
ContikiSec: A Secure Network Layer for Wireless
Sensor Networks under the Contiki Operating System

Lander Casado and Philippas Tsigas

 Department of Computer Science and Engineering, Chalmers University of Technology,

SE-412 96 Göteborg, Sweden
landerc@student.chalmers.se, tsigas@chalmers.se

Abstract. In this paper we introduce ContikiSec, a secure network layer for
wireless sensor networks, designed for the Contiki Operating System.
ContikiSec has a configurable design, providing three security modes starting
from confidentiality and integrity, and expanding to confidentiality,
authentication, and integrity. ContikiSec has been designed to balance low
energy consumption and security while conforming to a small memory
footprint. Our design was based on performance evaluation of existing security
primitives and is part of the contribution of this paper. Our evaluation was
performed in the Modular Sensor Board hardware platform for wireless sensor
networks, running Contiki. Contiki is an open source, highly portable operating
system for wireless sensor networks (WSN) that is widely used in WSNs.

Keywords: Wireless Sensor Networks Security, Link Layer Security

1 Introduction

Wireless sensor networks (WSNs) are unique networked systems, composed of
wireless sensor nodes deployed en masse. WSNs distinguish themselves from other
traditional wireless networks by relying on extremely constrained resources such as
energy, bandwidth, and the capability to process and store data [1]. The number of
applications that make use of WSNs is constantly increasing. The range of these
applications goes from military and societal security to habitat and environment
monitoring.

For many applications it is essential to provide secure communications. In general,
WSNs face the same security risks as conventional wired or wireless networks;
eavesdropping, packet injection, replay and denial of service attacks are some of the
common attacks in WSNs. Due to the inherent properties of sensor nodes, traditional
security protocols are not suitable for WSNs. A set of different attempts to implement
secure communication specifically for WSNs appeared recently in the literature, such
as TinySec [2], SenSec [1], MiniSec [3], and TinyECC [4]. All of these are designed
to run under TinyOS [5], a widely used operating system for sensor nodes.

2 Lander Casado and Philippas Tsigas

In 2004 Contiki was presented. Contiki is an open source, highly portable, multi-
tasking operating system for memory-efficient networked embedded systems and
wireless sensor networks [6]. Contiki has become quite popular and is attaining a
good position in the WSNs community. Contiki does not offer any confidentiality or
authenticity services for the communication between nodes. The current version
provides only cyclic redundancy checks (CRC-16) to achieve integrity.

In this paper we present ContikiSec, which is the first attempt, to the best of our
knowledge, to implement a secure network layer for wireless sensor network
architecture for Contiki. ContikiSec has a configurable design, providing three
security modes. ContikiSec offers confidentiality, authentication, and integrity in
communications under the Contiki operating system. We base our design on existing
security primitives that have been proven to provide security properties. We designed
a complete solution after careful performance characterization and analysis of the
existing security primitives that we selected. Our design tries to balance low energy
consumption and security for the Contiki OS. Our design was guided through a set of
performance evaluations in the MSB-430 platform, a Modular Sensor Board hardware
platform created by ScatterWeb. During this evaluation, which is part of the
contribution of the paper and is introduced in Section 4, we present the performance
and resource consumption of six different block ciphers in our network. The six block
ciphers that we considered are: AES, RC5, Skipjack, Triple-DES, Twofish, and
XTEA (please refer to Section 4 for the detailed definitions of these block ciphers).
The parameters that we focused on were the encryption speed, memory usage, and
energy consumption. Our results show that AES is the most suitable block cipher for
the WSNs under consideration. Consequently, we evaluate the performance of the
CBC–CS, CMAC, and OCB modes of operation (please refer to Section 4 for the
detailed definitions of these modes of operation). Based on the findings of our
evaluation results we then present and evaluate the design of ContikiSec.

The rest of the paper is organized as follows. In the next section, we describe the
security properties of a secure network layer for wireless sensor networks and we
review the related work in WSNs. In the same section, we briefly describe the
characteristics of the Modular Sensor Board hardware platform and the Contiki OS. In
Section 3 we describe the performance and measurement methodology that we used
to evaluate and analyze security primitives for our networks. The evaluation of the
selected security primitives (block ciphers and modes of operation) are described in
Section 4. In Section 5 we present the ContikiSec design, guided by the evaluation
presented in Section 4. Finally, the paper is concluded in Section 6.

2 Background

2.1 Security Properties

The security properties that should be provided by a secure network layer for wireless
sensor networks are described below.

ContikiSec: A Secure Network Layer for Wireless Sensor Networks under the Contiki
Operating System 3

Confidentiality. Confidentiality is a basic property of any secure communication
system. Confidentiality guarantees that information is kept secret from unauthorized
parties. The typical way to achieve confidentiality is by using symmetric key
cryptography for encrypting the information with a shared secret key. Symmetric key
algorithms could be divided into stream ciphers and block ciphers. In the case of
block ciphers, a mode of operation is needed to achieve semantic security.

Semantic Security. Semantic security guarantees that a passive adversary could not
extract partial information about the plaintext by observing the ciphertext [3]. Block
ciphers do not hide data patterns since identical plaintext blocks are encrypted into
identical ciphertext blocks. Thus, a special mode of operation and an initialization
vector (IV) are often used and are needed to provide some randomization. IVs have
the same length as the block and are typically added in clear to the ciphertext.

Integrity. Integrity guarantees that the packet has not been modified during the
transmission. It is typically achieved by including a message integrity code (MIC) or
a checksum in each packet. The MIC is computed by calling a cryptographic hash
function that detects malicious altering or accidental transmission errors. Checksums
are designed to detect only accidental transmission errors.

Authenticity. Data authenticity guarantees that legitimate parties should be able to
detect messages from unauthorized parties and reject them. The common way to
achieve authenticity is by including a message authentication code (MAC) in each
packet. The MAC of a packet is computed using a shared secret key, which could be
the same key used to encrypt the plaintext. In addition to authenticity, MACs also
provide integrity.

2.2 Existing Security Architectures for WSNs

In recent years, the increased need of security in WSNs has prompted research efforts
to develop and provide security modules for these platforms. These efforts go from
simple stream ciphers to public key cryptography architectures.

SPINS [7] is the first security architecture designed for WSNs. It was optimized for
resource-constrained environments and it is composed of two secure building blocks:
SNEP and µTesla. SPINS offers data confidentiality, two-party data authentication,
and data freshness. However, SNEP was unfortunately neither fully specified nor
fully implemented [2].

In 2004, TinySec [2] was presented as the first fully implemented link layer
security suite for WSNs. It is written in the nesC language and is incorporated in the
official TinyOS release. TinySec provides confidentiality, message authentication,
integrity, and semantic security. The default block cipher in TinySec is Skipjack, and
the selected mode of operation is CBC–CS. Skipjack has an 80-bit key length, which
is expected to make the cipher unsecure in the near future [8]. In order to generate a
MAC, it uses Cipher Block Chaining Message Authentication Code (CBC–MAC),

4 Lander Casado and Philippas Tsigas

which has security deficiencies [9]. It provides semantic security with an 8-byte
initialization vector, but adds only a 2-byte counter overhead per packet. TinySec
adds less than 10% energy, latency, and bandwidth overhead.

SenSec [1] is another cryptographic layer for WSNs, presented in 2005. It is
inspired by TinySec, and also provides confidentiality, access control, integrity, and
semantic security. It uses a variant of Skipjack as the block cipher, called Skipjack-X.
It has been conjectured that Skipjack-X is more secure than Skipjack, because it is not
vulnerable to brute force attacks. In addition, SenSec provides a resilient keying
mechanism.

MiniSec [3] is a secure sensor network communication architecture designed to run
under TinyOS. It offers confidentiality, authentication, and replay protection. MiniSec
has two operating modes, one tailored for single-source communications, and the
other tailored for multi-source broadcast communication. The authors of MiniSec
chose Skipjack as the block cipher, but they do not evaluate other block ciphers as
part of their design. The mode of operation selected in MiniSec is the OCB shared
key encryption mechanism, which simultaneously provides authenticity and
confidentiality.

TinyECC [4] is a configurable library for elliptical curve cryptography operations
in WSNs. It was released in 2008 and targets TinyOS. Compared with the other
attempts to implement public key cryptography in WSNs, TinyECC provides a set of
optimization switches that allow it to be configured with different resource
consumption levels. In TinyECC, the energy consumption of the cryptographic
operations is on the order of millijoules, whereas using symmetric key cryptography
is on the order of microjoules [10].

2.3 Sensor Network Platform

Our selected platform is composed of MSB-430 sensor nodes that run the Contiki
operating system. The main features of the hardware and the operating system are
described below.

Modular Sensor Board (MSB-430). Modular Sensor Board (MSB-430) is a
hardware platform for wireless sensor networks created by ScatterWeb [11]. The
MSB-430 contains the MSP430F1612 [12] microcontroller, and offers 60 KB of
memory divided into 5 KB RAM and 55 KB Flash-ROM. The MSP430F1612
achieves ultra-low power consumption with its five software selectable low power
modes of operation.

The MSB-430 is equipped with the Chipcon CC1020 [13] transceiver and a low-
noise amplifier. The radio frequency can be selected separately for receiving and
transmitting by software. This is an important feature for advanced routing schemes,
where multiple radio channels are used. The maximum transmission power is 8.6
dBm, and can be adjusted to reduce power consumption. While the maximum
transmission rate is 153.6 kbps, the board is optimized for channel conformity, which
allows a typical data rate of 19.2 kbps when using Manchester encoding.

ContikiSec: A Secure Network Layer for Wireless Sensor Networks under the Contiki
Operating System 5

The MSB-430 is supported by the open-source ScatterWeb operating system [11].
In this project the selected operating system is Contiki, which has a port to the MSB-
430 platform.

Contiki. Contiki is an open source, highly portable, multi-tasking operating system
for memory-efficient networked-embedded systems and wireless sensor networks [6].
Contiki is written in the C language and is designed for microcontrollers with a small
amount of memory. A common Contiki configuration uses 2 kilobytes of RAM and
40 kilobytes of ROM. Contiki has been ported to different hardware platforms, such
as MSP430, AVR, HC 12, and Z80.

Compared with other operating systems developed for resource-constrained
platforms, one of the most interesting features of Contiki is dynamic loading, the
ability to load and replace individual applications or services at run-time. Moreover,
Contiki offers a hybrid model with an event-driven kernel where preemptive multi-
threading is implemented as an application library [6]. Thus, multi-threading is only
used when the application needs it.

3 Performance and Measurement Methodology

Due to the extreme resource limitations of WSNs, it is essential to measure the
memory use, encryption speed, and energy consumption of the implemented security
primitives. In this section we describe accurate software-based methods to measure
parameters such as throughput, ROM, RAM, and energy consumption of WSN
applications. These methods are used in our evaluation later on.

3.1 Software Encryption Speed

In order to measure the encryption speed, one way is to use a high precision
oscilloscope to check the digital output pin. Another method is to use the Contiki real-
time timers. Measuring parameters externally is more complex and often less precise,
because the margin of error of the measuring instrument must be taken into account.
Therefore, we decided to use the Contiki real-time timers. Certainly, we achieved a
very high accuracy using this method.

The auxiliary clock (ACLK) is sourced from a 32768 Hz crystal oscillator. By
selecting this clock, we can choose different divisors, such as 1, 2, 4, or 8. Using 1 as
a divisor, we obtained the maximum resolution of 30.5176 microseconds. After some
experiments, we realized that we can achieve greater resolution by measuring the time
that is needed to complete the assignment statement. Using a simple loop, we
observed that, on average, a variable could store the same tick value 5.75 times.
Based on this observation, we defined the concept of µtick, which is the time needed
to do the assignment statement. Please note that the assignment is always an
assignment of a 2-byte value. By using this observation we obtain a resolution of

6 Lander Casado and Philippas Tsigas

5.3074 microseconds, an acceptable accuracy compared with related work [14], which
has a resolution of 5 microseconds.

3.2 ROM

Due to the limited memory resources of sensor nodes, the ROM-Flash used is an
important parameter that has to be considered in the design of a software security
layer in WSNs. Conventional cryptographic libraries are too big for embedded
devices, the code size of the selected cryptographic suite has to be on the order of a
few kilobytes. We are interested in measuring the memory used only by the
cryptographic layer and not by the whole program that includes the Contiki operating
system. To achieve this, we first compile the code with all the cryptographic functions
and measure the size using the msp430-size utility [15]. By repeating the same
process but without the cryptographic suite we can then calculate the memory
required by the cryptographic module by a simple subtraction. This value is the best
estimate of the ROM requirement of the security module.

3.3 RAM

RAM memory is even more limited than ROM-Flash. In the MSB-430 nodes, the
volatile memory is only 5 KB. This parameter is hard to measure because of the
variable size of the stack. The typical way to measure RAM memory is using a real-
time debugger and setting breakpoints in the code. Unfortunately, there is no
debugger available for the MSB-430 platform. Therefore, we have used the msp430-
ram-usage tool [15] that gives us an approximate value of the used RAM.

3.4 Energy Consumption

Energy is a very scarce resource in sensor nodes. Hence, it is crucial for the security
architecture to retain a low energy overhead. The unique characteristics of sensor
network applications make hardware-based energy measurement difficult [16]. In
addition, the cost of a hardware-based mechanism for energy measurement is too
high; the cost per hardware-unit is similar to the price of the sensor node [16].

In this project, we used Energest to evaluate the energy consumption of the
cryptographic primitives. Energest is a software-based on-line energy estimation
mechanism that estimates the energy consumption of a sensor node [17]. The
mechanism runs directly on the sensor nodes and provides real-time estimates of the
current energy consumption. Energest provides good estimates, but further study is
needed to quantify the accuracy of the mechanism [17]. This tool maintains a table
with entries for all components, such as CPU, radio transceiver, and LEDs. When a
component starts running, a counter starts to measure the estimated energy
consumption of this component. When the component is turned off, the timer is
stopped.

ContikiSec: A Secure Network Layer for Wireless Sensor Networks under the Contiki
Operating System 7

4. Performance Characterization of Security Primitives under
Contiki

4.1 Block Cipher Evaluation

The block ciphers that we have examined in this paper are briefly described below.

AES. Advanced Encryption Standard is a symmetric block cipher that can
encrypt/decrypt data blocks of 128 bits, using cipher keys with lengths of 128, 192,
and 256 bits. AES is based on the Rijndael algorithm, developed by Daemen and
Rijmen in 1998 [18].

RC5. RC5 is a patented symmetric block cipher designed by Ronald L. Rivest of
the MIT Computer Science and Artificial Intelligence Laboratory [19]. It is a
parameterized block cipher with a variable block size, a variable key size, and a
variable number of rounds.

Skipjack. Skipjack is an algorithm for encryption developed by the U.S. National
Security Agency (NSA) and was declassified in 1998 [20]. It operates on data blocks
of 64 bits with an 80-bit key.

Triple-DES. Triple-DES, also known as Triple Data Encryption Algorithm, is a
variant of the Data Encryption Standard (DES) algorithm that executes the core DES
algorithm three times [21]. It uses a 64-bit block size and a 168-bit key.

Twofish. Twofish is a symmetric block cipher with a block size of 128 bits and key
sizes of 128, 192, and 256 bits [22]. It was designed by Schneier et al. for the AES
contest.

XTEA. Extended Tiny Encryption Algorithm is a symmetric block cipher designed
by Wheeler and Needham of the Cambridge Computer Laboratory [23]. XTEA is
considered one of the fastest and most efficient algorithms. It operates on data blocks
of 64 bits with a 128-bit key.

We focused on C language implementations of these ciphers since our objective is
to integrate them into the Contiki operating system, which is designed in C. Due to
the computational and memory limitations of sensor nodes, we used the most
optimized, publicly available versions of each cipher.

In Figure 1, we show the time needed for encrypting and decrypting a single block
of plaintext. Additionally, we show the time needed to carry out the key expansion
process. For the context of these measurements it is important to emphasize the block
size with which each cipher operates: XTEA, Skipjack, and Triple-DES operate with
64-bit blocks; in contrast, AES and Twofish operate with 128-bit blocks.

8 Lander Casado and Philippas Tsigas

0

2

4

6

8

10

12

14

16

18

20

AES Skipjack 3DES XTEA RC5 Twofish

T
im

e
(m

s) Encryption

Decryption

Key expansion

Fig. 1. Encryption, decryption, and key expansion time.

From the figure above we can observe that Skipjack is the fastest cipher for
encrypting/decrypting a single block of plaintext. However, it is the slowest cipher for
the key expansion process. In our design, which we describe in the next section, we
can have the key expansion process executed only when the node is initialized.
Therefore, the time needed to do the key-setup process is not very significant. In order
to simplify the analysis while taking into account the block size, we show the
encryption throughput and the key length of each cipher in Table 1.

Table 1. Key length and throughput.

Cipher
Key

length
Throughput

(Kbps)
AES 128 56.39

Skipjack 80 145.45
3DES 168 12.01
XTEA 128 59.26
RC5 128 29.49

Twofish 128 10.31

As mentioned, Skipjack has by far the best throughput. Nevertheless, if greater

security is needed, we should choose a 128-bit key length cipher. In that case, AES
and XTEA are the most suitable ciphers; both have similar encryption throughput.
Their respective throughput is nearly three times smaller than the throughput of
Skipjack.

ContikiSec: A Secure Network Layer for Wireless Sensor Networks under the Contiki
Operating System 9

0

2000

4000

6000

8000

10000

12000

AES Skipjack 3DES XTEA RC5 Twofish

R
O

M
 (

b
yt

es
)

0

100

200

300

400

500

600

700

R
A

M
 (

b
yt

es
)

ROM

RAM

Fig. 2. ROM and RAM usage.

In Figure 2 we show the memory requirements for the ciphers under consideration.
We observe that Skipjack uses only 21 bytes of RAM, which is not a typical value. As
we mentioned, the obtained RAM usage is an approximation. When analyzing the
ROM usage, we see that XTEA uses the least ROM, followed by RC5 and Skipjack.

Energy is an extremely scarce resource in sensor nodes. Energy consumption of the
cryptographic primitives must be taken into account when designing a security layer
for WSNs. As expected, faster ciphers consume less energy. In Figure 3 we illustrate
the estimated energy consumption of each block cipher.

These experimental observations show that Skipjack is the most efficient block
cipher for our platform; in fact it is the best cipher with respect to throughput, RAM
usage, and energy consumption. However, with the rapid advancement in computing,
the 80-bit key in Skipjack is not completely secure. According to the claims of RSA
Security Labs, 80-bit keys would become crackable by 2010 [8]. Therefore, we
believe that Skipjack should not be the default block cipher in security architectures.

The experimental results also show that XTEA is also a very efficient block cipher
for WSNs. It achieves an acceptable throughput and it needs less ROM than any other
cipher. Although it has a 128-bit key, a related-key differential attack can break 27
out of 64 rounds of XTEA [24].

After Skipjack and XTEA, AES achieves the best results in our experiments. It
obtains a data throughput greater than radio rate, and reasonable memory usage and
energy consumption. Additionally, at present time AES is the block cipher approved
as a standard and recommended by NIST [25]. Moreover, Didla et al. demonstrated
that AES could be highly optimized for WSNs [14]. Unfortunately, their optimized
code is not in the public domain and is currently under a patent filing. Vitaletti and
Palombizio also showed that AES can be effectively used in WSNs, and they have
developed a module with AES for TinyOS [26].

Based on the results described above and taking into account the trade-off between
security and resource consumption, we selected AES as the most appropriate block
cipher for the WSNs under consideration.

10 Lander Casado and Philippas Tsigas

0

100

200

300

400

500

600

700

800

900

1000

AES Skipjack 3DES XTEA RC5 Twofish

E
n

er
g

y
co

n
su

m
p

ti
o

n
 (

n
J)

Encrypt

Decrypt

Fig. 3. Energy consumption for encrypting and decrypting one data block.

4.2 CBC-CS Evaluation

Cipher Block Chaining–Ciphertext Stealing (CBC–CS) is a mode of operation
proposed by NIST [27]. A mode of operation is an algorithm that features the use of a
symmetric block cipher. A mode of operation requires an initialization vector (IV),
which is a random block of data, to achieve the semantic security property. In Figure
4, we evaluate the mode CBC–CS with IVs of different sizes, using AES as the
underlying block cipher.

From our observations, the overhead produced by padding the plaintext to the
cipher block size is very important. Consequently, we should try to avoid encrypting
very short packets. In contrast, we observed that the power consumption for
encrypting messages larger than the block size is nearly zero. In addition, sending an
IV in each packet produces a significant increase in the energy consumption. The
length of the IV should be defined depending on the security level required. In our
opinion, a 2-byte IV makes a good balance between security and power consumption.
In typical WSN scenarios, few packets per minute are sent, and thus the time to
exhaust all the possible 216 IVs is quite long [26].

ContikiSec: A Secure Network Layer for Wireless Sensor Networks under the Contiki
Operating System 11

0

10

20

30

40

50

60

70

80

No sec 0-byte IV 2-byte IV 4-byte IV

In
cr

ea
se

 i
n

 e
n

er
g

y
co

n
su

m
p

ti
o

n
 (

%
)

10-byte payload

20-byte payload

40-byte payload

Fig. 4. The increase in energy consumption using CBC–CS–AES with different IVs.

4.3 CMAC Evaluation

Cipher-based Message Authentication Code (CMAC) is a cryptographic algorithm
that provides assurance of the authenticity and, hence, the integrity of binary data [9].
In order to evaluate the impact of including a MAC in each message we have to
define the length of the tag. Our experiments show that sending one byte has nearly
the same power consumption as calling the AES encryption function six times. Thus,
we have to limit the length of the MAC as much as possible. In TinySec [2] a 4-byte
MAC is selected to provide authentication and integrity. The authors claim that a 4-
byte MAC is appropriate for WSNs. In their paper they state: “Adversaries can try to
flood the channel with forgeries, but on a 19.2kb/s channel, one can only send 40
forgery attempts per second, so sending 231 packets at this rate would take over 20
months.” Furthermore, MiniSec and SenSec also use a 4-byte MAC. We also
implement a 4-byte MAC in each message and we evaluate the influence on power
consumption.

To determine the energy overhead of computing and adding a MAC in each
message we performed several experiments with different data length. In Table 2 we
show the obtained results.

Table 2. Energy consumption of sending packets with a MAC.

Payload
(bytes)

Mode Energy (uJ) Increase

10 Default 47.13 -
10 CMAC 53.43 13.37%
20 Default 82.48 -
20 CMAC 91.32 10.72%
40 Default 182.19 -
40 CMAC 195.75 7.44%

12 Lander Casado and Philippas Tsigas

We observe that the energy cost of computing the MAC is negligible compared with
the energy needed to send the MAC. The results demonstrate that the fixed overhead
of sending each message (turning on the radio, sending the preamble and sync word)
generally discourages short messages [2].

4.4 OCB Evaluation

Offset Codebook Mode (OCB) is a mode of operation that simultaneously provides
confidentiality and authenticity [28]. When the application under consideration
demands confidentiality and authenticity, OCB is claimed to be the most appropriate
mode for WSNs in [3] and [8]. To evaluate the efficiency of OCB in our platform, we
implemented this authenticated-encryption algorithm and compared it with the CBC–
CS and CMAC modes.

0,00

5,00

10,00

15,00

20,00

25,00

30,00

10 20 40

Payload (bytes)

T
im

e
(m

s)

CBC-CS

CMAC

CBC-CS + CMAC

OCB

Fig. 5. Comparison of CBC–CS, CMAC, and OCB.

As can be seen in Figure 5, OCB is faster than CBC–CS encryption combined with
the CMAC. The results suggest that OCB is even more efficient with larger data
lengths. Therefore, our analysis indicates that OCB is the best choice to select from
when confidentiality and authenticity are required in the WSNs under consideration.

5. ContikiSec Design

Guided by the study, as presented in the previous section, we are now ready to put all
the pieces together and describe the complete design of our secure network layer for
wireless sensor networks under the Contiki operating system.

The Contiki protocol stack is divided in four layers: the physical layer, the data
link layer, the communication layer, and the application layer. In WSNs, the typical
traffic pattern is the many-to-one communication pattern. Because of that, in order to
avoid routing packets injected by an adversary to waste energy and bandwidth,

ContikiSec: A Secure Network Layer for Wireless Sensor Networks under the Contiki
Operating System 13

security should be implemented at the link layer [2]. Contiki provides three media
access control protocols for our platform: X-MAC, LLP, and NULLMAC. Currently,
we have implemented ContikiSec under NULLMAC, but it could be ported to run
under the other two protocols. In Figure 6 we show the Contiki protocol stack
including ContikiSec.

Application

uIP Rime

X-MAC LLP NULLMAC

ContikiSec

Radio

Fig. 6. The Contiki stack with ContikiSec.

ContikiSec supports three security modes: confidentiality-only (ContikiSec-Enc),
authentication-only (ContikiSec-Auth), and authentication with encryption
(ContikiSec-AE). We believe that a configurable design is especially desirable for
WSNs, as WSNs are expected to support many different application scenarios with
different security requirements. ContikiSec offers the programmer the choice to select
between three security levels depending on the needs of the application on hand. In
Figure 7, we show the default Contiki packet format for the CC1020 radio and the
packet format with different security configurations.

PBL S H PAYLOAD C T

6 2 2 0..128 2 2 Contiki packet

PBL S H IV PAYLOAD C T

6 2 2 2 0..128 2 2 ContikiSec-Enc

PBL S H PAYLOAD MAC T

6 2 2 0..128 4 2 ContikiSec-Auth

PBL S H IV PAYLOAD MAC T

6 2 2 2 0..128 4 2 ContikiSec-AE

Fig. 7. ContikiSec packet formats compared to the Contiki packet format.

As we can observe, ContikiSec-Enc includes a 2-byte initialization vector (IV) in
each packet, producing a 2-byte overhead. The length of the IV has a great impact for
security and energy consumption. Longer IVs are more secure, but the energy cost of
sending them is too high for WSNs. In Section 4 we argue that a 2-byte IV makes the
best balance between security and energy consumption. The IV is created using the
Contiki library that generates random numbers. For the seed value to initialize the
random generator, we used the node identifier. Hence each node initializes the
random generator differently. The payload is encrypted using the CBC–CS mode of
operation with AES as the underlying block cipher. Moreover, we assume that all the
nodes in the network are provided with a single 128-bit key. The key-expansion
process is performed when the node is initialized and then stored in the RAM. In

14 Lander Casado and Philippas Tsigas

addition, the CC1020 radio driver adds a 2-byte checksum field to each packet.
Consequently, ContikiSec-Enc supports confidentiality and integrity.

ContikiSec-Auth is designed for applications where confidentiality is not critical,
but where it is crucial to know the originator of each message. Contiki provides a 16-
bit cyclic redundancy check (CRC) function to calculate a 2-byte checksum and
achieve integrity. However, the checksum is designed to detect only accidental
modifications of the data, whereas a MAC also detects intentional unauthorized
modifications of the data. Hence, ContikiSec-Auth provides authentication and
integrity by removing the checksum field from the packet and instead including a
MAC. To generate a MAC, ContikiSec-Auth uses the CMAC algorithm benchmarked
in Section 4, which is currently the mode for authentication recommended by NIST
[9].

Finally, ContikiSec-AE provides the highest level of security, achieving
confidentiality, authentication, and integrity. As we demonstrate in Section 4, the
OCB mode is the most efficient algorithm when those properties are required.
Consequently, ContikiSec-AE uses the OCB mode with AES as the underlying block
cipher, using a single shared-key for encryption and authentication. ContikiSec-AE
increases the packet length by 4 bytes. In Figure 8 we show the energy consumption
of the three modes of ContikiSec.

0

50

100

150

200

250

20 30 40

Payload (bytes)

E
n

er
g

y
co

n
su

m
p

ti
o

n
 (

u
J)

Contiki

ContikiSec-Enc

ContikiSec-Auth

ContikiSec-AE

Fig. 8. Energy consumption of ContikiSec modes compared with the default Contiki
configuration.

As mentioned, and shown in Figure 4, the energy consumption for cryptographic
operations is negligible compared to the energy needed for sending each extra byte.
Hence, as the size of the payload is increased, the impact of sending extra bytes
decreases.

 Without security, the energy consumption ranges from 82 µJ to 182 µJ for packets
with payloads of 20 to 40 bytes. Despite the fact that ContikiSec-Enc and Contiki-
Auth have different computational costs, we observe the same energy consumption
because both incur a 2-byte overhead. Finally, ContikiSec-AE is the mode with the

ContikiSec: A Secure Network Layer for Wireless Sensor Networks under the Contiki
Operating System 15

highest energy requirement, consuming around 15% more than Contiki in default
mode for data messages with payloads of 40 bytes.

6. Conclusion

We present ContikiSec, which is a secure network layer for wireless sensor networks
under the Contiki operating system. We have designed ContikiSec as a complete and
configurable solution, providing three security modes, starting from confidentiality
and integrity, and increasing to confidentiality, authentication, and integrity. Our
design was governed by a careful selection and performance analysis of existing
security primitives. Our design tries to achieve low energy consumption without
compromising security. Our evaluation was carried on the MSB-430 platform, a
Modular Sensor Board hardware platform created by ScatterWeb.

In the future we plan to study the boundaries of using asymmetric keys in our
framework and also examine the effect of compromised nodes in secure network layer
architectures for wireless sensor networks.

References

1. Li T., Wu H., Wang X., Bao F.: SenSec Design. Technical Report-TR v1.1. InfoComm
Security Department, Institute for Infocomm Research (2005)

2. Karlof C., Sastry N., Wagner D.: TinySec: a Link Layer Security Architecture for Wireless
Sensor Networks. In: Proceedings of the 2nd International Conference on Embedded
Networked Sensor Systems (SenSys 2004), pp. 162--175. Baltimore (2004)

3. Luk, M., Mezzour, G., Perrig, A., Gligor, V.: MiniSec: a Secure Sensor Network
Communication Architecture. In: Proceedings of the 6th International Conference on
Information Processing in Sensor Networks (IPSN 2007), pp. 479-488. ACM, New York
(2007)

4. Liu A., Ning P.: TinyECC: A Configurable Library for Elliptic Curve Cryptography in
Wireless Sensor Networks. In: Proceedings of the 7th International Conference on
Information Processing in Sensor Networks (IPSN 2008), SPOTS Track, pp. 245--256,
(2008)

5. TinyOS, http://www.tinyos.net
6. Dunkels A., Grönvall B., Voigt T.: Contiki - a Lightweight and Flexible Operating System

for Tiny Networked Sensors. In: Proceedings of the 29th Annual IEEE International
Conference on Local Computer Networks, pp. 455--462. IEEE Computer Society,
Washington (2004)

7. Perrig A., Szewczyk R., Wen V., Culler D., Tygar J. D.: SPINS: Security Protocols for
Sensor Networks. In: Proceedings of the 7th annual international conference on Mobile
computing and networking, pp. 189--199. ACM, New York (2001)

8. Jinwala D., Patel D., Dasgupta, K. S.: Optimizing the Block Cipher and Modes of
Operations Overhead at the Link Layer Security Framework in the Wireless Sensor
Networks. In: Proceedings of the 4th International Conference on Information Systems
Security. LNCS, vol. 5352, pp. 252--272. Springer (2008)

9. National Institute of Standards and Technology, Computer Security Division.
Recommendation for Block Cipher Modes of Operation: The CMAC Mode for
Authentication, Special Publication 800-38B (2005)

16 Lander Casado and Philippas Tsigas

10. Chang, C., Nagel, D.J., Muftic, S.: Measurement of Energy Costs of Security in Wireless
Sensor Nodes. In: Proceedings of 16th IEEE International Conference on Computer
Communications and Networks (ICCCN 2007), pp. 95--102. (2007)

11. ScatterWeb, MSB-430datasheet,
http://www.scatterweb.com/content/products/MSB_en.html

12. Texas Instruments, MSP430F1612 datasheet,
http://focus.ti.com/mcu/docs/mcuprodoverview.tsp?sectionId=95&tabId=140&familyId=34
2

13. Chipcon, CC1020 datasheet, http://focus.ti.com/docs/prod/folders/print/cc1020.html
14. Optimizing AES for Embedded Devices and Wireless Sensor Networks. In: Presented at 4th

International Conference on Testbeds and Research Infrastructures for the Development of
Networks and Communities (TridentCom) , Innsbruck, Austria (2008)

15. MSPGCC, http://mspgcc.sourceforge.net/
16. Jiang X., Dutta P., Culler D., Stoica, I.: Micro Power Meter for Energy Monitoring of

Wireless Sensor Networks at Scale. In: Proceedings of the 6th International Conference on
Information Processing in Sensor Networks (IPSN'07), pp. 185--195. ACM, New York
(2007)

17. Dunkels A., Österlind F., Tsiftes N., He Z.: Software-based Sensor Node Energy
Estimation. In: Proceedings of the 5th international conference on Embedded networked
sensor systems (SenSys 2007), pp.409--410. ACM, New York (2007)

18. Daemen J., Rijmen V.: The Design of Rijndael: AES - The Advanced Encryption Standard.
Springer-Verlag (2002)

19. Rivest R.: The RC5 Encryption Algorithm. In: Proceedings of the 1994 Leuven Workshop
on Fast Software Encryption, pp. 86-96. Springer (1995)

20. National Institute of Standards and Technology, Computer Security Division. SKIPJACK
and KEA Algorithm Specifications. (1998)

21. National Institute of Standards and Technology, Computer Security Division.
Recommendation for the Triple Data Encryption Algorithm (TDEA) Block Cipher, Special
Publication 800-67, Version 1.1 (2004)

22. Schneier B., Kelsey J., Whiting D., Wagner D., Hall C., Ferguson N.: The Twofish
Encryption Algorithm. John Wiley & Sons (1998)

23. Needham R., Wheeler D.: Tea extensions. Technical report, Computer Laboratory,
University of Cambridge (1997).

24. Ko Y., Hong S., Lee W., Lee S., Lim J.: Related Key Differential Attacks on 27 Rounds of
XTEA and Full-Round of GOST. In: Proceedings of FSE 2004. LNCS, vol. 3017, pp. 299--
316. Springer (2004)

25. National Institute of Standards and Technology, Computer Security Division, AES standard,
http://csrc.nist.gov/archive/aes/index.html

26. Vitaletti A., Palombizio G.: Rijndael for Sensor Networks: Is Speed the Main Issue?. In:
Proceedings of the 2nd Workshop on Cryptography for Ad-hoc Networks (WCAN 2006).
ENTCS, vol. 171, pp. 71--81. (2007)

27. National Institute of Standards and Technology, Computer Security Division. Proposal To
Extend CBC Mode By “Ciphertext Stealing”. (2007)

28. Rogaway, P., Bellare, M., Black, J.: OCB: A Block-Cipher Mode of Operation for Efficient
Authenticated Encryption. In: ACM Transactions on Information and System Security
(TISSEC), pp. 365-403. ACM, New York (2003)

