn
s

Threads

The new algorithm
Peterson’s register

Spinlock
Readers/writers lock

(b) 8192 words, high contention.

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 4 16 64 256 1024 4096

T
u

rn
s

Words

The new algorithm
Peterson’s register

Spinlock
Readers/writers lock

(c) 16 threads, low contention.

 0

 5000

 10000

 15000

 20000

 25000

 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

T
u

rn
s

Threads

The new algorithm
Peterson’s register

Spinlock
Readers/writers lock

(d) 8192 words, low contention.

Fig. 7. Average number of reads or writes per process on NUMA Origin 3800.

Results. Following the analysis and the diagrams presenting the experiments’
outcome, it is clear that the performance of the lock-based solutions is not even
near the figures of the wait-free algorithms unless the number of threads is
minimal (2) and the size of the register is small. Moreover, as expected following
the analysis, the algorithm proposed in this paper performs at least as well and
in the large-size register cases better than Peterson’s wait-free solution.

More specifically, on the UMA SunFire the new algorithm outperforms the
others for large registers under both low and high contention (cf. Fig. 5)

On the NUMA Origin 2000 and the NUMA Origin 3800 platforms (cf. Fig. 6
and 7, respectively), we observe the effect of the particular architecture, namely
the possibility for creating contention on the synchronization variable may be-
come high, affecting the performance of the solutions. By observing the per-
formance diagrams for this case, we still see the writer in the new algorithm
performs significantly better than the writer in Peterson’s algorithm in both the

Multi-word Atomic Read/Write Registers on Multiprocessor Systems 747

low and high-contention scenarios. Recall that the writer following Peterson’s al-
gorithm has to write to more buffers as the number of readers grow. The writer
of the algorithm proposed here has no such problems. The latter phenomenon,
though, has a positive side-effect in Peterson’s algorithm: namely, as the writer
becomes slower, the chances that the readers have to read their individual buffers
apart from the regular two buffers, become smaller. Hence, the readers’ perfor-
mance difference of the two wait-free algorithms under high contention becomes
smaller.

6 Conclusions

This paper presents a simple and efficient algorithm of atomic registers (mem-
ory words) of arbitrary size. The simplicity and the good time complexity of the
algorithm are achieved via the use of two common synchronization primitives.
The paper also presents a performance evaluation of i) the new algorithm; ii) a
previously known practical algorithm that based only on read and write opera-
tions; and iii) two mutual-exclusion-based registers. The evaluation is performed
on three different well-known multiprocessor systems.

Since shared objects are very commonly used in parallel/multithreaded ap-
plications, such results and further research along this line, on shared objects
implementations, is significant towards providing better support for efficient syn-
chronization and communication for these applications.

References

1. Silberschatz, A., Galvin, P.B., Gagne, G.: Operating Systems Concepts. Addison-
Wesley (2001)

2. Sha, L., Rajkumar, R., Lojoczky, J.: Priority inheritence protocols: An approach to
real-time syncronization. IEEE Transactions on Computers 39 (1990) 1175–1185

3. Tsigas, P., Zhang, Y.: Evaluating the performance of non-blocking synchronisa-
tion on shared-memory multiprocessors. In: Proc. of the ACM SIGMETRICS
2001/Performance 2001, ACM press (2001) 320–321

4. Tsigas, P., Zhang, Y.: Integrating non-blocking synchronisation in parallel appli-
cations: Performance advantages and methodologies. In: Proc. of the 3rd ACM
Workshop on Software and Performance (WOSP’02), ACM press (2002) 55–67

5. Sundell, H., Tsigas, P.: NOBLE: A non-blocking inter-process communication
library. In: Proc. of the 6th Workshop on Languages, Compilers and Run-time
Systems for Scalable Computers. LNCS, Springer Verlag (2002)

6. Bloom, B.: Constructing two-writer atomic registers. IEEE Transactions on Com-
puters 37 (1988) 1506–1514

7. Burns, J.E., Peterson, G.L.: Constructing multi-reader atomic values from non-
atomic values. In: Proc. of the 6th Annual ACM Symposium on Principles of
Distributed Computing, ACM Press (1987) 222–231

8. Haldar, S., Vidyasankar, K.: Constructing 1-writer multireader multivalued atomic
variable from regular variables. Journal of the ACM 42 (1995) 186–203

9. Haldar, S., Vidyasankar, K.: Simple extensions of 1-writer atomic variable con-
structions to multiwriter ones. Acta Informatica 33 (1996) 177–202

748 A. Larsson et al.

10. Israeli, A., Shaham, A.: Optimal multi-writer multi-reader atomic register. In:
Proc. of the 11th Annual Symposium on Principles of Distributed Computing,
ACM Press (1992) 71–82

11. Kirousis, L.M., Kranakis, E., Vitányi, P.M.B.: Atomic multireader register. In: Dis-
tributed Algorithms, 2nd International Workshop. Volume 312 of LNCS., Springer,
1988 (1987) 278–296

12. Lamport, L.: On interprocess communication. Distributed Computing 1 (1986)
77–101

13. Li, M., Vitányi, P.M.B.: Optimality of wait-free atomic multiwriter variables.
Information Processing Letters 43 (1992) 107–112

14. Li, M., Tromp, J., Vitányi, P.M.B.: How to share concurrent wait-free variables.
Journal of the ACM 43 (1996) 723–746

15. Peterson, G.L., Burns, J.E.: Concurrent reading while writing II: The multi-writer
case. In: 28th Annual Symposium on Foundations of Computer Science, IEEE
(1987) 383–392

16. Singh, A.K., Anderson, J.H., Gouda, M.G.: The elusive atomic register. Journal
of the ACM 41 (1994) 311–339

17. Newman-Wolfe, R.: A protocol for wait-free, atomic, multi-reader shared vari-
ables. In: Proc. of the 6th Annual ACM Symposium on Principles of Distributed
Computing, ACM Press (1987) 232–248

18. Vitányi, P.M.B., Awerbuch, B.: Atomic shared register access by asynchronous
hardware. In: 27th Annual Symposium on Foundations of Computer Science, IEEE
(1986) 233–243

19. Simpson, H.R.: Four-slot fully asynchronous communication mechanism. IEE
Proc., Computers and Digital Techniques 137 (1990) 17–30

20. Chen, J., Burns, A.: A fully asynchronous reader/writer mechanism for multipro-
cessor real-time systems. Technical Report YCS-288, Department of Computer
Science, University of York (1997)

21. Kopetz, H., Reisinge, J.: The non-blocking write protocol NBW: A solution to a
real-time synchronisation problem. In: Proc. of the Real-Time Systems Sympo-
sium, IEEE Computer Society Press (1993) 131–137

22. Herlihy, M.: Wait-free synchronization. ACM Transaction on Programming and
Systems 11 (1991) 124–149

23. Peterson, G.L.: Concurrent reading while writing. ACM Transactions on Program-
ming Languages and Systems 5 (1983) 46–55

24. Herlihy, M.: A methodology for implementing highly concurrent data objects.
ACM Transactions on Programming Languages and Systems 15 (1993) 745–770

25. Weaver, D.L., Germond, T., eds.: The SPARC Architecture Manual. Pretice Hall
(2000) Version 9.

26. Cortesi, D.: Topics in IRIX Programming. Silicon Graphics, Inc. (2004) (doc
#:007-2478-009).

	Introduction
	Background
	The New Algorithm
	Analysis
	Performance Evaluation
	Conclusions

