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Abstract. In this paper we introduce ContikiSec, a secure network layer for
wireless sensor networks, designed for the Contiki Operating System.
ContikiSec has a configurable design, providing three security maaltisgst
from confidentiality and integrity, and expanding to confidentiality,
authentication, and integrity. ContikiSec has been designed to balawc
energy consumption and security while conforming to a small memory
footprint. Our design was based on performance evaluation of existingtge
primitives and is part of the contribution of this paper. Our evialuawvas
performed in the Modular Sensor Board hardware platform for wiralessor
networks, running Contiki. Contiki is an open source, highly portable apgrat
system for wireless sensor networks (WSN) that is widedg urs WSNSs.
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1 Introduction

Wireless sensor networks (WSNs) are unique netwdorkgstems, composed of
wireless sensor nodes deployed en masse. WSNsgilisth themselves from other
traditional wireless networks by relying on extréyneonstrained resources such as
energy, bandwidth, and the capability to process store data [1]. The number of
applications that make use of WSNs is constanttyeiasing. The range of these
applications goes from military and societal segutdo habitat and environment
monitoring.

For many applications it is essential to provideuse communications. In general,
WSNs face the same security risks as conventionadwor wireless networks;
eavesdropping, packet injection, replay and desfiaervice attacks are some of the
common attacks in WSNs. Due to the inherent praggedf sensor nodes, traditional
security protocols are not suitable for WSNs. Adfdifferent attempts to implement
secure communication specifically for WSNs appeaeeéntly in the literature, such
as TinySec [2], SenSec [1], MiniSec [3], and TinyE(#]. All of these are designed
to run under TinyOS [5], a widely used operatingtegn for sensor nodes.
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In 2004 Contiki was presented. Contiki is an opeurse, highly portable, multi-
tasking operating system for memory-efficient nekead embedded systems and
wireless sensor networks [6]. Contiki has becomigeqoopular and is attaining a
good position in the WSNs community. Contiki does offer any confidentiality or
authenticity services for the communication betwewmles. The current version
provides only cyclic redundancy checks (CRC-1&dbieve integrity.

In this paper we present ContikiSec, which is &t fttempt, to the best of our
knowledge, to implement a secure network layer Woreless sensor network
architecture for Contiki. ContikiSec has a confahle design, providing three
security modes. ContikiSec offers confidentialipythentication, and integrity in
communications under the Contiki operating systéfa.base our design on existing
security primitives that have been proven to prexsdcurity properties. We designed
a complete solution after careful performance dttargation and analysis of the
existing security primitives that we selected. @esign tries to balance low energy
consumption and security for the Contiki OS. Ousigle was guided through a set of
performance evaluations in the MSB-430 platfornvjadular Sensor Board hardware
platform created by ScatterWeb. During this evadumat which is part of the
contribution of the paper and is introduced in Becl, we present the performance
and resource consumption of six different blockeis in our network. The six block
ciphers that we considered are: AES, RC5, Skipjdaiple-DES, Twofish, and
XTEA (please refer to Section 4 for the detailefirdiéons of these block ciphers).
The parameters that we focused on were the enorygfieed, memory usage, and
energy consumption. Our results show that AESasntiost suitable block cipher for
the WSNs under consideration. Consequently, weuatalthe performance of the
CBC-CS, CMAC, and OCB modes of operation (pleaser t® Section 4 for the
detailed definitions of these modes of operatiddsed on the findings of our
evaluation results we then present and evaluatddbign of ContikiSec.

The rest of the paper is organized as followshknriext section, we describe the
security properties of a secure network layer firel@ss sensor networks and we
review the related work in WSNs. In the same seactwe briefly describe the
characteristics of the Modular Sensor Board hardvtatform and the Contiki OS. In
Section 3 we describe the performance and measatem&thodology that we used
to evaluate and analyze security primitives for natworks. The evaluation of the
selected security primitives (block ciphers and e®df operation) are described in
Section 4. In Section 5 we present the ContikiSesigsh, guided by the evaluation
presented in Section 4. Finally, the paper is agfed in Section 6.

2 Background

2.1 Security Properties

The security properties that should be provided lsgcure network layer for wireless
sensor networks are described below.
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Confidentiality. Confidentiality is a basic property of any secemmmunication
system. Confidentiality guarantees that informai®hkept secret from unauthorized
parties. The typical way to achieve confidentialisy by using symmetric key
cryptography for encrypting the information wittslaared secret key. Symmetric key
algorithms could be divided into stream ciphers aiatk ciphers. In the case of
block ciphers, a mode of operation is needed t@eaelsemantic security.

Semantic Security. Semantic security guarantees that a passive adyersuld not
extract partial information about the plaintext ddyserving the ciphertext [3]. Block
ciphers do not hide data patterns since identizhtext blocks are encrypted into
identical ciphertext blocks. Thus, a special mofi@meration and an initialization
vector (V) are often used and are needed to peos@mne randomization. IVs have
the same length as the block and are typically ddaelear to the ciphertext.

Integrity. Integrity guarantees that the packet has not bmedified during the
transmission. It is typically achieved by includiagnessage integrity code (MIC) or
a checksum in each packet. The MIC is computeddiing a cryptographic hash
function that detects malicious altering or acctdetransmission errors. Checksums
are designed to detect only accidental transmissicors.

Authenticity. Data authenticity guarantees that legitimate parsihould be able to
detect messages from unauthorized parties andt rfjem. The common way to
achieve authenticity is by including a message emnttbation code (MAC) in each
packet. The MAC of a packet is computed using aeshaecret key, which could be
the same key used to encrypt the plaintext. Inteshdio authenticity, MACs also
provide integrity

2.2 Existing Security Architecturesfor WSNs

In recent years, the increased need of secury@Ns has prompted research efforts
to develop and provide security modules for thdatfggms. These efforts go from
simple stream ciphers to public key cryptograplohaectures.

SPINS [7] is the first security architecture desigrior WSNSs. It was optimized for
resource-constrained environments and it is contpboééwo secure building blocks:
SNEP and uTesla. SPINS offers data confidentiatityg-party data authentication,
and data freshness. However, SNEP was unfortunatther fully specified nor
fully implemented [2].

In 2004, TinySec [2] was presented as the firslyfimplemented link layer
security suite for WSNs. It is written in the nelsiguage and is incorporated in the
official TinyOS release. TinySec provides confidality, message authentication,
integrity, and semantic security. The default blegéher in TinySec is Skipjack, and
the selected mode of operation is CBC-CS. Skipjecskan 80-bit key length, which
is expected to make the cipher unsecure in the fnaae [8]. In order to generate a
MAC, it uses Cipher Block Chaining Message Autheatton Code (CBC-MAC),
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which has security deficiencies [9]. It providesms@tic security with an 8-byte
initialization vector, but adds only a 2-byte cambverhead per packet. TinySec
adds less than 10% energy, latency, and bandwidithead.

SenSec [1] is another cryptographic layer for WSpiesented in 2005. It is
inspired by TinySec, and also provides confideityiahccess control, integrity, and
semantic security. It uses a variant of Skipjackhasblock cipher, called Skipjack-X.
It has been conjectured that Skipjack-X is moreisethan Skipjack, because it is not
vulnerable to brute force attacks. In addition, Sam provides a resilient keying
mechanism.

MiniSec [3] is a secure sensor network communicagicchitecture designed to run
under TinyOS. It offers confidentiality, authentioa, and replay protection. MiniSec
has two operating modes, one tailored for singlee®® communications, and the
other tailored for multi-source broadcast commutivca The authors of MiniSec
chose Skipjack as the block cipher, but they doavatluate other block ciphers as
part of their design. The mode of operation setbateMiniSec is the OCB shared
key encryption mechanism, which simultaneously ples authenticity and
confidentiality.

TinyECC [4] is a configurable library for elliptitaurve cryptography operations
in WSNSs. It was released in 2008 and targets TinyO&mpared with the other
attempts to implement public key cryptography in NéSTinyECC provides a set of
optimization switches that allow it to be configdrenith different resource
consumption levels. In TinyECC, the energy consionptof the cryptographic
operations is on the order of millijoules, whereafg symmetric key cryptography
is on the order of microjoules [10].

2.3 Sensor Network Platform

Our selected platform is composed of MSB-430 semsaies that run the Contiki
operating system. The main features of the hardwarkthe operating system are
described below.

Modular Sensor Board (MSB-430). Modular Sensor Board (MSB-430) is a
hardware platform for wireless sensor networks tectdy ScatterWeb [11]. The
MSB-430 contains the MSP430F1612 [12] microcorgiplland offers 60 KB of
memory divided into 5 KB RAM and 55 KB Flash-ROMh& MSP430F1612
achieves ultra-low power consumption with its fiseftware selectable low power
modes of operation.

The MSB-430 is equipped with the Chipcon CC102Q fi&nsceiver and a low-
noise amplifier. The radio frequency can be seteceparately for receiving and
transmitting by software. This is an important featfor advanced routing schemes,
where multiple radio channels are used. The maxinamsmission power is 8.6
dBm, and can be adjusted to reduce power consumpt¢hile the maximum
transmission rate is 153.6 kbps, the board is apgichfor channel conformity, which
allows a typical data rate of 19.2 kbps when usfiagchester encoding.
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The MSB-430 is supported by the open-source Sudtbroperating system [11].
In this project the selected operating system isti&ip which has a port to the MSB-
430 platform.

Contiki. Contiki is an open source, highly portable, mwdgking operating system
for memory-efficient networked-embedded systemswineless sensor networks [6].
Contiki is written in the C language and is des@jfe@ microcontrollers with a small

amount of memory. A common Contiki configuratioresi® kilobytes of RAM and

40 kilobytes of ROM. Contiki has been ported tdatiént hardware platforms, such
as MSP430, AVR, HC 12, and Z80.

Compared with other operating systems developed résource-constrained
platforms, one of the most interesting feature<Cohtiki is dynamic loading, the
ability to load and replace individual applicatiomsservices at run-time. Moreover,
Contiki offers a hybrid model with an event-drivkarnel where preemptive multi-
threading is implemented as an application libf&ly Thus, multi-threading is only
used when the application needs it.

3 Performance and M easurement Methodology

Due to the extreme resource limitations of WSNsisitessential to measure the
memory use, encryption speed, and energy consumgfithe implemented security
primitives. In this section we describe accuratfivsre-based methods to measure
parameters such as throughput, ROM, RAM, and eneansumption of WSN
applications. These methods are used in our evatulater on.

3.1 Software Encryption Speed

In order to measure the encryption speed, one watoiuse a high precision
oscilloscope to check the digital output pin. Arestmethod is to use the Contiki real-
time timers. Measuring parameters externally iserammplex and often less precise,
because the margin of error of the measuring imstni must be taken into account.
Therefore, we decided to use the Contiki real-ttmeers. Certainly, we achieved a
very high accuracy using this method.

The auxiliary clock (ACLK) is sourced from a 3276& crystal oscillator. By
selecting this clock, we can choose different dirds such as 1, 2, 4, or 8. Using 1 as
a divisor, we obtained the maximum resolution 063@6 microseconds. After some
experiments, we realized that we can achieve greadelution by measuring the time
that is needed to complete the assignment statenbksihg a simple loop, we
observed that, on average, a variable could stiesame tick value 5.75 times.
Based on this observation, we defined the conceptick which is the time needed
to do the assignment statement. Please note tleataskignment is always an
assignment of a 2-byte value. By using this obsewave obtain a resolution of
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5.3074 microseconds, an acceptable accuracy cothpatterelated work [14], which
has a resolution of 5 microseconds.

32 ROM

Due to the limited memory resources of sensor notes ROM-Flash used is an

important parameter that has to be considered endtésign of a software security
layer in WSNs. Conventional cryptographic librariaee too big for embedded

devices, the code size of the selected cryptogeaglite has to be on the order of a
few kilobytes. We are interested in measuring themary used only by the

cryptographic layer and not by the whole prograat thcludes the Contiki operating

system. To achieve this, we first compile the caith all the cryptographic functions

and measure the size using timsp430-sizeutility [15]. By repeating the same

process but without the cryptographic suite we taen calculate the memory

required by the cryptographic module by a simpletraction. This value is the best
estimate of the ROM requirement of the security nted

33 RAM

RAM memory is even more limited than ROM-Flash.the MSB-430 nodes, the
volatile memory is only 5 KB. This parameter is chdo measure because of the
variable size of the stack. The typical way to nmea®RAM memory is using a real-
time debugger and setting breakpoints in the cddifortunately, there is no
debugger available for the MSB-430 platform. Theref we have used tmasp430-
ram-usageool [15] that gives us an approximate value ofubed RAM.

3.4 Energy Consumption

Energy is a very scarce resource in sensor nodasel it is crucial for the security
architecture to retain a low energy overhead. Thigue characteristics of sensor
network applications make hardware-based energysumement difficult [16]. In
addition, the cost of a hardware-based mechanigneriergy measurement is too
high; the cost per hardware-unit is similar to piee of the sensor node [16].

In this project, we usednergestto evaluate the energy consumption of the
cryptographic primitivesEnergestis a software-based on-line energy estimation
mechanism that estimates the energy consumptiom skensor node [17]. The
mechanism runs directly on the sensor nodes andde® real-time estimates of the
current energy consumptioBnergestprovides good estimates, but further study is
needed to quantify the accuracy of the mechanisth [his tool maintains a table
with entries for all components, such as CPU, radiasceiver, and LEDs. When a
component starts running, a counter starts to measbe estimated energy
consumption of this component. When the componsruined off, the timer is
stopped.
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4. Performance Characterization of Security Primitives under
Contiki

4.1 Block Cipher Evaluation
The block ciphers that we have examined in thisepape briefly described below.

AES Advanced Encryption Standard is a symmetric blagjgher that can
encrypt/decrypt data blocks of 128 bits, using eipkeys with lengths of 128, 192,
and 256 bhits. AES is based on the Rijndael algarjtdeveloped by Daemen and
Rijmen in 1998 [18].

RC5.RC5 is a patented symmetric block cipher designe&onald L. Rivest of
the MIT Computer Science and Artificial Intelligend.aboratory [19]. It is a
parameterized block cipher with a variable blockesia variable key size, and a
variable number of rounds.

Skipjack.Skipjack is an algorithm for encryption developedtbe U.S. National
Security Agency (NSA) and was declassified in 188. It operates on data blocks
of 64 bits with an 80-bit key.

Triple-DES Triple-DES, also known as Triple Data Encryptiélgorithm, is a
variant of the Data Encryption Standard (DES) athor that executes the core DES
algorithm three times [21]. It uses a 64-bit bletke and a 168-bit key.

Twofish Twofish is a symmetric block cipher with a blogike of 128 bits and key
sizes of 128, 192, and 256 bits [22]. It was desighy Schneieet al. for the AES
contest.

XTEA Extended Tiny Encryption Algorithm is a symmetbiock cipher designed
by Wheeler and Needham of the Cambridge Computepotadory [23]. XTEA is
considered one of the fastest and most efficiggardhms. It operates on data blocks
of 64 bits with a 128-bit key.

We focused on C language implementations of thggeers since our objective is
to integrate them into the Contiki operating systerhich is designed in C. Due to
the computational and memory limitations of sensodes, we used the most
optimized, publicly available versions of each &ph

In Figure 1, we show the time needed for encrypéing decrypting a single block
of plaintext. Additionally, we show the time neededcarry out the key expansion
process. For the context of these measuremersténifpiortant to emphasize the block
size with which each cipher operates: XTEA, Skikjaand Triple-DES operate with
64-bit blocks; in contrast, AES and Twofish openaith 128-bit blocks.
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Fig. 1. Encryption, decryption, and key expansion time.

From the figure above we can observe that Skipjackhe fastest cipher for
encrypting/decrypting a single block of plaintaibwever, it is the slowest cipher for
the key expansion process. In our design, whicldeseribe in the next section, we
can have the key expansion process executed ongn wiine node is initialized.
Therefore, the time needed to do the key-setupagmois not very significant. In order
to simplify the analysis while taking into accouthte block size, we show the
encryption throughput and the key length of eapheai in Table 1.

Table 1. Key length and throughput.

. Ke Throughput
Cipher Ieng);h (Kbgs)p
AES 128 | 56.39
Skipjlack| 80|  145.45
3DES | 168 1201
XTEA | 128 | 59.26
RC5 128 | 29.49
Twofish | 128 | 10.31

As mentioned, Skipjack has by far the best throughNevertheless, if greater
security is needed, we should choose a 128-bitldmyth cipher. In that case, AES
and XTEA are the most suitable ciphers; both hamelas encryption throughput.
Their respective throughput is nearly three timesalker than the throughput of
Skipjack.
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Fig. 2. ROM and RAM usage.

In Figure 2 we show the memory requirements forciplers under consideration.
We observe that Skipjack uses only 21 bytes of RAKIich is not a typical value. As
we mentioned, the obtained RAM usage is an appratdam. When analyzing the
ROM usage, we see that XTEA uses the least RONbwed by RC5 and Skipjack.

Energy is an extremely scarce resource in sensigsnd&nergy consumption of the
cryptographic primitives must be taken into accowhen designing a security layer
for WSNs. As expected, faster ciphers consumedessgy. In Figure 3 we illustrate
the estimated energy consumption of each blockeciph

These experimental observations show that Skipjadkie most efficient block
cipher for our platform; in fact it is the best legy with respect to throughput, RAM
usage, and energy consumption. However, with thiel @dvancement in computing,
the 80-bit key in Skipjack is not completely secukecording to the claims of RSA
Security Labs, 80-bit keys would becoroeackable by 2010 [8]. Therefore, we
believe that Skipjack should not be the defaultblapher in security architectures.

The experimental results also show that XTEA is alvery efficient block cipher
for WSNs. It achieves an acceptable throughputitameleds less ROM than any other
cipher. Although it has a 128-bit key, a relateg-kifferential attack can break 27
out of 64 rounds of XTEA [24].

After Skipjack and XTEA, AES achieves the best lssin our experiments. It
obtains a data throughput greater than radio eatd,reasonable memory usage and
energy consumption. Additionally, at present timigSAis the block cipher approved
as a standard and recommended by NIST [25]. More®idla et al. demonstrated
that AES could be highly optimized for WSNs [14]nfortunately, their optimized
code is not in the public domain and is currentiger a patent filing. Vitaletti and
Palombizio also showed that AES can be effectivedgd in WSNs, and they have
developed a module with AES for TinyOS [26].

Based on the results described above and takingaotount the trade-off between
security and resource consumption, we selected a&E e most appropriate block
cipher for the WSNs under consideration.
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Fig. 3. Energy consumption for encrypting and decrypting one data block.

42 CBC-CSEvaluation

Cipher Block Chaining—Ciphertext Stealing (CBC-CS)a mode of operation
proposed by NIST [27]. A mode of operation is agoathm that features the use of a
symmetric block cipher. A mode of operation regsiiem initialization vector (IV),
which is a random block of data, to achieve theas#im security property. In Figure
4, we evaluate the mode CBC-CS with IVs of différsizes, using AES as the
underlying block cipher.

From our observations, the overhead produced bylipgdthe plaintext to the
cipher block size is very important. Consequentlg, should try to avoid encrypting
very short packets. In contrast, we observed that power consumption for
encrypting messages larger than the block sizeaslynzero. In addition, sending an
IV in each packet produces a significant increas¢he energy consumption. The
length of the IV should be defined depending ondbeurity level required. In our
opinion, a 2-byte IV makes a good balance betweenrity and power consumption.
In typical WSN scenarios, few packets per minute s&nt, and thus the time to
exhaust all the possiblé®aVs is quite long [26].
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43 CMAC Evaluation

Cipher-based Message Authentication Code (CMACA isryptographic algorithm
that provides assurance of the authenticity and¢éiethe integrity of binary data [9].
In order to evaluate the impact of including a MACeach message we have to
define the length of the tag. Our experiments shitat sending one byte has nearly
the same power consumption as calling the AES etiory function six times. Thus,
we have to limit the length of the MAC as much assgible. In TinySec [2] a 4-byte
MAC is selected to provide authentication and iritggThe authors claim that a 4-
byte MAC is appropriate for WSNs. In their papegitistate: Adversaries can try to
flood the channel with forgeries, but on a 19.2kitisnnel, one can only send 40
forgery attempts per second, so sendiffgp2ckets at this rate would take over 20
months. Furthermore, MiniSec and SenSec also use a 4-bj#eC. We also
implement a 4-byte MAC in each message and we atalilhe influence on power
consumption.

To determine the energy overhead of computing aiding a MAC in each
message we performed several experiments withréiffedata length. In Table 2 we
show the obtained results.

Table 2. Energy consumption of sending packets with a MAC.

l?zil/ltcg)d Mode Energy (uJ) Increase
10 Default 47.13 -
10 CMAC 53.43 13.37%
20 Default 82.48 -
20 CMAC 91.32 10.72%
40 Default 182.19 -
40 CMAC 195.75 7.44%
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We observe that the energy cost of computing theCMg\negligible compared with
the energy needed to send the MAC. The results dsinade that the fixed overhead
of sending each message (turning on the radio,irsgitide preamble and sync word)
generally discourages short messages [2].

44 OCB Evaluation

Offset Codebook Mode (OCB) is a mode of operattmat simultaneously provides
confidentiality and authenticity [28]. When the &pgation under consideration
demands confidentiality and authenticity, OCB iiled to be the most appropriate
mode for WSNs in [3] and [8]. To evaluate the éfficy of OCB in our platform, we
implemented this authenticated-encryption algoritmd compared it with the CBC—
CS and CMAC modes.

30,00
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20,00 1 —
B CBCCS
15.00 [] ] B CMAC

O CBC-CS + CMAC
0 0CB

Time (ms)

10,00 -

5,00

0,00 -

10 20 40
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Fig. 5. Comparison of CBC-CS, CMAC, and OCB.

As can be seen in Figure 5, OCB is faster than @B&encryption combined with
the CMAC. The results suggest that OCB is even naffieient with larger data
lengths. Therefore, our analysis indicates that G<Ce best choice to select from
when confidentiality and authenticity are requinedhe WSNs under consideration.

5. ContikiSec Design

Guided by the study, as presented in the previeason, we are now ready to put all
the pieces together and describe the completerdesigur secure network layer for
wireless sensor networks under the Contiki opegatyrstem.

The Contiki protocol stack is divided in four lagethe physical layer, the data
link layer, the communication layer, and the aglan layer. In WSNs, the typical
traffic pattern is the many-to-one communicatiottgra. Because of that, in order to
avoid routing packets injected by an adversary @stev energy and bandwidth,
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security should be implemented at the link laygdr 2ontiki provides three media
access control protocols for our platform: X-MAQ,R, and NULLMAC. Currently,

we have implemented ContikiSec under NULLMAC, butauld be ported to run
under the other two protocols. In Figure 6 we shin@ Contiki protocol stack
including ContikiSec.

Application
ulP ‘ Rime
X-MAC | LLP [ NULLMAC
ContikiSec
Radio

Fig. 6. The Contiki stack with ContikiSec.

ContikiSec supports three security modes: confiditytonly (ContikiSec-Enc),
authentication-only  (ContikiSec-Auth), and autheatiion with encryption
(ContikiSec-AE). We believe that a configurable igesis especially desirable for
WSNs, as WSNs are expected to support many diffexeplication scenarios with
different security requirements. ContikiSec offérs programmer the choice to select
between three security levels depending on thesegthe application on hand. In
Figure 7, we show the default Contiki packet forrfmatthe CC1020 radio and the
packet format with different security configuratson

‘ PgL ‘ 3‘ :I| PA(I !_102/;D ‘ C2| Tz‘ Contiki packet
B HEE] Moz HM ContikiSeeENnc
R e | ™ 7] ContikiSec-Auth
‘ PSL ‘ 2‘ 2H| |\2/ | PAJ_LSQD ‘ M':c ‘;‘ ContikiSec-AE

Fig. 7. ContikiSec packet formats compared to the Contiki packetafiorm

As we can observe, ContikiSec-Enc includes a 2-yjtlization vector (IV) in
each packet, producing a 2-byte overhead. Theherfgthe IV has a great impact for
security and energy consumption. Longer IVs areensecure, but the energy cost of
sending them is too high for WSNs. In Section 4angue that a 2-byte IV makes the
best balance between security and energy consumgtiee 1V is created using the
Contiki library that generates random numbers. ther seed value to initialize the
random generator, we used the node identifier. Elem@ch node initializes the
random generator differently. The payload is en@gpising the CBC-CS mode of
operation with AES as the underlying block ciphdoreover, we assume that all the
nodes in the network are provided with a single-ti28&ey. The key-expansion
process is performed when the node is initialized then stored in the RAM. In
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addition, the CC1020 radio driver adds a 2-byteckbem field to each packet.
Consequently, ContikiSec-Enc supports confidemyiaihd integrity.

ContikiSec-Auth is designed for applications wheoafidentiality is not critical,
but where it is crucial to know the originator afch message. Contiki provides a 16-
bit cyclic redundancy check (CRC) function to cédte a 2-byte checksum and
achieve integrity. However, the checksum is desigte detect only accidental
modifications of the data, whereas a MAC also dstéwctentional unauthorized
modifications of the data. Hence, ContikiSec-Autfoyides authentication and
integrity by removing the checksum field from thacket and instead including a
MAC. To generate a MAC, ContikiSec-Auth uses theAt/algorithm benchmarked
in Section 4, which is currently the mode for auti@tion recommended by NIST
[9].

Finally, ContikiSec-AE provides the highest levef security, achieving
confidentiality, authentication, and integrity. &g demonstrate in Section 4, the
OCB mode is the most efficient algorithm when thgseperties are required.
Consequently, ContikiSec-AE uses the OCB mode AlS as the underlying block
cipher, using a single shared-key for encryptiod anthentication. ContikiSec-AE
increases the packet length by 4 bytes. In Figune &how the energy consumption
of the three modes of ContikiSec.

250

200 4

150 4 —e—Contiki

- 4 - ContikiSec-Enc
ContikiSec-Auth
—ae— ContikiSec-AE

100 4

Energy consumption (uJ)

50 -

20 30 40
Payload (bytes)

Fig. 8. Energy consumption of ContikiSec modes compared with the defaultkConti
configuration.

As mentioned, and shown in Figure 4, the energyswmmption for cryptographic
operations is negligible compared to the energyeeédor sending each extra byte.
Hence, as the size of the payload is increasedjntpact of sending extra bytes
decreases.

Without security, the energy consumption rangemfB2 uJ to 182 uJ for packets
with payloads of 20 to 40 bytes. Despite the faett tContikiSec-Enc and Contiki-
Auth have different computational costs, we obsdhee same energy consumption
because both incur a 2-byte overhead. Finally, ii@®c-AE is the mode with the
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highest energy requirement, consuming around 15%e rtftan Contiki in default
mode for data messages with payloads of 40 bytes.

6. Conclusion

We present ContikiSec, which is a secure netwoy&rlfor wireless sensor networks
under the Contiki operating system. We have desigdentikiSec as a complete and
configurable solution, providing three security rasdstarting from confidentiality
and integrity, and increasing to confidentialitytlgentication, and integrity. Our
design was governed by a careful selection andopeénce analysis of existing
security primitives. Our design tries to achievav lenergy consumption without
compromising security. Our evaluation was carried tbe MSB-430 platform, a
Modular Sensor Board hardware platform createddatt&r\Web.

In the future we plan to study the boundaries ohgimsymmetric keys in our
framework and also examine the effect of comprodhisades in secure network layer
architectures for wireless sensor networks.
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