
THESIS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

Concurrent Algorithms and Data
Structures for Many-Core Processors

DANIEL CEDERMAN

Division of Network and Systems

Department of Computer Science and Engineering

CHALMERS UNIVERSITY OF TECHNOLOGY

Göteborg, Sweden 2011

Concurrent Algorithms and Data

Structures for Many-Core Processors

Daniel Cederman

ISBN 978-91-7385-503-7

Copyright c© Daniel Cederman, 2011.

Doktorsavhandlingar vid Chalmers tekniska högskola
Ny serie nr 3184
ISSN 0346-718X

Technical report 76D
Department of Computer Science and Engineering
Distributed Computing and Systems

Division of Network and Systems
Chalmers University of Technology
SE-412 96 GÖTEBORG, Sweden
Phone: +46 (0)31-772 10 00

Author e-mail: cederman@chalmers.se

Printed by Chalmers Reproservice
Göteborg, Sweden 2011

Concurrent Algorithms and Data
Structures for Many-Core Processors
Daniel Cederman
Division of Network and Systems, Chalmers University of Technology

ABSTRACT
The convergence of highly parallel many-core graphics processors with conven-
tional multi-core processors is becoming a reality. To allow algorithms and data
structures to scale efficiently on these new platforms, several important factors
needs to be considered.

(i) The algorithmic design needs to utilize the inherent parallelism of the
problem at hand. Sorting, which is one of the classic computing components in
computer science, has a high degree of inherent parallelism. In this thesis we
present the first efficient design of Quicksort for graphics processors and show
that it performs well in comparison with other available sorting methods.

(ii) The work needs to be distributed efficiently across the available process-
ing units. We present an evaluation of a set of dynamic load balancing schemes
for graphics processors, comparing blocking methods with non-blocking.

(iii) The required synchronization needs to be efficient, composable and
easy to use. We present a methodology to easily compose the two most common
operations provided by a data structure – the insertion and deletion of elements.
By exploiting a common construction found in most non-blocking data struc-
tures, we created a move operation that can atomically move elements between
different types of non-blocking data structures, without requiring a specific de-
sign for each coupling. We also present, to the best of our knowledge, the first
application of software transactional memory to graphics processors. Two dif-
ferent STM designs, one blocking and one obstruction-free, were evaluated on
the task of implementing different types of common concurrent data structures
on a graphics processor.

Keywords: parallel, lock-free, graphics processors, multi-core, sorting, load balancing,

composition, software transactional memory

ii

Preface

This thesis is based on the work contained in the following publications:

. Daniel Cederman, Philippas Tsigas, “GPU-Quicksort: A Practical
Quicksort Algorithm for Graphics Processors,” in the ACM Journal

of Experimental Algorithmics (JEA), Vol. 14, No. 4, ACM press
2009.

. Daniel Cederman, Philippas Tsigas, “On Dynamic Load Balanc-
ing on Graphics Processors,” in the Proceedings of the 11th Graph-

ics Hardware (GH 2008), pages 57 - 64, ACM press 2008.

. Daniel Cederman, Philippas Tsigas, “Supporting Lock-Free Com-
position of Concurrent Data Objects,” in the Proceedings of the 7th

ACM conference on Computing Frontiers (CF 10), pages: 53-62,
ACM 2010.

. Daniel Cederman, Philippas Tsigas, Muhammad Tayyab Chaudhry
“Towards a Software Transactional Memory for Graphics Proces-
sors,” in the Proceedings of the Eurographics Symposium on Paral-

lel Graphics and Visualization 2010, pages 121-129, Eurographics
Association 2010.

iii

iv PREFACE

Acknowledgments

I would first like to thank my advisor, Philippas Tsigas, for offering me the
position as one of his PhD students. This field of research that I have been
invited to is a truly exciting one, especially at this point in time. Philippas
extensive knowledge and experience in the field and, most important in my
eyes, his ability to guide and encourage, has been crucial for the completion of
this thesis. Seldom have I left a meeting with him without feeling inspired. I
am honored to have worked with him and I hope to continue working with him
in the future.

I would also like to thank my good friend and fellow master thesis worker
Tord. Had he not suggested Philippas as the supervisor for our master thesis, I
would probably never have considered a career in research. Thank you Tord!

I am honored to have Maged Michael, whose work I’ve cited countless
times, as my opponent, and for having Christoph Kessler, Ulf Assarsson, Björn
Lisper, Sally McKee and my examiner Aarne Ranta in the grading committee.

I am very grateful to Microsoft Research for their European PhD Scholar-
ship Programme, which financed my position for the first three years. Thank
you Fabien! I am also excited about the PEPPHER project, which has financed
me these last few months, and which I am looking forward to continue working
with.

I want to give a special thanks to my office mate Andreas for all the fun
and interesting discussions over the years, and to Georgios, for putting up with
said discussions for as long as he did. You two, and the rest of the Distributed
Computing and Systems group – Elad, Farnaz, Marina, Nhan, Philippas and

v

vi ACKNOWLEDGMENTS

Zhang – have made this a truly great place to work and I am very proud to be a
member of this group. My thanks also goes out to the previous members of the
group – Anders, Boris, Håkan, Niklas, Phuong and Yi – whom I’ve been lucky
to work and discuss with in varying degrees. I would also like to thank the three
master students that I have had the joy of working with – Rafia, Tayyab and
Emad. I wish you all the best!

I would also like to show my gratitude to my current and former office
neighbors – Dennis, Erland, Magnus, Phu, Pierre, Tomas, Vilhelm and Wolf-
gang – for providing a friendly and creative working environment. A special
thanks to the Computer Graphics group for discussions and sharing of hard-
ware. From the administrative and technical side of the department, I would
like to especially thank Eva, Eva and Peter, for always being helpful and always
providing solutions. I would also like to thank machine number 659943, for its
selfless dispensing of nourishing coffee.

Lastly, I would like to thank my family, friends and relatives for all their
support, which I have always been able to rely on. It has been very much ap-
preciated!

Daniel Cederman
Göteborg, 2011

Contents

Abstract i

Preface iii

Acknowledgments v

1 Introduction 1
1.1 Synchronization . 4

1.1.1 A Small Example . 4

1.1.2 Atomic Primitives . 5

1.1.3 Memory Consistency . 9

1.1.4 Shared Data Objects . 10

1.1.5 Blocking Synchronization . 11

1.1.6 Non-Blocking Synchronization 13

1.1.7 Composition . 15

1.1.8 Transactional Memory . 16

1.2 Graphics Processors . 17

1.2.1 General Architecture . 18

1.2.2 Scheduling . 18

1.2.3 Synchronization . 19

1.2.4 Memory . 20

1.3 Our work . 20

1.3.1 A Practical Quicksort Algorithm for Graphics Processors . . . 22

1.3.2 On Load Balancing on Graphics Processors 23

1.3.3 Supporting Lock-Free Composition of Concurrent Data Objects 23

vii

viii CONTENTS

1.3.4 Towards a Software Transactional Memory for Graphics Proces-

sors . 24

Bibliography . 25

I PAPERS 31

2 A Practical Quicksort Algorithm for Graphics Processors 35
2.1 Introduction . 36

2.1.1 Related Work . 37

2.2 The System Model . 38

2.3 The algorithm . 41

2.3.1 Overview . 41

2.3.2 Detailed Description . 45

2.4 Complexity . 51

2.5 Experimental Evaluation . 52

2.5.1 Hardware . 52

2.5.2 Algorithms used . 52

2.5.3 Input Distributions . 54

2.5.4 Discussion . 60

2.6 Conclusions . 63

Bibliography . 64

3 On Dynamic Load Balancing on Graphics Processors 71
3.1 Introduction . 72

3.1.1 Related Work . 74

3.2 The System Model . 74

3.3 Synchronization . 76

3.4 Load Balancing Methods . 77

3.4.1 Static Task List . 77

3.4.2 Blocking Dynamic Task Queue 78

3.4.3 Lock-free Dynamic Task Queue 80

3.4.4 Task Stealing . 82

3.5 Octree Partitioning . 82

3.6 Experimental Evaluation . 84

3.6.1 Discussion . 84

CONTENTS ix

3.7 Conclusions . 88

Bibliography . 90

4 Supporting Lock-Free Composition of Concurrent Data Objects 95
4.1 Introduction . 96

4.1.1 Composing . 97

4.1.2 Contributions . 97

4.2 The Model . 99

4.3 The Methodology . 99

4.3.1 Characterization . 99

4.3.2 The Algorithm . 101

4.4 Proof . 106

4.5 Case Study . 113

4.5.1 Queue . 113

4.5.2 Stack . 116

4.6 Experiments . 117

4.7 Discussion . 123

4.8 Conclusion . 125

Bibliography . 125

5 Towards a Software Transactional Memory for Graphics Processors 133
5.1 Introduction . 134

5.2 Related work . 135

5.3 System Model . 136

5.4 STM Design . 137

5.4.1 Progress Guarantees . 139

5.4.2 Conflict Detection Granularity 140

5.4.3 Log or Undo-Log . 140

5.4.4 Conflict Detection Time . 141

5.4.5 Backoff . 141

5.5 Implementation . 142

5.5.1 Begin . 142

5.5.2 Read . 143

5.5.3 Write . 143

5.5.4 Commit . 144

5.6 Experimental Evaluation . 144

x CONTENTS

5.6.1 Hardware . 144

5.6.2 Test-Bed Applications . 145

5.6.3 Experiment Settings . 145

5.7 Discussion . 146

5.8 Conclusion . 149

Bibliography . 150

6 Future Work 155

1
Introduction

The original Quicksort paper by Tony Hoare in 1962 featured an experimen-
tal evaluation of the algorithm where one thousand elements were to be sorted
[Hoa62]. Using Quicksort, the feat was accomplished in just above 3 minutes
and managed to beat the Merge-Sort competitor by over 2 minutes. Measure-
ments on 1500 elements and more could only be performed with Quicksort,
since the memory requirements of Merge-Sort were too large for it to be eval-
uated. With today’s computers it is possible to sort millions of elements in less
than a second [CT08a, CT09].

What is interesting is that although the performance has increased so much,
very little has been changed in the original algorithm. Instead, most of the
increases in speed have come from improvements done on the hardware side.
For example, more bits have been added for addressing to allow for bigger

1

2 CHAPTER 1. INTRODUCTION

memories; the memory speed has increased, although not enough for it to lose
its position as a bottleneck; cache-memories have been introduced and grown
larger to mask the memory latency; the processors’ clock speeds have been
increased tremendously and instructions can be executed speculatively to be
used or discarded later on, and many other changes. What all these changes have
in common is that the programmers have not been forced to change anything
in their programs to take advantage of the improvements. They have all been
designed to exploit the normal usage patterns of most programs.

There have of course been hardware architectures that forced the program-
mer to adapt to it, but for the mainstream processors the manufacturers have
tried to avoid that to ensure backward compatibility. Launching a new architec-
ture that requires all programs to be rewritten is a very risky endeavor. So, for a
long time, the main variable when comparing the performance between proces-
sors has been the clock frequency, since it allowed for an automatic increase in
performance without the need for the program to be rewritten.

But recently it has become much harder to increase performance by just
increasing the clock frequency. The memory speed has not increased at the
same rate and an already high clock frequency has led to much greater power
requirements with accompanying excessive heat. It has become increasingly
difficult to lead off this energy without using techniques such as water-cooling,
which so far seems difficult to bring to the average consumer, although it is
already used by enthusiasts.

Instead, the major designers and manufacturers of processors have opted to
go for parallelism. The clock frequency is lowered and cache memories are
being replaced by more processing cores. The problem now is that programs
have to be redesigned to take advantage of the available computing power on
these multi-core processors. They need to be divided into tasks that can be per-
formed in parallel on different cores. For these tasks to be able to communicate
with each other, they need to have access to safe and efficient synchronization,
to avoid problems such as dead-locks, live-locks, and convoying. This can be
tricky for all but the most embarrassingly parallel programs. New techniques

3

are needed to efficiently exploit available parallelism, and lock-free data struc-
tures and transactional memory could aid in this task.

In recent years, graphics processors have become a new target in the search
for extra computational power. In normal use, graphics processors are often
faced with embarrassingly parallel problems, such as performing matrix multi-
plications to transform 3D vertices into 2D space. This has caused them to target
parallelism much earlier than generic processors, which have mostly dealt with
sequential programs. In an attempt to broaden the user base for high-end graph-
ics processors beyond just gamers, NVIDIA introduced the CUDA platform to
simplify general purpose programming on their graphics processors [NVI10].
It quickly became popular, and is now joined by the OpenCL initiative, which
promises to bring support for platform independent parallelism to graphics pro-
cessors, as well as other parallel hardware platforms [Gro08].

This move simplified the use of the graphics processor as an auxiliary unit
for handling parallel code. The combination of highly parallel many-core graph-
ics processors, for easy to parallelize algorithms, and conventional multi-core
processors with large caches, for mostly sequential code, could be seen as a
view of things to come. Processors will most likely become more and more
heterogeneous in the future, with specialized cores for different purposes. For
simplicity and efficiency, we will most likely see a unified memory architecture,
such as for example the one used in INTEL’s Larrabee [SCS+08].

In this thesis we have looked at methods to use the graphics processor ef-
ficiently. We have designed and implemented a variant of the quicksort algo-
rithm that worked well for graphics processors. After finding that the hardware
load balancing could be improved, we evaluated different software-based load
balancing methods on different graphics processors. Non-blocking methods
proved to achieve better performance, but have the problem that they are hard
to compose. We looked into this problem and provided a methodology for eas-
ily composing certain non-blocking functions. We also evaluated more generic
schemes for composition of non-blocking functions using software transaction
memory.

4 CHAPTER 1. INTRODUCTION

In the following section we will take a look at some of the problems that
one faces when trying to design an algorithm that scales well with the number
of processing units. In section 1.2 we give an overview of the architecture used
in graphics processors of today and in section 1.3 we give an overview of our
work.

1.1 Synchronization

Whenever two entities communicate with each other, they need to utilize some
kind of synchronization mechanism to be sure that the exchange of information
can take place without problems. While talking at the same time and acting on
information mid-sentence are poor ways to communicate between humans, in a
computer setting it often has disastrous results.

1.1.1 A Small Example

On a shared memory system the communication between different threads and
processes occurs whenever the same memory locations are read and/or written
to by more than one entity. Simple operations such as incrementing an integer
suddenly become more tricky when several parties try to do it concurrently. As
it is the processor that performs the actual incrementing, the current value of the
integer variable needs to first be transported to a register on the processor, where
it is then incremented by one, and then transported back to the memory. For
performance reasons, this is done as three separate operations so that other data
might be transported on the data bus while the processor is busy incrementing
the value in the register. Two threads that are concurrently trying to increment
a counter could then yield the result shown in Figure 1.1.

In the example, the integer iS is zero from the start and should be two after
the two increment operations have been performed. But due to some unlucky
ordering of instructions, the end result is one, with the effect that the work
of one increment instruction disappeared. Now, while this problem occurred
because we had some unlucky ordering of instructions, it could very well be

1.1. SYNCHRONIZATION 5

Thread A
iA ← iS

iA ← iA + 1

iS ← iA

Before: iS = 0 After: iS = 1

Thread B

iB ← iS

iB ← iB + 1

iS ← iB

Figure 1.1: Two concurrent increments on a shared variable fails.

that in 99% of the cases it works without any problem. This often makes these
kinds of errors very hard to debug, as they are hard to repeat.

1.1.2 Atomic Primitives

One way to solve the synchronization problem when incrementing an integer is
to sacrifice performance and use an atomic increment operation, often called a
Fetch-And-Inc (FAI). It locks the memory bus whilst the operation is being per-
formed, so that no other processor can access the memory location concurrently.
This is less efficient, but it gives the correct result.

Modern computer architectures often have support for a set of atomic prim-
itives that can be generalized to Fetch-And-Op (FAO), where op is usually a
math or binary operation such as addition or exclusive or. Other popular atomic
primitives include Test-And-Set (TAS), which atomically sets the value of a
variable to 1 if not already set. It is often used to implement locks; see section
1.1.5. Compare-And-Swap (CAS) is a powerful primitive that can atomically
change the value of a variable to x if the current value is y. It is often used
to make sure that one does not overwrite the result from another process. It
could, for example, be used to implement a Fetch-And-Inc by reading the vari-
able that is supposed to be incremented, increasing the value by one, and then
conditionally writing it back using CAS if it still has the old value. If the value

6 CHAPTER 1. INTRODUCTION

// Fetch-And-Op atomically performs
// an operation on the variable var.
// The operation could be an exclusive-
// or, addition, subtraction or similar.
procedure FAO(var, value)

x← var;

x← x op value;
var ← x;

// Test-And-Set atomically sets the
// value of the variable var to 1,
// if it currently is 0.
procedure TAS(var)

if var = 0 then
var ← 1;

return true;
else

return false;

// Compare-And-Swap atomically
// changes the value of the variable
// var to new, if it currently
// has the value expected.
procedure CAS(var, expected, new)

if var = expected then
var ← new;

return true;
else

return false;

// Used together with SC.
// Marks the variable var
// and returns its value.
procedure LL(var)

mark var;
return var;

// Used together with LL.
// Writes the value new
// to var if not changed
// since marked by LL.
procedure SC(var, value)

if hasMark var then
var ← new;

return true;
else

return false;

Figure 1.2: Semantics for some commonly available synchronization primitives. All

instructions are performed atomically.

1.1. SYNCHRONIZATION 7

procedure ATOMICINC(var)
repeat

old← var

new ← old+ 1

until CAS(var,old,new)

Figure 1.3: Implementation of an atomic increment function using Compare-And-Swap.

has changed, the CAS operation will fail and we have to reread the new value
and perform the increment again. See Figure 1.3. An overview of some of the
commonly available synchronization primitives can be found in Figure 1.2.

Although CAS is powerful, it has one weakness in that it cannot detect if a
variable has been changed from its value A, to a value B, and then back again
to value A. This is known as the ABA-problem. The problem is often solved by
adding a time-stamp to the variable that is increased every time it is changed.
This lowers the probability that the ABA-problem will occur, but it also lowers
the amount of information that can be stored in the variable. There is therefore
a tradeoff between the number of useful bits and the probability that there will
be an error.

The problem mostly appears when a memory object that has been freed
is reclaimed, and used again, while a process is still holding a reference to
the original object. A way to solve this problem, without using time-stamps,
is through the use of reference counting or hazard pointers. By counting the
number of processes that holds a reference to an object, it is possible to defer
the reclamation until the reference count reaches zero [Val95, MS95]. Hazard
pointers in turn can be used to mark memory objects that are not to be reclaimed
[Mic04a]. Each process controls its own set of hazard pointers and uses them
to mark objects that it is currently accessing. Hazard pointers are most useful
when the number of memory references are bounded. It is also possible to
combine the two methods, as done in the lock-free memory reclamation scheme
by Gidenstam et al. [GPST09].

8 CHAPTER 1. INTRODUCTION

Consensus Number Object

1 read/write registers
2 test-and-set, swap, fetch-and-add
...

...
2n− 2 n-register assignment

...
...

∞ move, swap, compare-and-swap

Figure 1.4: Consensus number for some common primitives. Based on a table by Her-

lihy [Her91].

Another solution to the ABA-problem is to use the Load-Linked (LL)/Store-
Conditionally (SC) pair of atomic primitives, if available. By reading a variable
using LL, one can use SC to assure that a new value is written to the variable
only if no other process has already changed it since the last call to LL. The
semantics can be seen in Figure 1.2. A drawback of using LL/SC is that in
many implementations the SC might fail even though the value has not been
changed. This can happen when the check is done on the cache-line and not
on the actual word, causing the SC to fail due to a write in the vicinity of the
word by another process. While the LL/SC pair is not commonly available, in
contrast to CAS, it is possible to implement its functionality in software using
CAS [Mic04b].

The power of different synchronization primitives is often measured by its
consensus number [Her91]. The consensus number tells how many processes
can agree on a value, by using the primitive, in a finite number of their own
steps. Normal read and write registers have a consensus number of one, which
means that they cannot solely be used to achieve any non-blocking synchroniza-
tion. Compare-And-Swap, on the other hand, has an infinite consensus number.
Between these two extremes we have, for example, n-register assignment and
coalesced memory accesses [HTA10]. Figure 1.4 shows the consensus number
for some common primitives.

1.1. SYNCHRONIZATION 9

Initial values: x← 0, y ← 0

Thread A
x← 1

a← y

Thread A (Reordered)
a← y

x← 1

Thread B
y ← 1

b← x

Thread B (Reordered)
b← x

y ← 1

Figure 1.5: Reordering of memory reads and writes might cause unwanted behavior. By

just looking at the program, it seems there is no way that both a and b can be zero after

the execution of both threads. But the compiler or processor might find it more efficient

to do the read before the write, a change that does not change the local semantics of the

thread. Now it is possible for both a and b to be zero. To avoid this, one needs to insert

memory barriers between the two instructions to prohibit the compiler and processor

from reordering the instructions.

1.1.3 Memory Consistency

On a uniprocessor it is possible to keep a strict ordering of memory accesses,
that is, reads and writes occurring in the exact order they have been issued as
measured by a common clock. However, this is not practical to achieve on a
multiprocessor system, as it would require too much synchronization. A more
practical consistency model is sequential consistency, as proposed by Lam-
port [Lam79]. There the ordering of instructions from a single processor is
exactly as specified by its program, but the global ordering can tolerate any or-
dering of instructions from different processors. An even weaker consistency
model, relaxed consistency, allows read and write operations that are not de-
pendent upon each other to occur in an order that differs from the one specified
by the program. For local operations this is no problem, but when communicat-
ing between different processes, the exact ordering might be critical, as shown
by the example in Figure 1.5. Processors with relaxed consistency often have
memory barriers that can be used in these settings, that guarantee that an op-

10 CHAPTER 1. INTRODUCTION

Blocking Uses mutual exclusion to only allow one process at a
time to access the object.

Lock-Free Multiple processes can access the object concur-
rently. At least one operation in a set of concurrent oper-
ations finishes in a finite number of its own steps.

Wait-Free Multiple processes can access the object concur-
rently. Every operation finishes in a finite number of its
own steps.

Figure 1.6: Progress guarantees for shared data objects.

eration have been performed before continuing past the barrier. These barrier
operations are often expensive, and should be used sparingly.

1.1.4 Shared Data Objects

The methods used for synchronizing memory accesses to shared data objects
can be divided into three categories, blocking, lock-free, and wait-free. Block-
ing methods use mutual exclusion primitives, such as locks, to only allow one
process at a time to access the object. This is a pessimistic conflict control that
assumes conflicts even when there are none.

Lock-free methods on the other hand employ an optimistic conflict control
approach, allowing several processes to access the shared data object at the
same time and suffering delays because of retries only when there is an actual
conflict. This feature allows non-blocking algorithms to scale much better when
the number of processes and contention increases.

Wait-free methods guarantee that every operation can finish in a finite num-
ber of its own steps. Unfortunately, it is often the case that the number of steps is
quite large, which is why these types of synchronization mechanism are mostly
used in real-time systems where predictability is the most important design pa-
rameter.

1.1. SYNCHRONIZATION 11

// Try to acquire lock

while ¬TAS(lock) do
{}

do stuff...
// Release lock

lock ← 0

(A) Naive.

// Try to acquire lock

while lock 6= 0∨¬TAS(lock) do
{}

do stuff...
// Release lock

lock ← 0

(B) Better.

Figure 1.7: Two lock implementations.

The term non-blocking is usually used to describe methods that are either
lock-free or wait-free.

1.1.5 Blocking Synchronization

The standard way of implementing shared data objects is often by the use of ba-
sic synchronization constructs, such as locks and semaphores. Blocking shared
data objects that rely on mutual exclusion are often easier to design than their
non-blocking counterpart, but a lot of time is spent in the actual synchroniza-
tion, due to busy waiting and convoying.

Figure 1.7 (a) shows a naive implementation of a lock using the Test-And-
Set primitive. The problem with this implementation is that during heavy con-
tention the memory bus will be repeatedly locked by different processes trying
to atomically change the value of the lock variable. A better way to implement
the lock is to do a Test-And-Test-And-Set operation, as in Figure 1.7 (b). Now
each process does a normal read first to see if the lock is available and only then
it tries to do a TAS to acquire the lock. But even then this kind of busy waiting
is expensive. Another way to lower the contention on a lock is to use some sort
of backoff function that tells the process to wait for a certain amount of time
before checking again. An often used method is to increase the backoff time
exponentially for every failed attempt to acquire the lock. The problem here is

12 CHAPTER 1. INTRODUCTION

Figure 1.8: The active thread on processor P4 acquires the lock. P1, P2, and P3 also

need the lock to be able to proceed. The thread on P4 that holds the lock is preempted by

another thread before it can release the lock. All threads are now waiting for a thread

that does not even use the lock.

that it is hard to tune the backoff function and that some processes might have
to wait much longer than other processes before acquiring the lock.

An alternative implementation of a lock is the queue lock. When a process
fails to acquire a lock, it adds itself to a queue associated with the lock and
makes a context switch so that another thread can use the processor while it is
waiting for the lock to be released. When the process that is currently holding
the lock finishes, it notifies the next process in the queue that the lock is free
and switches in its context. Unfortunately, the context switching is often not
free and it might be more efficient to just spin on the lock.

The convoying problem occurs when a process is preempted and is unable
to release the lock before getting swapped out. This causes other processes
to have to wait longer than necessary, potentially slowing the whole program,
since it has to wait for another process that is not holding the lock. See Figure
1.8. In a real-time setting this could lead to priority inversion. If a high priority
thread needs to wait for a lower priority thread holding a lock, and a middle pri-
ority thread comes and preempts the low priority lock, the high priority thread
is forced to wait for a middle priority thread that does not have any connec-
tion to the lock. This problem is often solved by increasing the priority of the
lower priority thread while it is holding the lock, either to a specified high prior-
ity, Priority-Ceiling-Protocol (PCP), or to the priority of highest priority thread
waiting for the lock, Priority-Inheritance-Protocol (PIP).

1.1. SYNCHRONIZATION 13

Thread A

Thread B

Lock X

Lock Y

Figure 1.9: Thread A holds lock Y but needs lock X to continue. Thread B holds lock X

and needs lock Y. Since neither can release their locks, we have a deadlock situation.

Another big problem is the potential for dead-locks, the case where two or
more processes circularly wait for locks held by the other. See Figure 1.9. It
might be hard to spot potential deadlock situations and the risk for deadlocks
makes it hard to compose different blocking data structures since it is not always
possible to know how closed source libraries do their locking.

1.1.6 Non-Blocking Synchronization

Non-blocking, in contrast to blocking, shared data objects allows access by
several processes at the same time, without using mutual exclusion. By defini-
tion, they cannot block a process from accessing them, which means that they
avoid the problems with convoys and lock contention. Such objects also offer
greater fault-tolerance since one process can always make progress, whereas
in a blocking scenario, if the process holding the lock would crash, the data
structure would be locked permanently for all other processes. A non-blocking
solution also eliminates the risk of deadlocks.

A standard way of implementing a non-blocking data structure is to pre-
pare any changes to the data structure locally and then use an atomic primitive,
such as Compare-And-Swap, to make them effective in one step. If the CAS

14 CHAPTER 1. INTRODUCTION

Figure 1.10: a) Two different processes, P1 and P2, want to insert the elements 6 and 7

into the tree. b) They both want to insert their element as the left child of the node with

value 9. Using Compare-And-Swap they both try to change the value from null to point

to their node. c) As Compare-And-Swap is an atomic instruction, only one process will

succeed. This time it was process P1. Process P2 now tries to insert its node as the child

of the node with value 6. d) Process P2 is not competing with another process, so the

Compare-And-Swap will be successful.

operation fails, it means that another process got to it first and we have to retry.
Figure 1.10 shows an example where a new node is to be added to a tree.

Sometimes it is not possible to do all changes using just one atomic oper-
ation. For example, after inserting a node into a tree, it might be required to
rebalance it. To make sure that any other concurrent process is not hindered,
we can announce the operation that we are doing to all other processes, which
will allow them to help us perform the operation, if we are not quick enough
ourselves. When they have helped us, they can proceed with their own opera-
tions. A problem with helping is that it can potentially be unfair. A situation
might occur where one process gets stuck helping other processes indefinitely,
and never manages to perform its own operations.

The correctness of non-blocking operations is often proved by showing
that they are linearizable, a correctness criterion introduced by Herlihy and
Wing [HW87]. In this model, each operation on a shared data object consists
of an invocation and a response. A sequence of such operations makes up a
history. Operations in a concurrent history can be placed in any order if they
occur concurrently, but an operation that finishes before another is invoked must

1.1. SYNCHRONIZATION 15

Figure 1.11: a) A concurrent history where operation A finishes before operation B, and

operations C and D occur concurrently. b) The same concurrent history with the lin-

earization points marked out. As operation A finished before operation B, its lineariza-

tion point must occur before the linearization point of operation B. Operations C and D

occurred concurrently and there is thus no requirement on the order of their lineariza-

tion points. c) A sequential history using the linearization points from the concurrent

history.

appear before the latter. If the operations in any actual concurrent history can
be reordered in such a way that the history is equivalent to a correct sequential
history, then the concurrent object is linearizable. One way of looking at lin-
earizability is to think that an operation takes effect at a specific point in time,
the linearization point. All operations can then be ordered according to the
linearization point to form a sequential history. See Figure 1.11 for an example.

1.1.7 Composition

Whereas operations of sequential data structures can be quite easily composed,
the composition of concurrent data structures is often a challenge. There is
a lack of a general, efficient, lock-free method for composing operations that
makes it difficult for the programmer to perform multiple operations together
atomically. To efficiently glue together multiple objects and their respective

16 CHAPTER 1. INTRODUCTION

operations, one needs to perform an often challenging task that requires an ef-
ficient algorithmic design for every particular composition. The task is made
difficult by the fact that lock-free data objects are often too complicated to be
trivially altered.

Composing blocking data objects also puts the programmer in a difficult
situation, as it requires knowledge of the way locks are handled internally (in
the implementation of the objects themselves) in order to avoid deadlocks. It is
not possible to build on lock-based components without examining their imple-
mentations and even then the drawbacks of locking will not go away.

Composing lock-free concurrent data objects has been an open problem in
the area of lock-free data objects. There exist customized compositions of spe-
cific concurrent data objects, including the composition of lock-free flat-sets by
Gidenstam et al. that constitute the foundation of a lock-free memory alloca-
tor [GPT09, GPT05], but no generic solution.

Using blocking locks to compose lock-free operations is not a viable so-
lution, as it would reduce the concurrency and remove the lock-freedom guar-
antees of the operations. The reason for this is that the lock-free operations
would have to acquire a lock before executing in order to ensure that they are
not executed concurrently with any composed operations. This would cause the
operations to be executed sequentially and lose their lock-free behavior. Simply
put, a generic way to compose concurrent objects, without foiling the possible
lock-freedom guarantees of the objects, has to be lock-free itself.

We will take a closer look at this problem in section 1.3.

1.1.8 Transactional Memory

Transactional memory (TM) is a potential future way of simplifying synchro-
nization [Kni86, HM93]. The basic idea, taken from the database domain, is
to mark sections of code that need to be performed atomically. See Figure
1.12 for an example. An invocation of this section is called a transaction.
The transactional memory then tries to perform all instructions in the trans-
action atomically. If it notices a conflict it aborts and undoes any potential

1.2. GRAPHICS PROCESSORS 17

...
atomic

if x > 10 then
x← x2

else
x← x+ 1

end
...

Figure 1.12: Normal use of a software memory transaction.

changes it has already done. It then tries to redo the transaction until it succeeds.
There are no mainstream hardware implementations of transactional memories
so far, but a lot of work has been done implementing transactional memory in
software [ST95, DSS06, HF03, Moi97, Enn06, HLMS03, FH07, ATLM+06,
HPST06, SATH+06], and creating hybrid versions that use both hardware and
software [DFL+06, KCJ+06]. For a good overview we recommend the Trans-

actional Memory paper by Larus and Kozyrakis [LK08].
A main problem so far has been to achieve good performance and making

it composable with other non-blocking data structures. There are also the prob-
lems with how side-effects that cannot be undone should be handled inside the
transaction.

1.2 Graphics Processors

Today’s graphics processors contain very powerful many-core processors; for
example, some of NVIDIA’s highest-end graphics processors currently boast
512 stream processors. These processors are specialized for compute-intensive,
greatly parallel computations and they could be used to assist the CPU in solv-
ing problems that can be efficiently data-parallelized.

Previous work on general purpose computation on GPUs have used the
OpenGL interface; but since it was primarily designed for performing graph-
ics operations, it gives a poor abstraction to the programmer who wishes to

18 CHAPTER 1. INTRODUCTION

use it for non-graphics related tasks. NVIDIA has improved the situation by
providing programmers with CUDA, a programming platform for doing gen-
eral purpose computation on GPUs. It consists of a compiler for a C-based
language that can be used to create kernels that can be executed on the GPU.
Also included are high performance numerical libraries for FFT and linear alge-
bra [NVI07]. OpenCL is a similar initiative to CUDA, but has a wider industrial
backing and will have support for multi-core platforms other than NVIDIA’s
graphics processors [Gro08]. As of the time of writing this text, OpenCL is
still in a relative infancy, so the rest of this section will deal exclusively with
CUDA-based graphics processors.

1.2.1 General Architecture

The high range graphics processor from NVIDIA that supports CUDA currently
boasts 16 multiprocessors/stream-processors, each multiprocessor consisting of
32 processors that all execute the same instruction on different data in lock-step.
Each multiprocessor supports up to 1536 threads, has 48 KB of fast processor
local memory and a maximum of 32 K available registers that can be divided
between the threads.

1.2.2 Scheduling

Threads are logically divided into thread blocks that are assigned to a specific
multiprocessor. Depending on how many registers and how much local memory
the block of threads requires, there could be multiple blocks assigned to a single
multiprocessor. If more blocks are needed than there is room for on any of the
multiprocessors, the leftover blocks will be scheduled sequentially.

The GPU schedules threads depending on which warp they are in. Threads
with id 0..31 are assigned to the first warp, threads with id 32..63 to the next,
and so on. When a warp is scheduled for execution, the threads that perform
the same instructions are executed concurrently (limited by the size of the mul-
tiprocessor), whereas threads that deviate are executed sequentially. Hence it is
important to try to make all threads in the same warp perform the same instruc-

1.2. GRAPHICS PROCESSORS 19

Figure 1.13: A graphical representation of the CUDA hardware model.

tions most of the time. See Figure 1.13 for a graphical description of the way
threads are grouped together and scheduled.

Two warps cannot execute simultaneously on a single multiprocessor, so
one could see the warp as the counter-part of the thread in a conventional SMP
system. All instructions on the GPU are SIMD, so the threads that constitute
a warp can be seen as a way to simplify the use of these instructions. Instead
of each thread issuing SIMD instructions on 32-word arrays, the threads are
divided into 32 sub-threads and each works on its own word.

1.2.3 Synchronization

Threads within a thread block can use the multiprocessors’ shared local mem-
ory and a special thread barrier-function to communicate with each other. The
barrier-function forces all threads in the same block to synchronize. There is,
however, no barrier-function for threads from different blocks. The reason for

20 CHAPTER 1. INTRODUCTION

this is that when more blocks are executed than there is room for on the multi-
processors, the scheduler will wait for a thread block to finish executing before
it swaps in a new block. This makes it impossible to implement a barrier func-
tion in software and the only solution is to wait until all blocks have completed.

All new graphics processors support atomic instructions, such as Compare-
And-Swap and Fetch-And-Add, on both global and local memory.

1.2.4 Memory

Data is stored in a large global memory that supports both gather and scatter
operations. On earlier NVIDIA graphics processors there was no caching avail-
able automatically when accessing this memory, but each thread block could
use its own, very fast, shared local memory to temporarily store data and use it
as a manual cache. By letting each thread access consecutive memory locations,
the hardware can coalesce several read or write operations into one big read or
write operation, which increases performance. With the new Fermi architecture,
there is now an L1/L2 cache available when accessing the global memory.

The local shared memory is divided into memory banks that can be accessed
in parallel. If two threads write to or read from the same memory bank, the
accesses will be serialized. Due to this, one should always try to make threads
in the same warp write to different banks. If all threads read from the same
memory bank, a broadcasting mechanism will be used, making it just as fast
as a single read. A normal access to the local shared memory takes the same
amount of time as accessing a register.

1.3 Our work

In our work we have been investigating how the graphics processor differs from
conventional multi-core processors when it comes to synchronization between
different processing units. To learn more about the platform we created a Quick-
sort algorithm specifically designed for the graphics processor and managed to
achieve good performance results, compared to already existing sorting solu-

1.3. OUR WORK 21

tions. Sorting is an important component of numerous algorithms and pro-
grams, for example within database, graphics, and finance applications. Quick-
sort has, however, been seen earlier by some as unsuitable for use on graphics
processors due to the extra overhead needed compared to other algorithms, but
our implementation shows that it can perform on the same level as other algo-
rithms.

When implementing the Quicksort algorithm we noticed that the scheduler
on the graphics processor did a poor job of achieving a decent load balance,
so we decided to try our hands on other, dynamic, load balancing schemes that
have been much used on conventional multiprocessors. We compared a block-
ing global work queue, a non-blocking global work queue, and a non-blocking
work-stealing scheme with the built-in load balancing mechanism on the graph-
ics processor. We found that blocking data structures exhibited very poor per-
formance when contention increased, as expected, and that non-blocking work-
stealing could outperform the built-in load balancing.

A difficulty when dealing with concurrent data structures in general is that
it is hard to compose their operations. With blocking implementations care
needs to be taken to avoid dead-locks, and non-blocking algorithms are of-
ten too complicated to be trivially altered. We approached this problem by
trying to compose two of the most common operations available – the opera-
tions for inserting and removing elements. We found a common theme in the
use of the compare-and-swap operation as a linearization point. By combining
the linearization points of two different operations with the help of a double-
or multi-word compare-and-swap, it was possible to compose these operations
with relative ease. This allowed for the creation of a generic move operation
that could be used to atomically move elements between data structures that
had been adapted using our methodology.

We then looked at a more generic way of composing data structures us-
ing software transactional memory. STM:s compose easily and can be used
to speedily implement concurrent data structures. As no work had been done
applying software transactional memory to graphics processors, we decided to
evaluate two STM designs on a GPU, one blocking and one obstruction-free.

22 CHAPTER 1. INTRODUCTION

1.3.1 A Practical Quicksort Algorithm for Graphics Proces-
sors

In the first paper we presented GPU-Quicksort, a parallel Quicksort algorithm
designed to take advantage of the high bandwidth of GPUs by minimizing
the amount of bookkeeping and inter-thread synchronization needed [CT08a,
CT09].

The bookkeeping is minimized by constraining all thread blocks to work
with only one (or part of a) sequence of data at a time. This way pivot values
do not need to be distributed to all thread blocks and thus no extra information
needs to be written to the global memory.

The two-pass design of GPU-Quicksort has been introduced to keep the
inter-thread synchronization low. First the algorithm goes through the sequence
to sort, counting the number of elements that each thread sees that have a higher
(or lower) value than the pivot. By calculating a cumulative sum of these sums,
in the second phase, each thread will know where to write its assigned elements
without any extra synchronization. The small number of inter-block synchro-
nization that is required between the two passes of the algorithm can be reduced
further by taking advantage of the atomic synchronization primitives that are
available on newer hardware.

A previous implementation of Quicksort for GPUs by Sengupta et al. turned
out not to be competitive enough in comparison to radix sort or even CPU-
based sorting algorithms [SHZO07]. According to the authors, this was due to
it being more dependent on the processor speed than on the bandwidth. This is
in contrast with GPU-Quicksort, which is bandwidth bound, which means that it
gains significantly from the high bandwidth of GPUs and scales in performance
such as bandwidth increases.

In our experiments we compared GPU-Quicksort with some of the fastest
known sorting algorithms for GPUs, as well as with the C++ Standard Library
sorting algorithm, Introsort, for reference. We used several input distributions
and two different graphics processors, the low-end 8600GTS with 32 cores and
the high-end 8800GTX with 128 cores, both from NVIDIA. What we could

1.3. OUR WORK 23

observe was that GPU-Quicksort performed better on all distributions on the
high-end processor and on par with or better on the low-end processor.

A significant conclusion, we think, that can be drawn from this work, is
that Quicksort is a practical alternative for sorting large quantities of data on
graphics processors.

1.3.2 On Load Balancing on Graphics Processors

In the second paper we have compared four load balancing methods, a blocking
queue, a non-blocking queue, a non-blocking work stealing scheme and a static
list, on the task of creating an octree partitioning of a set of particles [CT08b].

We found that the blocking queue performed poorly and scaled badly when
faced with more processing units, something that can be attributed to the inher-
ent busy waiting. The non-blocking queue performed better but scaled poorly
when the number of processing units got too high. Since the number of tasks
increased quickly and the tree itself was relatively shallow the static queue per-
formed well. The non-blocking work-stealing method perform very well and
outperformed the static method.

The experiments showed that synchronization can be very expensive and
that new methods that take more advantage of the graphics processors’ features
and capabilities might be required. They also showed that lock-free methods
achieve better performance than blocking, and that they can be made to scale
with increased numbers of processing units.

1.3.3 Supporting Lock-Free Composition of Concurrent Data
Objects

Lock-free data objects offer several advantages over their blocking counterparts,
such as being immune to deadlocks and convoying and, more importantly, being
highly concurrent. However, composing the operations they provide into larger
atomic operations, while still guaranteeing efficiency and lock-freedom, is a
challenging algorithmic task.

24 CHAPTER 1. INTRODUCTION

In the third paper we present a lock-free methodology for composing highly
concurrent linearizable objects together by unifying their linearization points
[CT10]. This makes it possible to relatively easily introduce atomic lock-free
move operations to a wide range of concurrent objects. Our experimental re-
sults demonstrate that the methodology presented in the paper, applied to the
classical lock-free implementations, offers better performance and scalability
than a composition method based on locking. These results also demonstrate
that it does not introduce noticeable performance penalties to the previously
supported operations of the concurrent objects.

Our methodology can also be easily extended to support n operations on n
distinct objects, for example to create functions that remove an item from one
object and insert it into n others atomically.

1.3.4 Towards a Software Transactional Memory for Graph-
ics Processors

The introduction of general purpose computing on many-core graphics pro-
cessor systems, and the general shift in the industry towards parallelism, has
created a demand for ease of parallelization. Software transactional memory
(STM) simplifies development of concurrent code by allowing the programmer
to mark sections of code to be executed concurrently and atomically in an op-
timistic manner. In contrast to locks, STMs are easy to compose and do not
suffer from deadlocks.

In our fourth paper we have designed and implemented two STMs for graph-
ics processors, one blocking and one non-blocking [CTC10]. The design issues
involved in the design of these two STMs are described and explained in the
paper together with experimental results comparing the performance of the two
STMs. We found that while a blocking STM is simpler to implement, pro-
viding additional progress guarantees such as obstruction-freeness, improves
performance and lowers the number of aborted transactions.

BIBLIOGRAPHY 25

Bibliography

[ATLM+06] Ali-Reza Adl-Tabatabai, Brian T. Lewis, Vijay Menon, Brian R.
Murphy, Bratin Saha, and Tatiana Shpeisman. Compiler and run-
time support for efficient software transactional memory. In PLDI

’06: Proceedings of the 2006 ACM SIGPLAN conference on Pro-

gramming language design and implementation, pages 26–37,
New York, NY, USA, 2006. ACM.

[CT08a] Daniel Cederman and Philippas Tsigas. A Practical Quicksort
Algorithm for Graphics Processors. In Proceedings of the 16th

Annual European Symposium on Algorithms (ESA 2008), Lecture

Notes in Computer Science Vol.: 5193, pages 246–258, 2008.

[CT08b] Daniel Cederman and Philippas Tsigas. On dynamic load bal-
ancing on graphics processors. In GH ’08: Proceedings of the

23rd ACM SIGGRAPH/EUROGRAPHICS symposium on Graph-

ics hardware, pages 57–64, Aire-la-Ville, Switzerland, Switzer-
land, 2008. Eurographics Association.

[CT09] Daniel Cederman and Philippas Tsigas. Gpu-quicksort: A prac-
tical quicksort algorithm for graphics processors. Journal of Ex-

perimental Algorithmics (JEA), 14:1.4–1.24, 2009.

[CT10] Daniel Cederman and Philippas Tsigas. Supporting lock-free
composition of concurrent data objects. In CF ’10: Proceedings

of the 7th ACM international conference on Computing frontiers,
pages 53–62, New York, NY, USA, 2010. ACM.

[CTC10] Daniel Cederman, Philippas Tsigas, and Muhammad Tayyab
Chaudhry. Towards a Software Transactional Memory for Graph-
ics Processors. pages 121–129, 2010.

[DFL+06] Peter Damron, Alexandra Fedorova, Yossi Lev, Victor
Luchangco, Mark Moir, and Dan Nussbaum. Hybrid Trans-
actional Memory. In Proceedings of the 12th International

26 CHAPTER 1. INTRODUCTION

Conference on Architectural Support for Programming Lan-

guages and Operating Systems (ASPLOS), pages 336–346,
2006.

[DSS06] Dave Dice, Ori Shalev, and Nir Shavit. Transactional Locking
II. In Proc. of the 20th International Symposium on Distributed

Computing (DISC 2006), pages 194–208, 2006.

[Enn06] Robert Ennals. Software Transactional Memory Should Not Be
Obstruction-Free. Technical Report IRC-TR-06-052, Intel Re-
search Cambridge Tech Report, Jan 2006.

[FH07] Keir Fraser and Tim Harris. Concurrent programming without
locks. ACM Transactions on Computer Systems, 25(2):5, 2007.

[GPST09] Anders Gidenstam, Marina Papatriantafilou, Håkan Sundell, and
Philippas Tsigas. Efficient and reliable lock-free memory recla-
mation based on reference counting. IEEE Transactions on Par-

allel and Distributed Systems, 20:1173–1187, 2009.

[GPT05] Anders Gidenstam, Marina Papatriantafilou, and Philippas Tsi-
gas. Allocating Memory in a Lock-Free Manner. In ESA ’05:

Proceedings of the 13th Annual European Symposium on Algo-

rithms, pages 329–342, 2005.

[GPT09] Anders Gidenstam, Marina Papatriantafilou, and Philippas Tsi-
gas. NBmalloc: Allocating Memory in a Lock-Free Manner. Al-

gorithmica, 2009.

[Gro08] Khronos Group. OpenCL (Open Computing Language). www.

khronos.org/opencl/, 2008.

[Her91] Maurice Herlihy. Wait-free synchronization. ACM Transactions

on Programming Languages and Systems (TOPLAS), 13(1):124–
149, 1991.

BIBLIOGRAPHY 27

[HF03] Tim Harris and Keir Fraser. Language support for lightweight
transactions. In OOPSLA ’03: Proceedings of the 18th annual

ACM SIGPLAN conference on Object-oriented programing, sys-

tems, languages, and applications, volume 38, pages 388–402,
New York, NY, USA, November 2003. ACM Press.

[HLMS03] M. Herlihy, V. Luchangco, M. Moir, and W.N. Scherer. Soft-
ware Transactional Memory for Dynamic-sized Data Structures.
In Twenty-Second Annual ACM SIGACT-SIGOPS Symposium on

Principles of Distributed Computing, July 2003.

[HM93] M. Herlihy and J. E. B. Moss. Transactional Memory: Archi-
tectural Support For Lock-Free Data Structures. In Proceedings

of the Twentieth Annual International Symposium on Computer

Architecture, 1993.

[Hoa62] C. A. R. Hoare. Quicksort. Computer Journal, 5(4):10–15, 1962.

[HPST06] Tim Harris, Mark Plesko, Avraham Shinnar, and David Tarditi.
Optimizing memory transactions. In PLDI ’06: Proceedings of

the 2006 ACM SIGPLAN conference on Programming language

design and implementation, pages 14–25, New York, NY, USA,
2006. ACM Press.

[HTA10] Phuong Hoai Ha, Philippas Tsigas, and Otto J. Anshus. The syn-
chronization power of coalesced memory accesses. IEEE Trans-

actions on Parallel and Distributed Systems, 21:939–953, 2010.

[HW87] Maurice Herlihy and Jeannette Wing. Axioms for concurrent
objects. In POPL ’87: Proceedings of the 14th ACM SIGACT-

SIGPLAN symposium on Principles of programming languages,
pages 13–26, New York, NY, USA, 1987. ACM.

[KCJ+06] Sanjeev Kumar, Michael Chu, Christopher J. Hughes, Partha
Kundu, and Anthony Nguyen. Hybrid Transactional Memory. In

28 CHAPTER 1. INTRODUCTION

Proceedings of Symposium on Principles and Practice of Parallel

Programming, Mar 2006.

[Kni86] Tom Knight. An architecture for mostly functional languages. In
LFP ’86: Proceedings of the 1986 ACM conference on LISP and

functional programming, pages 105–112, New York, NY, USA,
1986. ACM Press.

[Lam79] Leslie Lamport. How to make a multiprocessor computer that
correctly executes multiprocess program. IEEE Transactions on

Computers, 28(9):690–691, 1979.

[LK08] James Larus and Christos Kozyrakis. Transactional memory: Is
TM the answer for improving parallel programming? volume 51,
New York, NY, USA, 2008. ACM.

[Mic04a] Maged M. Michael. Hazard Pointers: Safe Memory Reclama-
tion for Lock-Free Objects. IEEE Transactions on Parallel and

Distributed Systems, 15(6):491–504, 2004.

[Mic04b] Maged M. Michael. Practical lock-free and wait-free LL/SC/VL
implementations using 64-bit CAS. In Proceedings of the 18th

International Symposium on Distributed Computing (DISC), vol.

3274 of LNCS, pages 144–158, 2004.

[Moi97] Mark Moir. Transparent Support for Wait-Free Transactions. In
Proceedings of the 11th International Workshop on Distributed

Algorithms, pages 305–319. Springer-Verlag, 1997.

[MS95] Maged Michael and Michael Scott. Correction of a memory man-
agement method for lock-free data structures. Technical report,
University of Rochester, 1995.

[NVI07] NVIDIA Corporation, nvidia.com/cuda. CUDA SDK, 1.0 edition,
2007.

BIBLIOGRAPHY 29

[NVI10] NVIDIA Corporation, nvidia.com/cuda. CUDA SDK, 3.2 edition,
2010.

[SATH+06] Bratin Saha, Ali-Reza Adl-Tabatabai, Richard L. Hudson,
Chi Cao Minh, and Benjamin Hertzberg. McRT-STM: a high
performance software transactional memory system for a multi-
core runtime. In PPoPP ’06: Proceedings of the eleventh ACM

SIGPLAN symposium on Principles and practice of parallel pro-

gramming, pages 187–197, New York, NY, USA, 2006. ACM.

[SCS+08] Larry Seiler, Doug Carmean, Eric Sprangle, Tom Forsyth,
Michael Abrash, Pradeep Dubey, Stephen Junkins, Adam Lake,
Jeremy Sugerman, Robert Cavin, Roger Espasa, Ed Grochowski,
Toni Juan, and Pat Hanrahan. Larrabee: a many-core x86 archi-
tecture for visual computing. ACM Trans. Graph., 27(3):1–15,
2008.

[SHZO07] Shubhabrata Sengupta, Mark Harris, Yao Zhang, and John D.
Owens. Scan Primitives for GPU Computing. In Proceedings

of the 22nd ACM SIGGRAPH/EUROGRAPHICS Symposium on

Graphics Hardware, pages 97–106, 2007.

[ST95] Nir Shavit and Dan Touitou. Software transactional memory. In
Proceedings of the 14th ACM Symposium on Principles of Dis-

tributed Computing, pages 204–213, 1995.

[Val95] John D. Valois. Lock-free linked lists using compare-and-swap.
In PODC ’95: Proceedings of the fourteenth annual ACM sym-

posium on Principles of distributed computing, pages 214–222,
New York, NY, USA, 1995. ACM.

30 CHAPTER 1. INTRODUCTION

Part I

PAPERS

31

PAPER I

Daniel Cederman, Philippas Tsigas
GPU-Quicksort: A Practical Quicksort Algorithm for

Graphics Processors
In the ACM Journal of Experimental Algorithmics (JEA)

Vol. 14, No. 4, ACM press 2009.

2
A Practical Quicksort Algorithm for

Graphics Processors

In this paper we describe GPU-Quicksort, an efficient Quicksort algorithm suit-
able for highly parallel multi-core graphics processors. Quicksort has previ-
ously been considered an inefficient sorting solution for graphics processors, but
we show that in CUDA, NVIDIA’s programming platform for general purpose
computations on graphical processors, GPU-Quicksort performs better than the
fastest known sorting implementations for graphics processors, such as radix
and bitonic sort. Quicksort can thus be seen as a viable alternative for sorting
large quantities of data on graphics processors.

35

36 CHAPTER 2. A PRACTICAL QUICKSORT ALGORITHM FOR GPUS

2.1 Introduction

In this paper, we describe an efficient parallel algorithmic implementation of
Quicksort, GPU-Quicksort, designed to take advantage of the highly parallel
nature of graphics processors (GPUs) and their limited cache memory. Quick-
sort has long been considered one of the fastest sorting algorithms in practice
for single processor systems and is also one of the most studied sorting algo-
rithms, but until now it has not been considered an efficient sorting solution
for GPUs [SHZO07]. We show that GPU-Quicksort presents a viable sorting
alternative and that it can outperform other GPU-based sorting algorithms such
as GPUSort and radix sort, considered by many to be two of the best GPU-
sorting algorithms. GPU-Quicksort is designed to take advantage of the high
bandwidth of GPUs by minimizing the amount of bookkeeping and inter-thread
synchronization needed. It achieves this by i) using a two-pass design to keep
the inter-thread synchronization low, ii) coalescing read operations and con-
straining threads so that memory accesses are kept to a minimum. It can also
take advantage of the atomic synchronization primitives found on newer hard-
ware to, when available, further improve its performance.

Today’s graphics processors contain very powerful multi-core processors,
for example, NVIDIA’s highest-end graphics processor currently boasts 128
cores. These processors are specialized for compute-intensive, highly parallel
computations and they could be used to assist the CPU in solving problems that
can be efficiently data-parallelized.

Previous work on general purpose computation on GPUs have used the
OpenGL interface, but since it was primarily designed for performing graph-
ics operations it gives a poor abstraction to the programmer that wishes to use it
for non-graphics related tasks. NVIDIA is attempting to remedy this situation
by providing programmers with CUDA, a programming platform for doing gen-
eral purpose computation on their graphics processors. A similar initiative to
CUDA is OpenCL, which specification has just recently been released [Gro08].

Although simplifying the programming, one still needs to be aware of the
strengths and limitations of the new platform to be able to take full advantage of

2.1. INTRODUCTION 37

it. Algorithms that work great on standard single processor systems most likely
need to be altered extensively to perform well on GPUs, which have limited
cache memory and instead use massive parallelism to hide memory latency.

This means that directly porting efficient sorting algorithms from the single
processor domain to the GPU domain would most likely yield very poor per-
formance. This is unfortunate, since the sorting problem is very well suited to
be solved in parallel and is an important kernel for sequential and multiprocess-
ing computing and a core part of database systems. Being one of the most basic
computing problems, it also plays a vital role in plenty of algorithms commonly
used in graphics applications, such as visibility ordering or collision detection.

Quicksort was presented by C.A.R. Hoare in 1961 and uses a divide-and-
conquer method to sort data [Hoa61]. A sequence is sorted by recursively divid-
ing it into two subsequences, one with values lower and one with values higher
than the specific pivot value that is selected in each iteration. This is done until
all elements are sorted.

2.1.1 Related Work

With Quicksort being such a popular sorting algorithm, there have been a lot of
different attempts to create an efficient parallelization of it. The obvious way is
to take advantage of its inherent parallelism by just assigning a new processor
to each new subsequence. This means, however, that there will be very little
parallelization in the beginning, when the sequences are few and large [ED82].

Another approach has been to divide each sequence to be sorted into blocks
that can then be dynamically assigned to available processors [HNR90, TZ03].
However, this method requires extensive use of atomic FAA1 which makes it
too expensive to use on graphics processors.

Blelloch suggested using prefix sums to implement Quicksort and recently
Sengupta et al. used this method to make an implementation for CUDA [Ble93,
SHZO07]. The implementation was done as a demonstration of their segmented

1Fetch-And-Add reads an integer from the memory, increments it by a given amount and writes
it back to the memory, all in one atomic step.

38 CHAPTER 2. A PRACTICAL QUICKSORT ALGORITHM FOR GPUS

scan primitive, but it performed quite poorly and was an order of magnitude
slower than their radix-sort implementation in the same paper.

Since most sorting algorithms are memory bandwidth bound, there is no sur-
prise that there is currently a big interest in sorting on the high bandwidth GPUs.
Purcell et al. [PDC+03] have presented an implementation of bitonic merge
sort on GPUs based on an implementation by Kapasi et al. [KDR+00]. Kipfer
et al. [KSW04, KW05] have shown an improved version of the bitonic sort as
well as an odd-even merge sort. Greß et al. [GZ06] introduced an approach
based on the adaptive bitonic sorting technique found in the Bilardi et al. pa-
per [BN89]. Govindaraju et al. [GRM05] implemented a sorting solution based
on the periodic balanced sorting network method by Dowd et al. [DPRS89] and
one based on bitonic sort [GRHM05]. They later presented a hybrid bitonic-
radix sort that used both the CPU and the GPU to be able to sort vast quantities
of data [GGKM06]. Sengupta et al. [SHZO07] have presented a radix-sort and
a Quicksort implementation. Recently, Sintorn et al. [SA07] presented a hybrid
sorting algorithm which splits the data with a bucket sort and then uses merge
sort on the resulting blocks. The implementation requires atomic primitives that
are currently not available on all graphics processors.

In the following section, Section 2.2, we present the system model. In Sec-
tion 2.3.1 we give an overview of the algorithm and in Section 2.3.2 we go
through it in detail. We prove its time and space complexity in Section 2.4. In
Section 2.5 we show the results of our experiments and in Section 2.5.4 and
Section 2.6 we discuss the result and conclude.

2.2 The System Model

CUDA is NVIDIA’s initiative to bring general purpose computation to their
graphics processors. It consists of a compiler for a C-based language which can
be used to create kernels that can be executed on the GPU. Also included are
high performance numerical libraries for FFT and linear algebra.

General Architecture The high range graphics processors from NVIDIA
that supports CUDA currently boasts 16 multiprocessors, each multiprocessor

2.2. THE SYSTEM MODEL 39

consisting of 8 processors that all execute the same instruction on different data
in lock-step. Each multiprocessor supports up to 768 threads, has 16KiB of fast
local memory and a maximum of 8192 available registers that can be divided
between the threads.

Scheduling Threads are logically divided into thread blocks that are as-
signed to a specific multiprocessor. Depending on how many registers and
how much local memory the block of threads requires, there could be multi-
ple blocks assigned to a single multiprocessor. If more blocks are needed than
there is room for on any of the multiprocessors, the leftover blocks will be run
sequentially.

The GPU schedules threads depending on which warp they are in. Threads
with id 0..31 are assigned to the first warp, threads with id 32..63 to the next
and so on. When a warp is scheduled for execution, the threads which perform
the same instructions are executed concurrently (limited by the size of the mul-
tiprocessor) whereas threads that deviate are executed sequentially. Hence it is
important to try to make all threads in the same warp perform the same instruc-
tions most of the time. See Figure 2.1 for a graphical description of the way
threads are grouped together and scheduled.

Two warps cannot execute simultaneously on a single multiprocessor, so
one could see the warp as the counter-part of the thread in a conventional SMP
system. All instructions on the GPU are SIMD, so the threads that constitute a
warp can be seen as a way to simplify the usage of these instructions. Instead
of each thread issuing SIMD instructions on 32-word arrays, the threads are
divided into 32 sub-threads that each works on its own word.

Synchronization Threads within a thread block can use the multiproces-
sors shared local memory and a special thread barrier-function to communicate
with each other. The barrier-function forces all threads in the same block to
synchronize, that is, a thread calling it will not be allowed to continue until all
other threads have also called it. They will then continue from the same posi-
tion in the code. There is however no barrier-function for threads from different
blocks. The reason for this is that when more blocks are executed than there
is room for on the multiprocessors, the scheduler will wait for a thread block

40 CHAPTER 2. A PRACTICAL QUICKSORT ALGORITHM FOR GPUS

Figure 2.1: A graphical representation of the CUDA hardware model

function
CAS(ptr, oldval, newval)

if ∗ptr = oldval then
∗ptr ← newval;

return oldval;

return ∗ptr;

function FAA(ptr, value)
∗ptr ← ∗ptr + value;

return ∗ptr − value;

Figure 2.2: The specification for the Compare-And-Swap and Fetch-And-Add operation.

The two operations are performed atomically.

to finish executing before it swaps in a new block. This makes it impossible to
implement a barrier function in software and the only solution is to wait until
all blocks have completed.

Newer graphics processors support atomic instructions such as Compare-
And-Swap (CAS) and Fetch-And-Add (FAA). See Figure 2.2 for the specifica-
tion of these synchronization operations.

2.3. THE ALGORITHM 41

Memory Data is stored in a large global memory that supports both gather
and scatter operations. There is no caching available automatically when ac-
cessing this memory, but each thread block can use its own, very fast, shared
local memory to temporarily store data and use it as a manual cache. By letting
each thread access consecutive memory locations, the hardware can coalesce
several read or write operations into one big read or write operation, which
increases performance.

This is in direct contrast with the conventional SMP systems, where one
should try to let each thread access its own part of the memory so as to not
thrash the cache.

Because of the lack of caching, a high number of threads are needed to
hide the memory latency. These threads should preferably have a high ratio of
arithmetic to memory operations to be able to hide the latency well.

The shared memory is divided into memory banks that can be accessed
in parallel. If two threads write to or read from the same memory bank, the
accesses will be serialized. Due to this, one should always try make threads
in the same warp write to different banks. If all threads read from the same
memory bank, a broadcasting mechanism will be used, making it just as fast as
a single read. A normal access to the shared memory takes the same amount of
time as accessing a register.

2.3 The algorithm

The following subsection gives an overview of GPU-Quicksort. Section 2.3.2
will then go into the algorithm in more details.

2.3.1 Overview

The method used by the algorithm is to recursively partition the sequence to be
sorted, i.e. to move all elements that are lower than a specific pivot value to a
position to the left of the pivot and to move all elements with a higher value to
the right of the pivot. This is done until the entire sequence has been sorted.

42 CHAPTER 2. A PRACTICAL QUICKSORT ALGORITHM FOR GPUS

In each partition iteration a new pivot value is picked and as a result two
new subsequences are created that can be sorted independently. In our experi-
ments we use a deterministic pivot selection that is described in Section 2.5, but
a randomized method could also be used. After a while there will be enough
subsequences available that each thread block can be assigned one. But be-
fore that point is reached, the thread blocks need to work together on the same
sequences. For this reason, we have divided up the algorithm into two, albeit
rather similar, phases.

First Phase In the first phase, several thread blocks might be working on
different parts of the same sequence of elements to be sorted. This requires
appropriate synchronization between the thread blocks, since the results of the
different blocks needs to be merged together to form the two resulting subse-
quences.

Newer graphics processors provide access to atomic primitives that can aid
somewhat in this synchronization, but they are not yet available on the high-end
graphics processors and there is still the need to have a thread block barrier-
function between the partition iterations, something that cannot be implemented
using the available atomic primitives.

The reason for this is that the blocks might be executed sequentially and
we have no way of knowing in which order they will be run. So the only way
to synchronize thread blocks is to wait until all blocks have finished executing.
Then one can assign new sequences to them. Exiting and reentering the GPU is
not expensive, but it is also not delay-free since parameters needs to be copied
from the CPU to the GPU, which means that we want to minimize the number
of times we have to do that.

When there are enough subsequences so that each thread block can be as-
signed its own, we enter the second phase.

Second Phase In the second phase, each thread block is assigned its own
subsequence of input data, eliminating the need for thread block synchroniza-
tion. This means that the second phase can run entirely on the graphics proces-
sor. By using an explicit stack and always recurse on the smallest subsequence,
we minimize the shared memory required for bookkeeping.

2.3. THE ALGORITHM 43

Hoare suggested in his paper [Hoa62] that it would be more efficient to use
another sorting method when the subsequences are relatively small, since the
overhead of the partitioning gets too large when dealing with small sequences.
We decided to follow that suggestion and sort all subsequences that can fit in
the available local shared memory using an alternative sorting method. For the
experiments we decided to use bitonic sort, but other sorting algorithms could
also be used.

In-place On conventional SMP systems it is favorable to perform the sort-
ing in-place, since that gives good cache behavior. But on the GPUs with their
limited cache memory and the expensive thread synchronization that is required
when hundreds of threads need to communicate with each other, the advantages
of sorting in-place quickly fade. Here it is better to aim for reads and writes
to be coalesced to increase performance, something that is not possible on con-
ventional SMP systems. For these reasons it is better, performance-wise, to use
an auxiliary buffer instead of sorting in-place.

So, in each partition iteration, data is read from the primary buffer and the
result is written to the auxiliary buffer. Then the two buffers switch places and
the primary becomes the auxiliary and vice versa.

Partitioning

The principle of two phase partitioning is outlined in Figure 2.3. A sequence
to be partitioned is selected and it is then logically divided into m equally sized
sections (Step a), wherem is the number of thread blocks available. Each thread
block is then assigned a section of the sequence (Step b).

The thread block goes through its assigned data, with all threads in the block
accessing consecutive memory so that the reads can be coalesced. This is im-
portant, since reads being coalesced will significantly lower the memory access
time.

Synchronization The objective is to partition the sequence, i.e. to move all
elements that are lower than the pivot to a position to the left of the pivot in the
auxiliary buffer and to move the elements with a higher value to the right of the
pivot. The problem here is how to synchronize this in an efficient way. How

44 CHAPTER 2. A PRACTICAL QUICKSORT ALGORITHM FOR GPUS

Figure 2.3: Partitioning a sequence

do we make sure that each thread knows where to write in the auxiliary buffer?
It should also be noted that it is important to minimize the amount of synchro-
nization communication between threads since it will be quite expensive as we
have so many threads.

Cumulative Sum A possible solution is to let each thread read an element
and then synchronize the threads using a barrier function. By calculating a
cumulative sum2 of the number of threads that want to write to the left and
that wants to write to the right of the pivot, each thread would know that x

2The terms prefix sum or sum scan are also used in the literature.

2.3. THE ALGORITHM 45

threads with a lower thread id than its own are going to write to the left and
that y threads are going to write to the right. Each thread then knows that it can
write its element to either bufx+1 or bufn−(y+1), depending on if the element
is higher or lower than the pivot.

A Two-Pass Solution But calculating a cumulative sum is not free, so to
improve performance we go through the sequence two times. In the first pass
each thread just counts the number of elements it has seen that have a value
higher (or lower) than the pivot (Step c). Then when the block has finished
going through its assigned data, we use these sums instead to calculate the cu-
mulative sum (Step d). Now each thread knows how much memory the threads
with a lower id than its own needs in total, turning it into an implicit memory-
allocation scheme that only needs to run once for every thread block, in each
iteration.

In the first phase, were we have several thread blocks accessing the same se-
quence, an additional cumulative sum need to be calculated for the total memory
used by each thread block (Step e).

Now when each thread knows where to store its elements, we go through the
data in a second pass (Step g), storing the elements at their new position in the
auxiliary buffer. As a final step, we store the pivot value at the gap between the
two resulting subsequences (Step h). The pivot value is now at its final position
which is why it does not need to be included in any of the two subsequences.

2.3.2 Detailed Description

The following subsection describes the algorithm in more detail.

The First Phase

The goal of the first phase is to divide the data into a large enough number of
subsequences that can be sorted independently.

Work Assignment In the ideal case, each subsequence should be of the
same size, but that is often not possible, so it is better to have some extra se-
quences and let the scheduler balance the workload. Based on that observation,

46 CHAPTER 2. A PRACTICAL QUICKSORT ALGORITHM FOR GPUS

Algorithm 1 GPU-Quicksort (CPU Part)

procedure GPUQSORT(size, d, d̂) . d contains the sequence to be sorted.

startpivot←median(d0, dsize/2, dsize) . dx is the value at index x.
work ← {(d0→size, startpivot)} . dx→y is the sequence from index x to y.
done← ∅
while work 6= ∅ ∧ |work|+ |done| < maxseq do . Divide into maxseq subsequences.

blocksize←
∑

(seq,pivot)∈work
||seq||
maxseq . ||seq|| is the length of sequence seq.

blocks← ∅
for all (seqstart→end, pivot) ∈ work do . Divide sequences into blocks.

blockcount← d ||seq||blocksize e . Number of blocks to create for this sequence.
parent← (seq, seq, blockcount) . Shared variables for all blocks of this sequence.

for i← 0, i < blockcount− 1, i← i + 1 do
bstart← start + blocksize · i
blocks← blocks ∪ {(seqbstart→bstart+blocksize, pivot, parent)}

blocks← blocks ∪ {(seqstart+blocksize·(blockcount−1)→end, pivot, parent)}

news← gqsort� |blocks| � (blocks, d, d̂) . Start |blocks| thread blocks.
work ← ∅
for all (seq, pivot) ∈ news do . If the new sequences are too long; partition them further.

if ||seq|| < size/maxseq then
done← done ∪ {(seq, pivot)}

else
work ← work ∪ {(seq, pivot)}

done← done ∪ work . Merge the sets done and work.
lqsort� |done| � (done, d, d̂) . Do final sort.

a good way to partition is to only partition subsequences that are longer than
minlength = n/maxseq, where n is the total number of elements to sort, and
to stop when we have maxseq number of sequences. We discuss how to select
a good value for maxseq in Section 2.5.

In the beginning of each iteration, all sequences that are larger than the
value of minlength are assigned thread blocks relative to their size. In the first
iteration, the original sequence will be assigned all available thread blocks. The
sequences are divided so that each thread block gets an equally large section to
sort, as can be seen in Figure 2.3 (Step a and b).

First Pass When a thread block is executed on the GPU, it will iterate
through all the data in its assigned sequence. Each thread in the block will keep
track of the number of elements that are greater than the pivot and the number

2.3. THE ALGORITHM 47

Algorithm 2 GPU-Quicksort (First Phase GPU Kernel)
function GQSORT(blocks, d, d̂)

var global sstart, send, oldstart, oldend, blockcount

var block local lt, gt, pivot, start, end, s

var thread local i, lfrom, gfrom, lpivot, gpivot

(sstart→end, pivot, parent)← blocksblockid . Get the sequence block assigned to this thread block.
ltthreadid, gtthreadid ← 0, 0 . Set thread local counters to zero.

i← start + threadid . Align thread accesses for coalesced reads.
for i < end, i← i + threadcount do . Go through the data...

if si < pivot then . counting elements that are smaller...
ltthreadid ← ltthreadid + 1

if si > pivot then . or larger compared to the pivot.
gtthreadid ← gtthreadid + 1

lt0, lt1, lt2, ..., ltsum ← 0, lt0, lt0 + lt1, ...,
∑threadcount

i=0 lti . Calculate the cumulative sum.
gt0, gt1, gt2, ..., gtsum ← 0, gt0, gt0 + gt1, ...,

∑threadcount
i=0 gti

if threadid = 0 then . Allocate memory in the sequence this block is a part of.
(seqsstart→send, oseqoldstart→oldend, blockcount)← parent . Get shared variables.
lbeg ← FAA(sstart, ltsum) . Atomic increment allocates memory to write to.
gbeg ← FAA(send,−gtsum)− gtsum . Atomic is necessary since multiple blocks access this

variable.

lfrom = lbeg + ltthreadid

gfrom = gbeg + gtthreadid

i← start + threadid

for i < end, i← i + threadcount do . Go through data again writing elements
if si < pivot then . to the their correct position.
¬slfrom ← si . If s is a sequence in d, ¬s denotes the corresponding
lfrom← lfrom + 1 . sequence in d̂ (and vice versa).

if si > pivot then
¬sgfrom ← si

gfrom← gfrom + 1

if threadid = 0 then
if FAA(blockcount,−1) = 0 then . Check if this is the last block in the sequence to finish.

for i← sstart, i < send, i← i + 1 do . Fill in pivot value.
di ← pivot

lpivot← median(¬seqoldstart,¬seq(oldstart+sstart)/2,¬seqsstart)

gpivot← median(¬seqsend,¬seq(send+oldend)/2,¬seqoldend)

result← result ∪{(¬seqoldstart→sstart, lpivot)}
result← result ∪{(¬seqsend→oldend, gpivot)}

48 CHAPTER 2. A PRACTICAL QUICKSORT ALGORITHM FOR GPUS

Algorithm 3 GPU-Quicksort (Second Phase GPU Kernel)
procedure LQSORT(seqs, d, d̂)

var block local lt, gt, pivot, workstack, start, end, s, newseq1, newseq2, longseq, shortseq

var thread local i, lfrom, gfrom

push seqsblockid on workstack . Get the sequence assigned to this thread block.
while workstack 6= ∅ do

pop sstart→end from workstack . Get the shortest sequence from set.
pivot← median(sstart, s(end+start)/2), send) . Pick a pivot.
ltthreadid, gtthreadid ← 0, 0 . Set thread local counters to zero.
i← start + threadid . Align thread accesses for coalesced reads.
for i < end, i← i + threadcount do . Go through the data...

if si < pivot then . counting elements that are smaller...
ltthreadid ← ltthreadid + 1

if si > pivot then . or larger compared to the pivot.
gtthreadid ← gtthreadid + 1

lt0, lt1, lt2, ..., ltsum ← 0, lt0, lt0 + lt1, ...,
∑threadcount

i=0 lti . Calculate the cumulative sum.
gt0, gt1, gt2, ..., gtsum ← 0, gt0, gt0 + gt1, ...,

∑threadcount
i=0 gti

lfrom← start + ltthreadid . Allocate locations for threads.
gfrom← end− gtthreadid+1

i← start + threadid . Go through the data again, storing everything at its correct position.
for i < end, i← i + threadcount do

if si < pivot then
¬slfrom ← si

lfrom← lfrom + 1

if si > pivot then
¬sgfrom ← si

gfrom← gfrom + 1

i← start + ltsum + threadid . Store the pivot value between the new sequences.
for i < end− gtsum, i← i + threadcount do

di ← pivot

newseq1← ¬sstart→start+ltsum

newseq2← ¬send−gtsum→end

longseq, shortseq ← max(newseq1, newseq2),min(newseq1, newseq2)

if ||longseq|| <MINSIZE then . If the sequence is shorter than MINSIZE
altsort(longseq, d) . sort it using an alternative sort and place result in d.

else
push longseq on workstack

if ||shortseq|| <MINSIZE then
altsort(shortseq, d)

else
push shortseq on workstack

2.3. THE ALGORITHM 49

of elements that are smaller than the pivot. This information is stored in two ar-
rays in the shared local memory; with each thread in a half warp (a warp being
32 consecutive threads that are always scheduled together) accessing different
memory banks to increase performance.

The data is read in chunks of T words, where T is the number of threads
in each thread block. The threads read consecutive words so that the reads
coalesce as much as possible.

Space Allocation Once we have gone through all the assigned data, we
calculate the cumulative sum of the two arrays. We then use the atomic FAA-
function to calculate the cumulative sum for all blocks that have completed so
far. This information is used to give each thread a place to store its result, as
can be seen in Figure 2.3 (Step c-f).

FAA is as of the time of writing not available on all GPUs. An alternative
if one wants to run the algorithm on the older, high-end graphics processors, is
to divide the kernel up into two kernels and do the block cumulative sum on the
CPU instead. This would make the code more generic, but also slightly slower
on new hardware.

Second Pass Using the cumulative sum, each thread knows where to write
elements that are greater or smaller than the pivot. Each block goes through its
assigned data again and writes it to the correct position in the current auxiliary
array. It then fills the gap between the elements that are greater or smaller
than the pivot with the pivot value. We now know that the pivot values are in
their correct final position, so there is no need to sort them anymore. They are
therefore not included in any of the newly created subsequences.

Are We Done? If the subsequences that arise from the partitioning are
longer than minlength, they will be partitioned again in the next iteration,
provided we do not already have more than maxseq sequences. If we do, the
next phase begins. Otherwise we go through another iteration. (See Algorithm
1).

50 CHAPTER 2. A PRACTICAL QUICKSORT ALGORITHM FOR GPUS

The Second Phase

When we have acquired enough independent subsequences, there is no longer
any need for synchronization between blocks. Because of this, the entire phase
two can be run on the GPU entirely. There is however still the need for syn-
chronization between threads, which means that we will use the same method
as in phase one to partition the data. That is, we will count the number of el-
ements that are greater or smaller than the pivot, do a cumulative sum so that
each thread has its own location to write to and then move all elements to their
correct position in the auxiliary buffer.

Stack To minimize the amount of fast local memory used, there being a very
limited supply of it, we always recurse on the smallest subsequence. By doing
that, Hoare has shown [Hoa62] that the maximum recursive depth can never
go below log2(n). We use an explicit stack as suggested by Hoare and imple-
mented by Sedgewick in [Sed78], always storing the smallest subsequence at
the top.

Overhead When a subsequence’s size goes below a certain threshold, we
use an alternative sorting method on it. This was suggested by Hoare since the
overhead of Quicksort gets too big when sorting small sequences of data. When
a subsequence is small enough to be sorted entirely in the fast local memory, we
could use any sorting method that can be made to sort in-place, does not require
much expensive thread synchronization and performs well when the number of
threads approaches the length of the sequence to be sorted. See Section 2.5.2
for more information about algorithm used.

Cumulative sum

When calculating the cumulative sum, it would be possible to use a simple
sequential implementation, since the sequences are so short (≤ 512). But it is
calculated so often that every performance increase counts, so we decided to
use the parallel cumulative sum implementation described in [HSO07] which
is based on [Ble93]. Their implementation was an exclusive cumulative sum
so we had to modify it to include the total sum. We also modified it so that it

2.4. COMPLEXITY 51

accumulated two arrays at the same time. By using this method, the speed of
the calculation of the cumulative sum was increased by 20% compared to using
a sequential implementation.

Another alternative would have been to let each thread use FAA to create
a cumulative sum, but that would have been way too expensive, since all the
threads would have been writing to the same variable, leading to all additions
being serialized. Measurements done using 128 threads show that it would be
more than ten times slower than the method we decided to use.

2.4 Complexity

THEOREM 2.1. The average time complexity for GPU-Quicksort on a CRCW

PRAM is O(np log(n)) .

Proof. For the analysis we combine phase one and two since there is no dif-
ference between them from a complexity perspective. We assume a p-process
arbitrary CRCW PRAM [Jaj92]. Each partition iteration requires going through
the data, calculating the cumulative sum and going through the data again writ-
ing the result to its correct position. Going through the data twice takes O(np)

steps, where n is the length of the sequence to sort and p is the number of
processors.

The accumulate function has a time complexity of O(log(T)), where T is
the number of threads per thread block [Ble93]. Since T does not vary with
n or p, it is a constant cost. The alternative sort only needs to sort sequences
that are smaller than q, where q is dependent on the amount of available shared
memory on the graphics processor. This means that the worst case complexity
of the alternative sort is not dependent on n or p and is thus constant.

Assuming that all elements are equally likely to be picked as a pivot, we get
an average running time of

T (n) =

O(np) +
2
n

∑n−1
i=0 T (i) n > q,

O(1) n ≤ q.

52 CHAPTER 2. A PRACTICAL QUICKSORT ALGORITHM FOR GPUS

Assuming that q � n we can set q = 1 which gives us the standard Quicksort
recurrence relation, which is proved to be O(np log(n)).

THEOREM 2.2. The space complexity for GPU-Quicksort is 2n+ c, where c

is a constant.

Proof. Phase one is bounded in that it only needs to keep track of a maximum
of maxseq subsequences. Phase two always recurses on the smaller sequence,
giving a bound of log2(keysize) subsequences that needs to be stored. maxseq
and log2(keysize) do not depend on the size of the sequence and can thus be
seen as constants. The memory complexity then becomes 2n + c, the size of
the sequence to be sorted plus an equally large auxiliary buffer and a constant
needed for the bookkeeping ofmaxseq andB log2(keysize) sequences, where
B is the amount of thread blocks used.

2.5 Experimental Evaluation

2.5.1 Hardware

We ran the experiments on a dual-processor dual-core AMD Opteron 1.8 GHz
machine. Two different graphics processors were used, the low-end NVIDIA
8600GTS 256 MiB with 4 multiprocessors and the high-end NVIDIA 8800GTX
768 MiB with 16 multiprocessors, each multiprocessor having 8 processors
each.

The 8800GTX provides no support for atomic operations. Because of this,
we used an implementation of the algorithm that exits to the CPU for block-
synchronization, instead of using FAA.

2.5.2 Algorithms used

We compared GPU-Quicksort to the following state-of-the-art GPU sorting al-
gorithms:

GPUSort Uses bitonic merge sort [GRHM05].
Radix-Merge Uses radix sort to sort blocks that are then merged [HSO07].

2.5. EXPERIMENTAL EVALUATION 53

 1

 10

 100

 1000 Uniform

GPU-
Quicksort

Global
Radix

GPUSort Radix-
Merge

STL

 1

 10

 100

 1000 Sorted

 1

 10

 100

 1000 Zero

 1

 10

 100

 1000 Bucket

T
im

e
in

 m
ill

is
ec

on
ds

 -
 L

og
ar

ith
m

ic
 s

ca
le

 1

 10

 100

 1000 Gaussian

 1

 10

 100

 1000

1 2 4 8 16

Elements (millions)

Staggered

Figure 2.4: Results on the 8800GTX

 1

 10

 100

 1000 Uniform

GPU-
Quicksort

Global
Radix

GPUSort Radix-
Merge

STL Hybrid

 1

 10

 100

 1000 Sorted

 1

 10

 100

 1000

 10000
Zero

 1

 10

 100

 1000 Bucket
T

im
e

in
 m

ill
is

ec
on

ds
 -

 L
og

ar
ith

m
ic

 s
ca

le

 1

 10

 100

 1000 Gaussian

 1

 10

 100

 1000

1 2 4 8

Elements (millions)

Staggered

Figure 2.5: Results on the 8600GTS

Global Radix Uses radix sort on the entire sequence [SHZO07].
Hybridsort Splits the data with a bucket sort and uses merge sort on the

resulting blocks [SA07].
STL-Introsort This is the Introsort implementation found in the C++ Stan-

dard Library [Mus97]. Introsort is based on Quicksort, but switches to heap-
sort when the recursion depth gets too large. Since it is highly dependent on
the computer system and compiler used, we only included it to give a hint as to
what could be gained by sorting on the GPU instead of on the CPU.

54 CHAPTER 2. A PRACTICAL QUICKSORT ALGORITHM FOR GPUS

We could not find an implementation of the Quicksort algorithm used by
Sengupta et al., but they claim in their paper that it took over 2 seconds to
sort 4M uniformly distributed elements on an 8800GTX, which makes it much
slower than STL sort [SHZO07].

We only measured the actual sorting phase, we did not include in the result
the time it took to setup the data structures and to transfer the data on and off the
graphics memory. The reason for this is the different methods used to transfer
data which wouldn’t give a fair comparison between the GPU-based algorithms.
Transfer times are also irrelevant if the data to be sorted is already available
on the GPU. Because of those reasons, this way of measuring has become a
standard in the literature.

We used different pivot selection schemes for the two phases. In the first
phase we took the average of the minimum and maximum element in the se-
quence and in the second we picked the median of the first, middle and last
element as the pivot, a method suggested by Singleton [Sin69].

We used the more computationally expensive method in the first phase to try
to have a more even size of the subsequences that are assigned to each thread
block in the next phase. This method works perfectly well with numbers, but
for generic key types it has to be replaced with e.g. picking a random element
or using the same method as in phase two.

The source code of GPU-Quicksort is available for non-commercial use
[CT07].

2.5.3 Input Distributions

For benchmarking we used the following distributions which are commonly
used yardsticks in the literature to compare the performance of different sorting
algorithms [HBJ98]. The source of the random uniform values is the Mersenne
Twister [MN98].

Uniform Values are picked randomly from 0− 231.
Sorted Sorted uniformly distributed values.
Zero A constant value is used. The actual value is picked at random.

2.5. EXPERIMENTAL EVALUATION 55

(a) Uniform (b) Sorted (c) Zero (d) Bucket (e) Gaussian (f) Staggered

Figure 2.6: Visualization of sequences generated with different distributions.

Bucket The data set is divided into p blocks, where p ∈ Z+, which are
then each divided into p sections. Section 1 in each block contains randomly
selected values between 0 and 231

p − 1. Section 2 contains values between 231

p

and 232

p − 1 and so on.
Gaussian The Gaussian distribution is created by always taking the average

of four randomly picked values from the uniform distribution.
Staggered The data set is divided into p blocks, where p ∈ Z+. The

staggered distribution is then created by assigning values for block i, where
i ≤ bp2c, so that they all lie between (2i+1) 2

31

p and (2i+2) 2
31

p −1. For blocks
where i > bp2c, the values all lie between (2i− p) 2

31

p and (2i− p+ 1)2
31

p − 1.
We decided to use a p value of 128.

The results presented in Figure 2.4 and 2.5 are based on experiments sorting
sequences of integers. We have done experiments using floats instead, but found
no difference in performance.

To get an understanding of how GPU-Quicksort performs when faced with
real-world data we have evaluated it on the task of visibility ordering, i.e. sort-
ing a set of vertices in a model according to their distance from a point in 3D-
space. The 3D-models have been taken from The Stanford 3D Scanning Repos-

itory which is a resource commonly used in the literature [Sta]. By calculating
the distance from the viewer (in the experiments we placed the viewer at origin
(0,0,0)), we get a set of floats that needs to be sorted to know in which order
the vertices and accompanying faces should be drawn. Figure 2.7 shows the re-
sult from these experiments on the two different graphics processors. The size
of the models ranges from 5 × 106 elements to 5 × 107 elements. The hybrid
algorithm this time comes in two versions, the normal one and one where we
first randomize the sequence as suggested in the paper [SA07].

56 CHAPTER 2. A PRACTICAL QUICKSORT ALGORITHM FOR GPUS

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100
a) Dragon

GPU-Quicksort
Global Radix

GPUSort
Radix/Merge

STL
Hybrid

Hybrid (randomized)

 0
 20
 40
 60
 80

 100
 120
 140

b) Happy

 0

 100

 200

 300

 400

 500

 600

T
i
m
e

(
m
s
) c) Manuscript

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

8800GTX 8600GTS

d) RGBDragon

 0
 200
 400
 600
 800
 1000
 1200
 1400

8800GTX 8600GTS

e) Statuette

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90
a) Dragon

 0

 20

 40

 60

 80

 100

 120 b) Happy

 0

 100

 200

 300

 400

 500

T
i
m
e

(
m
s
)

c) Manuscript

 0

 100

 200

 300

 400

 500

 600

 700

 800

8800GTX 8600GTS

d) RGBDragon

 0

 200

 400

 600

 800

 1000

 1200

8800GTX 8600GTS

e) Statuette
Model Elements
a) Dragon 437645
b) Happy 543652
c) Manuscript 2155617
d) RGBDragon 3609600
e) Statuette 4999996

Figure 2.7: Shows the time taken to sort the distances between origin (0,0,0) and each

vertice in five different 3D-models. a) Dragon, b) Happy, c) Manuscript, d) RGBDragon

and e) Statuette. Also shown is a table with the number of vertices in each figure, i.e. the

size of the sequence to sort.

 0

 20

 40

 60

 80

 100

dragon happy manuscript rgbdragon statuette

%
 o

f t
ot

al

GPU CPU

(a) Percentage of data sorted on the GPU

vs CPU when using GPUSort.

 0

 20

 40

 60

 80

 100

dragon happy manuscript rgbdragon statuette

%
 o

f t
ot

al

GPU-Time CPU-Time

(b) Percentage of time spent sorting on

the GPU vs CPU when using GPUSort.

Figure 2.8: GPUSort on 8600GTS.

2.5. EXPERIMENTAL EVALUATION 57

Phase Registers Shared Memory (32-bit words)
Phase one 14 4T + 14

Phase two 14 max(2T, S) + 98

Table 2.1: Registers and shared memory per block required by each phase. T is the

number of threads per block and S is the minimum sequence sorted by Quicksort.

optp(s,k,m) 8800GTX 8600GTS
Threads per Block k = 1.172

10000 ,m = 53 k = 0,m = 64

Max Blocks in Phase One k = 3.7480
10000 ,m = 476 k = 9.5160

10000 ,m = 203

Min Sequence to Sort k = 4.6850
10000 ,m = 211 k = 3.2160

10000 ,m = 203

Table 2.2: Shows the constants used to select suitable parameters for a given sequence

length s.

GPUSort can only sort sequences that have a length which is a power of two,
due to the use of a bitonic sorting network. In Figure 2.8a we have visualized
the amount of data that is sorted on the GPU versus the CPU. In Figure 2.8b we
also show the relative amount of time spent on the GPU versus the CPU.

Table 2.1 shows the number of registers and amount of shared memory
needed by each phase. The higher the number of registers used the fewer the
threads that can be used per block and the higher the amount of shared memory
used the fewer number of blocks can be run concurrently.

The GPU-Quicksort algorithms can be seen as having three parameters, the
maximum number of subsequences created in the first phase, maxseq, the num-
ber of threads per block, threads, and the minimum size of sequence to sort with
Quicksort before switching to the alternative sort, sbsize. In Figure 2.9 we have
tried several different combinations of these parameters on the task of sorting a
uniformly distributed sequence with 8 million elements. The figure shows the
five best and the five worst results divided into how much time each phase takes.

Figure 2.10 shows how the performance changes when we vary one param-
eter and then pick the best, the worst and the average result among all other
combinations of the two other parameters.

58 CHAPTER 2. A PRACTICAL QUICKSORT ALGORITHM FOR GPUS

 0

 200

 400

 600

 800

 1000

 1200

3
2
/
2
5
6
/
2
0
4
8

2
5
6
/
3
2
/
6
4

3
2
/
5
1
2
/
2
0
4
8

3
2
/
3
2
/
6
4

3
2
/
1
2
8
/
2
0
4
8

1
2
8
/
1
0
2
4
/
5
1
2

1
2
8
/
1
0
2
4
/
1
0
2
4

2
5
6
/
5
1
2
/
1
0
2
4

1
2
8
/
1
0
2
4
/
2
5
6

2
5
6
/
5
1
2
/
5
1
2

T
i
m
e

(
m
s
)

Phase one

Phase two

Bitonic

(a) 8800GTX.

 0

 500

 1000

 1500

 2000

 2500

 3000

3
2
/
3
2
/
2
0
4
8

3
2
/
6
4
/
2
0
4
8

3
2
/
1
2
8
/
2
0
4
8

3
2
/
2
5
6
/
2
0
4
8

3
2
/
5
1
2
/
2
0
4
8

6
4
/
1
0
2
4
/
5
1
2

6
4
/
1
0
2
4
/
2
5
6

1
2
8
/
1
0
2
4
/
5
1
2

1
2
8
/
5
1
2
/
5
1
2

1
2
8
/
5
1
2
/
1
0
2
4

T
i
m
e

(
m
s
)

Phase one

Phase two

Bitonic

(b) 8600GTS.

Figure 2.9: The five best and worst combinations of threads per block/maximum num-

ber of subsequences created in phase one/minimum size of sequence to sort using Quick-

sort.

2.5. EXPERIMENTAL EVALUATION 59

 0

 200

 400

 600

 800

 1000

 1200

 1400

32 64 128 256

T
i
m
e

(
m
s
)

Threads per Block

Worst
Average

Best

32 64 128 256 512 1024

Max Sequences in Phase One

64 128 256 512 1024 2048

Min Sequence Length

(a) 8800GTX.

 0

 500

 1000

 1500

 2000

 2500

 3000

32 64 128 256

T
i
m
e

(
m
s
)

Threads per Block

Worst
Average

Best

32 64 128 256 512 1024

Max Sequences in Phase One

64 128 256 512 1024 2048

Min Sequence Length

(b) 8600GTS.

Figure 2.10: Varying one parameter, picking the best, worst and average result from all

possible combination of the others parameters.

The optimal selection of these parameters varies with the size of the se-
quence. Figure 2.11 shows how the values that gives the best result changes
when we run larger sequences. All variables seems to increase with the size of
the sequence.

To get the best parameters for any given sequence length we use a linear
function for each parameter to calculate its value.

optp(s, k,m) := 2blog2(sk+m)+0.5c

The parameters for this function are presented in Table 2.2. They were calcu-
lated by doing a linear regression using the measured values presented in Figure
2.11.

60 CHAPTER 2. A PRACTICAL QUICKSORT ALGORITHM FOR GPUS

 0

 50

 100

 150

 200

 250

 300

0.5M 1M 2M 4M 8M 16M

T
hr

ea
ds

/B
lo

ck

Sequence Length

Measured
optp

 0

 200

 400

 600

 800

 1000

 1200

0.5M 1M 2M 4M 8M 16M

M
ax

 B
lo

ck
s

Sequence Length

Measured
optp

 0

 200

 400

 600

 800

 1000

 1200

0.5M 1M 2M 4M 8M 16M

M
in

im
um

 S
eq

ue
nc

e
Le

ng
th

Sequence Length

Measured
optp

(a) 8800GTX.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

0.5M 1M 2M 4M 8M

T
hr

ea
ds

/B
lo

ck

Sequence Length

Measured
optp

 0

 500

 1000

 1500

 2000

 2500

0.5M 1M 2M 4M 8M

M
ax

 B
lo

ck
s

Sequence Length

Measured
optp

 0

 200

 400

 600

 800

 1000

 1200

0.5M 1M 2M 4M 8M

M
in

im
um

 S
eq

ue
nc

e
Le

ng
th

Sequence Length

Measured
optp

(b) 8600GTS.

Figure 2.11: The parameters vary with the length of the sequence to sort.

2.5.4 Discussion

In this section we discuss GPU sorting in the light of the experimental result.
Since sorting on GPUs has received a lot of attention it might be reasonable

to start with the following question; is there really a point in sorting on the
GPU? If we take a look at the radix-merge sort in Figure 2.5 we see that it
performs comparable to the CPU reference implementation. Considering that
we can run the algorithm concurrently with other operations on the CPU, it
makes perfect sense to sort on the GPU.

If we look at the other algorithms we see that they perform at twice the
speed or more compared to Introsort, the CPU reference. On the higher-end
GPU in Figure 2.4, the difference in speed can be up to 10 times the speed of
the reference! Even if one includes the time it takes to transfer data back and
forth to the GPU, less than 8ms per 1M element, it is still a massive performance
gain that can be made by sorting on the GPU. Clearly there are good reasons to
use the GPU as a general purpose co-processor.

2.5. EXPERIMENTAL EVALUATION 61

But why should one use Quicksort? Quicksort has a worst case scenario
complexity of O(n2), but in practice, and on average when using a random
pivot, it tends to be close to O(n log(n)), which is the lower bound for com-
parison sorts. In all our experiments GPU-Quicksort has shown the best perfor-
mance or been among the best. There was no distribution that caused problems
to the performance of GPU-Quicksort. As can be seen when comparing the
performance on the two GPUs, GPU-Quicksort shows a speedup by around 3
times on the higher-end GPU. The higher-end GPU has a memory bandwidth
that is 2.7 times higher but has a slightly slower clock speed, indicating that the
algorithm is bandwidth bound and not computation bound, which was the case
with the Quicksort in the paper by Sengupta et al. [SHZO07].

Is it better than radix? On the CPU, Quicksort is normally seen as a faster
algorithm as it can potentially pick better pivot points and does not need an extra
check to determine when the sequence is fully sorted. The time complexity of
radix sort is O(n), but that hides a potentially high constant which is dependent
on the key size. Optimizations are possible to lower this constant, such as con-
stantly checking if the sequence has been sorted, but when dealing with longer
keys that can be expensive. Quicksort being a comparison sort also means that
it is easier to modify it to handle different key types.

Is the hybrid approach better? The hybrid approach uses atomic instruc-
tions that were only available on the 8600GTS. We can see that it performs
very well on the uniform, bucket and gaussian distribution, but it loses speed
on the staggered distributions and becomes immensely slow on the zero and
sorted distribution. In the paper by Sintorn and Assarsson they state that the
algorithm drops in performance when faced with already sorted data, so they
suggest randomizing the data first [SA07]. This however lowers the perfor-
mance and wouldn’t affect the result in the zero distribution.

How are the algorithms affected by the higher-end GPU? GPUSort does
not increase as much in performance as the other algorithms when run on the
higher-end GPU. This is an indication that the algorithm is more computation-
ally bound than the other algorithms. It goes from being much faster than the
slow radix-merge to perform on par and even a bit slower than it.

62 CHAPTER 2. A PRACTICAL QUICKSORT ALGORITHM FOR GPUS

The global radix sort showed a three time speed improvement, as did GPU-
Quicksort. As mentioned earlier, this shows that the algorithms most likely are
bandwidth bound.

How are the algorithms affected by the different distributions? All algo-
rithms showed about the same performance on the uniform, bucket and gaussian
distributions. GPUSort takes the same amount of time for all of the distribution
since it is a sorting network, which means it always performs the same number
of operations regardless of the distribution.

The zero distribution, which can be seen as an already sorted sequence, af-
fected the algorithms to different extent. The STL reference implementation
increased dramatically in performance since its two-way partitioning function
always returned even partitions regardless of the pivot chosen. GPUSort per-
forms the same number of operations regardless of the distribution, so there was
no change there. The hybrid sort placed all elements in the same bucket which
caused it to show much worse performance than the others. GPU-Quicksort
shows the best performance since it will pick the only value that is available in
the distribution as the pivot value, which will then be marked as already sorted.
This means that it just has to do two passes through the data and can sort the
zero distribution in O(n) time.

On the sorted distribution all algorithms gain in speed except GPUSort and
the hybrid. The CPU reference becomes faster than GPUSort and radix-merge
on the high-end graphics processor and is actually the fastest when compared
to the algorithms run on the low-end graphics processor.

On the real-world data experiments, Figure 2.7, we can see that GPU-
Quicksort performs well on all models. Other than that the relative differ-
ences stay the same as they did with the artificial distributions. One interesting
thing though is the inconsistency in GPUSort. It is much faster on the larger
manuscript and statuette models than it is on the smaller dragon models. This
has nothing to do with the distribution since bitonic sort is not affected by it, so
this is purely due to the fact that GPUSort needs to sort part of the data on the
CPU since sequences needs to have a length that is a power of two to be sorted
with bitonic sort. In Figure 2.8a we can see that for the two dragon-models

2.6. CONCLUSIONS 63

40% is spent sorting on the CPU instead of on the GPU. Looking at Figure 2.8b
we see that this translates to 90% of the actual sorting time. This explains the
strange variations in the experiments.

2.6 Conclusions

In this paper we present GPU-Quicksort, a parallel Quicksort algorithm de-
signed to take advantage of the high bandwidth of GPUs by minimizing the
amount of bookkeeping and inter-thread synchronization needed.

The bookkeeping is minimized by constraining all thread blocks to work
with only one (or part of a) sequence of data at a time. This way pivot values
do not need to be distributed to all thread blocks and thus no extra information
needs to be written to the global memory.

The two-pass design of GPU-Quicksort has been introduced to keep the
inter-thread synchronization low. First the algorithm traverses the sequence to
sort, counting the number of elements that each thread sees that have a higher
(or lower) value than the pivot. By calculating a cumulative sum of these sums,
in the second phase, each thread will know where to write its assigned elements
without any extra synchronization. The small amount of inter-block synchro-
nization that is required between the two passes of the algorithm can be reduced
further by taking advantage of the atomic synchronization primitives that are
available on newer hardware.

A previous implementation of Quicksort for GPUs by Sengupta et al. turned
out not to be competitive enough in comparison to radix sort or even CPU based
sorting algorithms [SHZO07]. According to the authors this was due to it being
more dependent on the processor speed than on the bandwidth.

In our experiments we compared GPU-Quicksort with some of the fastest
known sorting algorithms for GPUs, as well as with the C++ Standard Library
sorting algorithm, Introsort, for reference. We used several input distributions
and two different graphics processors, the low-end 8600GTS with 32 cores and
the high-end 8800GTX with 128 cores, both from NVIDIA. What we could

64 CHAPTER 2. A PRACTICAL QUICKSORT ALGORITHM FOR GPUS

observe was that GPU-Quicksort performed better on all distributions on the
high-end processor and on par with or better on the low-end processor.

A significant conclusion, we think, that can be drawn from this work, is
that Quicksort is a practical alternative for sorting large quantities of data on
graphics processors.

Acknowledgments

We would like to thank Georgios Georgiadis and Marina Papatriantafilou for
their valuable comments during the writing of this paper. We would also like
to thank Ulf Assarsson and Erik Sintorn for insightful discussions regarding
CUDA and for providing us with the source code to their hybrid sort. Last but
not least, we would like to thank the anonymous reviewers for their comments
that helped us improve the presentation of the algorithm significantly.

Bibliography

[Ble93] Guy E. Blelloch. Prefix Sums and Their Applications. In John H.
Reif, editor, Synthesis of Parallel Algorithms. Morgan Kaufmann,
1993.

[BN89] Gianfranco Bilardi and Alexandru Nicolau. Adaptive Bitonic Sort-
ing. An Optimal Parallel Algorithm for Shared Memory Machines.
SIAM Journal on Computing, 18(2):216–228, 1989.

[CT07] Daniel Cederman and Philippas Tsigas. GPU Quicksort Library.
www.cs.chalmers.se/~dcs/gpuqsortdcs.html, De-
cember 2007.

[DPRS89] Martin Dowd, Yehoshua Perl, Larry Rudolph, and Michael Saks.
The Periodic Balanced Sorting Network. Journal of the ACM,
36(4):738–757, 1989.

BIBLIOGRAPHY 65

[ED82] D. J. Evans and R. C. Dunbar. The Parallel Quicksort Algorithm
Part 1 - Run Time Analysis. International Journal of Computer

Mathematics, 12:19–55, 1982.

[GGKM06] Naga K. Govindaraju, Jim Gray, Ritesh Kumar, and Dinesh
Manocha. GPUTeraSort: High Performance Graphics Coproces-
sor Sorting for Large Database Management. In Proceedings of the

2006 ACM SIGMOD International Conference on Management of

Data, pages 325–336, 2006.

[GRHM05] N. Govindaraju, N. Raghuvanshi, M. Henson, and D. Manocha. A
Cache-Efficient Sorting Algorithm for Database and Data Mining
Computations using Graphics Processors. Technical report, Uni-
versity of North Carolina-Chapel Hill, 2005.

[GRM05] Naga K. Govindaraju, Nikunj Raghuvanshi, and Dinesh Manocha.
Fast and Approximate Stream Mining of Quantiles and Frequen-
cies Using Graphics Processors. In Proceedings of the 2005

ACM SIGMOD International Conference on Management of Data,
pages 611–622, 2005.

[Gro08] Khronos Group. OpenCL (Open Computing Language). http:
//www.khronos.org/opencl/, 2008.

[GZ06] Alexander Greß and Gabriel Zachmann. GPU-ABiSort: Optimal
Parallel Sorting on Stream Architectures. In Proceedings of the

20th IEEE International Parallel and Distributed Processing Sym-

posium, 2006.

[HBJ98] David R. Helman, David A. Bader, and Joseph JáJá. A Random-
ized Parallel Sorting Algorithm with an Experimental Study. Jour-

nal of Parallel and Distributed Computing, 52(1):1–23, 1998.

[HNR90] P. Heidelberger, A. Norton, and John T. Robinson. Parallel Quick-
sort Using Fetch-And-Add. IEEE Transactions on Computers,
39(1):133–138, 1990.

66 CHAPTER 2. A PRACTICAL QUICKSORT ALGORITHM FOR GPUS

[Hoa61] C. A. R. Hoare. Algorithm 64: Quicksort. Communications of the

ACM, 4(7):321, 1961.

[Hoa62] C. A. R. Hoare. Quicksort. Computer Journal, 5(4):10–15, 1962.

[HSO07] Mark Harris, Shubhabrata Sengupta, and John D. Owens. Parallel
Prefix Sum (Scan) with CUDA. In Hubert Nguyen, editor, GPU

Gems 3. Addison Wesley, August 2007.

[Jaj92] Joseph Jaja. Introduction to Parallel Algorithms. Addison-Wesley,
1992.

[KDR+00] Ujval J. Kapasi, William J. Dally, Scott Rixner, Peter R. Matt-
son, John D. Owens, and Brucek Khailany. Efficient Conditional
Operations for Data-parallel Architectures. In Proceedings of the

33rd annual ACM/IEEE International Symposium on Microarchi-

tecture, pages 159–170, 2000.

[KSW04] Peter Kipfer, Mark Segal, and Rüdiger Westermann. UberFlow:
A GPU-based Particle Engine. In Proceedings of the ACM SIG-

GRAPH/EUROGRAPHICS Conference on Graphics Hardware,
pages 115–122, 2004.

[KW05] Peter Kipfer and Rüdiger Westermann. Improved GPU Sorting.
In Matt Pharr, editor, GPUGems 2, chapter 46, pages 733–746.
Addison-Wesley, 2005.

[MN98] Makoto Matsumoto and Takuji Nishimura. Mersenne Twister:
a 623-Dimensionally Equidistributed Uniform Pseudo-Random
Number Generator. Transactions on Modeling and Computer Sim-

ulation, 8(1):3–30, 1998.

[Mus97] David R. Musser. Introspective Sorting and Selection Algorithms.
Software - Practice and Experience, 27(8):983–993, 1997.

BIBLIOGRAPHY 67

[PDC+03] Timothy J. Purcell, Craig Donner, Mike Cammarano, Hen-
rik Wann Jensen, and Pat Hanrahan. Photon Mapping on Pro-
grammable Graphics Hardware. In Proceedings of the ACM SIG-

GRAPH/Eurographics Symposium on Graphics Hardware, pages
41–50, 2003.

[SA07] Erik Sintorn and Ulf Assarsson. Fast Parallel GPU-Sorting Using
a Hybrid Algorithm. In Workshop on General Purpose Processing

on Graphics Processing Units, 2007.

[Sed78] Robert Sedgewick. Implementing Quicksort Programs. Commu-

nications of the ACM, 21(10):847–857, 1978.

[SHZO07] Shubhabrata Sengupta, Mark Harris, Yao Zhang, and John D.
Owens. Scan Primitives for GPU Computing. In Proceedings

of the 22nd ACM SIGGRAPH/EUROGRAPHICS Symposium on

Graphics Hardware, pages 97–106, 2007.

[Sin69] Richard C. Singleton. Algorithm 347: an Efficient Algorithm
for Sorting with Minimal Storage. Communications of the ACM,
12(3):185–186, 1969.

[Sta] Stanford. The Stanford 3D Scanning Repository.

[TZ03] Philippas Tsigas and Yi Zhang. A Simple, Fast Parallel Implemen-
tation of Quicksort and its Performance Evaluation on SUN Enter-
prise 10000. In Proceedings of the 11th Euromicro Conference on

Parallel Distributed and Network-based Processing, pages 372–
381, 2003.

68 CHAPTER 2. A PRACTICAL QUICKSORT ALGORITHM FOR GPUS

PAPER II

Daniel Cederman, Philippas Tsigas
On Dynamic Load Balancing on Graphics Processors

In the Proceedings of the 11th Graphics Hardware (GH 2008)

pages 57 - 64, ACM press 2008.

3
On Dynamic Load Balancing on

Graphics Processors

To get maximum performance on the many-core graphics processors it is im-
portant to have an even balance of the workload so that all processing units
contribute equally to the task at hand. This can be hard to achieve when the cost
of a task is not known beforehand and when new sub-tasks are created dynami-
cally during execution. With the recent advent of scatter operations and atomic
hardware primitives it is now possible to bring some of the more elaborate dy-
namic load balancing schemes from the conventional SMP systems domain to
the graphics processor domain.

We have compared four different dynamic load balancing methods to see
which one is most suited to the highly parallel world of graphics processors.

71

72 CHAPTER 3. ON DYNAMIC LOAD BALANCING ON GPUS

Three of these methods were lock-free and one was lock-based. We evaluated
them on the task of creating an octree partitioning of a set of particles. The
experiments showed that synchronization can be very expensive and that new
methods that take more advantage of the graphics processors features and ca-
pabilities might be required. They also showed that lock-free methods achieves
better performance than blocking and that they can be made to scale with in-
creased numbers of processing units.

3.1 Introduction

Today’s graphics processors have ventured from the multi-core to the many-
core domain and, with many problems in the graphics area being of the so called
embarrassingly parallel kind, there is no question that the number of processing
units will continue to increase.

To be able to take advantage of this parallelism in general purpose comput-
ing, it is imperative that the problem to be solved can be divided into sufficiently
fine-grained tasks to allow the performance to scale when new processors arrive
with more processing units. However, the more fine-grained a task set gets, the
higher the cost of the required synchronization becomes.

Some problems are easily divided into fine-grained tasks with similar pro-
cessing time, such as for example the N-body problem [NHP07]. But with
other problems this information can be hard to predict and new tasks might be
created dynamically during execution. In these cases dynamic load balancing
schemes are needed which can adapt to shifts in work load during runtime and
redistribute tasks evenly to the processing units.

Several popular load balancing schemes have been hard to implement ef-
ficiently on graphics processors due to lack of hardware support, but this has
changed with the advent of scatter operations and atomic hardware primitives
such as Compare-And-Swap. It is now possible to design more advanced con-
current data structures and bring some of the more elaborate dynamic load bal-
ancing schemes from the conventional SMP systems domain to the graphics
processor domain.

3.1. INTRODUCTION 73

The load balancing in these schemes is achieved by having a shared data
object that stores all tasks created before and under execution. When a process-
ing unit has finished its work it can get a new task from the shared data object.
As long as the tasks are sufficiently fine-grained the work load will be balanced
between processing units.

The methods used for synchronizing the memory accesses to these shared
data objects can be divided into two categories, blocking and non-blocking.
Blocking methods use mutual exclusion primitives such as locks to only allow
one processing unit at a time to access the object. This is a pessimistic conflict
control that assumes conflicts even when there are none.

Non-blocking methods on the other hand employ an optimistic conflict con-
trol approach allowing several processing units to access the shared data object
at the same time and suffering delays because of retries only when there is an
actual conflict. This feature allows non-blocking algorithms to scale much bet-
ter when the number of processing units increases. Section 3.3 discusses more
about the differences between the two methods.

In the paper we compare four different methods of dynamic load balancing:

Centralized Blocking Task Queue Tasks are stored in a queue using mutual
exclusion.

Centralized Non-blocking Task Queue Tasks are stored in a (lock-free) non-
blocking queue.

Centralized Static Task List Tasks are stored in a static list.

Task Stealing Each processing unit has a local double ended queue where it
stores new tasks. Tasks can be stolen from other processing units if re-
quired.

The first method is lock-based while the other three are non-blocking ones.
The schemes are evaluated on the task of creating an octree partitioning of a
set of particles. An octree is a tree-based spatial data structure that repeatedly
divides the space by half in each direction to form eight octants. The fact that

74 CHAPTER 3. ON DYNAMIC LOAD BALANCING ON GPUS

there is no information beforehand on how deep each branch in the tree will be,
makes this a suitable problem for dynamic load balancing.

3.1.1 Related Work

Load balancing is a very basic problem and as such there has been a lot of work
done in the area. In this subsection we present a small set of papers that we
deem most relevant to our work.

Korch et al. have made a comparison between different dynamic balanc-
ing schemes on the radiosity problem [KR03]. Heirich and Arvo have com-
pared static and dynamic load balancing methods for ray-tracing and found
static methods to be inadequate [HA98]. Foley and Sugerman have imple-
mented an efficient kd-tree traversal algorithm for graphics processors and point
out that load balancing is one of the central issues for any highly parallel ray-
tracer [FS05].

When it comes to using task stealing for load balancing, Blumofe and Leis-
erson gave “the first provably good task stealing scheduler for multithreaded
computations with dependencies“ [BL94]. Arora et al. have presented an effi-
cient lock-free method for task stealing where no synchronization is required
for local access when the local stack has more than one elements [ABP98].
Soares et al have used task stealing as load balancing for voxel carving with
good performance [SMRR07].

In the following section the system model is presented. In Section 3.3 the
need for non-blocking algorithms is discussed. Section 3.4 has an overview of
the load balancing methods compared in the paper and Section 3.5 describes the
octree partitioning task used for evaluation. In section 3.6 we describe the test
settings and discuss the result.

3.2 The System Model

All the load balancing methods in this work have been implemented using
CUDA, a compiler and run-time from NVIDIA that can compile normal C code

3.2. THE SYSTEM MODEL 75

into binary or byte-code that can be executed on CUDA-enabled graphics pro-
cessors.

General Architecture The graphics processors consist of up to 16 multi-
processors each, which can perform SIMD (Single Instruction, Multiple Data)
instructions on 8 memory positions at a time. Each multiprocessor has 16 kB of
a very fast local memory that allows information to be communicated between
threads running on the same multiprocessor.

Memory Access Each multiprocessor has access to the large, but relatively
slow, global memory. It is possible to speed up access to the memory by arrang-
ing memory accesses in such a way so that the graphics processor can coalesce
them into one big read or write operation. This is done by letting threads ac-
cess consecutive memory locations with the first location being a multiple of 16
times the word size read or written.

The NVIDIA 8600GTS and newer graphics processors support atomic op-
erations such as CAS (Compare-And-Swap) and FAA (Fetch-And-Add) when
accessing the memory, which can be used to implement efficient parallel data
structures.

Scheduling The graphics processor uses a massive number of threads to
hide memory latency instead of using a cache memory. These threads are di-
vided into thread blocks of equal size where all threads in a specific thread block
is assigned to a specific multiprocessor. This allows threads in the same thread
block to communicate with each other using the fast local memory and a spe-
cial hardware barrier function which can be used to synchronize all threads in a
block.

Thread blocks are run from start to finish on the same multiprocessor and
can’t be swapped out for another thread block. If all thread blocks started can’t
fit on the available multiprocessors they will be run sequentially and will be
swapped in as other thread blocks complete. A common scenario is to divide
work into small tasks and then create a thread block for each task. When a
multiprocessor has finished with one thread block/task, it schedules a new one
and can thus achieve a relatively balanced load.

76 CHAPTER 3. ON DYNAMIC LOAD BALANCING ON GPUS

The threads in a thread block are scheduled according to which warp they
are a part of. A warp consists of 32 threads with consecutive id, such as 0..31
and 32..63. The graphics processor tries to execute the threads in a warp using
SIMD instructions, so to achieve optimal performance it is important to try
to have all threads in a warp perform the same instruction at any given time.
Threads in the same warp that perform different operations will be serialized
and the multiprocessor will not be used to its full capabilities.

3.3 Synchronization

Synchronization schemes for designing shared data objects can be divided into
three categories:

Blocking Uses mutual exclusion to only allow one process at a time to access
the object.

Lock-Free Multiple processes can access the object concurrently. At least one
operation in a set of concurrent operations finishes in a finite number of
its own steps.

Wait-Free Multiple processes can access the object concurrently. Every oper-
ation finishes in a finite number of its own steps.

The term non-blocking is also used in order to describe methods that are
either lock-free or wait-free.

The standard way of implementing shared data objects is often by the use
of basic synchronization constructs such as locks and semaphores. Such block-
ing shared data objects that rely on mutual exclusion are often easier to design
than their non-blocking counterpart, but a lot of time is spent in the actual syn-
chronization, due to busy waiting and convoying. Busy waiting occurs when
multiple processes repeatedly checks if, for example, a lock has been released
or not, wasting bandwidth in the process. This lock contention can be very
expensive.

3.4. LOAD BALANCING METHODS 77

The convoying problem occurs when a process (or warp) is preempted and
is unable to release the lock quick enough. This causes other processes to have
to wait longer than necessary, potentially slowing the whole program down.

Non-blocking shared data objects, on the other hand, allows access from
several processes at the same time without using mutual exclusion. So since
a process can’t block another process they avoid convoys and lock contention.
Such objects also offer higher fault-tolerance since one process can always con-
tinue, whereas in a blocking scenario, if the process holding the lock would
crash, the data structure would be locked permanently for all other processes.
A non-blocking solution also eliminates the risk of deadlocks, cases where two
or more processes circularly waits for locks held by the other.

3.4 Load Balancing Methods

This section gives an overview of the different load balancing methods we have
compared in this paper.

3.4.1 Static Task List

The default method for load balancing used in CUDA is to divide the data that
is to be processed into a list of blocks or tasks. Each processing unit then takes
out one task from the list and executes it. When the list is empty all processing
units stop and control is returned to the CPU.

This is a lock-free method and it is excellent when the work can be easily
divided into chunks of similar processing time, but it needs to be improved upon
when this information is not known beforehand. Any new tasks that are created
during execution will have to wait until all the statically assigned tasks are done,
or be processed by the thread block that created them, which could lead to an
unbalanced workload on the multiprocessors.

The method, as implemented in this work, consists of two steps that are per-
formed iteratively. The only data structures required are two arrays containing
tasks to be processed and a tail pointer. One of the arrays is called the in-array

78 CHAPTER 3. ON DYNAMIC LOAD BALANCING ON GPUS

and only allows read operations while the other, called the out-array, only al-
lows write operations.

In the first step of the first iteration the in-array contains all the initial tasks.
For each task in the array a thread block is started. Each thread block then reads
task i, where i is the thread block ID. Since no writing is allowed to this array,
there is no need for any synchronization when reading.

If any new task is created by a thread block while performing its assigned
task, it is added to the out-array. This is done by incrementing the tail pointer
using the atomic FAA-instruction. FAA returns the value of a variable and
increments it by a specified number atomically. Using this instruction the tail
pointer can be moved safely so that multiple thread blocks can write to the array
concurrently.

The first step is over when all tasks in the in-array has been executed. In the
second step the out-array is checked to see if it is empty or not. If it is empty
the work is completed. If not, the pointers to the out- and in-array are switched
so that they change roles. Then a new thread block for each of the items in the
new in-array is started and this process is repeated until the out-array is empty.
The algorithm is described in pseudo-code in Algorithm 4.

The size of the arrays needs to be big enough to accommodate the maximum
number of tasks that can be created in a given iteration.

3.4.2 Blocking Dynamic Task Queue

In order to be able to add new tasks during runtime we designed a parallel
dynamic task queue that thread blocks can use to announce and acquire new
tasks.

As several thread blocks might try to access the queue simultaneously it is
protected by a lock so that only one thread block can access the queue at any
given time. This is a very easy and standard way to implement a shared queue,
but it lowers the available parallelism since only one thread block can access
the queue at a time, even if there is no conflict between them.

3.4. LOAD BALANCING METHODS 79

Algorithm 4 Static Task List Pseudocode.

function DEQUEUE(q, id)
return q.in[id]

function ENQUEUE(q, task)
localtail← atomicAdd(&q.tail, 1)

q.out[localtail] = task

function NEWTASKCNT(q)
q.in, q.out, oldtail, q.tail← q.out, q.in, q.tail, 0

return oldtail
procedure MAIN(taskinit)

q.in, q.out← newarray(maxsize), newarray(maxsize)

q.tail← 0

enqueue(q, taskinit)

blockcnt← newtaskcnt(q)

while blockcnt 6= 0 do
run blockcnt blocks in parallel

t← dequeue(q, TBid)

subtasks← doWork(t)

for each nt in subtasks do
enqueue(q, nt)

blocks← newtaskcnt(q)

The queue is array-based and uses the atomic CAS (Compare-And-Swap)
instruction to set a lock variable to ensure mutual exclusion. When the work is
done the lock variable is reset so that another thread block might try to grab it.
The algorithm is described in pseudo-code in Algorithm 5.

Since it is array-based the memory required is equal to the number of tasks
that can exist at any given time.

80 CHAPTER 3. ON DYNAMIC LOAD BALANCING ON GPUS

Algorithm 5 Blocking Dynamic Task Queue Pseudocode.

function DEQUEUE(q)
while atomicCAS(&q.lock, 0, 1) == 1 do

if q.beg! = q.end then
q.beg ++

result← q.data[q.beg]

else
result← NIL

q.lock ← 0

return result
function ENQUEUE(q, task)

while atomicCAS(&q.lock, 0, 1) == 1 do

q.end++

q.data[q.end]← task

q.lock ← 0

3.4.3 Lock-free Dynamic Task Queue

A lock-free implementation of a queue was implemented to avoid the problems
that comes with locking and also in order to study the behavior of lock-free syn-
chronization on graphics processors. A lock-free queue guarantees that, without
using blocking at all, at least one thread block will always succeed to enqueue
or dequeue an item at any given time even in presence of concurrent operations.
Since an operation will only have to be repeated at an actual conflict it can
deliver much more parallelism.

The implementation is based upon the simple and efficient array-based lock-
free queue described in a paper by Zhang and Tsigas [TZ01]. A tail pointer
keeps track of the tail of queue and tasks are then added to the queue using
CAS. If the CAS-operation fails it must be due to a conflict with another thread
block, so the operation is repeated on the new tail until it succeeds. This way at
least one thread block is always assured to successfully enqueue an item.

3.4. LOAD BALANCING METHODS 81

The queue uses lazy updating of the tail and head pointers to lower con-
tention. Instead of changing the head/tail pointer after every enqueue/dequeue
operation, something that is done with expensive CAS-operations, it is only up-
dated every x:th time. This increases the time it takes to find the actual head/tail
since several queue positions needs to be checked. But by reading consecutive
positions in the array, the reads will be coalesced by the hardware into one fast
read operation and the extra time can be made lower than the time it takes to try
to update the head/tail pointer x times.

Algorithm 6 gives a skeleton of the algorithm without the essential opti-
mizations. For a detailed and correct description, please see the original pa-
per [TZ01]. This method requires just as much memory as the blocking queue.

Algorithm 6 Lock-free Dynamic Task Queue Pseudocode.

function DEQUEUE(q)
oldbeg ← q.beg

lbeg ← oldbeg

while task = q.data[lbeg] == NIL do
lbeg ++

if atomicCAS(&q.data[lbeg], task,NIL)! = task then
restart

if lbeg mod x == 0 then
atomicCAS(&q.beg, oldbeg, lbeg)

return task
function ENQUEUE(q, task)

oldend← q.end

lend← oldend

while q.data[lend]! = NIL do
lend++

if atomicCAS(&q.data[lend], NIL, task)! = NIL then
restart

if lend mod x == 0 then
atomicCAS(&q.end, oldend, lend)

82 CHAPTER 3. ON DYNAMIC LOAD BALANCING ON GPUS

3.4.4 Task Stealing

Task stealing is a popular load balancing scheme. Each processing unit is given
a set of tasks and when it has completed them it tries to steal a task from another
processing unit which has not yet completed its assigned tasks. If a unit creates
a new task it is added to its own local set of tasks.

One of the most used task stealing methods is the lock-free scheme by Arora
et al. [ABP98] with multiple array-based double ended queues (deques). This
method will be referred to as ABP task stealing in the remainder of this paper.

In this scheme each thread block is assigned its own deque. Tasks are then
added and removed from the tail of the deque in a LIFO manner. When the
deque is empty the process tries to steal from the head of another process’
deque.

Since only the owner of the deque is accessing the tail of the deque there
is no need for expensive synchronization when the deque contains more than
one element. Several thread blocks might however try to steal at the same time,
requiring synchronization, but stealing is assumed to occur less often than a
normal local access. The implementation is based on the basic non-blocking
version by Arora et al. [ABP98]. The stealing is performed in a global round
robin fashion, so thread block i looks at thread block i + 1 followed by i + 2

and so on.
The memory required by this method depends on the number of thread

blocks started. Each thread block needs its own deque which should be able
to hold all tasks that are created by that block during its lifetime.

3.5 Octree Partitioning

To evaluate the dynamical load balancing methods described in the previous
section, they are applied to the task of creating an octree partitioning of a set of
particles [SG91]. An octree is a tree-based spatial data structure that recursively
divides the space in each direction, creating eight octants. This is done until an
octant contains less than a specific number of particles.

3.5. OCTREE PARTITIONING 83

Figure 3.1: Tube Distribution (An example with 200 elements.)

The fact that there is no information beforehand on how deep each branch
in the tree will be, makes this a suitable problem for dynamic load balancing.

A task in the implementation consists of an octant and a list of particles.
The thread block that is assigned the task will divide the octant into eight new
octants and count the number of elements that are contained in each. If the
count is higher than a certain threshold, a new task is created containing the
octant and the particles in it. If it is lower than the threshold, the particle count
is added to a global counter. When the counter reaches the total number of
particles the work is completed.

Particles found to be in the same octant are moved together to minimize the
number of particles that has to be examined for further division of the octant.
This means that the further down the tree the process gets, the less time it takes
to complete a task.

84 CHAPTER 3. ON DYNAMIC LOAD BALANCING ON GPUS

This implementation of the octree partitioning algorithm should not be seen
as the best possible one, but only as a way to compare the different work bal-
ancing methods.

3.6 Experimental Evaluation

Two different graphics processors were used in the experiments, the 9600GT
512MiB NVIDIA graphics processor with 64 cores and the 8800GT 512MiB
NVIDIA graphics processor with 112 cores.

We used two input distributions, one where all particles were randomly
picked from a cubic space and one where they were randomly picked from a
space shaped like a geometrical tube, see Figure 3.1.

All methods where initialized by a single iteration using one thread block.
The maximum number of particles in any given octant was set to 20 for all
experiments.

3.6.1 Discussion

Figure 3.2 and 3.3 shows the time it took to partition two different particle
sets on the 8800GT and 9600GT graphics processors using each of the load
balancing methods while varying the number of threads per block and blocks
per grid. The static method always uses one block per task and is thus shown in
a 2D graph.

Figure 3.4 shows the time taken to partition particle sets of varying size
using the combination of threads per block and blocks per grid found to be
optimal in the previously described graph. The shapes of the graphs maps nicely
to the total number of tasks created for each distribution and particle count, as
shown in Figure 3.5. The task count is higher with the tube distribution since
the octree is more unbalanced.

Figure 3.2 (a) clearly shows that using less than 64 threads with the blocking
method gives us the worst performance in all of the experiments. This is due to
the expensive spinning on the lock variable. These repeated attempts to acquire

3.6. EXPERIMENTAL EVALUATION 85

 16
 32

 48
 64

 80
 96

 112
 128

 16
 32

 48
 64

 80
 96

 112
 128

 0

 500

 1000

 1500

 2000

 2500

a) Blocking Queue

Ti
m

e
(m

s)

ThreadsBlocks

 0
 200
 400
 600
 800
 1000

Ti
m

e
(m

s)

 16
 32

 48
 64

 80
 96

 112
 128

 16
 32

 48
 64

 80
 96

 112
 128

 0

 150

 300

 450

 600

b) Non-Blocking Queue

Ti
m

e
(m

s)

ThreadsBlocks

 0

 100

 200

 300

Ti
m

e
(m

s)

 16
 32

 48
 64

 80
 96

 112
 128

 16
 32

 48
 64

 80
 96

 112
 128

 0

 150

 300

 450

 600

c) ABP Task Stealing

Ti
m

e
(m

s)

ThreadsBlocks

 0

 100

 200

 300

Ti
m

e
(m

s)

 40

 60

 80

 100

 120

 140

 160

 16 32 48 64 80 96 112 128
Threads

d) Static Task List

Ti
m

e
(m

s)

Figure 3.2: Comparison of load balancing methods on the 8800GT. Shows the time

taken to partition a Uniform (filled grid) and Tube (unfilled grid) distribution of half a

million particles using different combinations of threads/block and blocks/grid.

the lock causes the bus to be locked for long amounts of times during which
only 32-bit memory accesses are done. With more than 64 threads the number
of concurrent thread blocks is lowered from three to one, due to the limited
number of available registers per thread, which leads to less lock contention
and much better performance. This shows that the blocking method scales very
poorly. In fact, we get the best result when using less than ten blocks, that is,
by not using all of the multiprocessors! The same can be seen in Figure 3.3 (d)
and 3.4 where the performance is better on the graphics processor with fewer
cores. We used 72 threads and 8 blocks to get the best performance out of the
blocking queue when comparing it with the other methods.

The non-blocking queue-based method, shown in Figure 3.2 (b), can take
better advantage of an increased number of blocks per grid. We see that the
performance increases quickly when we add more blocks, but after around 20

86 CHAPTER 3. ON DYNAMIC LOAD BALANCING ON GPUS

 16
 32

 48
 64

 80
 96

 112
 128

 16
 32

 48
 64

 80
 96

 112
 128

 0

 500

 1000

 1500

 2000

a) Blocking Queue
Ti

m
e

(m
s)

ThreadsBlocks

 0

 200

 400

 600

 800

Ti
m

e
(m

s)

 16
 32

 48
 64

 80
 96

 112
 128

 16
 32

 48
 64

 80
 96

 112
 128

 0

 150

 300

 450

b) Non-Blocking Queue

Ti
m

e
(m

s)

ThreadsBlocks

 0

 100

 200

 300

Ti
m

e
(m

s)

 16
 32

 48
 64

 80
 96

 112
 128

 16
 32

 48
 64

 80
 96

 112
 128

 0

 150

 300

 450

c) ABP Task Stealing

Ti
m

e
(m

s)

ThreadsBlocks

 0

 100

 200

 300

Ti
m

e
(m

s)

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

 240

 16 32 48 64 80 96 112 128
Threads

d) Static Task List

Ti
m

e
(m

s)

Figure 3.3: Comparison of load balancing methods on the 9600GT. Shows the time

taken to partition a Uniform (filled grid) and Tube (unfilled grid) distribution of half a

million particles using different combinations of threads/block and blocks/grid.

blocks the effect fades. It was expected that this effect would be visible until
we increased the number of blocks beyond 42, the number of blocks that can
run concurrently when using less than 64 threads. This means that even though
its performance is much better than the its blocking counterpart, it still does not
scale as well as we would have wanted. This can also clearly be seen when we
pass the 64 thread boundary and witness an increase in performance instead of
the anticipated drop. On the processor with fewer cores, Figure 3.3 (b), we do
get a drop, indicating that conflicts are expensive for this queue implementation.
Looking at Figure 3.4 we see the same thing, the non-blocking queue performs
better on the processor with fewer cores. The measurements were done using
72 threads and 20 blocks.

In Figure 3.2 (c) we see the result from the ABP task stealing and it lies more
closely to the ideal. Adding more blocks increases the performance until we get

3.6. EXPERIMENTAL EVALUATION 87

to around 30 blocks. Adding more threads also increases performance until we
get the expected drop 64 threads per block. We also get a slight drop after 32
threads since we passed the warp size and now have incomplete warps being
scheduled. Figure 3.4 shows that the work stealing gives great performance and
is not affected negatively by the increase in number of cores on the 8800GT.
When we compared the task stealing with the other methods we used 64 threads
and 32 blocks.

In Figure 3.2 (d) we see that the static method shows similar behavior as
the task stealing. When increasing the number of threads used by the static
method from 8 to 32 we get a steady increase in performance. Then we get the
expected drops after 32 and 64, due to incomplete warps and less concurrent
thread blocks. Increasing the number of threads further does not give any in-
crease in speed as the synchronization overhead in the octree partitioning algo-
rithm becomes dominant. The optimal number of threads for the static method
is thus 32 and that is what we used when we compared it to the other methods
in Figure 3.4.

As can be seen in Figure 3.2 and 3.3, adding more blocks than needed is not
a problem since the only extra cost is an extra read of the finishing condition for
each additional block.

Figure 3.5 shows the total number of tasks created for each distribution
and particle count. As can be seen, the number of tasks increases quickly, but
the tree itself is relatively shallow. A perfectly balanced octree has a depth of
log8(n/t), where t is the threshold, which with 500,000 elements and a thresh-
old of 20 gives a depth of just 4.87. In practice, for the tube distribution, the
static queue method required just 7 iterations to fully partition the particles and
after just 3 iterations there were a lot more tasks than there were processing
units.

88 CHAPTER 3. ON DYNAMIC LOAD BALANCING ON GPUS

100

T
im

e
 (

m
s)

Uniform Distribution

10

100 150 200 250 300 350 400 450 500

Particles (thousands)

Blocking Queue Non-Blocking Queue Blocking Queue Non-Blocking Queue

Static List ABP Work Stealing Static List ABP Work Stealing

9600GT 8800GT

100

T
im

e
 (

m
s)

Tube Distribution

10

100 150 200 250 300 350 400 450 500

Particles (thousands)

Blocking Queue Non-Blocking Queue Blocking Queue Non-Blocking Queue

Static List ABP Work Stealing Static List ABP Work Stealing

9600GT 8800GT

Figure 3.4: A comparison of the load balancing methods on the uniform and tube
distribution.

3.7 Conclusions

We have compared four different load balancing methods, a blocking queue, a
non-blocking queue, ABP task stealing and a static list, on the task of creating
an octree partitioning of a set of particles.

3.7. CONCLUSIONS 89

We found that the blocking queue performed poorly and scaled badly when
faced with more processing units, something which can be attributed to the
inherent busy waiting. The non-blocking queue performed better but scaled
poorly when the number of processing units got too high. Since the number
of tasks increased quickly and the tree itself was relatively shallow the static
queue performed well. The ABP task stealing method perform very well and
outperformed the static method.

The experiments showed that synchronization can be very expensive and
that new methods that take more advantage of the graphics processors features
and capabilities might be required. They also showed that lock-free methods
achieves better performance than blocking and that they can be made to scale
with increased numbers of processing units.

Future Work

We are planning to compare the load balancing methods used in the paper on
other problems, such as global illumination. Based on the conclusions from this
work we are trying to develop new methods, tailored to graphics processors, for
load balancing.

300

3000

30000

0 100 200 300 400 500 600

T
a

sk
s

Particles (thousands)

Uniform Distribution

Tube Distribution

Figure 3.5: The total number of tasks caused by the two distributions.

90 CHAPTER 3. ON DYNAMIC LOAD BALANCING ON GPUS

Bibliography

[ABP98] Nimar S. Arora, Robert D. Blumofe, and C. Greg Plaxton. Thread
Scheduling for Multiprogrammed Multiprocessors. In Proceedings

of the ACM Symposium on Parallel Algorithms and Architectures,
pages 119–129, 1998.

[BL94] R. Blumofe and C. Leiserson. Scheduling multithreaded computa-
tions by work stealing. In Proceedings of the 35th Annual Sympo-

sium on Foundations of Computer Science, Santa Fe, New Mexico.,
pages 356–368, 1994.

[FS05] Tim Foley and Jeremy Sugerman. KD-tree acceleration structures
for a GPU raytracer. In Proceedings of the ACM SIGGRAPH/EU-

ROGRAPHICS conference on Graphics hardware, pages 15–22,
2005.

[HA98] Alan Heirich and James Arvo. A Competitive Analysis of Load
Balancing Strategies for Parallel Ray Tracing. J. Supercomput.,
12(1-2):57–68, 1998.

[KR03] Matthias Korch and Thomas Rauber. A comparison of task pools
for dynamic load balancing of irregular algorithms: Research ar-
ticles. Concurrency and Computation: Practice & Experience,
16(1):1–47, 2003.

[NHP07] Lars Nyland, Marks Harris, and Jan Prins. Fast N-Body Simula-
tion with CUDA. In GPU Gems 3, chapter 31, pages 677–695.
Addison-Wesley, 2007.

[SG91] M. Shephard and M. Georges. Automatic three-dimensional mesh
generation by the finite Octree technique. International Journal for

Numerical Methods in Engineering, 32:709–749, 1991.

[SMRR07] Luciano Soares, Clément Ménier, Bruno Raffin, and Jean-Louis
Roch. Work Stealing for Time-constrained Octree Exploration:

BIBLIOGRAPHY 91

Application to Real-time 3D Modeling. In Proceedings of the Euro-

graphics Symposium on Parallel Graphics and Visualization, 2007.

[TZ01] Philippas Tsigas and Yi Zhang. A simple, fast and scalable non-
blocking concurrent FIFO queue for shared memory multiproces-
sor systems. In Proceedings of the thirteenth Annual ACM Sym-

posium on Parallel Algorithms and Architectures, pages 134–143,
2001.

92 CHAPTER 3. ON DYNAMIC LOAD BALANCING ON GPUS

PAPER III

Daniel Cederman, Philippas Tsigas

Supporting Lock-Free Composition
of Concurrent Data Objects

In the Proceedings of the 7th ACM conference on Computing Frontiers (CF 10)

pages: 53-62, ACM 2010.

4
Supporting Lock-Free Composition

of Concurrent Data Objects

Lock-free data objects offer several advantages over their blocking counterparts,
such as being immune to deadlocks and convoying and, more importantly, being
highly concurrent. However, composing the operations they provide into larger
atomic operations, while still guaranteeing efficiency and lock-freedom, is a
challenging algorithmic task.

We present a lock-free methodology for composing highly concurrent lin-
earizable objects together by unifying their linearization points. This makes
it possible to relatively easily introduce atomic lock-free move operations to
a wide range of concurrent objects. Experimental evaluation has shown that

95

96 CHAPTER 4. LOCK-FREE COMPOSITION

the operations originally supported by the data objects keep their performance
behavior under our methodology.

4.1 Introduction

Lock-free data objects offer several advantages over their blocking counterparts,
such as being immune to deadlocks, priority inversion, and convoying, and have
been shown to work well in practice [ST02, TZ01, TZ02]. They have been in-
cluded in Intel’s Threading Building Blocks Framework [Int09], the NOBLE li-
brary [ST02] and the Java concurrency package [Lea09], and will be included in
the forthcoming parallel extensions to the Microsoft .NET Framework [Mic09].
However, the lack of a general, efficient, lock-free method for composing them
makes it difficult for the programmer to perform multiple operations together
atomically. To efficiently glue together multiple objects, and their respective
operations, one needs to perform an often challenging task that requires an ef-
ficient algorithmic design for every particular composition. The task is made
difficult by the fact that lock-free data objects are often too complicated to be
trivially altered.

Composing blocking data objects also puts the programmer in a difficult
situation, as it requires knowledge of the way locks are handled internally (in
the implementation of the objects themselves), in order to avoid deadlocks. It
is not possible to build on lock-based components without examining their im-
plementations and even then the drawbacks of locking will not go away.

Software Transactional Memories provide good composability, but have
problems with high overhead and have poor support for dealing with non-
transactional code [HMPJH05, CBM+08, LK08]. They require, with few ex-
ceptions, that the data objects are rewritten to be handled completely inside the
STM, which lowers performance compared to pure non-blocking data objects.

4.1. INTRODUCTION 97

4.1.1 Composing

With the term composing we refer to the task of binding together multiple oper-
ations in such a way that they can be performed as one, without any intermediate
state being visible to other processes. In the literature the term is also used for
nesting, making one data object part of another, which is an interesting problem,
but outside the scope of this paper.

Composing lock-free concurrent data objects, in the context that we con-
sider in this paper, has been an open problem in the area of lock-free data ob-
jects. There exists customized compositions of specific concurrent data objects,
including the composition of lock-free flat-sets by Gidenstam et al. that con-
stitute the foundation of a lock-free memory allocator [GPT09, GPT05], but no
generic solution.

Using blocking locks to compose lock-free operations is not a viable so-
lution, as it would reduce the concurrency and remove the lock-freedom guar-
antees of the operations. The reason for this is that the lock-free operations
would have to acquire a lock before executing, in order to ensure that they are
not executed concurrently with any composed operations. This would cause the
operations to be executed sequentially and lose their lock-free behavior. Simply
put, a generic way to compose concurrent objects, without foiling the possible
lock-freedom guarantees of the objects, has to be lock-free itself.

4.1.2 Contributions

The main contribution of this paper is to provide a methodology to introduce
atomic move operations, that can move elements between objects of different
types, to a large class of already existing concurrent objects without having to
make significant changes to them. It manages this while preserving the lock-
free guarantees of the object and without introducing significant performance
penalties to the previously supported operations. Move operations are an im-
portant part of the core functionality needed when composing any kind of con-
tainers, as they provide the possibility to shift items between objects.

98 CHAPTER 4. LOCK-FREE COMPOSITION

In our methodology we present a set of properties that can be used to iden-
tify suitable concurrent objects and we describe the mostly mechanical changes
needed for our move operation to function together with the objects. The prop-
erties required by our methodology are fulfilled by a wide variety of lock-free
data objects, among them lock-free stacks, queues, lists, skip-lists, priority
queues, hash-tables and dictionaries [Tre86, MS96, ST05, FR04, ST04, Val95,
Mic02, Har01b].

Our methodology is based on the idea of decomposing and then arranging
lock-free operations appropriately so that their linearization points can be com-
bined to form new composed lock-free operations. The linearization point of a
concurrent operation is the point in time where the operation can be said to have
taken effect. Most concurrent data objects that are not read- or write-only sup-
port an insert and a remove operation, or a set of equivalent operations that can
be used to modify its content. These two types of operations can be composed
together using the method presented in this paper to make them appear to take
effect simultaneously. By doing this we provide a lock-free atomic operation
that can move elements between objects of different types. To the best of our
knowledge this is the first time that such a general scheme has been proposed.

As a proof of concept we show how to apply our method on two commonly
used concurrent data objects, the lock-free queue by Michael and Scott [MS96]
and the lock-free stack by Treiber [Tre86]. Experimental results on an Intel mul-
tiprocessor system show that the methodology presented in the paper, applied to
the previously mentioned lock-free implementations, offers significantly better
performance and scalability than a composition method based on locking. The
proposed method does this in addition to its qualitative advantages regarding
progress guarantees that lock-freedom offers. Moreover, the experimental eval-
uation has shown that the operations originally supported by the data objects
keep their performance behavior while used as part of our methodology.

4.2. THE MODEL 99

4.2 The Model

The model considered is the standard shared memory model, where a set of
memory locations can be read from and written to, by a number of processes
that progress asynchronously. Concurrent data objects are composed of a subset
of these memory locations together with a set of operations that can use read
and write instructions, as well as other atomic instructions, such as compare-
and-swap (CAS). We require all concurrent data objects to be linearizable to
assure correctness.

Linearizability is a commonly used correctness criterion introduced by Her-
lihy and Wing [HW90]. Each operation on a concurrent object consists of an
invocation and a response. A sequence of such operations makes up a history.
Operations in a concurrent history can be placed in any order if they occur
concurrently, but an operation that finishes before another one is invoked must
appear before the latter. If the operations in any actual concurrent history can
be reordered in such a way, so that the history is equivalent to a correct se-
quential history, then the concurrent object is linearizable. One way of looking
at linearizability is to think that an operation takes effect at a specific point in
time, the linearization point. All operations can then be ordered according to
the linearization point to form a sequential history.

4.3 The Methodology

The methodology that we present can be used to unify the linearization points
of a remove and an insert operation for any two concurrent objects, given that
they fulfill certain requirements. We call a concurrent object that fulfills these
requirements a move-candidate object.

4.3.1 Characterization

Definition 4.1. A concurrent object is a move-candidate if it fulfills the follow-

ing requirements:

100 CHAPTER 4. LOCK-FREE COMPOSITION

1. It implements linearizable operations for insertion and removal of a sin-

gle element.

2. Insert and remove operations invoked on different instances of the object

can succeed simultaneously.

3. The linearization points of the successful insert and remove operations

can be associated with successful CAS operations, (on a pointer), by the

process that invoked it. Such an associated successful CAS can never

lead to an unsuccessful insert or remove operation.

4. The element to be removed is accessible before the linearization point.

To implement a move operation, the equivalent of a remove and insert op-
eration needs to be available or be implemented. A generic insert or remove
operation would be very difficult to write, as it must be tailored specifically to
the concurrent object, which motivates the first requirement.

Requirement 2 is needed since a move operation tries to perform the re-
moval and insertion of an element at the same time. If a successful removal
invalidates an insertion, or the other way around, then the move operation can
never succeed. This could happen when the insert and remove operations share
locks between them or when they are using memory management schemes such
as hazard pointers [Mic04], if not dealt with explicitly. With shared locks there
is the risk of deadlocks, when the process could be waiting for itself to release
the lock in the remove operation, before it can acquire the same lock in the in-
sert operation. Hazard pointers, which are used to mark memory that cannot yet
be reused, could be overwritten if the same pointers are used in both the insert
and remove operations.

Requirement 3 requires that the linearization points can be associated with
successful CAS operations. The linearization points are usually provided to-
gether with the algorithmic description of each object. Implementations that
use the LL/SC1 pair for synchronization can be translated to ones that use CAS

1LL (Load-Link) and SC (Store-Conditional) are used together. LL reads a value from a memory
location and SC can then only write a new value at the same location if the memory location has
not been written to since the last LL.

4.3. THE METHODOLOGY 101

by using the construction by Doherty et al. that implements the LL/SC function-
ality from CAS [DHLM04]. The requirement also states that the CAS operation
should be on a variable holding a pointer. This is not a strict requirement; the
reason for it is that the DCAS operation used in our methodology often needs to
be implemented in software due to lack of hardware support for such an opera-
tion. By only working with pointers it makes it easier to identify words that are
taking part in a DCAS operation. The last part, which requires the linearization
point of an operation to be part of the process that invoked it, prevents concur-
rent data objects from using some of the possible helping schemes, but not the
majority of them. For example, it does not prevent using the commonly used
helping schemes where the process that helps another process is not the one that
defines the linearization point of the process helped. As described in Section
4.1.2, there is a large class of well-known basic and advanced data objects that
fulfills this requirement.

Requirement 4 is necessary as the insert operation needs to be invoked with
the removed element as an argument. The element is usually available before
the linearization point, but there are data objects where the element is never
returned by the remove operation, or is accessed after the linearization point for
efficiency reasons.

4.3.2 The Algorithm

The main part of the algorithm is the actual move operation, which is described
in the following section. Our move operation makes heavy use of a DCAS
operation that is described in detail in Section 4.3.2.

The Move Operation

The main idea behind the move operation is based on the observation that the
linearization points of many concurrent objects’ operations is a CAS and that
by combining these CASs and performing them simultaneously, it would be
possible to compose operations. A move operation does not need an expensive
general multi-word CAS, so an efficient two word CAS customized for this

102 CHAPTER 4. LOCK-FREE COMPOSITION

particular operation is good enough. We would like to simplify the utilization
of this idea as much as possible, and for this reason we worked towards three
goals when we designed the move operation:

• The changes required to adapt the concurrent data object should be mini-
mal and be possible to perform mechanically.

• The performance impact on the normal operations of the concurrent data
objects should be minimized.

• The move operation should be lock-free if the insert and remove opera-
tions are lock-free.

With these goals in mind we decided that the easiest and most generic way
would be to reuse the remove and insert operations that are already supported by
the object. By definition a move-candidate operation has a linearization point
that consists of a successful CAS. We call the part of the operation prior to this
linearization point the init-phase and the part after it the cleanup-phase. The
move can then be seen as taking place in five steps:

1st step. The init-phase of the remove operation is performed. If the re-
moval fails, due for example to the element not existing, the move is
aborted. Otherwise the arguments to the CAS at the potential lineariza-
tion point are stored. By requirement 4 of the definition of a move-
candidate, the element to be moved can now be accessed.

2nd step. The init-phase of the insert operation is performed using the ele-
ment received in the previous step. If the insertion fails, due for example
to the object being full, the move is aborted. Otherwise the arguments to
the CAS at the potential linearization point are stored.

3rd step. The CASs that define the linearization points, one for each of the
two operations, are performed together atomically using a DCAS oper-
ation with the stored CAS arguments. Step two is redone if the DCAS
failed due to a conflict in the insert operation. Steps one and two are
redone if the conflict was in the remove operation.

4.3. THE METHODOLOGY 103

4th step. The cleanup-phase for the insert operation is performed.

5th step. The cleanup-phase for the remove operation is performed.

To be able to divide the insert and remove operations into the init- and
cleanup-phases without resorting to code duplication, it is required to replace
all possible linearization point CASs with a call to the scas operation. The
task of the scas operation is to restore control to the move operation and store
the arguments intended for the CAS that was replaced. The scas operation
is described in Algorithm 9 and comes in two forms, one to be called by the
insert operations and one to be called by the remove operations. They can be
distinguished by the fact that the scas for removal requires the element to be
moved as an argument. If the scas operation is invoked as part of a normal in-
sert or remove, it reverts back to the functionality of a normal CAS. This should
minimize the impact on the normal operations.

If the DCAS operation used is a software implementation that uses helping,
it might be required to use hazard pointers to disallow reclaiming of the memory
used by it. In those cases the hazard pointers can be given as an argument to the
scas operation and they will be brought to the DCAS operation. The DCAS
operation provided in this paper uses helping and takes advantage of the support
for hazard pointers.

If the DCAS in step 3 should fail, this could be for one of two reasons. First,
it could fail because the CAS for the insert failed. In this case the init-phase for
the insert needs to be redone before the DCAS can be invoked again. Second,
it could fail because the CAS for the remove failed. Now we need to redo
the init-phase for the remove, which means that the insert operation needs to be
aborted. For concurrent objects such as linked lists and stacks there might not be
a preexisting way for the insert to abort, so code to handle this scenario must be
inserted. The code necessary usually amounts to freeing allocated memory and
then return. The reason for this simplicity is that the abort always occurs before
the operation has reached its linearization point. If the insertion operation can
fail for reasons other than conflicts with another operation, there is also a need
for the remove operation to be able to handle the possibility of aborting.

104 CHAPTER 4. LOCK-FREE COMPOSITION

Depending on whether one uses a hardware implementation of a DCAS or
a software implementation, it might also be required to alter all accesses to
memory words that could take part in DCAS, so that they access the word via a
special read-operation designed for the DCAS.

A concurrent object that is a move-candidate (Definition 4.1) and has im-
plemented all the above changes is called a move-ready concurrent object. This
is described formally in the following definition.

Definition 4.2. A concurrent object is move-ready if it is a move-candidate and

has implemented the following changes:

1. The CAS at each linearization point in the insert and remove operations

have been changed to scas.

2. The insert (and remove) operation(s) can abort if the scas operation

returns ABORT.

3. (All memory locations that could be part of a scas are accessed via the

read operation.)

The changes required are mostly mechanical once the object has been found
to adhere to the move-ready definition. This object can then be used by our
move operation to move items between different instances of any concurrent
move-ready objects. Requirement 3 is not required for systems with a hardware
based DCAS.

Theorem 4.2 in Section 4.4 states that the move operation is linearizable
and lock-free if used together with two move-ready lock-free concurrent data
objects.

DCAS

The DCAS operation performs a CAS on two distinct words atomically (See Al-
gorithm 7 for its semantics). It is unfortunately not commonly available in hard-
ware, some say for good reasons [DDG+04], so for our experiments it had to be
implemented in software. There are several different multi-word compare-and-
swap methods available in the literature [IR94, ARJ97, Her93, HT03, AM95,

4.3. THE METHODOLOGY 105

Moi97, ST95, HFP02] and ours uses the same basic idea as in the solution by
Harris et al.

Lock-freedom is achieved by using a two-phase locking scheme with help-
ing2. First an attempt is made to change both the words involved, using a normal
CAS, to point to a descriptor that holds all information required for another pro-
cess to help the DCAS complete. See lines D10 and D14 in Algorithm 12. If any of
the CASs fail, the DCAS is unsuccessful as both words need to match their old
value. In this case, if one of the CASs succeeded, its corresponding word must
be reverted back to its old value. When a word holds the descriptor it cannot be
changed by any other non-helping process, so if both CASs are successful, the
DCAS as a whole is successful. The two words can now be changed one at a
time to hold their respective new values. See lines D28 and D29.

If another process wants to access a word that is involved in a DCAS, it
first needs to help the DCAS operation finish. The process knows that a word
is used in a DCAS if it is pointing to a descriptor. This is checked at line
D34 in the read operation. In our experiments we have marked the descriptor
pointer by setting its least significant bit to one. This is a method introduced by
Harris et al. [Har01a] and it is possible to use since we assume that the word
will contain a pointer and that pointers will be aligned to the word size of the
system. Using the information in the descriptor it tries to perform the same steps
as the initiator, but marks the pointer to the descriptor it tries to swap in with its
thread id. This is done to avoid the ABA-problem, which can occur since CAS
cannot distinguish a word that has been changed from A to B and then back to
A again, from a word whose value has remained A. Unless taken care of in this
manner, the ABA-problem could cause the DCAS to succeed multiple times,
one for each helping process.

Our DCAS differs from the one by Harris et al. in that i) it has support for
reporting which, if any, of the operations has failed, ii) it does not need to allo-
cate an RDCSSDescriptor as it only changes two words, iii) it has support
for hazard pointers, and iv) it requires two fewer CASs in the uncontended case.

2Lock-freedom does not exclude the use of locks, in contrast to its definition-name, if the locks
can be revoked.

106 CHAPTER 4. LOCK-FREE COMPOSITION

Algorithm 7 Semantics of the DCAS operation.

s t r u c t DCASDesc
word o l d1 , o l d2 , new1 , new2

word ∗ p t r 1 , ∗ p t r 2
[word ∗hp1 , ∗hp2]
word r e s

d r e s DCAS(de sc)
i f (∗desc . p t r 1 6= desc . o l d1)

r e t u r n FIRSTFAILED

i f (∗desc . p t r 2 6= desc . o l d2)
r e t u r n SECONDFAILED

∗desc . p t r 1 ← desc . new1

∗desc . p t r 2 ← desc . new2

r e t u r n SUCCESS

These are, however, minor differences and for our methodology to function it is
not required to use our specific implementation. Performance gains and prac-
ticality reasons account for the introduction of the new DCAS. The DCAS is
linearizable and lock-free according to Theorem 4.1.

4.4 Proof

Lemma 4.1. The DCAS descriptor’s res variable can only be changed from

UNDECIDED to SECONDFAILED or from UNDECIDED to a marked descrip-

tor and consequently to SUCCESS.

Proof. The res variable is set at lines D17, D24, and D30. On lines D17 and D24 the
change is made using CAS, which assures that the variable can only change
from UNDECIDED to SECONDFAILED or to a marked descriptor. Line D30

writes SUCCESS directly to res, but it can only be reached if res differs from
SECONDFAILED at line D25, which means that it must hold a marked descriptor
as set on line D24 or already hold SUCCESS.

Lemma 4.2. The initiating and all helping processes will receive the same re-

sult value.

4.4. PROOF 107

Algorithm 8 Basic operations.

boo l remove ([key] ,∗ i t em)
. . .
w h i l e (u n s u c c e s s f u l)

. . .
r e s u l t ← s c a s (p t r , o ld , new , e lement , [hp])
/ / Only needed when i n s e r t can f a i l
[i f (r e s u l t =ABORT)]

[abort]
[r e t u r n f a l s e]

. . .
. . .

boo l i n s e r t ([key] , i t em)
. . .
w h i l e (u n s u c c e s s f u l)

. . .
r e s u l t ← s c a s (p t r , o ld , new , [hp])
i f (r e s u l t =ABORT)

abort
r e t u r n f a l s e

. . .
. . .

Proof. DCAS returns the result value at lines D9, D11, D19, D22, D27, and D31. Lines D22

and D27 are only executed if res is equal to SECONDFAILED and we know by
Lemma 4.1 that the result value cannot change after that. Lines D31 and D19 can
only be executed when res is SUCCESS and by the same Lemma the value
can not change. Line D9 only returns when the result value is either SUCCESS
or SECONDFAILED and as stated before these value cannot change. Line D11

returns FIRSTFAILED when the initiator process fails to announce the DCAS,
which means that no other process will help the operation to finish.

Lemma 4.3. Iff the result value of the DCAS is SUCCESS, then ∗ptr1 has

changed value from old1 to the descriptor to new1 and ∗ptr2 has changed value

from old2 to a marked descriptor to new2 once.

Proof. On line D10 ∗ptr1 is set to the descriptor by the initiating process as oth-
erwise the result value would be FIRSTFAIL. On line D14, ∗ptr2 is set to a

108 CHAPTER 4. LOCK-FREE COMPOSITION

Algorithm 9 Move operation.

thread local variables
desc , l t a r g e t , l s k e y , l t k e y , i n s f a i l e d

M1boo l move (sou rce , t a r g e t , [skey , t k e y])
M2 desc ← new DCASDesc
M3 desc . r e s ← UNDECIDED

M4 [l s k e y ← skey , l t k e y ← t k e y]
M5 l t a r g e t ← t a r g e t
M6 r e s u l t ← s o u r c e . remove ([l s k e y] , tmp)
M7 desc ← 0
M8 r e t u r n r e s u l t

Algorithm 10 Move operation. scas for dequeue.

M9f b o o l s c a s (p t r , o ld , new , e lement , [hp])
M10 i f (de sc 6= 0)
M11 desc . p t r 1 ← p t r
M12 desc . o l d1 ← o l d
M13 desc . new1 ← new
M14 [de sc . hp1 ← hp]
M15 i n s f a i l e d ← t r u e
M16 r e s u l t ← l t a r g e t . i n s e r t ([l t k e y] , e l e m e n t)
M17 i f (i n s f a i l e d)
M18 r e t u r n ABORT

M19 r e t u r n r e s u l t
M20 e l s e
M21 r e t u r n c a s (p t r , o ld , new)

marked descriptor by any of the processes. By contradiction, if all processes
failed to change the value of ∗ptr2 on line D14, the result value would be set to
SECONDFAILED on line D17. On line D24 the res variable is set to point to a
marked descriptor. This change is a step on the path to the SUCCESS result
value and thus must be taken. On line D28 ∗ptr1 is changed to new1 by one pro-
cess. It can only succeed once as the descriptor is only written once by the
initiating process. This is in contrast to ∗ptr2 which can hold a marked descrip-
tor multiple times due to the ABA-problem at line D14. When ∗ptr2 is changed
to new2 it could be changed back to old2 by a process outside of the DCAS.
The CAS at line D14 has no way of detecting this. This is the reason why we

4.4. PROOF 109

Algorithm 11 Move operation. scas for enqueue.

M22f b o o l s c a s (p t r , o ld , new , [hp])
M23 i f (de sc 6= 0)
M24 desc . p t r 2 ← p t r
M25 desc . o l d2 ← o l d
M26 desc . new2 ← new
M27 [de sc . hp2 ← hp]
M28 r e s u l t ← DCAS(desc , t r u e)
M29 i f (r e s u l t != SUCCESS)
M30 desc ← new DCASDesc (desc)
M31 desc . r e s ← UNDECIDED

M32 i n s f a i l e d ← f a l s e
M33 i f (r e s u l t = FIRSTFAILED)
M34 r e t u r n ABORT

M35 i f (r e s u l t = SECONDFAILED)
M36 r e t u r n f a l s e
M37 r e t u r n t r u e
M38 e l s e
M39 r e t u r n c a s (p t r , o ld , new)

are using a marked descriptor that is stored in the res variable using CAS, as
this will allow only one process to change the value of ∗ptr2 to new2 on line D29.
A process that manages to store its marked descriptor to ∗ptr2, but was not the
first to set the res variable, will have to change it back to its old value.

Lemma 4.4. Iff the result value of the DCAS operation is FIRSTFAILED or

SECONDFAILED, then ∗ptr1 was not changed to new1 in the DCAS and ∗ptr2
was not changed to new2 in the DCAS due to either ∗ptr1 6=old1 or ∗ptr2 6=old2.

Proof. If the CAS at line D10 fails, nothing is written to ∗ptr1 by any processes
since the operation is not announced. The CAS at line D24 must fail, since oth-
erwise the result value would not be SECONDFAILED. This means the test at
line D25 will succeed and the operation will return before line D29, which is the
only place that ∗ptr2 can be changed to new2.

Lemma 4.5. Iff the result value of the DCAS is SUCCESS, then ∗ptr1 held a

descriptor at the same time as ∗ptr2 held a marked descriptor.

110 CHAPTER 4. LOCK-FREE COMPOSITION

Algorithm 12 Double word compare-and-swap.

D1 d r e s DCAS(desc , i n i t i a t o r)
D2 [i f (¬ i n i t i a t o r)]
D3 [hp1 ← desc . hp1 , hp2 ← desc . hp2]
D4 i f (de sc . r e s = SUCCESS ∨ SECONDFAILED)
D5 i f (de sc i s marked)
D6 c a s (desc . p t r 2 , desc , de sc . o l d2)
D7 e l s e
D8 c a s (desc . p t r 1 , desc , de sc . o l d1)
D9 r e t u r n desc . r e s

D10 i f (i n i t i a t o r∧¬c a s (desc . p t r 1 , d e sc . o l d1 , d e sc))
D11 r e t u r n FIRSTFAILED

D12

D13 mdesc ← mark (unmark (desc) , t h r e a d I D)
D14 p 2 s e t ← c a s (de sc . p t r 2 , d e sc . o l d2 , mdesc)
D15 i f (¬p 2 s e t)
D16 i f (∗desc . p t r 2 . p t r 6= desc)
D17 c a s (desc . r e s , UNDECIDED , SECONDFAILED)
D18 i f (de sc . r e s = SUCCESS)
D19 r e t u r n desc . r e s
D20 i f (de sc . r e s = SECONDFAILED)
D21 c a s (de sc . p t r 1 , desc , de sc . o l d1)
D22 r e t u r n desc . r e s
D23

D24 c a s (de sc . r e s , UNDECIDED , mdesc)
D25 i f (de sc . r e s = SECONDFAILED)
D26 i f (p 2 s e t) c a s (de sc . p t r 2 , mdesc , de sc . o l d2)
D27 r e t u r n desc . r e s
D28 c a s (de sc . p t r 1 , desc , de sc . new1)
D29 c a s (de sc . p t r 2 , d e sc . r e s , de sc . new2)
D30 desc . r e s ← SUCCESS

D31 r e t u r n desc . r e s

Proof. Line D28 can only be reached if the CASs at lines D10 and D14 were success-
ful. The values of ∗ptr1 and ∗ptr2 are not changed back until lines D28 and D29,
so just before the first process reaches line D28 ∗ptr1 holds a descriptor and ∗ptr2
holds a marked descriptor.

Lemma 4.6. If the initiating process protects ∗ptr1 and ∗ptr2 with hazard point-

ers, they will not be written to by any helping process unless that process also

protects them with hazard pointers.

4.4. PROOF 111

Algorithm 13 Double word compare-and-swap. Read operation.

D32word read (∗ p t r)
D33 r e s u l t ← ∗ p t r
D34 w h i l e (r e s u l t i s DCASDesc)
D35 hpd ← r e s u l t
D36 i f (hpd = ∗ p t r)
D37 DCAS(r e s u l t , f a l s e)
D38 r e s u l t ← ∗ p t r
D39 r e t u r n r e s u l t

Proof. If the initiating process protects the words, they will not be unprotected
until that process returns, at which point the final result value must have been
set. This means that if the test at D4 fails for a helping process, the words were
protected when the process local hazard pointers were set at line D3. If the test
did not fail, then the words are not guaranteed to be protected. But in that case
the word that is written to at line D6 or D8 is the same word that was read in the
read operation. That word must have been protected earlier by the process
calling it, as otherwise it could potentially read from invalid space. Thus the
words are either protected by the hazard pointers set at line D3 or by hazard
pointers set before calling the read operation.

Lemma 4.7. DCAS is lock-free.

Proof. The only loop in DCAS is part of the read operation that is repeated until
the word read is no longer a DCAS descriptor. The word can be assigned the
same descriptor, with different process id, for a maximum number of p−1 times,
where p is the number of processes in the system. This can happen when each
helping process manages to write to ∗ptr2 due to the ABA-problem mentioned
earlier. This can only happen once for each process per descriptor as it will not
get past the test on line D4 a second time.

So, a descriptor appearing on a word means that either a process has started a
new DCAS operation or that a process has made an erroneous helping attempt.
Either way, one process must have made progress for this to happen, which
makes the DCAS lock-free.

112 CHAPTER 4. LOCK-FREE COMPOSITION

THEOREM 4.1. The DCAS is lock-free and linearizable with possible lin-

earization points at D10, D17, and D24, and follows the semantics as specified in

Algorithm 7.

Proof. Lemma 4.2 gives that all processes return the same result value. Ac-
cording to Lemmata 4.3 and 4.4, the result value can be seen as deciding the
outcome of the DCAS. The result value is set at D17 and D24, which become pos-
sible linearization points. It is also set at D30, but that comes as a consequence
of the CAS at line D24. The final candidate for linearization point happens when
the CAS at line D10 fails. This happens before the operation is announced so we
do not need to set the res variable.

Lemma 4.3 proves that when the DCAS is successful it has changed both
∗ptr1 and ∗ptr2 to an intermediate state from a state where they were equal to
old1 and old2, respectively. Lemma 4.5 proves that they were in this intermedi-
ate state at the same time before they got their new values, according to Lemma
4.3 again. If the DCAS was unsuccessful then nothing is changed due to either
∗ptr1 6=old1 or ∗ptr2 6=old2. This is in accordance with the semantics specified
in Algorithm 7.

Lemma 4.7 gives that DCAS is lock-free.

THEOREM 4.2. The move operation is linearizable and lock-free if applied

to two lock-free move-ready concurrent objects.

Proof. We consider DCAS an atomic operation as shown by Theorem 4.1. All
writes, except the ones done by the DCAS operation, are process local and can
as such be ignored.

The move operation starts with an invocation of the remove operation. If
it fails, it means that there were no elements to remove from the object and
that the linearization point must lie somewhere in the remove operation, since
requirement 1 of the definition of a move-candidate states that the operations
should be linearizable. If the process reaches the first scas call, the insert op-
eration is invoked with the element to be removed as an argument. If the insert
fails before it reached the second scas call, it was not possible to insert the el-
ement. In this case the insfailed variable is not set at line M32 and scas will

4.5. CASE STUDY 113

abort the remove operation. The linearization point in this case is somewhere
in the insert operation. In both these scenarios, whether it is the remove or the
insert operation that fails, the move operation as a whole is aborted.

If the process reached the second scas call, the one in the insert opera-
tion, the DCAS operation is invoked. If it is successful, then both the insert
and remove operation must have succeeded according to requirement 3 of the
definition of a move-candidate. By requirement 1, they can only succeed once,
which makes the DCAS the linearization point. If the DCAS fails nothing is
written to the shared memory and either the insert or both the remove and the
insert operations are restarted.

Since the insert and remove operations are lock-free, the only reason for
the DCAS to fail is that another process has made progress in their insertion
or removal of an element. This makes the move operation as a whole lock-
free.

4.5 Case Study

To get a better understanding of how our methodology can be used in practice,
we apply it to two commonly used concurrent objects, the lock-free queue by
Michael and Scott [MS96] and the lock-free stack by Treiber [Tre86]. The
objects use hazard pointers for memory management and the selection of them
is motivated in the paper by Michael [Mic04].

4.5.1 Queue

The first task is to see if the queue is a move-candidate as defined by Definition
4.1:

1. The queue fulfills the first requirement by providing dequeue and enqueue
operations, which have been shown to be linearizable [MS96].

2. The insert and remove operations share hazard pointers in the original
implementation. By using a separate set of hazard pointers for the de-

114 CHAPTER 4. LOCK-FREE COMPOSITION

Algorithm 14 Lock-free queue by Michael and Scott [MS96]. Enqueue opera-
tion.

Q1 boo l enqueue (v a l)
Q2 node ← new Node
Q3 node . n e x t ← 0
Q4 node . v a l ← v a l
Q5 w h i l e (t r u e)
Q6 l t a i l ← read (t a i l)
Q7 hp1 ← l t a i l ; i f (hp1 != read (t a i l) c o n t i n u e
Q8 l n e x t ← read (l t a i l . n e x t)
Q9 hp2 ← l n e x t

Q10 i f (l t a i l != read (t a i l)) c o n t i n u e
Q11 i f (l n e x t != 0)
Q12 c a s (t a i l , l t a i l , l n e x t)
Q13 c o n t i n u e
Q14 r e s ← s c a s (l t a i l . nex t , 0 , node , hp1)
Q15 i f (r e s = abort)
Q16 f r e e node
Q17 r e t u r n f a l s e
Q18 i f (r e s = t r u e)
Q19 c a s (t a i l , l t a i l , node)
Q20 r e t u r n t r u e

queue operation we fulfill requirement number 2, as no other information
is shared between two instances of the object.

3. The linearization points can be found on lines Q34, and Q14 and both consist
of a successful CAS, which is what requirement number 3 asks for. There
is also a linearization point at line Q29, but it is not taken in the case of a
successful dequeue. These linearization points were provided together
with the algorithmic description of the object, which is usually the case
for the concurrent linearizable objects that exist in the literature.

4. The linearization point for the dequeue is on line Q34 and the value that is
read in case of a successful CAS is available on line Q33, which must be
executed before line Q34.

The above simple observations give us the following lemma in a straight-
forward way.

4.5. CASE STUDY 115

Algorithm 15 Lock-free queue by Michael and Scott [MS96]. Dequeue opera-
tion.

Q21 boo l dequeue (∗v a l)
Q22 w h i l e (t r u e)
Q23 l h e a d ← read (head)
Q24 hp3 ← l h e a d ; i f (hp3 != read (head) c o n t i n u e
Q25 l t a i l ← read (t a i l)
Q26 l n e x t ← read (l h e a d . n e x t)
Q27 hp4 ← l n e x t
Q28 i f (l h e a d != read (head)) c o n t i n u e
Q29 i f (l n e x t =0) r e t u r n f a l s e
Q30 i f (l h e a d == l t a i l)
Q31 c a s (t a i l , l t a i l , l n e x t)
Q32 c o n t i n u e
Q33 ∗v a l ← l n e x t . v a l
Q34 i f (s c a s (head , lhead , l n e x t , va l , hp3)
Q35 f r e e l h e a d
Q36 r e t u r n t r u e

Lemma 4.8. The queue by Michael and Scott is a move-candidate.

After making sure that the queue is a move-candidate we need to replace the
CAS operations at the linearization points on lines Q34 and Q14 with calls to the
scas operation. If we are using a software implementation of DCAS we also
need to alter all lines where words are read that could be part of a DCAS, so
that they access them via the read operation. For the queue these changes need
to be done on lines Q6, Q7, Q8, Q10, Q23, Q24, Q25, Q26, and Q28.

One must also handle the case of scas returning ABORT in the enqueue.
Since there has been no change to the queue, the only thing to do before re-
turning from the operation is to free up the allocated memory on line Q16. The
enqueue cannot fail so there is no need to handle the ABORT result value in the
dequeue operation.

The move operation can now be used with the queue. In Section 4.6 we
evaluate the performance of the move-ready queue when combined with another
queue, and when combined with the Treiber stack.

116 CHAPTER 4. LOCK-FREE COMPOSITION

Algorithm 16 Lock-free stack by Treiber [Tre86]. Push operation.

S1 boo l push (v a l)
S2 node ← new Node
S3 node . v a l ← v a l
S4 w h i l e (t r u e)
S5 l t o p ← read (t o p)
S6 node . n e x t ← l t o p
S7 r e s ← s c a s (top , l t o p , node)
S8 i f (r e s = abort)
S9 f r e e node

S10 r e t u r n f a l s e
S11 i f (r e s = t r u e)
S12 r e t u r n t r u e

Algorithm 17 Lock-free stack by Treiber [Tre86]. Pop operation.

S13 boo l pop (v a l)
S14 w h i l e (t r u e)
S15 l t o p ← read (t o p)
S16 i f (l t o p = 0)
S17 r e t u r n f a l s e
S18 hp ← l t o p
S19 i f (read (t o p) != l t o p)
S20 c o n t i n u e
S21 v a l ← l t o p . v a l
S22 i f (s c a s (top , l t o p , l t o p . nex t , v a l))
S23 f r e e l t o p
S24 r e t u r n t r u e

4.5.2 Stack

Once again we first check to see if the stack fulfils the requirements of the
move-candidate definition:

1. The push and pop operations are used to insert and remove elements and
it has been shown that they are linearizable. Vafeiadis has, for example,
given a formal proof of this [Vaf09].

2. There is nothing shared between instances of the object, so the push and
pop operations can succeed simultaneously.

4.6. EXPERIMENTS 117

3. The linearization points on lines S7 and S22 are both CAS operations. The
linearization point on line S17 is not a CAS, but it is only taken when the
source stack is empty and when the move can not succeed. The conditions
in the definition only require successful operations to be associated to a
successful CAS.

4. The element to be removed is available on line S21, which is before the
linearization point on line S22.

The above simple observations give us the following lemma in a straight-
forward way.

Lemma 4.9. The stack by Treiber is a move-candidate.

To make the stack object move-ready we change the CAS operations on
lines S7 and S22 to point to scas instead. We also need to change the read of top
on lines S5, S15, and S19, if we are using a software implementation of DCAS, so
that it goes via the read operation. Since push can be aborted we also need to
add a check after line S7 that looks for this condition and frees allocated memory.

The stack is now move-ready and can be used to atomically move elements
between instances of the stack and other move-ready objects, such as the previ-
ously described queue. In the next section we evaluate the performance of the
move-ready stack when combined with another stack as well as when combined
with the Michael and Scott queue.

4.6 Experiments

The evaluation was performed on a machine with an Intel Core i7 950 3 GHz
processor and 6 GB DDR3-1333 memory. The processor has four cores with
hyper-threading, providing us with eight virtual processors in total. All ex-
periments were based on either two queues, two stacks, or one queue and one
stack. The stack used was the lock-free stack by Treiber and the queue was the
lock-free queue by Michael and Scott [Tre86, MS96].

118 CHAPTER 4. LOCK-FREE COMPOSITION

 0

 5000

 10000

 15000

 20000

 1 2 4 6 8 10 12 14 16

T
o
t
a
l

o
p
e
r
a
t
i
o
n
s

p
e
r

m
s

Threads

Insert/Remove (0% Move-only threads)

 1 2 4 6 8 10 12 14 16

Threads

Insert/Remove/Move (50% Move-only threads)

 1 2 4 6 8 10 12 14 16

Threads

Move (100% Move-only threads)

Lockfree without backoff
Lockfree with backoff

Blocking without backoff
Blocking with backoff

Figure 4.1: Results from the queue/stack evaluation under high contention.

 0

 5000

 10000

 15000

 20000

 1 2 4 6 8 10 12 14 16

T
o
t
a
l

o
p
e
r
a
t
i
o
n
s

p
e
r

m
s

Threads

Insert/Remove (0% Move-only threads)

 1 2 4 6 8 10 12 14 16

Threads

Insert/Remove/Move (50% Move-only threads)

 1 2 4 6 8 10 12 14 16

Threads

Move (100% Move-only threads)

Lockfree without backoff
Lockfree with backoff

Blocking without backoff
Blocking with backoff

Figure 4.2: Results from the queue evaluation under high contention.

 0

 5000

 10000

 15000

 20000

 1 2 4 6 8 10 12 14 16

T
o
t
a
l

o
p
e
r
a
t
i
o
n
s

p
e
r

m
s

Threads

Insert/Remove (0% Move-only threads)

 1 2 4 6 8 10 12 14 16

Threads

Insert/Remove/Move (50% Move-only threads)

 1 2 4 6 8 10 12 14 16

Threads

Move (100% Move-only threads)

Lockfree without backoff
Lockfree with backoff

Blocking without backoff
Blocking with backoff

Figure 4.3: Results from the stack evaluation under high contention.

4.6. EXPERIMENTS 119

 0

 5000

 10000

 15000

 20000

 1 2 4 6 8 10 12 14 16

T
o
t
a
l

o
p
e
r
a
t
i
o
n
s

p
e
r

m
s

Threads

Insert/Remove (0% Move-only threads)

 1 2 4 6 8 10 12 14 16

Threads

Insert/Remove/Move (50% Move-only threads)

 1 2 4 6 8 10 12 14 16

Threads

Move (100% Move-only threads)

Lockfree without backoff
Lockfree with backoff

Blocking without backoff
Blocking with backoff

Figure 4.4: Results from the queue/stack evaluation under low contention.

 0

 5000

 10000

 15000

 20000

 1 2 4 6 8 10 12 14 16

T
o
t
a
l

o
p
e
r
a
t
i
o
n
s

p
e
r

m
s

Threads

Insert/Remove (0% Move-only threads)

 1 2 4 6 8 10 12 14 16

Threads

Insert/Remove/Move (50% Move-only threads)

 1 2 4 6 8 10 12 14 16

Threads

Move (100% Move-only threads)

Lockfree without backoff
Lockfree with backoff

Blocking without backoff
Blocking with backoff

Figure 4.5: Results from the queue evaluation under low contention.

 0

 5000

 10000

 15000

 20000

 1 2 4 6 8 10 12 14 16

T
o
t
a
l

o
p
e
r
a
t
i
o
n
s

p
e
r

m
s

Threads

Insert/Remove (0% Move-only threads)

 1 2 4 6 8 10 12 14 16

Threads

Insert/Remove/Move (50% Move-only threads)

 1 2 4 6 8 10 12 14 16

Threads

Move (100% Move-only threads)

Lockfree without backoff
Lockfree with backoff

Blocking without backoff
Blocking with backoff

Figure 4.6: Results from the stack evaluation under low contention.

120 CHAPTER 4. LOCK-FREE COMPOSITION

 0

 5000

 10000

 15000

 20000

 1 2 4 6 8

T
o
t
a
l

o
p
e
r
a
t
i
o
n
s

p
e
r

m
s

Threads performing only moves

Total of 8 Threads

Lockfree without backoff
Lockfree with backoff
Blocking without backoff
Blocking with backoff

 1 2 4 6 8 10 12 14 16

Threads performing only moves

Total of 16 Threads

Figure 4.7: Queue/Queue - Varying number of move-only threads under high contention.

 0

 5000

 10000

 15000

 20000

 1 2 4 6 8

T
o
t
a
l

o
p
e
r
a
t
i
o
n
s

p
e
r

m
s

Threads performing only moves

Total of 8 Threads

Lockfree without backoff
Lockfree with backoff
Blocking without backoff
Blocking with backoff

 1 2 4 6 8 10 12 14 16

Threads performing only moves

Total of 16 Threads

Figure 4.8: Stack/Stack - Varying number of move-only threads under high contention.

In the experiments two types of threads were used, one that performed only
insert/remove operations, and one that only performed move operations. The
number of threads, as well as the number of move-only threads, were varied be-
tween one and sixteen. We ran each experiment for five seconds and measured
the number of operations performed in total per millisecond. Move operations
were counted as two operations to normalize the result. Each experiment was
run fifty times, taking the average as the results.

For reference we compared the lock-free concurrent objects with blocking
implementations of the same objects, using test-test-and-set to implement the
locks. We did the experiments both with and without a backoff function. The

4.6. EXPERIMENTS 121

 0

 5000

 10000

 15000

 20000

 1 2 4 6 8

T
o
t
a
l

o
p
e
r
a
t
i
o
n
s

p
e
r

m
s

Threads performing only moves

Total of 8 Threads

Lockfree without backoff
Lockfree with backoff
Blocking without backoff
Blocking with backoff

 1 2 4 6 8 10 12 14 16

Threads performing only moves

Total of 16 Threads

Figure 4.9: Queue/Queue - Varying number of move-only threads under low contention.

 0

 5000

 10000

 15000

 20000

 1 2 4 6 8

T
o
t
a
l

o
p
e
r
a
t
i
o
n
s

p
e
r

m
s

Threads performing only moves

Total of 8 Threads

Lockfree without backoff
Lockfree with backoff
Blocking without backoff
Blocking with backoff

 1 2 4 6 8 10 12 14 16

Threads performing only moves

Total of 16 Threads

Figure 4.10: Stack/Stack - Varying number of move-only threads under low contention.

backoff function was used to lower the contention so that every time a process
failed to acquire the lock, or, in case of the lock-free objects, failed to insert or
remove an element due to a conflict, the time it waited before trying again was
doubled.

All implementations used the same lock-free memory manager. Freed nodes
are placed on a local list with a capacity of 200 nodes. When the list is full it is
placed on a global lock-free stack. A process that requires more nodes accesses
the global stack to get a new list of free nodes. Hazard pointers were used to
prevent nodes in use from being reclaimed.

122 CHAPTER 4. LOCK-FREE COMPOSITION

 0

 500

 1000

 1500

 2000

 0 1 2 4 6 8 10 12 14

O
p
e
r
a
t
i
o
n
s

p
e
r

m
s

p
e
r
f
o
r
m
e
d

b
y

t
h
r
e
a
d

1
6

Threads performing only moves

High Contention

Lockfree without backoff
Lockfree with backoff
Blocking without backoff
Blocking with backoff

 0 1 2 4 6 8 10 12 14

Threads performing only moves

Low Contention

Lockfree without backoff
Lockfree with backoff
Blocking without backoff
Blocking with backoff

Figure 4.11: Queue/Queue - Effect on thread performing insert/remove operations when

other threads gradually turn into move-only threads.

 0

 500

 1000

 1500

 2000

 0 1 2 4 6 8 10 12 14

O
p
e
r
a
t
i
o
n
s

p
e
r

m
s

p
e
r
f
o
r
m
e
d

b
y

t
h
r
e
a
d

1
6

Threads performing only moves

High Contention

Lockfree without backoff
Lockfree with backoff
Blocking without backoff
Blocking with backoff

 0 1 2 4 6 8 10 12 14

Threads performing only moves

Low Contention

Lockfree without backoff
Lockfree with backoff
Blocking without backoff
Blocking with backoff

Figure 4.12: Stack/Stack - Effect on thread performing insert/remove operations when

other threads gradually turn into move-only threads.

Two load distributions were tested, one with high contention and one with
low contention, where each process did some local work for a variable amount
of time after they had performed an operation on the object. The work time is
picked from a normal distribution and the work takes around 0.1µs per opera-
tion on average for the high contention distribution and 0.5µs per operation on
the low contention distribution.

Figures 4.1, 4.2 and 4.3 shows the number of operations in total per mil-
lisecond that was achieved performing either just insert/remove operations, or

4.7. DISCUSSION 123

 0

 5000

 10000

 15000

 20000

 25000

 1 2 4 6 8 10 12 14 16

T
o
t
a
l

o
p
e
r
a
t
i
o
n
s

p
e
r

m
s

Threads

Before and after adaptation

Queue After Adaptation
Queue Before Adaptation
Stack After Adaptation
Stack Before Adaptation

Figure 4.13: Total number of operations per millisecond before and after adaptation of

the stack and queue.

just move operations, or an even mix of the two, under heavy contention. Fig-
ures 4.4, 4.5 and 4.6 shows the result for the same experiment performed under
lower contention. In Figures 4.7 and 4.8 we take a closer look at what happens
when the ratio of processes performing only move operations is varied using a
total of either eight or sixteen processes under heavy contention. Figures 4.9
and 4.10 shows the results for the same experiments performed under lower
contention.

Figure 4.13 shows how the performance of the insert/remove operations was
affected by the adaptation to the move operation. In Figure 4.11 and 4.12 we
take a closer look at how the performance of a thread, that is only perform-
ing insert/remove operations, is affected when gradually more threads go from
performing just insert/remove operations to performing just move operations.

4.7 Discussion

The stack and queue have very few access points, which limits the offered par-
allelism. The experiments here are thus to be seen as showing some of the worst
case scenarios.

124 CHAPTER 4. LOCK-FREE COMPOSITION

In Figure 4.2, in the leftmost graph, we see that the performance increase
sharply up to four threads, the number of cores on the processor, and then in-
creases more slowly up to eight threads, the number of cores times two for
hyper-threading. After eight threads there is no increase in performance as there
are no more processing units. After this point the blocking version drops in per-
formance when more threads are added.

When more move operation are performed, the performance does not scale
as well, as can be seen in the two other graphs in Figure 4.2. The move opera-
tions are more expensive as they involve performing two operations and affects
both data objects, which lowers the possible parallelism. For the queue the per-
formance is still better than the blocking, however on the stack it is actually
worse. Looking at Figure 4.8 we see that there is a threshold were the ratio of
move-only threads makes the lock-free version worse than the blocking. This
threshold does not appear to exist for the queue, which regardless of the ratio
is faster than the blocking version, though more moves lowers the performance
for the high contention case. For the low contention case the performance re-
mains the same. In general the difference in performance between the blocking
and lock-free methods becomes lower when the contention decreases. It should
also be noted that it is not possible to combine a blocking move operation with
non-blocking insert/remove operations.

In Figure 4.11 and 4.12 we see that the performance of a thread doing in-
sert/remove operations is not affected much by the kind of operations that the
other threads are performing, except for the lock-free stack without backoff.
We can also see in Figure 4.13 that the adaptation, that is necessary for the data
objects to support the generic move operation, hardly affects the performance
of the normal operations.

Regarding the backoff, we can see in, for example, Figure 4.3, that with
few move operations it hurts performance, whereas when the number of move
operations increases it helps the performance. Unfortunately, it is typically hard
to predict when this happens, making it difficult to design an optimal backoff
function that works well in all scenarios.

4.8. CONCLUSION 125

4.8 Conclusion

We present a lock-free methodology for composing highly concurrent lineariz-
able objects by unifying their linearization points. Our methodology introduces
atomic move operations that can move elements between objects of different
types, to a large class of already existing concurrent objects without having to
make significant changes to them.

Our experimental results demonstrate that the methodology presented in the
paper, applied to the classical lock-free implementations, offers better perfor-
mance and scalability than a composition method based on locking. These re-
sults also demonstrate that it does not introduce noticeable performance penal-
ties to the previously supported operations of the concurrent objects.

Our methodology can also be easily extended to support n operations on n
distinct objects, for example to create functions that remove an item from one
object and insert it into n others atomically.

Acknowledgments

This work was partially supported by the EU as part of FP7 Project PEPPHER
(www.peppher.eu) under grant 248481 and the Swedish Research Council un-
der grant number 37252706. Daniel Cederman was supported by Microsoft
Research through its European PhD Scholarship Programme.

Bibliography

[AM95] James H. Anderson and Mark Moir. Universal Constructions for
Multi-Object Operations. In Proceedings of the fourteenth annual

ACM symposium on Principles of distributed computing, pages
184–193, 1995.

[ARJ97] James H. Anderson, Srikanth Ramamurthy, and Rohit Jain. Imple-
menting Wait-Free Objects on Priority-Based Systems. In PODC

126 CHAPTER 4. LOCK-FREE COMPOSITION

’97: Proceedings of the sixteenth annual ACM symposium on

Principles of distributed computing, pages 229–238, 1997.

[CBM+08] Călin Caşcaval, Colin Blundell, Maged Michael, Harold W. Cain,
Peng Wu, Stefanie Chiras, and Siddhartha Chatterjee. Software
Transactional Memory: Why Is It Only a Research Toy? Queue,
6(5):46–58, 2008.

[DDG+04] Simon Doherty, David L. Detlefs, Lindsay Groves, Christine H.
Flood, Victor Luchangco, Paul A. Martin, Mark Moir, Nir Shavit,
and Guy L. Steele, Jr. DCAS is not a Silver Bullet for Nonblock-
ing Algorithm Design. In SPAA ’04: Proceedings of the sixteenth

annual ACM symposium on Parallelism in algorithms and archi-

tectures, pages 216–224, 2004.

[DHLM04] Simon Doherty, Maurice Herlihy, Victor Luchangco, and Mark
Moir. Bringing Practical Lock-Free Synchronization to 64-bit Ap-
plications. In PODC ’04: Proceedings of the twenty-third annual

ACM symposium on Principles of distributed computing, pages
31–39, 2004.

[FR04] Mikhail Fomitchev and Eric Ruppert. Lock-free linked lists and
skip lists. In PODC ’04: Proceedings of the twenty-third annual

ACM symposium on Principles of distributed computing, pages
50–59, 2004.

[GPT05] Anders Gidenstam, Marina Papatriantafilou, and Philippas Tsigas.
Allocating Memory in a Lock-Free Manner. In ESA ’05: Pro-

ceedings of the 13th Annual European Symposium on Algorithms,
pages 329–342, 2005.

[GPT09] Anders Gidenstam, Marina Papatriantafilou, and Philippas Tsigas.
NBmalloc: Allocating Memory in a Lock-Free Manner. Algorith-

mica, 2009.

BIBLIOGRAPHY 127

[Har01a] Tim Harris. A Pragmatic Implementation of Non-blocking
Linked-Lists. In DISC ’01: Proceedings of the 15th International

Conference on Distributed Computing, pages 300–314, 2001.

[Har01b] Timothy L. Harris. A pragmatic implementation of non-blocking
linked-lists. In DISC ’01: Proceedings of the 15th International

Conference on Distributed Computing, pages 300–314, 2001.

[Her93] Maurice P. Herlihy. A Methodology for Implementing Highly
Concurrent Data Objects. ACM Transactions on Programming

Languages and Systems, 15(5):745–770, 1993.

[HFP02] Tim Harris, Keir Fraser, and Ian A. Pratt. A Practical Multi-word
Compare-and-Swap Operation. In DISC ’02: Proceedings of the

16th International Conference on Distributed Computing, pages
265–279, 2002.

[HMPJH05] Tim Harris, Simon Marlow, Simon Peyton-Jones, and Maurice P.
Herlihy. Composable Memory Transactions. In PPoPP ’05: Pro-

ceedings of the tenth ACM SIGPLAN symposium on Principles

and practice of parallel programming, pages 48–60, 2005.

[HT03] Phuong Hoai Ha and Philippas Tsigas. Reactive Multi-Word Syn-
chronization for Multiprocessors. In Proceedings of the 12th In-

ternational Conference on Parallel Architectures and Compila-

tion Techniques, pages 184–193, 2003.

[HW90] Maurice P. Herlihy and Jeannette M. Wing. Linearizability: a
Correctness Condition for Concurrent Objects. ACM Transactions

on Programming Languages and Systems, 12(3):463–492, 1990.

[Int09] Intel. Threading Building Blocks, 2009.

[IR94] Amos Israeli and Lihu Rappoport. Disjoint-Access-Parallel Im-
plementations of Strong Shared Memory Primitives. In PODC

’94: Proceedings of the thirteenth annual ACM symposium on

Principles of distributed computing, pages 151–160, 1994.

128 CHAPTER 4. LOCK-FREE COMPOSITION

[Lea09] Doug Lea. The Java Concurrency Package (JSR-166), 2009.

[LK08] James Larus and Christos Kozyrakis. Transactional Memory.
Communications of the ACM, 51(7):80–88, 2008.

[Mic02] Maged M. Michael. High performance dynamic lock-free hash
tables and list-based sets. In Proceedings of the fourteenth annual

ACM symposium on Parallel algorithms and architectures, pages
73–82, 2002.

[Mic04] Maged M. Michael. Hazard Pointers: Safe Memory Reclama-
tion for Lock-Free Objects. IEEE Transactions on Parallel and

Distributed Systems, 15(6):491–504, 2004.

[Mic09] Microsoft. Parallel Computing Developer Center, 2009.

[Moi97] Mark Moir. Transparent Support for Wait-Free Transactions. In
WDAG ’97: Proceedings of the 11th International Workshop on

Distributed Algorithms, pages 305–319, 1997.

[MS96] Maged M. Michael and Michael L. Scott. Simple, Fast, and Prac-
tical Non-Blocking and Blocking Concurrent Queue Algorithms.
In PODC ’96: Proceedings of the fifteenth annual ACM sym-

posium on Principles of distributed computing, pages 267–275,
1996.

[ST95] Nir Shavit and Dan Touitou. Software Transactional Memory.
In PODC ’95: Proceedings of the fourteenth annual ACM sym-

posium on Principles of distributed computing, pages 204–213,
1995.

[ST02] Håkan Sundell and Philippas Tsigas. NOBLE: A Non-Blocking
Inter-Process Communication Library. In Proceedings of the 6th

Workshop on Languages, Compilers and Run-time Systems for

Scalable Computers, Lecture Notes in Computer Science, 2002.

BIBLIOGRAPHY 129

[ST04] Håkan Sundell and Philippas Tsigas. Scalable and lock-free con-
current dictionaries. In SAC ’04: Proceedings of the 2004 ACM

symposium on Applied computing, pages 1438–1445, 2004.

[ST05] Håkan Sundell and Philippas Tsigas. Fast and lock-free concur-
rent priority queues for multi-thread systems. Journal of Parallel

and Distributed Computing, 65(5):609–627, 2005.

[Tre86] R. K. Treiber. Systems programming: Coping with parallelism.
In Technical Report RJ 5118, April 1986.

[TZ01] Philippas Tsigas and Yi Zhang. Evaluating the Performance
of Non-Blocking Synchronization on Shared-Memory Multipro-
cessors. ACM SIGMETRICS Performance Evaluation Review,
29(1):320–321, 2001.

[TZ02] Philippas Tsigas and Yi Zhang. Integrating Non-Blocking Syn-
chronisation in Parallel Applications: Performance Advantages
and Methodologies. In WOSP ’02: Proceedings of the 3rd inter-

national workshop on Software and performance, pages 55–67,
2002.

[Vaf09] Viktor Vafeiadis. Shape-Value Abstraction for Verifying Lineariz-
ability. In Proceedings of the 10th International Conference on

Verification, Model Checking, and Abstract Interpretation, pages
335–348, 2009.

[Val95] John D. Valois. Lock-free linked lists using compare-and-swap.
In PODC ’95: Proceedings of the fourteenth annual ACM sym-

posium on Principles of distributed computing, pages 214–222,
1995.

130 CHAPTER 4. LOCK-FREE COMPOSITION

PAPER IV

Daniel Cederman, Philippas Tsigas, Muhammad Tayyab Chaudhry
Towards a Software Transactional Memory for

Graphics Processors
In the Proceedings of the Eurographics Symposium on Parallel Graphics and

Visualization (EGPGV 2010)

pages 121-129, Eurographics Association 2010.

5
Towards a Software Transactional

Memory for Graphics Processors

The introduction of general purpose computing on many-core graphics pro-
cessor systems, and the general shift in the industry towards parallelism, has
created a demand for ease of parallelization. Software transactional memory
(STM) simplifies development of concurrent code by allowing the program-
mer to mark sections of code to be executed concurrently and atomically in
an optimistic manner. In contrast to locks, STMs are easy to compose and do
not suffer from deadlocks. We have designed and implemented two STMs for
graphics processors, one blocking and one non-blocking. The design issues in-
volved in the development of these two STMs are described and explained in

133

134 CHAPTER 5. TOWARDS A STM FOR GPUS

the paper together with experimental results comparing the performance of the
two STMs.

5.1 Introduction

Computer processor research has previously been focused on increasing the
clock speed, but as of late the trend has shifted towards increasing the num-
ber of processors instead. This has led to increased pressure for applications
to become multi-threaded to take full advantage of the new computing power.
But with increased parallelism comes the problem of efficient synchronization.
Threads that concurrently access shared memory have to synchronize in order
to maintain a non-corrupted view of the data.

The traditional way of synchronizing memory accesses has been to use mu-
tual exclusion, using locks to only allow one process to access shared mem-
ory areas at any given time. However, this kind of lock-based synchronization
makes it hard to compose function calls and leads to problems such as dead-
locks, where two processes are both waiting for the other to give up a lock, and
convoying, where a process that holds a lock gets swapped out causing other
processes to wait unnecessarily long to acquire that lock.

Transactional memory (TM) provides an alternative concurrency control
that can eliminate these problems or at least minimize them. A TM allows
the programmer to mark a section of the code that is to run atomically, i.e., it
should appear to take place instantly. The TM logs all read and write opera-
tions in the code block and only store the new data if there was no conflict with
another process. If a transaction notices that another transaction has written
to memory read in the transaction, the transaction will be restarted. The lack
of commonly available hardware transactional memories has led to most imple-
mentations of transactional memory being completely software based, so-called
Software Transactional Memories (STM).

An STM tries to automatically offer some degree of parallelism to the ap-
plication without having the programmers concentrate on the mechanism of
synchronization, as this is taken care of by the STM itself. There is, however,

5.2. RELATED WORK 135

a tradeoff when it comes to performance. Code written using STMs often has
difficulties competing in performance compared to solutions that are highly op-
timized by hand. Caşcaval et al. argue that the overhead introduced by STMs
might be hard to overcome [CBM+08].

The high bandwidth and many-core design of current graphics processors
have caused a big interest in applying them for general purpose computing.
With APIs such as CUDA and OpenCL it is only a matter of time before they
become standard auxiliary processing units that most programmers would like
to take advantage of in their applications.

In this paper we examine if an introduction of STMs to graphics processors
could help simplify the relatively complex amount of synchronization needed
when running programs on a many-core platform. More specifically, we eval-
uate two STM designs, with two different types of progress guarantees, in an
effort to better understand the specific challenges involved providing synchro-
nization for many-core graphics processor systems.

5.2 Related work

Transactional memory was originally intended for hardware and was first intro-
duced in a paper by Knight and a paper by Herlihy and Moss [Kni86, HM93].
Shavit and Touitou then later introduced the concept of a pure software transac-
tional memory [ST95]. Their STM required the programmer to specify before-
hand which memory locations to access and could not adapt to values read in
the transaction.

This was changed in Herlihy et al.‘s dynamic STM (DSTM) where they
also introduced the concept of a contention manager that should decide which
transaction to abort [HLMS03]. Harris and Fraser have presented an STM that
works on the word level as opposed to the object level, called WSTM [FH07].

The previously mentioned STMs perform their operations on local copies
of the objects or words which are then either discarded or written back, but
it is also possible to take a more optimistic approach and write directly to the
objects or words [ATLM+06, HPST06, SATH+06]. This, however, requires the

136 CHAPTER 5. TOWARDS A STM FOR GPUS

STM to store the original values so that the changes can be undone if there is a
conflict and also introduces the problem of visibility – should other transactions
be able see the values written?

There has also been work on creating hybrid transactional memories that use
both hardware and software [DFL+06, KCJ+06]. If the hardware has support
for transactional memory, the transaction is started in hardware and handled
there until it gets too large for the hardware to support. In those cases the
transaction is taken over by the STM.

Ennals argues that STMs should be blocking as the advantages of doing a
non-blocking implementation are small and prevents several optimizations that
can be done in a blocking system [Enn06].

There is a large amount of literature on designing STMs [DSS06, HF03,
Moi97] and for a good overview we recommend the Transactional Memory

paper by Larus and Kozyrakis [LK08].

5.3 System Model

CUDA was introduced by NVIDIA as a general purpose parallel computing ar-
chitecture, making it possible to execute computationally complex problems on
NVIDIA’s graphics processors. The software part of CUDA provides a com-
piler for a language based on C, but with extensions that allow functions to be
executed on the graphics processor instead of on the CPU.

A CUDA compatible graphics processor consists of several so called mul-
tiprocessors, each of which can execute SIMD instructions on eight memory
locations at a time. Threads are scheduled on the multiprocessors in groups
called thread blocks. All threads in a thread block remain at the same multipro-
cessor until they have finished executing and can use the processor’s extremely
fast local memory, called the shared memory, to communicate with each other.
It is up to the programmer to decide how many threads should be in each block
and how many blocks to start in total. Depending on how many threads there
are in a block, one or more blocks could run on the same multiprocessor.

5.4. STM DESIGN 137

atomic {
l t a i l = read (t a i l) ;
w r i t e (queue [l t a i l] , v a l u e) ;
l t a i l ++;

}

Figure 5.1: Example use of a software transactional memory.

Threads of the same as well as different blocks can perform read and write
operations on the main graphics memory known as the global memory. There is
no cache support when using the global memory, but if threads with consecutive
thread id’s are accessing consecutive memory locations, the memory accesses
could be coalesced by the hardware to dramatically speed up the reading and
writing speed to the memory. There are also texture and constant memory that
have cache support, but they are read-only.

Newer versions of CUDA-compatible graphics processors support atomic
primitives, such as Compare-And-Swap, which can be used, for example, to
implement locks or more advanced lock-free data-structures [Her88, PDC09].
Cederman and Tsigas took advantage of this to compare blocking and non-
blocking dynamic load balancing schemes on graphics processors [CT08].

5.4 STM Design

On the user level, a basic software transactional memory needs to support, either
directly or indirectly, four operations. A begin operation that marks the start of
a transaction, a read operation that provides a snapshot of a memory location,
a write operation that logs the updates to the memory that should be performed
if the transaction is successful, and finally a commit operation that performs the
writes if no other processes have touched the memory read by the transaction
and restarts the transaction otherwise. The begin and commit operations are
often performed indirectly, as in Figure 5.1, where they are part of the atomic

keyword.

138 CHAPTER 5. TOWARDS A STM FOR GPUS

Features Blocking STM Non-Blocking STM
Progress Guarantee Blocking Obstruction-free
Conflict Detection Time Commit-time Commit-time
Locks Shared Unique
Conflict Handling Aborts the transaction Steals locks or

aborts other transaction
Conflict Detection Object based Object based
Visibility Local updates Local updates
Log or Undo-Log Log Log

However, when deciding how to implement the functionality behind these
operations, there are several important design decisions that have to be made.
There is a vast design space for STMs and as of yet there is no definitive way
to design an STM. One major divisional line is that which progress guarantees
to provide. More basic guarantees can achieve better performance under low
contention, while more advanced guarantees can give more independence from
the scheduler at a cost in complexity. We argue that this design choice is one
of the most important, as most graphics processors perform their scheduling
in hardware in non-standard ways. For this reason we have implemented two
different STMs that differ mainly in the type of progress guarantees that they
provide. The first STM is designed to be as simple as possible to lower resource
requirements and improve performance. This will be known for the remainder
of this paper as the blocking STM. The second is based on the STM by Harris
and Fraser, which is more complex and designed for general multiprocessors,
but offers better progress guarantees [HF03].

In the following subsections we will go through some of the different design
parameters and elaborate on our design decisions.

5.4. STM DESIGN 139

5.4.1 Progress Guarantees

Progress guarantees are often divided into one of four categories. The strongest
is wait-freedom, which guarantees that, in the context of STMs, a transaction al-
ways succeeds in a bounded number of its own steps. This guarantee is typically
only provided in real-time systems, where predictability is critical, as it often
hampers performance. A weaker and more practical guarantee is lock-freedom,
which guarantees that at least one transaction will be successful in a bounded
number of its own steps. A transaction in a lock-free STM is always able to
make progress, even in the case of all other threads controlling transactions be-
ing suspended. Despite the name, lock-freedom does not preclude locks, as long
as these can be revoked. An even weaker guarantee is obstruction-freedom. It
guarantees that a transaction will always succeed if it is executed without con-
flicts with other transactions. A contention manager is often used to achieve
this, by arranging for one of the conflicting transactions to back off. The fi-
nal category includes the blocking algorithms, which uses irrevocable locks and
provides no guarantees at all.

Despite the lack of progress guarantees, we decided to make the first STM
we designed blocking. This allowed for a simpler design and, according to En-
nals, a potentially more efficient implementation [Enn06]. The disadvantage of
using a blocking implementation is that it makes the STM much more depen-
dant on the scheduler. We had concerns of whether the hardware scheduler on
the graphics processor would be able to handle locks or not, as if the sched-
uler is not fair, it could swap out the lock holder and repeatedly just schedule
the processes waiting for the lock. However, we experienced no such problems
during our experimentation.

The second STM that we designed is based on the STM by Harris and Fraser
and is an obstruction-free one [HF03]. When a transaction is to be committed,
it tries to acquire all the locks it requires to get exclusive access to its write
locations. But, at the same time, it publicly announces the actual values that
it is going to write. This gives conflicting transactions two options. If the
transaction has managed to acquire all locks, but not yet written the new values,
the conflicting transaction can steal locks from it, using the new value that is to

140 CHAPTER 5. TOWARDS A STM FOR GPUS

be written. If the transaction has not yet acquired all its locks, the conflicting
transaction may abort the original transaction before attempting to acquire its
own locks. As a transaction never has to wait for another transaction to finish,
the STM is non-blocking.

5.4.2 Conflict Detection Granularity

STMs are often designed with different levels of granularity for conflict de-
tection depending on the language they are written for. For object oriented
languages, such as Java, it is often more convenient to use objects as the basic
unit. Two transactions accessing the same object will then conflict, even if they
are accessing different fields in the object. This is known as a false conflict.
For languages such as C, with no standard object type, it is more common to
use individual words as the basic unit. Often, to lower the overhead of having a
lock for each individual word, the memory is divided into several stripes, where
every n:th word shares a lock. As multiple words might share the same lock
there is a potential for false conflict, but this can be mitigated by increasing the
number of strips.

For both the blocking and non-blocking STM we decided to put the granu-
larity at the object level. The reason for this is that we wanted to take advantage
of the graphics processor’s ability to coalesce memory reads and writes into
larger memory operations. For the blocking we shared locks between objects,
whereas for the non-blocking we had one lock per object.

5.4.3 Log or Undo-Log

As there is normally no way of knowing if a transaction will succeed before
it has tried to commit, there must be a way to undo transactions. The most
common way is to keep a thread-local log where the changes to be performed
are stored. The first time a word or object is read, a copy of it is stored in the
log. All subsequent writes are then performed on the local copy. When all
locks have been acquired at the end of the transaction, the items in the log are
written to the shared memory. An alternative, and more optimistic approach, is

5.4. STM DESIGN 141

to acquire the write locks immediately at the first write and then store the data
written inside the transaction directly to the shared memory. This is faster in
cases where there are no conflicts, but to be able to abort, there needs to be an
undo log that holds the old values of the words or objects written to.

Both STMs use the log method as we expect much contention and we want
to avoid the problem with visibility, which occurs when other transactions read
data that is yet to be committed. In a non-managed environment, this might lead
to infinite loops or crashes.

5.4.4 Conflict Detection Time

Most STMs use some incarnation of a lock to provide mutual exclusion when
writing the result from the transaction. These locks can either be acquired early,
the first time that the word or object they protect is accessed, or as late as at
commit time. Acquiring locks immediately have the advantage that conflicts
will be detected early, but this might also, unfortunately, lead to more false
conflicts. To assure that the transaction is not working on inconsistent data, it is
possible to do the read validation whenever data is read or written.

The design decision here was that the blocking STM should use the same
method as the non-blocking and lock at commit time.

5.4.5 Backoff

A backoff function is used whenever there is a conflict and a transaction needs
to abort. It forces the process to wait before it tries to perform the transaction
again. This lowers contention and increases the probability that at least one
transaction is successful.

Backoff is often an important part of the contention management in STMs,
together with the policy choice of which transaction to abort in case of a conflict.
There are several ways of backing off, including linear, where the time to back
off is increased linearly for every abort, and exponential, where the time to wait
is, for example, doubled each time [GHP05, SS05]. We designed the STMs to
be able to use both linear and exponential backoff.

142 CHAPTER 5. TOWARDS A STM FOR GPUS

5.5 Implementation

As mentioned in the STM Design section, an STM needs to support four basic
operations. The following subsections will detail the implementation specifics
for the blocking STM. For the non-blocking STM we refer to the paper by
Harris and Fraser [HF03].

5.5.1 Begin

Each thread block is assigned a transaction descriptor to keep track of objects
that have been read and objects that should be written back at commit time.
Figure 5.2 shows an entry in the transaction descriptor. When a new transaction
is initiated the transaction descriptor is cleared. The member variables in the
descriptor will be motivated in the following subsections.

s t r u c t TransDesc I t em {
i n t v e r s i o n ;
vo id∗ g l o b a l ;
vo id∗ l o c a l ;
i n t s i z e ;
bool r e a d o n l y ;

}

Figure 5.2: Transaction descriptor item.

s t r u c t Vers ionLock {
i n t v e r s i o n (31 bit) ;
bool l o c k (1 bit) ;

}

Figure 5.3: Combined version number and lock.

5.5. IMPLEMENTATION 143

5.5.2 Read

The read operation transfers an object from the publicly available global mem-
ory into a private part that only the reading thread block has access to. A check
is made to see if the lock that covers the object is taken. This is to make sure that
no other thread block is currently writing to the object and to wait if anyone is.
The lock consists of a version number with a lock-bit, as can be seen in Figure
5.3. As the lock-bit is the least significant bit, one can interpret odd values of
the lock as the lock being taken and even values as the lock being available.

A copy of the version number of the object is stored in the transaction de-
scriptor and the object is copied to the local part of the memory. The version
number is read again and compared to the one in the transaction descriptor. If
they match, then the local copy of the object represents a consistent snapshot
of the object. If they do not match, another thread block must have written to it
and we have to read it again until the version numbers matches.

A pointer to the local copy and a pointer to the public object is stored in
the transaction descriptor once the object have been successfully read, together
with a marker that indicates whether the local copy has been updated or not.
The pointers are needed so that the commit operation knows where to write
back the local copy.

The read operation then returns a pointer to the local copy of the object. If
there already exists a local copy of the object, due to it being read earlier in the
transaction, it is just a matter of returning the pointer to that local copy.

5.5.3 Write

When a local copy of an object has been updated, it needs to be marked as
such so that it is updated at commit time. This is done by going through the
transaction descriptor looking for the pointer to the object and then marking it
when found. Since all writes are being performed locally, there is no need for
any locks in this phase.

144 CHAPTER 5. TOWARDS A STM FOR GPUS

5.5.4 Commit

At commit time the STM needs to make sure that no other thread block has
changed any of the objects read or written to inside the transaction before it
can write back the updated objects. The objects that are to be updated are
therefore checked to see if their current version number matches the ones in
the transaction descriptor. If they do, the version number is incremented by one
atomically using Compare-And-Swap to lock the objects. Using Compare-and-
Swap, this will only succeed as long as the version number has not changed in
the mean time. The thread that locked the object now has exclusive access to
it. Any failure in acquiring write locks, or version numbers that do not match,
causes the transaction to abort. The updated objects are then written back to
public memory once all locks have been acquired. The locks are released by
increasing their version number by one and the transaction is successful. By
combining the version number and the lock we make sure that any concurrent
read invocation does not see any intermediate state during the writing back of
the updated object to the global memory.

5.6 Experimental Evaluation

For evaluation we used four concurrent data-structures. All of them used soft-
ware transactional memory in their design. We measured their respective per-
formance when faced with different contention levels and using different back-
off strategies. In addition to measuring the number of operations per second, we
also measured the number of aborted transactions in order to better understand
their respective behavior and how it affects the given performance.

5.6.1 Hardware

The experiments were performed on the high-end graphics processor GTX280
with 30 multiprocessors. Each multiprocessor has 8 cores, giving us a total of
240 cores. The processor clock rate is close to 1.3 GHz and the optimal memory
bandwidth is 141 GB per second.

5.6. EXPERIMENTAL EVALUATION 145

5.6.2 Test-Bed Applications

Binary Tree Each thread block inserts a fixed quantity of randomly picked val-
ues, uniformly distributed, into a binary tree. As the tree grows wider
there should be fewer conflicts.

Queue Each thread block performs an even amount of enqueue and dequeue
operations on a single queue. This benchmark should provide the highest
level of contention as only one enqueue or dequeue operation can take
place at any given time.

Hash-map Each thread block inserts a fixed amount of randomly picked val-
ues, uniformly distributed, into a hash-map with 128 buckets, each bucket
being an individual list. This benchmark is similar to the queue bench-
mark, but lowers contention by dividing access to it over several buckets.
The transactions are longer since they need to find the end of the list be-
fore they can insert their element.

Skip-list Each thread block performs an even amount of insert, find, and delete
operations on a skip-list with a maximum of 7 levels. This is a more
complex benchmark that is expected to scale similarly to the tree. To
compare the performance of the respective STMs with a highly parallel
design of an advanced data-structure, we also compared the respective
STM skip-list implementations with the lock-free skip-list by Sundell and
Tsigas [ST04].

5.6.3 Experiment Settings

To see how the STMs react to different contention levels we have tested them
with two scenarios. One where the test application performs some local work
before accessing the data-structure, a low contention scenario, and one high
contention scenario where there is no pause between transactions. The time
for the local work is picked randomly after each transaction from a uniform

146 CHAPTER 5. TOWARDS A STM FOR GPUS

1

10

100

1000

10000

None Linear Exponential None Linear Exponential None Linear Exponential None Linear Exponential

Queue Binary Tree Hash-Map Skip-List

Blocking Non-Blocking

Figure 5.4: Average number of aborts per transaction with low level of contention using

60 thread blocks (logarithmic scale).

1

10

100

1000

10000

100000

None Linear Exponential None Linear Exponential None Linear Exponential None Linear Exponential

Queue Binary Tree Hash-Map Skip-List

Blocking Non-Blocking

Figure 5.5: Average number of aborts per transaction with full level of contention using

60 thread blocks (logarithmic scale).

distribution and takes a total of ∼450 ms for one thread block to complete and
around ∼500 ms for 60 thread blocks to complete in parallel.

Since the choice of backoff-function is important, we did each experiment
with two types of backoff, one linear and one exponential. We also performed
the experiments using no backoff at all.

Each of the data-structures were evaluated with a varying number of thread
blocks. We did not vary the number of threads in each thread block, as we
are only synchronizing the accesses by the thread blocks and not the individual
threads within a block. The measurements were repeated 50 times.

5.7 Discussion

At a low level of contention, the blocking and the non-blocking skip-list and
binary tree both scale well, see Figure 5.8. Looking at the number of aborts for

5.7. DISCUSSION 147

 0

 10

 20

 30

 40

 50

 60

 0 10 20 30 40 50 60

O
p

e
ra

ti
o

n
s

 p
e

r
m

il
li

s
e

c
o

n
d

 (
o

p
/m

s
)

No backoff

Blocking Queue
Non-Blocking Queue
Blocking Hash-Map
Non-Blocking Hash-Map

 0 10 20 30 40 50 60

Threads

Linear Backoff

 0 10 20 30 40 50 60

Exponential Backoff

Figure 5.6: Experimental result for the queue and hash-map with low level of con-

tention.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 10 20 30 40 50 60

O
p

e
ra

ti
o

n
s
 p

e
r

m
il
li
s
e
c
o

n
d

 (
o

p
/m

s
)

No backoff

Blocking Queue
Non-Blocking Queue
Blocking Hash-Map
Non-Blocking Hash-Map

 0 10 20 30 40 50 60

Threads

Linear Backoff

 0 10 20 30 40 50 60

Exponential Backoff

Figure 5.7: Experimental result for the queue and hash-map with full level of con-

tention.

the skip-list, Figure 5.4, one can see that the average number of aborts is about
the same, whereas for the binary tree there is a distinct difference. The blocking
STM has an average of over one hundred aborted transactions for each thread
block, while the non-blocking STM has none at all. With greater contention,
Figure 5.5, the number of aborts remains the same for the blocking STM while
it has increased to ten for the non-blocking STM. Despire this, the performance
in number of operations per ms is much better for the non-blocking STM; see
Figure 5.9.

148 CHAPTER 5. TOWARDS A STM FOR GPUS

 0

 10

 20

 30

 40

 50

 60

 0 10 20 30 40 50 60

O
p

e
ra

ti
o

n
s

 p
e

r
m

il
li

s
e

c
o

n
d

 (
o

p
/m

s
)

No backoff

Blocking Skip-List
Non-Blocking Skip-List
Blocking Binary Tree
Non-Blocking Binary Tree

 0 10 20 30 40 50 60

Threads

Linear Backoff

 0 10 20 30 40 50 60

Exponential Backoff

Figure 5.8: Experimental result for the binary tree and skip-list with low level of con-

tention.

 0

 50

 100

 150

 200

 250

 300

 0 10 20 30 40 50 60

O
p

e
ra

ti
o

n
s
 p

e
r

m
il
li
s
e
c
o

n
d

 (
o

p
/m

s
)

No backoff

Blocking Skip-list
Non-Blocking Skip-list
Blocking Binary Tree
Non-Blocking Binary Tree

 0 10 20 30 40 50 60

Threads

Linear Backoff

 0 10 20 30 40 50 60

Exponential Backoff

Figure 5.9: Experimental result for the binary tree and the skip-list with full level of

contention.

In Figures 5.4 and 5.5 we see that the backoff has quite a large effect on
the average number of aborts for the queue and that there does not seem to be
any difference between the linear and the exponential backoff. However, the
backoff does only slightly alter the number of operations per ms, which can
be seen in Figures 5.6 and 5.7. For the other benchmarks there is hardly any
difference between the results for the different backoff schemes, both when it
comes to operations per second and when it comes to aborted transactions per
number of thread blocks.

5.8. CONCLUSION 149

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 10 20 30 40 50 60

O
p

e
ra

ti
o

n
s
 p

e
r

m
il
li
s
e
c
o

n
d

 (
o

p
/m

s
)

Threads

No backoff

Blocking Skip-List
Non-Blocking Skip-List
Lock-Free Skip-List

Figure 5.10: Experimental result for the STM skip-lists compared with the skip-list by

Sundell and Tsigas with full level of contention [ST04].

The queue does not scale well for either the blocking or non-blocking STM.
This is not surprising since only one enqueue or dequeue operation can take
place at any given time. The hash-map and binary tree both scale much better
with the non-blocking STM and it can be clearly seen that the non-blocking has
a lot fewer aborted transactions when it comes to these benchmarks. This can
be attributed to the fact that the non-blocking version can steal locks to continue
working without aborting.

In Figure 5.10 the result from the comparison between the respective STM
skip-lists and the lock-free skip-list by Sundell and Tsigas is presented [ST04].
By the figure it is clear that the respective STM skip-lists are significantly slower
than the non-STM skip-list. This is to be expected, as one can gain a lot in per-
formance by using more complex synchronization techniques during the design
phase of the data-structure. However, there is a trade-off, as these techniques
require much more time and expertise to get the design right, than to use an
STM.

5.8 Conclusion

Software Transactional Memory has attracted the interest of many researchers
over recent years. We have designed and implemented two STMs for graphics

150 CHAPTER 5. TOWARDS A STM FOR GPUS

processors, one blocking and one non-blocking. The design issues involved in
the designing of these two STMs are described and explained in the paper to-
gether with experimental results comparing the performance of the two STMs.
We found that while a blocking STM is simpler to implement, providing addi-
tional progress guarantees, such as obstruction-freeness, improves performance
and lowers the number of aborted transactions.

Acknowledgements

This work was partially supported by the EU as part of FP7 Project PEPPHER
(www.peppher.eu) under grant 248481 and the Swedish Research Council un-
der grant number 37252706. Daniel Cederman was supported by Microsoft
Research through its European PhD Scholarship Programme.

Bibliography

[ATLM+06] Ali-Reza Adl-Tabatabai, Brian T. Lewis, Vijay Menon, Brian R.
Murphy, Bratin Saha, and Tatiana Shpeisman. Compiler and run-
time support for efficient software transactional memory. In PLDI

’06: Proceedings of the 2006 ACM SIGPLAN conference on Pro-

gramming language design and implementation, pages 26–37,
New York, NY, USA, 2006. ACM.

[CBM+08] Călin Caşcaval, Colin Blundell, Maged Michael, Harold W. Cain,
Peng Wu, Stefanie Chiras, and Siddhartha Chatterjee. Software
Transactional Memory: Why Is It Only a Research Toy? Queue,
6(5):46–58, 2008.

[CT08] Daniel Cederman and Philippas Tsigas. On Dynamic Load Bal-
ancing on Graphics Processors. In GH ’08: Proceedings of the

23rd ACM SIGGRAPH/EUROGRAPHICS symposium on Graph-

ics hardware, pages 57–64, Aire-la-Ville, Switzerland, Switzer-
land, 2008. Eurographics Association.

BIBLIOGRAPHY 151

[DFL+06] Peter Damron, Alexandra Fedorova, Yossi Lev, Victor
Luchangco, Mark Moir, and Dan Nussbaum. Hybrid Trans-
actional Memory. In Proceedings of the 12th International

Conference on Architectural Support for Programming Lan-

guages and Operating Systems (ASPLOS), pages 336–346,
2006.

[DSS06] Dave Dice, Ori Shalev, and Nir Shavit. Transactional Locking
II. In Proc. of the 20th International Symposium on Distributed

Computing (DISC 2006), pages 194–208, 2006.

[Enn06] Robert Ennals. Software Transactional Memory Should Not Be
Obstruction-Free. Technical Report IRC-TR-06-052, Intel Re-
search Cambridge Tech Report, Jan 2006.

[FH07] Keir Fraser and Tim Harris. Concurrent programming without
locks. ACM Transactions on Computer Systems, 25(2):5, 2007.

[GHP05] R. Guerraoui, M. Herlihy, and B. Pochon. Polymorphic Con-
tention Management. In Proceedings of the 19th International

Symposium on Distributed Computing (DISC’05), volume 3724
of Lecture Notes in Computer Science, pages 303–323, 2005.

[Her88] Maurice P. Herlihy. Impossibility and universality results for
wait-free synchronization. In PODC ’88: Proceedings of the sev-

enth annual ACM Symposium on Principles of distributed com-

puting, pages 276–290, New York, NY, USA, 1988. ACM.

[HF03] Tim Harris and Keir Fraser. Language support for lightweight
transactions. In OOPSLA ’03: Proceedings of the 18th annual

ACM SIGPLAN conference on Object-oriented programing, sys-

tems, languages, and applications, volume 38, pages 388–402,
New York, NY, USA, November 2003. ACM Press.

[HLMS03] M. Herlihy, V. Luchangco, M. Moir, and W.N. Scherer. Soft-
ware Transactional Memory for Dynamic-sized Data Structures.

152 CHAPTER 5. TOWARDS A STM FOR GPUS

In Twenty-Second Annual ACM SIGACT-SIGOPS Symposium on

Principles of Distributed Computing, July 2003.

[HM93] M. Herlihy and J. E. B. Moss. Transactional Memory: Archi-
tectural Support For Lock-Free Data Structures. In Proceedings

of the Twentieth Annual International Symposium on Computer

Architecture, 1993.

[HPST06] Tim Harris, Mark Plesko, Avraham Shinnar, and David Tarditi.
Optimizing memory transactions. In PLDI ’06: Proceedings of

the 2006 ACM SIGPLAN conference on Programming language

design and implementation, pages 14–25, New York, NY, USA,
2006. ACM Press.

[KCJ+06] Sanjeev Kumar, Michael Chu, Christopher J. Hughes, Partha
Kundu, and Anthony Nguyen. Hybrid Transactional Memory. In
Proceedings of Symposium on Principles and Practice of Parallel

Programming, Mar 2006.

[Kni86] Tom Knight. An architecture for mostly functional languages. In
LFP ’86: Proceedings of the 1986 ACM conference on LISP and

functional programming, pages 105–112, New York, NY, USA,
1986. ACM Press.

[LK08] James Larus and Christos Kozyrakis. Transactional memory: Is
TM the answer for improving parallel programming? volume 51,
New York, NY, USA, 2008. ACM.

[Moi97] Mark Moir. Transparent Support for Wait-Free Transactions. In
Proceedings of the 11th International Workshop on Distributed

Algorithms, pages 305–319. Springer-Verlag, 1997.

[PDC09] L. Santos P. Dubla, K. Debattista and A. Chalmers. Wait-Free
Shared-Memory Irradiance Cache. In Eurographics Symposium

on Parallel Graphics and Visualization, pages 57–64. Eurograph-
ics, March 2009.

BIBLIOGRAPHY 153

[SATH+06] Bratin Saha, Ali-Reza Adl-Tabatabai, Richard L. Hudson,
Chi Cao Minh, and Benjamin Hertzberg. McRT-STM: a high
performance software transactional memory system for a multi-
core runtime. In PPoPP ’06: Proceedings of the eleventh ACM

SIGPLAN symposium on Principles and practice of parallel pro-

gramming, pages 187–197, New York, NY, USA, 2006. ACM.

[SS05] William N. Scherer, III and Michael L. Scott. Advanced con-
tention management for dynamic software transactional memory.
In PODC ’05: Proceedings of the twenty-fourth annual ACM

symposium on Principles of distributed computing, pages 240–
248, New York, NY, USA, 2005. ACM.

[ST95] Nir Shavit and Dan Touitou. Software transactional memory. In
PODC ’95: Proceedings of the fourteenth annual ACM sympo-

sium on Principles of distributed computing, pages 204–213, New
York, NY, USA, 1995. ACM.

[ST04] Håkan Sundell and Philippas Tsigas. Scalable and lock-free con-
current dictionaries. In SAC ’04: Proceedings of the 2004 ACM

symposium on Applied computing, pages 1438–1445, New York,
NY, USA, 2004. ACM.

154 CHAPTER 5. TOWARDS A STM FOR GPUS

6
Future Work

The algorithmic design of data structures needs to be updated to meet the new
challenges drawn up by the move from single- to multi- to many-core proces-
sors. The blocking mechanisms conventionally used to synchronize access to
data needs to be replaced, as they limit scalability and are prone to suffer from
dead-locks, convoying and busy-waiting. We argue in this thesis that lock-free
synchronization, with its positive approach towards conflict handling, offers
better scalability and is, by definition, immune to many of the problems asso-
ciated with blocking schemes. So far, most work on lock-free synchronization
has been focused on data structures that are based on lists. As future work it
would be interesting to take a closer look at different types of trees and graphs
as possible candidates for new lock-free data structures.

155

156 CHAPTER 6. FUTURE WORK

In this thesis we have discussed load balancing and work-stealing, and it
is clear that the choice of data structures used in work-stealing schemes play a
significant role. Much work has been done in the area of load balancing, and we
will continue to look into this field and provide lock-free versions of the data
structures that are commonly used.

As part of the thesis we have presented some initial steps towards practical
and efficient composition of lock-free data structures. But while the move op-
eration and the ability to insert/remove elements into/from multiple data struc-
tures are important pieces, much work remains before we have well defined sup-
port for generic compositions. An important next step is to extend the method-
ology presented, so that it in addition to the previously mentioned compositions,
it also can support composition of multiple operations on the same data struc-
ture. This will be, by necessity, more complex to do efficiently, as it is likely
that more speculative changes to the data structure needs to be made. Another
interesting venue connected to composition, is the combination of lock-free
data structures, for high performance, with software transactional memories,
for ease of use. So far these have been hard to combine in an efficient manner,
but if successful, they could prove to be a powerful combination.

It is likely that computer systems will become more and more heterogenous,
and data structures will need to be adapted to take full advantage of this change.
Support needs to be added for multiple address-spaces and the movement be-
tween them. A data structure that is used on a heterogenous platform will need
to provide operations that are targeted towards the different kinds of proces-
sors and access patterns. For example, insert operations that are accessed from
graphics processors needs, for efficiency, to support SIMD instructions. These
operations in turn needs to be able to cooperate with insert operations that uses
normal SISD instructions.

Other possible research directions include reactive and context aware data
structures. Access patterns and compositions affects the performance as well
as the progress guarantees of the data structures operations. Efficient ways to
adapt to these changes automatically could provide significant performance im-
provements.

