
Mitigating Distributed Denial of Service
Attacks in Multiparty Applications
in the Presence of Clock Drifts

Zhang Fu, Marina Papatriantafilou, and Philippas Tsigas

Abstract—Network-based applications commonly open some known communication port(s), making themselves easy targets for

(distributed) Denial of Service (DoS) attacks. Earlier solutions for this problem are based on port-hopping between pairs of processes

which are synchronous or exchange acknowledgments. However, acknowledgments, if lost, can cause a port to be open for longer

time and thus be vulnerable, while time servers can become targets to DoS attack themselves. Here, we extend port-hopping to

support multiparty applications, by proposing the BIGWHEEL algorithm, for each application server to communicate with multiple

clients in a port-hopping manner without the need for group synchronization. Furthermore, we present an adaptive algorithm,

HOPERAA, for enabling hopping in the presence of bounded asynchrony, namely, when the communicating parties have clocks with

clock drifts. The solutions are simple, based on each client interacting with the server independently of the other clients, without the

need of acknowledgments or time server(s). Further, they do not rely on the application having a fixed port open in the beginning,

neither do they require the clients to get a “first-contact” port from a third party. We show analytically the properties of the algorithms

and also study experimentally their success rates, confirm the relation with the analytical bounds.

Index Terms—Clock drift, data communication, denial of service attack, reliability, application.
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1 INTRODUCTION

INTERNET grows rapidly since it was created. Via the
Internet infrastructure, hosts can not only share their

information, but also complete tasks cooperatively by
contributing their computing resources. Moreover, an end
host can easily join the network and communicate with any
other host by exchanging packets. These are encouraging
features of the Internet, openness and scalability. However,
attackers can also take these advantages to prevent
legitimate users of a service from using that service by
flooding messages to the corresponding server, which
forms a Denial of Service (DoS) attack.

There are several types of such attacks. An attacker can

possibly launch a DoS attack by studying the flaws of network

protocols or applications and then sending malformed

packets which might cause the corresponding protocols or

applications getting into a faulty state. An example of such

attacks is Teardrop attack [2], which is sending incorrect IP

fragments to the target. The target machine may crash if it

does not implement TCP/IP fragmentation reassembly code

properly. This kind of attacks can be prevented by fixing the

corresponding bugs in the protocols or applications. How-

ever, the attacker does not always have to do its best to study

the service if it wants to make it unavailable. It can just flood

packets to keep the server busy with processing packets or

cause congestion in the victim’s network, so that the server
might not have the ability to handle the packets from
legitimate hosts or even cannot receive packets from them.
In order to deplete the victim’s key resources (such as
bandwidth and CPU time), the attacker has to aggregate a big
volume of malicious traffic. Most of the time, the attacker
collects many (could be millions) of zombie machines or bots to
flood packets simultaneously, which forms a Distributed
Denial of Service(DDoS) attack.

Most of the methods that protect systems from DoS and
DDoS attacks focus on mitigating malicious bandwidth
consumption caused by packets flooding, as that is the most
simple and common method adopted by attackers. Those
methods may mitigate DDoS attacks reactively by identify-
ing the malicious traffic and informing the upstream
routers to filter or rate-limit the corresponding traffic [3],
[4], [5], [6], [7], [8]; they may also mitigate DDoS attacks by
deploying secure overlays [9], [10], [11], [12], or by
distinguishing the legitimate traffic with valid network
capabilities [13], [14], [15], [16].

These solutions are suitable for filtering bandwidth
attacks. However, the attacker may change its strategy and
attack an application directly, especially when the applica-
tion involves complex computations. It could be easier to
exhaust its computational resources with small volume of
messages. Therefore, the malicious traffic against an
application has usually small volume and it is difficult to
be detected [17]. Defense methods mentioned above may
help, but they might not be efficient and accurate with
respect to a certain application, as they lack application-
related information. Considering there are numerous appli-
cations, it would be very expensive and impractical for
traffic monitors to keep information for every application.
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A human analogy for the problem is to contrast defense
against a distinguishable crowd, that can be taken care by
army or police forces, versus protection from sets of
seemingly uncoordinated legitimate “agents,” that intend
to attack some unknown “target,” such as a person, an
enterprise, etc. The latter may certainly want to ensure their
own protection. Therefore, one question is worthy of being
investigated: How can network-based applications defend
DDoS attacks by themselves? This question gets even more
important considering the evolution of application overlays,
peer-to-peer applications and application-layer networking.

When considering network-based applications, a parti-
cularly weak point in this context is that they commonly
provide some open port(s) for communication, making
themselves targets for DoS attacks. Adversaries that have
the ability of eavesdropping messages exchanged by the
application can identify open ports and launch directed
attacks to those ports—as opposed to blind attacks that can
be launched to arbitrary ports, even by noneavesdropping
adversaries. This problem was also posed earlier in the
literature and a simple and useful approach was proposed,
namely, port-hopping: the application parties communicate
via ports that change periodically over time, according to a
pattern known by both the sender and receiver, such as a
(pseudo)random sequence with common seed (cf. [18] and
our section on related literature). This method was inspired
from the well-known frequency hopping paradigm used in
signal communication protocols [19]. The focus in that area
is to find the hopping sequences with the optimal Hamming
Correlation Properties [20], [21], [22].

One of the critical issues involved in port-hopping is
synchronizing communication parties. Two main kinds of
synchronization mechanisms are presented in the previous
work, one is acknowledgment-based and the other one
depends on synchronized clocks (cf. section on related
work). Acknowledgment loss can cause a situation where
a port may remain open for a time interval long enough
for an eavesdropping attacker to identify and launch a
directed attack to it. Having synchronized clocks may imply
need for synchronization server, which could be the weak
point in the system. Hence, these imply challenges for
investigation to deploy the method in common network-
ing systems, especially when multiple communication
parties are involved.

With the synchronization issue in mind, our goals in this
work are to support port-hopping 1) in the presence of timing
uncertainty, i.e., clock-rate drifts, implying that clock values
can vary arbitrarily much with time; and 2) in multiparty
communication. In order to deal with hopping in the presence
of clock-rate drifts, we propose the Hopping-Period-Align-
and-Adjust algorithm, or HOPERAA for brevity, which is an
adaptive algorithm, executed by each client to adjust its
hopping period length and align its hopping time with the
server. To enable multiparty communication with port-
hopping, we propose the BIGWHEEL algorithm for a server
to support hopping with many clients, without the server
needing to keep state for each client individually. The basic
idea in both algorithms is that each client interacts
independently with the server and considers the server’s
clock as the point of reference; moreover, the server does not

need to maintain a state for each client, since the main
responsibility for the coordination is assigned to the client(s).
As in, e.g., TCP, a client of one session can be a server for
another (possibly concurrent) session, hence the solution
proposed here fits for symmetric use, though the protocol is
presented in client-server type. According to the properties
of our algorithm, there is no need for group synchronization
which would raise scalability issues.

Our solution is general, because the mechanisms and
algorithms are only based on the clients and server(s). It can
be a complementary mechanism to the ones against
bandwidth attacks. By adjusting the hopping period (i.e.,
roughly the time that communication ports remain open),
the situation that the adversary is able to launch a directed
attack to the application’s ports after eavesdropping is
limited. Potential message loss due to the hopping period
deviation caused by the clock-rate drifts can be controlled
by adjusting a parameter in the HOPERAA algorithm. The
message overhead for setting connections between commu-
nication parties is bounded and its average overhead is
observed to follow an exponential style of decay.

The paper is organized as follows: in Section 2, we give a
detailed definition of the problem and the system model.
We continue with the description of the HOPERAA and
BIGWHEEL algorithms in Sections 3 and 4, respectively. In
Section 5, we give an analysis on properties of the methods.
We validate some of our analysis and give complementary
experimental study in Section 6. In Section 7, we discuss
some implementation issues. Finally, we conclude in
Section 8.

1.1 Related Work

There are many network-based solutions against DDoS
attacks. These solutions usually use routers or overlay
networks to filter malicious traffic. A good survey about
network-based defense mechanisms against DDoS attacks is
presented by Peng et al. [23]. In this paper, we focus on
application-based mitigation.

Badishi et al. [18] propose an ack-based port-hopping
protocol focusing on the communication only between two
parties, modeled as sender and receiver. The receiver sends
back an acknowledgment for every message received from
the sender, and the sender uses these acknowledgments as
signals to change the destination port numbers of its
messages. Since this protocol is ack-based, time synchroni-
zation is not necessary. But note that the acknowledgments
can be lost in the network, and this may keep the two
parties using a certain port for longer time. If the attacker
gets the port number during this time, then a directed attack
can be launched under which the communication can
hardly survive. Hari and Dohi present an analysis on the
sensitivity of this protocol to attacks [24]. To cope with that,
Badishi et al. [18] also propose a solution that reinitializes
the protocol. With reinitializing periodically, the sender and
receiver can use new seeds of the pseudorandom function
to generate different port number sequences, so that the
port number sequence used for communication is changed
periodically. Thus, even though the attacker can launch the
directed attack due to the lost of acknowledgment packets,
the sender and receiver can continue the communication by
reinitializing the protocol. This reinitialization is based on
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an assumption that the difference of clock values of the two
communication parties is bounded in order to make the
sender and receiver reinitialize around the same time. In
this work, we assume that the differences of clock values
can be arbitrary, but the clock rate of each communication
party is constant.

In [18], Badishi et al. also present a rigorous model and
analysis of the problem of possible DoS to applications
(ports) by an adaptive adversary, i.e., one that can
eavesdrop, as in this paper, too. The analysis, besides the
parts that involve the port-hopping protocols proposed in
that paper, also includes a part analyzing the effect of the
adversary’s different strategies for launching blind attacks.
The goal of the attacker is to decrease the probability that a
client’s message is received by the server (it is called
delivery probability in the paper) as much as possible. The
authors showed a lower bound that the attacker cannot
decrease the delivery probability below that. This lower
bound is based on the capacity of a port for receiving
messages and also the adversary’s ability to flood messages.
As those results hold regardless of the applications’s
defense mechanism, they carry over any setting, including
the methods proposed in this paper.

Lee and Thing [25] propose another port-hopping scheme
for the client-server mode. In their mechanism, time is
divided into discrete time slots. The clients and the server
share a pseudorandom function to compute which port
should be used in a certain time slot. The authors assume that
the time offset plus the message delay is bounded by a
constant value l, so there is no time synchronization
mechanism needed. Instead, the valid open time of the
communication port for a time slot is prolonged both
backward and forward by 1

2 l. This scheme shows the basic
idea of the time-based port hopping, but still it is based on
synchronized clock values.

Similar as port-hopping, Srivatsa et al. [26] propose a
client-transparent approach. This approach uses JavaScript
to embed authentication code into the TCP/IP layer of the
networking stack, so the messages with invalid authentica-
tion code will be filtered by the server’s firewall. In oder to
defend the DoS attacks, the authentication code changes
periodically. A challenge server is deployed whose respon-
sibility is issuing keys, controlling the number of clients
connected with the server and synchronizing the clients with
the server as well. Since this approach relies on the challenge
server, the protection of the challenge server is quite
important. The paper mentions that a cryptographic-based
mechanism can be used to protect the challenge server,
although this was not discussed in detail. In our work, we do
not use any third party for time synchronization.

2 PROBLEM AND SYSTEM MODEL DEFINITIONS

We focus on the problem that an adversary wants to subvert
the communication of client-server application by attacking
their communication channels or, for brevity, ports. At each
time point, some port must be open at the server side to
receive the messages sent from legitimate clients. At the
server side, the size of port number space is N , meaning that
there are N ports that the server can use for communication.
The server and the legitimate clients share a pseudorandom
function f to generate the port numbers which will be used

in the communication. We assume that there exists a
preceding authentication procedure which enables the server
to distinguish the messages from the legitimate clients. We
also assume that every client is honest which means any
execution of the client is based on the protocol and clients will
not reveal the random function to the adversary.

The attacker is modeled as an adaptive adversary which
can eavesdrop and attack a bounded number of ports
simultaneously. For the purpose of the analysis, we bound
the strength of the adversary by Q, meaning that it can
attack arbitrarily at most Q ports of the server simulta-
neously. We also assume that when the adversary attacks a
certain port of the server then this port cannot receive any
message from the clients. As mentioned in the related work
section, Badishi et al. [18] presented an analysis about the
effect of adversary’s different strategies when it launches
blind attacks that disable open ports only partially. We do
not elaborate on this again.

The adversary can get the number of the port being used
from the clients’ messages by eavesdropping, however it
takes some time to get this information and get ready to
launch the directed attack to the port; we model this as the
exposure delay and bound it by E time units. So by changing
the communications ports, one can limit the adversary’s
ability to launch directed attacks effectively (see Lemma 3).

Unlike previous work’s assumptions about time syn-
chronization, we assume that each communication party
has its local clock, and the clock rate of each local clock is
constant. We use the server’s clock as the standard one;
each client’s clock drift is defined as the ratio between its
own clock rate and the server’s clock rate. We use �c to
denote the clock drift of client C. We have to emphasize that
in this paper every time variable is related to the server’s
clock unless otherwise stated. If the server’s clock value is t,
we use hcðtÞ to denote the clock value of client C.

Since our solution mitigates DoS attacks at the application
layer, it cannot defeat the bandwidth-based attacks. So
following the assumptions of previous work [18], [26], we
also assume that the network is always available meaning
that there are no bandwidth-based attacks. However, the
network may lose messages. Finally, for the analysis, we
assume the maximum delivery latency for messages is �.
This can be a configurable parameter of the protocol,
depending on the deployment (see Section 7 for a discussion
of this issue).

3 PROTOCOL FOR SINGLE CLIENT CASE

We first present the protocol for communication between a
single client (denoted by C) and a server (denoted by S). In
the subsequent section, we describe the BIGWHEEL algo-
rithm that enables multiparty communication. Without loss
of generality, one server is considered throughout the
presentation for readability issues. For the situation of
multiclient and multiserver, clients and servers follow the
algorithms for the clients and servers, respectively.

3.1 Overview

Roughly speaking, the whole port hopping mechanism
consists of three parts: the contact-initiation part, the data
transmission part, and the resynchronization/adjustment part
which is controlled by the Hopping Period Alignment and
Adjustment (HOPERAA) algorithm.
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What is achieved basically by the client C in the contact-
initiation part is 1) C has succeeded in finding the first port
to contact S, without the need of having S keep some “well-
known” ports open, nor C relying on a third party to get the
port information; and 2) C gets the seed from S for the
pseudorandom function to compute the port sequence.
After the contact-initiation part, the application data from C
to S is sent out to the open ports of S that change every
L time units of S’s clock, corresponding to Lc time units in
C’s clock (initially Lc ¼ L).

Since C’s clock has a drift related to S’s clock, if they have
different clock rates, then the lengths of their hopping
periods will deviate from each other. This would result in
message loss, due to the fact that C may send messages to
some of S’s ports which have been closed or have not been
opened yet—depending on whether C’s clock runs slower or
faster than S’s clock, respectively. To solve this, C executes
the HOPERAA algorithm to adjust its hopping period.
Roughly speaking, S and C attach timestamps in the contact-
initiation messages during the contact-initiation part and the
Hopping Period Alignment and Adjustment part. C uses
the timestamps to estimate its clock drift. According to the
estimation, C decides the next time to run the HOPERAA
algorithm. C also adjust its hopping period according to the
estimation to deal with its clock drift and thus avoid sending
messages to closed ports.

In the following sections, we describe in detail all the
parts of the protocol. Before that, let us give some auxiliary
definitions.

Definition 1. The open ports in the server side for receiving the
data messages from the client are called worker ports. The
open ports in the server side for receiving the contact-
initiation messages from the client are called guard ports.

3.2 Contact-Initiation Part

To enable C to initiate contact with S without having S listen
at a “well-known” port and without relying on a third
party, we propose the algorithm described below.

Algorithm 1. Algorithm for client C in the initiation stage
reply false

Tsend, Tarrive
/� Tsend and Tarrive store the sending time and the arrival

time of the first contact-initiation message received by

the server. Once their values are given, they will not be

changed. �/

- sending contact-initiation messages:

while reply ¼ false do

I  selectðIiji 2 f1; 2; . . . ; kgÞ
/� randomly select an interval of port numbers �/

for all pi 2 I do

timestamp Timenow
send Init; timestamph i
/� Send one contact-initiation message to each of the

ports in the chosen interval. �/

end for

waitð2�þ LÞ
end while

- receiving reply message:

receive ReMsg; �; �; timestamp; hcðt1Þ; t2h i
/� timestamp is the sending time of this reply message,

which is t3 in Formula 1. hcðt1Þ is the timestamp of the
corresponding contact-initiation message received by the

server, and t2 is the arriving time of the same message.

They will be stored later by the client for estimating its

clock drift. See Section 3.4 and Lemma 4. �/

if reply ¼ false then

reply ¼ true

if this is the first time of executing contact-initiation

procedure then

Tsend  hcðt1Þ
Tarrive  t2

end if

execute the HOPERAA algorithm

/� The pseudocode for the HOPERAA algorithm is

given in Algorithm 4 �/

start sending data

end if

The server divides the range of port numbers into
k intervals evenly and opens k different guard ports at the
same time, one guard port per one interval, and changes
them every � time units but still keeps one open guard port
in each interval. Here, we assume that k can divide N . Note
that k is a parameter in the system, whose value is known by
the server and the client. C sends contact-initiation messages
to all the ports in an interval which is randomly chosen.
When S receives a contact-initiation message, it replies with
the seed � for the pseudorandom function f and the index �
for computing the next worker port. The server will send this
reply message when the next worker port is open which will
happen in at most L time units. Since the network may lose
messages and open ports can be disabled by the adversary, C
may not get the reply from S. To save bandwidth, instead of
keeping on sending contact-initiation messages, C will set a
timeout for waiting the reply message. The timeout is set to
2�þ L time units, taking into account the message round
trip time and the waiting time by the server to send the reply.
If C does not receive a reply until it reaches the timeout, it
will choose another interval of port numbers and send
contact-initiation messages again until it gets the reply. In
Section 5, we will show the bound of the expectation of how
many trials C would make to get the reply from S. The
algorithms for C and S in the initiation stage are shown in
Algorithms 1 and 2, respectively.

Algorithm 2. Algorithm for server S in the initiation stage

- receiving contact-initiation message:

receive Init; timestamph i
hcðt1Þ  timestamp

t2  Timenow
wait until next worker port pi opens

timestamp Timenow
send ReMsg; �; �; timestamp; hcðt1Þ; t2h i
/� t2 and hcðt1Þ are sent back to the client to estimate its

clock drift. See Section 3.4 and Lemma 4. �/

3.3 Sending the Application Data

In this stage, C sends data messages to the worker ports of S.
After C gets the reply from the server in the contact-initiation
part, C has the seed � for the pseudorandom function f to
generate the sequence of the worker ports. The open interval
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of the worker ports isLþ � time units, whereL > �. The new

worker port will be opened � time units earlier than the

closing time of the old one, as shown in Fig. 1. When S

receives the contact-initiation messages from C, it will send

the reply message at the time when the next worker port is

opened, and the integer � has the value for generating the

next worker port. When C gets the integer � from S’s reply, it

will send the data messages immediately to the port

computed from f ð�; �Þ. C has a timer Tc which will be

assigned to 0 when C receives the reply message from S. Tc
increases at the same rate as the local clock of C. The

destination port number of the data messages will be

recomputed when Tc ¼ iL, at every i 2 IN�. Note that it

might be that the worker port collides with one of the guard

ports, and the server can distinguish the contact initiation

messages from data messages.
Since there exists delivery latency, some messages that are

sent to port pi (the ith port in the hopping sequence) may

arrive when pi is closed. In our model, if there is no time drift

then messages that are sent during the interval ½ði� 1ÞL; iL�
�� should arrive at pi when pi is open (otherwise we consider

them being lost). Messages sent in the interval ½iL� �; iL�
may arrive when pi is closed. So these message will be sent

both to pi and piþ1. Algorithm 3 shows the pseudocode of

client’s behaviors in data transmission stage.

Algorithm 3. Algorithm for client C in data transmission

stage

Pold  f ð�; �Þ
Pnew  f ð�; ð�þ 1ÞÞ
/�Pold is the destination port in the current period, and

Pnew is the destination port for the next period. �/

- sending data messages
while has more data to send do

send Data; Poldh i
if iL� � � Tc � iL then

send Data; Pnewh i
end if

end while

- changing the destination port

if fTc ¼ iLg then

Pold  Pnew
Pnew  f ð�; ð�þ iþ 1ÞÞ

end if

3.4 Adaptive Hopping Period

As mentioned in Section 2, client C has a constant clock drift
�c related to the server. It may happen that in the data
transmission stage, the hopping time of C will drift apart
from the server’s. This might cause C to send messages to a
port that is already closed or is not opened yet, depending on
whether C’s clock is slower or faster than S’s. Figs. 2 and 3
illustrate the two situations, respectively. In both figures, the
server hops the ports every L time units and the client also
hops the destination port number everyL time units counted
by its own clock, which corresponds to L0 time units in the
server’s clock. The deviation between L and L0 in both cases
(where �c > 1 and �c < 1) is j �c�1

�c
jL. From Figs. 2 and 3, we

can see that the deviation of hopping times in the same period
grows linearly with the number of periods.

Growth of deviation of hopping times would imply more
message loss, soC has to align the hopping time at adaptively
chosen time intervals, to control the phenomenon. These are
called the HOPERAA execution-intervals. In particular, if the
client’s clock is slower than the server’s, which means �c < 1,
and if we want to keep the offset of the closing times counted
by the server and the client of a worker port within � time
units, then the HOPERAA execution interval is �c�

1��c . If the
client’s clock is faster than the server’s which means �c > 1,
and we want to keep the offset of the open times counted by
the server and the client of a worker port within � time units,
then the HOPERAA execution interval is �c�

�c�1 . However, the
client has no idea about its clock drift. We suggest a method
that exchanges messages (which are piggybacked) with
information about the sending and receiving times (time-
stamped with local clock values) between C and S, to estimate
the clock drift. This is illustrated in Fig. 4. The procedure of
the HOPERAA algorithm is described below, and the
pseudocode is given in Algorithm 4.

. The HOPERAA execution interval is initiated to 0. In
the contact-initiation part, every contact-initiation
message and reply message will be attached with the
timestamp of its sending time. The reply message
also includes the timestamp hcðt1Þ and the arrival
time t2 of the first contact-initiation message re-
ceived by the server. When the client receives the
reply message, it will store hcðt1Þ and t2 and keep
their values unchanged.
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Fig. 1. Worker ports’ open interval with overlap.

Fig. 2. Client’s clock is slower than the server, which means �c < 1.

Fig. 3. Client’s clock is faster than the server, which means �c > 1.

Fig. 4. Messages exchange with timestamps and the associated time
points.



. When C executes HOPERAA, it will execute the
same operations as in the contact-initiation part, the
server will add a timestamp of the sending time to
every reply message, say t3. The client will record
the arrival time of the reply, say hcðt4Þ. Then, C
bounds its clock drift as

hc t4ð Þ � hc t1ð Þ
t3 � t2 þ 2�

� �c �
hc t4ð Þ � hc t1ð Þ

t3 � t2
: ð1Þ

We use �l and �u to denote the lower and upper
bound of �c, respectively. In the analysis section,
Lemma 4 will show the correctness of Formula 1; we
will also show that every time C estimates its clock
drift, it will get a better bound than the one it got
from the previous estimation.

. If both the lower bound and the upper bound are
greater than one, that is, 1 � �l � �u, then adjust Lc
to L � �l, and the HOPERAA execution interval is
set to �u�l�

�u��l .
. If both the lower bound and the upper bound are

smaller than one, that is, �l � �u � 1, then adjust Lc
to L � �u, and the HOPERAA execution interval is
set to �u�l�

�u��l .
. Otherwise, do not change Lc, and the HOPERAA

execution interval is set to minf �l�1��l ;
�u�
�u�1g.

Algorithm 4. The HOPERAA algorithm

/� This procedure is called in Algorithm 1, and this

pseudocode should be plug in the subroutine

receive ReMsg; �; �; timestamp; hcðt1Þ; t2h i in

Algorithm 1. �/
- HOPERAA procedure:

treply  the arrival time of ReMsg

�u  treply�Tsend
timestamp�Tarrive

/� where timestamp is the timestamp included in the

contact-initiation reply message ReMsg �/

�l  treply�Tsend
timestamp�Tarriveþ2�

if 1 � �l � �uk�l � �u � 1 then

IntervalHoPerAA  �u�l�
�u��l

if 1 � �l � �u then

Lc  L � �l
else

Lc  L � �u
end if

else

IntervalHoPerAA  minf �l�1��l ;
�u�
�u�1g

end if

Call Algorithm 1 at time ðTimenow þ IntervalHoPerAAÞ
Before C adjusts Lc, it has to know whether its clock rate

is faster or slower than the server’s, otherwise it has no idea
whether to shorten Lc or prolong Lc. Intuitively, if the clock
drift of C is big then it takes few rounds of drift estimation
to let C make the adjustment to Lc, since the influence of
the message delivery latency is relatively small. If the clock
drift is very close to 1 then it may take more rounds to let C
make the decision. Consider an extreme example that the
clock drift is equal to 1 meaning that the client’s clock rate
is equal to the server’s, then the client can never know
whether its clock rate is faster or slower than the server. But
since the bounds of the drift improve monotonically,

(cf. Section 5) the HOPERAA execution interval keeps
growing (exponentially, cf. Section 6) with the number of
HOPERAA executions. This means that the client does not
have to do the alignment of the hopping time (which is
HOPERAA execution) frequently. The message and time
overhead involved in the HOPERAA executions will be
amortized within the big HOPERAA execution intervals.

4 SUPPORTING MULTIPLE CLIENTS

The extension to multiple clients per server is based on a
simple idea: since each client considers the server’s clock as
the reference clock, it can interact with the server
independently of the other clients. For scalability reasons
it is desirable that the server has more than one worker
ports open in each time period (but still a small constant
number of those), so as to balance the load among them.
Moreover, by having the same hopping period but different
phases in the corresponding hopping sequences, such a
method can manage to bound better the time it takes for
each client to initiate contact with the server.

As the name also suggests, the BIGWHEEL algorithm,
aiming at meeting the aforementioned goals, functions as
the Big Wheel rides at amusement parks: clients queue for
the next available compartment. Here each compartment
represents a hopping sequence; compartments are deployed
in a way that aims at balancing the load among them and
also at minimizing the clients’ waiting times to initiate
contact with the server. The procedure is described in detail
below.

Algorithm 5. Algorithm for server S using multiple
hopping sequences.

Buffer B stores reply messages that are waiting to be sent.

- receiving contact-initiation message:

receive Init; timestamph i
hcðt1Þ  timestamp

t2  Timenow
/� pij is the ith port number in hopping sequence j.

Suppose its open time is the closest to the current time. �/
�j  seed for hopping sequence j

� the corresponding index value for pij in hopping

sequence j put the reply message

ReMsg; �j; �; timestamp; hcðt1Þ; t2
� �

into buffer B

- sending reply messages:

whenever a new worker port is opened

send all the reply messages in buffer B to the
corresponding clients

Clear B

Consider a simple big wheel with one compartment,
which corresponds to the situation that the server only
opens worker ports according to one hopping sequence. In
this setting, since every client uses the same pseudoran-
dom function to generate the destination port number, one
worker port has to receive the messages from all the active
clients. Moreover, when the server receives a contact-
initiation message, it will not send its reply (so that the
client starts its periods in-sync with S) until the next
worker port is open, which increases the client’s waiting
time by at most L time units. In order to afford more
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clients and also decrease the maximum waiting time for a
client, the server will open worker ports according to
multiple hopping sequences. These sequences can be
generated by the same pseudorandom function but with
different seeds. For example, sequence i uses seed �i.
Suppose there are W � 2 values for � (i.e., we have
W compartments in the big wheel). It means that S
supports W hopping sequences. Let us use pij to denote the
ith worker port in the jth port number sequence, where
0 � j �W � 1. The server will change the worker ports
according to each sequence in the following way: if the
open time of port pi0 is ti then the open time of port pij is
ti þ jL

W . The open interval of every worker port is still
Lþ �. Fig. 5 shows the situation when W ¼ 3 and the
open time of pi0 is t.

Based on this mechanism, when the server receives a
contact-initiation message from a client, it will send the
reply at the closest opening time of a worker port, including
the seed for the corresponding sequence. A pseudocode is
shown in Algorithm 5. By using multiple port number
sequences, the maximum waiting time for a client in the
contact-initiation part can be decreased to 2�þ L

W time units.

5 ANALYSIS OF THE PROTOCOL

We start with some auxiliary definitions which are useful in
this section.

. We say a client gets a successful access to the server,
when at least one of its contact-initiation messages is
received by the server.

. A contact-initiation trial is a trial by a client to get the
server’s reply in the contact-initiation part. It begins
when a client randomly chooses an interval of the
port space and sends a contact-initiation message to
each of the ports in that interval and ends when the
client receives a reply message from the server or
reaches a time-out of waiting.

. We say that the adversary launches a blind attack if
the adversary arbitrarily chooses and attacks Q ports
of the server simultaneously.

. If the adversary knows the ports that are currently
used by the server, it will send malicious messages
to attack those ports directly. We say that the
adversary launches a directed attack.

First, we analyze the contact-initiation part of the
protocol. Since the guard ports cannot be fixed, the server
has to hop guard ports but in a range smaller than N .
Note that if we fix this range then the adversary can learn
it from the contact-initiation messages of the client
(because the client always send contact-initiation messages
to that range) and then launch a directed attack to the
application’s open port(s). In our protocol, we divide the

port number space into k intervals, Ii ¼ fpjji Nk � j �
ðiþ 1ÞNk � 1g, i ¼ 0; 1; 2; . . . ; k� 1. Since a client has no
idea which port is open as the guard port in Ii, it sends
contact-initiation messages to every port in the interval it
chooses and expects the server can receive one of them. In
the presence of delivery latency and guard ports’ chan-
ging, the contact-initiation message sent to the current
guard port of the chosen interval may miss the port. Then,
we say this contact-initiation trial fails. We will show how
to bound this probability and give a corresponding
experimental result in Section 6.

Lemma 1. If the adversary launches a blind attack, the probability

that it disables the guard port in the interval chosen by the

client in the contact-initiation part is Q
N , even if the adversary

knows the partition of the ports space.

Proof. Suppose the adversary knows the partition, and it

disables qi ports in interval Ii, i ¼ 0; 1; 2; . . . ; k� 1. Since

we have k intervals, and every interval has N=k ports,

the probability that the adversary disables the guard port

in the interval chosen by the client, say I 0, is

Xk�1

i¼0

Pr½Ii ¼ I 0� ¼
Xk�1

i¼0

1

k
� qi
N
k

¼
Pk�1

i¼0 qi
N

:

Since
Pk�1

i¼0 qi ¼ Q, the probability is Q
N . If the adversary

does not know the partition, then it will attack arbitrary

ports, so the probability that the guard port is under

attack is Q
N . tu

Based on Lemma 1, we will give a lower bound on the

probability that one contact-initiation trial can lead to

successful access.

Lemma 2. Suppose the adversary launches a blind attack, and the

size of the port space is N , and there is no message loss during

the transmission but there exists delivery latency, then the

probability that one contact-initiation trial can lead to

successful access is at least 1� ð1eÞ
F , where F ¼ N�Q

N is the

fraction of nondisabled ports .

Proof. Set V be the number of ports in one interval. In one

contact-initiation trial, the client will send V messages to

the interval it chooses, one message to one port in that

interval. As shown in Fig. 6, the arrival duration of those

V messages may cover � changing periods of the guard

ports. We use pi, 1 � i � � to denote the guard port for

period i, and use vi to denote the number of contact-

initiation messages that arrive at the server side within

period i. We assume that each vi > 0, since if vi ¼ 0, the

probability that pi receives the message sent to it will be

definitely zero. The probability that the server does not

receive any contact-initiation message is
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Fig. 5. The open intervals of port pi0, pi1, and pi2.

Fig. 6. Arrival duration covers � changing periods of guard ports.



Pr½trial fails� ¼ ��
i¼1Pr pidoes not receive the message½ �

¼ ��
i¼1 Prd þ Prl � Prd � Prlð Þ;

where Prd is the probability that pi is disabled by the
adversary, Prl is the probability that the message sent to
pi does not arrive within period i. So we have

Pr½trial fails� ¼ ��
i¼1

Q

N
þ V � vi

V
� Q
N
� V � vi

V

� �

¼ ��
i¼1 1� N �Qð Þvi

N � V

� �
:

Using the method of Lagrange multipliers, we know
that Pr½trial fails� has the maximum value when v1 ¼
v2 ¼ � � � ¼ v� ¼ V

� . So we have

Pr½trial fails� � 1�N �Q
N � �

� ��
¼ 1� 1

N��
N�Q

 !N�Q
N

N ��
N�Qð Þ

:

Since we know that function ð1� 1
xÞ
x is a monotoni-

cally increasing but bounded function when x > 0, and
the limit is 1

e when x! þ1, where e is the mathematical
constant and e � 2:72. Hence, we have

Pr½trial fails� � 1

e

� �F
; F ¼ N �Q

N
;

then it is obvious to see that the probability that one
contact-initiation trial can lead to successful access is at
least 1� ð1eÞ

F .
tu

Corollary 1. The expectation of the number of contact-

initiation trials is at most 1
1�ð1eÞ

F . The expectation of the
number of contact messages used in the contact-initiation

part by one client is at most N
k � 1

1�ð1eÞ
F , where k is the

number of intervals in the port space.

Recall the assumption that the adversary can do
eavesdropping and launch directed attacks to the open
ports, but this takes it E time units from the time it gets a
data message from the client. Our protocol aims at keeping
the open interval of the worker ports smaller than E. But
since that some client’s clock may be faster than the server,
and can send messages to a worker port before it is opened,
as a result, the adversary could get the worker port number
before the corresponding port is opened. However, the
adversary cannot get the port number more than � time
units earlier than the port’s opening time, since the clients
will execute HOPERAA algorithm to align the hopping
period to keep itself not drift apart from the server more
than � time units. So we get the following.

Lemma 3. If E > Lþ �þ�, then the adversary cannot launch

a directed attack to an open worker port of the protocol in

this paper.

The next lemma shows the correctness of Formula 1 used
in HOPERAA to estimate the clock drift.

Lemma 4. Suppose we use server’s clock as the reference clock,

and consider that the client sends message M1 at time t1 with

the timestamp hcðt1Þ and the message is received by the server

at time t2. Consider also that the server sends later one message
M2 at time t3 with timestamp t3, which is received by the
client at time t4 corresponds to time hcðt4Þ according to
the client’s clock. Then, we have

hcðt4Þ � hcðt1Þ
t3 � t2 þ 2�

� �c �
hcðt4Þ � hcðt1Þ

t3 � t2
;

where �c is the client’s clock drift related to the server’s clock,
and � the maximum of the message delivery latency.

Proof. Consider Fig. 4. According to the clock drift
definition, we have

�c ¼ ðhcðt4Þ � hcðt1ÞÞ=ðt4 � t1Þ ¼
hcðt4Þ � hcðt1Þ
t3 � t2 þ d1 þ d2

;

where d1 and d2 are the delivery latencies of M1 and
M2, respectively. Since 0 � d1 þ d2 � 2�, the lemma
follows. tu
From Lemma 4, we can see that the influence of the

message delays on the clock drift estimation will decrease
when the value of t3 � t2 is increased, i.e., as the execution
evolves and the client C has repeated the HOPERAA
algorithm several times. In our protocol, the client keeps
hcðt1Þ and t2 unchanged, so t3 � t2 is equal to the time
elapsed from the first initiation. Hence, the value of t3 � t2
used in every HOPERAA execution will be greater than the
value used in the previous HOPERAA execution. Hence, the
upper and lower bounds of �c will converge to the real
value of �c as the execution progresses.

Lemma 5. Using the HOPERAA algorithm, consider the client
starts sending data messages to port p at time t and changes
the destination port at time t0. Then, t will not be � time units
(using the server’s clock as the reference clock) earlier than the
corresponding opening time of port p by the server, and t0 will
not be � time units later than the corresponding closing time
of port p by the server.

Proof. Suppose the client’s clock drift is �c. Then, the client
uses 1

�c
time units to count 1 time unit, i.e. the difference

is j1� 1
�c
j. So if the client wants to keep hopping times not

drifting � time units away from the server’s, the HOPE-

RAA execution interval should be �
1� 1

�cj j which equals to
�c�
1��cj j . Since �l � �c � �u, we have

�c�

j1� �cj
� min

�l�

j1� �lj
;
�u�

j1� �uj

� �
:

The client uses minf �l�
1��lj j ;

�u�
1��uj jg as the HOPERAA

execution interval, so the client’s hopping times will

not drift away from the server’s � time units.
If the client knows that its clock drift is bigger than 1,

which means �u � �l � 1, it will change the hopping
period to L � �l, which is �l

�c
L time units according to the

server’s clock. Then, the difference between the length
of the server’s hopping period and the length of the
client’s hopping period is ð1� �l

�c
ÞL. So the HOPERAA

execution interval should be �
ð1��l�cÞL

L � �l which equals to
�l�

1��l�c
, and the client uses

�u�l�

�u � �l
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as the HOPERAA execution interval. Since �u�l�
�u��l �

�l�

1��l�c
,

the difference of the hopping times of the client will not

drift � time units away from the server’s.
If the client knows that its clock drift is smaller than 1,

which means 1 � �u � �l, it will change the hopping
period to L � �u. Then, the difference between the length
of the server’s hopping period and the length of the
client’s hopping period is ð�u�c � 1ÞL. So the HOPERAA
execution interval should be

�

ð�u�c � 1ÞLL � �u

which equals to �u�
�u
�c
�1

, and the client uses �u�l�
�u��l as the

HOPERAA execution interval. Since �u�l�
�u��l �

�u�
�u
�c
�1

, the

difference of the hopping times of the client will not drift

� time units away from the server’s. tu
Next, we focus on the analysis of the BIGWHEEL

algorithm. We give bounds of the expectation of the
number of worker ports being open at the same time, and
show the probability that at least one of them is under
attack when the adversary launches a blind attack.

Lemma 6. If we have W port hopping sequences in the system,

and let w denote the number of worker ports being open at the

same time, then the expectation of w can be bounded by the

following formula:

N �N 1� 1

N

� �W
� E½w� � N �N 1� 1

N

� �2W

;

where N is the size of the port space.

Proof. Given a specific time point, the probability that port

pi is opened by a specific hopping sequence is 1
N . Since

each sequence opens ports independently, the probability

that port pi is not opened by any hopping sequence is

ð1� 1
NÞ

W . Let Ai, i 2 f0; 1; . . . ; N � 1g denote the event

that port pi is open at a specific time point. The

expectation of the number of worker ports being open

at the same time is

E½w� ¼
XN�1

i¼0

Pr½Ai� ¼ N �N 1� 1

N

� �W
:

Remember that the open intervals of the old worker port

and the new worker port in a sequence have an overlap,

hence the number of sequences for which server opens

worker ports can be regarded as at least W and at most

2W . Hence, we have

N �N 1� 1

N

� �W
� E½w� � N �N 1� 1

N

� �2W

:

ut

Lemma 7. Suppose the adversary launches a blind attack, and it

can disable Q ports simultaneously. If w worker ports are open

at the same time, then the probability that at least one of the

worker ports is under attack is

1�
ðN�wQ Þ
ðNQÞ

;

where N is the size of the port number space.

Proof. Since the probability that none of the worker ports
are under attack is ðN�wQ Þ=ð

N
QÞ, the lemma follows. tu

In the BIGWHEEL algorithm, one communication port
might be kept open continuously by different hopping
sequences or even by the same sequence. We study the
situation that a specific port is kept open continuously by
multiple hopping sequences. For the sake of the simplicity
of analysis, we assume that there is no overlap between the
open intervals of two neighbor work ports in the same
hopping sequence, and the open interval of each worker
port is L time units.

Suppose at time t ¼ 0 one sequence opens port p as the
worker port. According to the BIGWHEEL algorithm, for
every time t ¼ i LW ; i 2 ZZþ, there is one sequence opens a
worker port. It is observed that in order to keep port p

continuously open as a worker port, at least one of the worker
ports that open at time t ¼ i LW ; i 2 f1; 2; . . . ;Wg, should be p.
Based on this observation, if a specific port is open as a worker
port, then we can compute the probability that this port is
kept open continuously for a given length of time.

Lemma 8. In the BIGWHEEL algorithm, suppose that a specific
port, say port p, is open as a worker port, the probability that p
is open continuously for IL time units, IL > L or more, is at
most RðW; bW IL

L c; 1
NÞ, where Rðx; y; zÞ is the following

recursive function (where x and y are positive integers and
z 2 ð0; 1Þ)

R x; y; zð Þ ¼
1; y < x;

z
Xx
i¼1

R x; y� ið Þ � ð1� zÞi�1; y � x:

8<
: ð2Þ

We call the result of RðW; bW IL
L c; 1

NÞ Continuous Open
Probability.

Proof. Without loss of generality, suppose port p is open as a

worker port at time t ¼ 0, in order to prevent p from

being kept open continuously longer than L time units,

all the worker ports that open at time t ¼ i LW ;
i 2 f1; 2; . . . ;Wg, should not be p. During IL time units,

there are bILL
W

c ¼ bW IL
L c worker ports open. We can order

these worker ports according to their open times and

form a sequence

S ¼ pL
W
; p2L

W
; . . . ; p�

WIL
L

	
L

W

( )
:

In order to keep port p open for IL time units, there must
not exit consecutive W ports that are not p in sequence S;
in other words, p cannot be open for IL time units, iff in
sequence S there exist at least W ports that are not p.
Now, the computation of the corresponding probability
is the same as the computation of the reliability of a
consecutive-k-out-of-n:F system. A consecutive-k-out-of-n:F
system consists of n linearly ordered components and
the system fails if and only if at least k consecutive
components fail. The reliability of a such system can be

FU ET AL.: MITIGATING DISTRIBUTED DENIAL OF SERVICE ATTACKS... 409



computed using a recursive function Rðk; n; pÞ [27]
defined as Function 2, where p is the probability that a
component does not fail (assuming that every compo-
nent fails independently and they have the same fail
probability). Here, p is the probability that a worker port
is port p, which is 1

N . In Function 2, we use x; y; z as the
parameters to prevent reusing of the terms. tu
Since Function 2 is a recursive function, it is not obvious

to see the relation between the result and the parameters. In
Table 1, we show the values of continuous open probability
under different settings of parameters. We choose
N ¼ 10;000, meaning the probability that a sequence open
a specific port as the worker port is 1

10;000 . Table 1 shows that
bigger continuous open time IL leads to smaller continuous
open probability; also having more hopping sequences
leads to higher continuous open probability for a specific IL,
but the probability is still with very small.

5.1 Overhead Induced by the Mechanism

The overhead of the proposed method consists of message

and time complexity in the contact-initiation part, time spent

for executing HOPERAA, packets lost due to clock drift. These

three kinds of overhead will be studied in three experiments

in Section 6. The first two types of overhead have been studied

in this section. When a client executes the HOPERAA

algorithm, it performs the same operations as in the

contact-initiation part. Hence, following Corollary 1 the

expected message overhead of HOPERAA is also N
k � 1

1�ð1eÞ
F

messages for every time that it is executed. In Section 6, we

will see that the HOPERAA execution interval becomes

significantly longer as the execution evolves. Hence, the

amortized overhead becomes smaller in the course of the

execution.

6 EXPERIMENTAL STUDY

To further study the properties of our protocol, we basically
conduct three experiments. These experiments validate
some of the analytical results and give complementary
measures that are not included in the analytical evaluation
due to the subtle and complex relations of different
parameters. In particular, we show

. The average number of contact-initiation trails that a
client has to do under different parameter settings,
which conforms to the estimation given in the
analysis section.

. The growth of HOPERAA execution interval, which
conforms to the algorithm for estimating the client’s
clock drift.

. The message overhead for initializing the commu-
nication can be amortized within a long time scale due
to the growth of the HOPERAA execution interval.

. The messages lost due to the clock drifts can be
controlled by adjusting parameters in the protocol.

In the experiments, we assume that the application that
uses the proposed port hopping mechanism uses UDP as
transmission protocol. On setting up the experiments, we
follow the system model described in Section 2.

The first set of experiments simulate the contact-initiation
part. The experiment is done using two 3 GHz Intel
Pentium 4 machines, one acts as the server, and the other
one acts as the client. There is no packet loss in the network
during transmission. We choose N ¼ 65;536, and k ¼ 64,
which translates to 64 intervals in the port space, each
interval having 1,024 ports that can be used. We vary the
strength of the adversary from Q ¼ 10;000 to Q ¼ 50;000.1

The changing period of the guard ports is assigned to 1,000
and 5,000 milliseconds, meaning that � ¼ f1;000; 5;000g. For
each parameters setting of Q and � , we let the client
perform 50 repetitions of the contact-initiation part, and
then record the number of trials of each contact-initiation
part. We compute the average number of trials that a client
has to perform over all these contact-initiation phases.

Fig. 7 shows both the experimental outcome and the
upper bound of the expectation computed in Corollary 1. It
is observed that the average number of trials grows with Q,
but we can see that even for Q ¼ 50;000, the average
number of trials during the contact-initiation part is still not
high (4.2 trials when � ¼ 1;000 milliseconds).

Regarding the average time spent in the contact-initia-
tion part, we take the situation of Q ¼ 20;000 as an example,
where the average number of trials is around 1.5. Since the
client needs about one second to send the contact-initiation
messages in each trial, and then waits 2�þ L ¼ 1;200 ms for
the reply, the average time spent in this part is about
3.3 seconds. In our experiment, in each trial the client sends
1,024 contact-initiation messages, each having 40 bytes, so
the average bandwidth consumed by the client is about
145 kbps.
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1. In our experiments, the incoming bandwidth of the server is 10 Mbps.
In order to simulate that the adversary can disable, e.g., 50,000 ports
completely without congesting the network, we modify Iptables (it is like a
firewall) of the server, and drop the legitimate packets to the ports of, e.g.,
from 1 to 50,000. So only the legitimate packets with the destination port
numbers that are not covered by the filtering rules of Iptables can be
delivered to the application layer.

Fig. 7. The average number of contact-initiation trials in one contact
initiation part, where � ¼ f1;000; 5;000g milliseconds, and client sending
rate is 1 message per millisecond

TABLE 1
Continuous Open Probability



In the second set of experiments we study how the
HOPERAA execution interval grows (i.e., the protocol over-
head decreases) with the number of executions of the
HOPERAA algorithm under different values of clock drift.
In the experiment, � ¼ 0:3L and �c 2 f0:7; 0:9; 1:1; 1:3g. As
shown in Fig. 8, in most cases, the client will know whether its
clock rate is faster or slower than the server’s after executing
HOPERAA three times, then it will adjust its hopping period.
In Fig. 8, we can see that the HOPERAA execution interval
grows exponentially with the number of HOPERAA execu-
tions. In particular, after eight executions the client can keep
sending data messages for more than five minutes, and after
10 executions the client can keep sending data messages for
almost half an hour. So the message overhead for initializing
communications and aligning hopping periods is amortized
within this long time scale.

The last set of experiments study the effectiveness of
HOPERAA with respect to the receiving percentage which is
the percentage of data messages received by the server
during data transmission parts. We choose Q ¼ 0 (i.e., the
receiving percentage is only affected by HOPERAA); the
clock drift of the client is �c 2 f0:6; 0:7; 0:8; 0:9; 1:1; 1:3; 1:5g;
� and � are chosen as � 2 f0:1L; 0:2L; 0:3Lg and � ¼
f100; 40gms. For each value combination of �c and �, we let
the client execute 10 times the HOPERAA algorithm and we
record the percentage of the messages received by the
server. The results of this experiment are shown in Figs. 9

and 10. We can see that the percentage of messages received
is very high (above 95 percent) when �c < 1 and � ¼ 100 ms;
when �c > 1 and � ¼ 40 ms, the percentage of messages
received is also very high (around 95 percent). The lowest
receiving percentage in Fig. 9 is close to 90 percent, while
the receiving percentage for all the cases in Fig. 10 is above
90 percent.

It is observed that the receiving percentage is decreased
when � is increased. This because bigger � means to bigger
deviation between the hopping times of the client and the
server, which leads to more lost messages during transmis-
sion. Actually, the expected receiving percentage is ð1� �

2LÞ,
e.g., if � ¼ 0:3L, then the expected receiving percentage is
85 percent. From Figs. 9 and 10, we can see the experiment
result is better than what is expected. The reason for getting
better performance is that the client uses �l�u�

�u��l as the
HOPERAA execution interval. From the proof of Lemma 5,
it is shown that this value is smaller than the expected one
which is �c�l�

�c��l for �c > 1 and �c�u�
�u��c for �c < 1. This means that

the client will pause the message sending process (in order
to execute the HOPERAA algorithm) before the hopping
time offset reaches � time units.

As shown in Fig. 9, when �c < 1 the above phenomenon

is even more prominent. This is because the client uses

Formula 1 to compute the upper and lower bounds of its

clock drift and the results are influenced by the message

delivery latency bound. In the experiment, the message

delivery latency bound � is much bigger than the actual

message delivery latency (the latter is approximately 25 ms

in these experiments—recall that � was set to 100 ms),

which results in that �u is closer to �c than �l does. Hence,

the ratio between the HOPERAA execution interval �l�u�
�u��l

and �c�u�
�u��c is smaller than that between �l�u�

�u��l and �c�l�
�c��l , which

causes the receiving percentage for �c < 1 to be higher than

the respective one for �c > 1.
As shown in Fig. 10, when� is set to 40 ms which is close to

the actual deliver latency, then the receiving percentage for
�c > 1 is higher than that for �c < 1. This is because �l is closer
to �c than �u when they are computed using Formula 1.

7 DISCUSSION

When the proposed method is deployed in the Internet,
several practical issues have to be addressed. First, choosing
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Fig. 10. The receiving percentage of the server; � is set to
40 milliseconds.

Fig. 8. The length of HOPERAA execution interval grows with the
number of HOPERAA executions.

Fig. 9. The receiving percentage of the server; � is set to
100 milliseconds.



the value of � is not easy, since the network latency may vary
a lot for different sources and destinations. According to the
study on Internet round trip time, such as by CAIDA [28], in
the implementation, the value of � that can dominate most
cases is approximate 500 ms. However, the value of � may
vary for different applications. For example, the server may
almost always serve the clients in the same autonomous
system, or in a situation of content distribution network, the
servers may serve nearby clients. In such situations, the
application can choose a better value (which is smaller than
500 ms) for �. The value of � can also be changed
dynamically. For example, if our method is used with TCP,
then the estimated RTT for TCP can be directly used for
setting the value of �. In the paper, to keep the presentation
more focused, we do not include this option. Note that, in
some situations (such as flash crowd) the network latency
might be bigger than the upper bound, however, the
corresponding influence on the clock drift estimation will
keep decreasing as mentioned in the analysis.

When the proposed method is used with TCP, the
throughput can be affected by the congestion control
mechanism in TCP. When the client resumes data transmis-
sion after executing HOPERAA, unlike UDP, the TCP
transmission will begin with the slow start phase, meaning
the congestion window size of TCP will again increase from
1MSS. However, the influence to throughput is largely
amortized, since the frequency of HOPERAA executions
drops dramatically, due to the quick convergence of the clock
drift estimation. If it is desired to achieve even higher
throughput, a deployment option would be to let TCP keep
the congestion window size unchanged when the client
resynchronizes with the server, i.e., when HOPERAA is
invoked.

8 CONCLUSIONS

In this work, we investigate application-level protection
against DoS attacks. More specifically, supporting port-
hopping is investigated in the presence of timing un-
certainty and for enabling multiparty communications. We
present an adaptive algorithm for dealing with port
hopping in the presence of clock-rate drifts (such a drift
implies that the peer’s clock values may differ arbitrarily
with time). For enabling multiparty communications with
port-hopping, an algorithm is presented for a server to
support port hopping with many clients, without the
server needing to keep state for each client individually. A
main conclusion is that it is possible to employ the port-
hopping method in multiparty applications in a scalable
way. The method does not induce any need for group
synchronization which would have raised scalability
issues, but instead employs a simple interface of the server
with each client. The options for the adversary to launch a
directed attack to the application’s ports after eavesdrop-
ping is minimal, since the port hopping period of the
protocol is fixed. Another main conclusion is that the
adaptive method can work under timing uncertainty and
specifically fixed clock drifts.

An interesting issue to investigate further is to address
variable clock drifts and variable hopping frequencies as
well.

9 LIST OF NOTATIONS

. C: Client C.

. hcðtÞ: clock value of client C, when server’s clock
value is t.

. E: the exposure delay. The time it takes for the
adversary to get open ports information and get
ready to launch the directed attack to the ports.

. f : the pseudorandom function to generate the
hopping sequence(s).

. L: is the length of the server’s hopping period.

. N : size of the port number space.

. I: port interval in the port number space.

. k: number of intervals in the port number space.

. Q: the maximum number of ports that the adversary
can attack simultaneously.

. �: is maximum allowed value of the deviation
between the hopping times of the server and the client.

. �: the maximum message delivery latency.

. � : the length of the changing period of the guard ports.

. Lc: the length of the hopping period of client C.

. �c: clock drift of client C.

. �l: the lower bound of the client’s clock drift.

. �u: the upper bound of the client’s clock drift.

. �: the seed used by the pseudorandom function to
generate the hopping sequence.

. �: the integer used by the pseudorandom function to
generate a port number of a specific index in the
hopping sequence.

. W : number of hopping sequences used in the
BIGWHEEL mechanism.

. w: number of worker ports open simultaneously in
the BIGWHEEL mechanism.
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