
The Synchronization Power of Coalesced Memory
Accesses

Phuong Hoai Ha1, Philippas Tsigas2, and Otto J. Anshus1

1 University of Tromsø, Department of Computer Science, Faculty of Science,
NO-9037 Tromsø, Norway,
{phuong,otto}@cs.uit.no

2 Chalmers University of Technology, Department of Computer Science and
Engineering, SE-412 96 Göteborg, Sweden,

tsigas@chalmers.se

Abstract. Multicore processor architectures have established themselves
as the new generation of processor architectures. As part of the one
core to many cores evolution, memory access mechanisms have advanced
rapidly. Several new memory access mechanisms have been implemented
in many modern commodity multicore processors. Memory access mech-
anisms, by devising how processing cores access the shared memory, di-
rectly in�uence the synchronization capabilities of the multicore proces-
sors. Therefore, it is crucial to investigate the synchronization power of
these new memory access mechanisms.
This paper investigates the synchronization power of coalesced memory
accesses, a family of memory access mechanisms introduced in recent
large multicore architectures like the CUDA graphics processors. We �rst
design three memory access models to capture the fundamental features
of the new memory access mechanisms. Subsequently, we prove the ex-
act synchronization power of these models in terms of their consensus
numbers. These tight results show that the coalesced memory access
mechanisms can facilitate strong synchronization between the threads
of multicore processors, without the need of synchronization primitives
other than reads and writes. In the case of the contemporary CUDA pro-
cessors, our results imply that the coalesced memory access mechanisms
have consensus numbers up to sixteen.

1 Introduction
One of the fastest evolving multicore architectures is the graphics processor
one. The computational power of graphics processors (GPUs) doubles every ten
months, surpassing the Moore's Law for traditional microprocessors [13]. Unlike
previous GPU architectures, which are single-instruction multiple-data (SIMD),
recent GPU architectures (e.g. Compute Uni�ed Device Architecture (CUDA)
[2]) are single-program multiple-data (SPMD). The latter consists of multiple
SIMD multiprocessors of which each, at the same time, can execute a di�erent
instruction. This extends the set of applications on GPUs, which are no longer
restricted to follow the SIMD-programming model. Consequently, GPUs are

emerging as powerful computational co-processors for general-purpose computa-
tions.

Along with their advances in computational power, GPUs memory access
mechanisms have also evolved rapidly. Several new memory access mechanisms
have been implemented in current commodity graphics/media processors like
the Compute Uni�ed Device Architecture (CUDA) [2] and Cell BE architecture
[1]. For instance, in CUDA, single-word write instructions can write to words of
di�erent size and their size (in bytes) is no longer restricted to be a power of two
[2]. Another advanced memory access mechanism implemented in CUDA is the
coalesced global memory access mechanism. The simultaneous global memory
accesses by each thread of a SIMD multiprocessor, during the execution of a
single read/write instruction, are coalesced into a single aligned memory access
if the simultaneous accesses follow the coalescence constraint [2]. The access coa-
lescence takes place even if some of the threads do not actually access memory. It
is well-known that memory access mechanisms, by devising how processing cores
access the shared memory, directly in�uence the synchronization capabilities of
multicore processors. Therefore, it is crucial to investigate the synchronization
power of the new memory access mechanisms.

Research on the synchronization power of memory access operations (or ob-
jects) in conventional architectures has received a great amount of attention in
the literature. The synchronization power of memory access objects/mechanisms
is conventionally determined by their consensus-solving ability, namely their con-
sensus number [10]. The consensus number of an object type is either the maxi-
mum number of processes for which the consensus problem can be solved using
only objects of this type and registers, or in�nity if such a maximum does not
exist. For hard real-time systems, it has been shown that any object with consen-
sus number n is universal3 for any numbers of processes running on n processors
[14]. For systems that allow processes to simultaneously access m objects of type
T in one atomic operation (or multi-object operation), upper and lower bounds
on the consensus number of the multi-object called type Tm have been provided
for the base type T with consensus number greater than or equal to two [4, 11,
16]. In the case of registers (which have consensus number one), the m-register
assignment, which allows processes to write to m arbitrary registers atomically,
has been proven to have consensus number (2m− 2), for m > 1 [10].

Note that the aforementioned CUDA coalesced memory accesses are neither
the atomic m-register assignment [10] nor the multi-object types [4, 11, 16]. They
are not the atomic m-register assignment since they do not allow processes to
atomically write to m arbitrary memory words; instead, processes can atomically
write to m memory words only if the m memory words are located within an
aligned size-bounded memory portion (i.e. memory alignment restriction) (cf.
Section 2). The CUDA coalesced memory accesses are not the multi-object type
since their base object type T is the conventional memory word, which has
consensus number less than two.
3 An object is universal in a system of n processes i� it has a consensus number not
lower than n.

This paper investigates the consensus number of the new memory access
mechanisms implemented in current graphics processor architectures. We �rst
design three new memory access models to capture the fundamental features of
the new memory access mechanisms. Subsequently we prove the exact synchro-
nization power of these models in terms of their respective consensus number.
These tight results show that the new memory access mechanisms can facilitate
strong synchronization between the threads of multicore processors, without the
need of synchronization primitives other than reads and writes.

We �rst design a new memory access model, the svword model where svword
stands for the size-varying word access, the �rst of the two aforementioned ad-
vanced memory access mechanisms implemented in CUDA. Unlike single-word
assignments in conventional processor architectures, the new single-word assign-
ments can write to words of size b (in bytes), where b can vary from 1 to an upper
bound B and b is no longer restricted to be a power of 2 (e.g. type �oat3 in [2]).
By carefully choosing b for the single-word assignments, we can partly overlap the
bytes written by two assignments, namely each of the two assignments has some
byte(s) that is not overwritten by the other overlapping assignment (cf. Figure
1(a) for an illustration). Note that words of di�erent size must be aligned from
the address base of the memory. This memory alignment constraint prevents
single-word assignments in conventional architectures from partly overlapping
each other since the word-size is restricted to be a power of two. On the other
hand, since the new single-word assignment can write to a subset of bytes of a
big word (e.g. up to 16 bytes) and leave the other bytes of the word intact, the
size of values to be written becomes a signi�cant factor. The assignment can
atomically write B values of size 1 (instead of just one value of size B) to B
consecutive memory locations. The observation has motivated us to develop the
svword model.

Inspired by the coalesced memory accesses, the second of the aforementioned
advanced memory access mechanisms, we design two other models, the aiword
and asvword models, to capture the fundamental features of the mechanism.
The mechanism coalesces simultaneous read/write instructions by each thread
of a SIMD multiprocessor into a single aligned memory access even if some of
the threads do not actually access memory [2]. This allows each SIMD multi-
processor (or process) to atomically write to an arbitrary subset of the aligned
memory units that can be written by a single coalesced memory access. We gen-
erally model this mechanism as an aligned-inconsecutive-word access, aiword, in
which the memory is aligned to A-unit words and a single-word assignment can
write to an arbitrary non-empty subset of the A units of a word. Note that the
single-aiword assignment is not the atomic m-register assignment [10] due to the
memory alignment restriction4. Our third model, asvword, is an extension of the
second model aiword in which aiword's A memory units are now replaced by A
svwords of the same size b. This model is inspired by the fact that the read/write

4 In this paper, we use term �single� in single-*word assignment when we want to
emphasize that the assignment is not the multiple assignment [10].

instructions of di�erent coalesced global memory accesses can access words of
di�erent size [2].

The contributions of this paper can be summarized as follows:

• We develop a general memory access model, the svword model, to capture
the fundamental features of the size-varying word accesses. In this model,
a single-word assignment can write to a word comprised of b consecutive
memory units, where b can be any integer between 1 and an upper bound B.
We prove that the single-svword assignment has consensus number 3, ∀B ≥ 5,
and that consensus number 3 is also the upper bound of consensus numbers
of the single-svword assignment ∀B ≥ 2. We also introduce a technique to
minimize the size of (proposal) values in consensus algorithms, which allows
a single-word assignment to write many values atomically and handle the
consensus problem for several processes (cf. Section 3).

• We develop a general memory access model, the aiword model, to capture the
fundamental features of the coalesced memory accesses. The second model is
an aligned-inconsecutive-word access model in which the memory is aligned
to A-unit words and a single-word assignment can write to an arbitrary
non-empty subset of the A units of a word. We present a wait-free consensus
algorithm for N = bA+1

2 c processes using only single-aiword assignments and
subsequently prove that the single-aiword assignment has consensus number
exactly N = bA+1

2 c (cf. Section 4).
• We develop a general memory access model, asvword, to capture the fun-

damental features of the combination of the size-varying word accesses and
the coalesced memory accesses. The third model is an extension of the sec-
ond model aiword in which aiword's A units are A svwords of the same size
b, b ∈ {1, B} (cf. Section 5). We prove that the consensus number of the
single-asvword assignment is exactly N , where

N =





AB
2 , if A = 2tB, t ∈ N∗ (positive integers)

(A−B)B
2 + 1, if A = (2t + 1)B, t ∈ N∗

bA+1
2 c, if B = tA, t ∈ N∗

(1)

In the case of the contemporary CUDA processors (with compute capability
up to 1.1) in which A = 16 and B = 2, the consensus number of the asvword
model is sixteen.

The rest of this paper is organized as follows. Section 2 presents the three
new memory access models. Sections 3, 4 and 5 present the exact consensus
numbers of the �rst, second and third models, respectively.

Due to space limitations, we present here only intuitions behind the consensus
number results. Complete proofs of the results can be found in the full version
of this paper [9].

2 Models

Before describing the details of each of the three new memory access models, we
present the common properties of all these three models. The shared memory
in the three new models is sequentially consistent [3, 12], which is weaker than
the linearizable one [5] assumed in most of the previous research on the syn-
chronization power of the conventional memory access models [10]. Processes
are asynchronous. The new models use the conventional 1-dimensional mem-
ory address space. In these models, one memory unit is a minimum number of
consecutive bytes/bits which a basic read/write operation can atomically read
from/write to (without overwriting other unintended bytes/bits). These memory
models address individual memory units. Memory is organized so that a group
of n consecutive memory units called word can be stored or retrieved in a single
basic write or read operation, respectively, and n is called word size. Words of
size n must always start at addresses that are multiples of n, which is called
alignment restriction as de�ned in the conventional computer architecture.

The �rst model is a size-varying-word access model (svword) in which a single
read/write operation can atomically read from/write to a word consisting of b
consecutive memory units, where b can be any integer between 1 and an upper
bound B and is called svword size. The upper bound B is the maximum num-
ber of consecutive units which a basic read/write operation can atomically read
from/write to. Svwords of size b must always start at addresses that are multi-
ples of b due to the memory alignment restriction. We denote b-svword to be an
svword consisting of b units, b-svwrite to be a b-svword assignment and b-svread
to be a b-svword read operation. Reading a unit U is denoted by 1-svread(U) or
just by U for short. This model is inspired by the CUDA graphics processor ar-
chitecture in which basic read/write operations can atomically read from/write
to words of di�erent size (cf. types �oat1, �oat2, �oat3 and �oat4 in [2], Section
4.3.1.1). Figure 1(a) illustrates how 2-svwrite, 3-svwrite and 5-svwrite can partly
overlap their units with addresses from 14 to 20, with respect to the memory
alignment restriction.

The second model is an aligned-inconsecutive-word access model (aiword) in
which the memory is aligned to A-unit words and a single read/write operation
can atomically read from/write to an arbitrary non-empty subset of the A units
of a word, where A is a constant. Aiwords must always start at addresses that
are multiples of A due to the memory alignment restriction. We denote A-aiword
to be an aiword consisting of A units, A-aiwrite to be an A-aiword assignment
and A-airead to be an A-aiword read operation. Reading only one unit U (using
airead) is denoted by U for short. In the aiword model, an aiwrite operation
executed by a process cannot atomically write to units located in di�erent aiwords
due to the memory alignment restriction.

Figure 1(b) illustrates the aiword model with A = 8 in which the aiword con-
sists of eight consecutive units with addresses from 8 to 15. Unlike in the svword
model, the assignment in the aiword model can atomically write to inconsecutive

14 15 16 17 18 19 20
2-svwrite

5-svwrite

Units
3-svwrite

(a) The �rst model svword

... 10 11 12 13 14 15 ...98

aiword
Units

aiwrite2

aiwrite1

(b) The second model aiword

0 1 2 3 4 5 6 7

...
t0 t1 t2 t3 t4 t5 t6 t7t0 t1 t2 t3 t4 t5 t6 t7

8 9 10 11 12 13 14 15 ...

SIMD core 2
ThreadsThreads

SIMD core 1

aiword aiword

Memory locations

(c) The coalesced memory access

Fig. 1. Illustrations for the �rst model, size-varying-word access (svword), the
second model, aligned-inconsecutive-word access (aiword) and the coalesced
memory access.

units of the eight units: aiwrite1 atomically writes to four units 8, 11, 13 and 15;
aiwrite2 writes to three units 12, 13 and 15.

This model is inspired by the coalesced global memory accesses in the CUDA
architecture [2]. The CUDA architecture can be generalized to an abstract model
of a MIMD5 chip with multiple SIMD cores sharing memory. Each core can pro-
cess A threads simultaneously in a SIMD manner, but di�erent cores can simul-
taneously execute di�erent instructions. The instance of a program that is being
sequentially executed by one SIMD core is called process. Namely, each process
consists of A parallel threads that are running in SIMD manner. The process
accesses the shared memory using the CUDA memory access models. In CUDA,
the simultaneous global memory accesses by each thread of a SIMD core during
the execution of a single read/write instruction can be coalesced into a single
aligned memory access. The coalescence happens even if some of the threads do
not actually access memory (cf. [2], Figure 5-1). This allows a SIMD core (or a
process consisting of A parallel threads running in a SIMD manner) to atomically
access multiple memory locations that are not at consecutive addresses.

Figure 1(c) illustrates the coalesced memory access, where A = 8. The left
SIMD core can write atomically to four memory locations 0, 3, 5 and 7 by letting
only four of its eight threads, t0, t3, t5 and t7, simultaneously execute a write
operation (i.e. divergent threads). The right SIMD core can write atomically to
its own memory location 1 and shared memory locations 3, 5 and 7 by letting only
four threads t1, t3, t5 and t7 simultaneously execute a write operation. Note that

5 MIMD: Multiple-Instruction-Multiple-Data

t0 t1 t2 t3 t4 t5 t6 t7 t0 t1 t2 t3 t4 t5 t6 t7

t0 t1 t2 t3 t4 t5 t6 t7 t0 t1 t2 t3 t4 t5 t6 t7

1514131211109876543210

0 1 2 3 4 5 6 7

Threads
SIMD core 1

Threads
SIMD core 3

Threads
SIMD core 2

Threads
SIMD core 4

b=1

b=2

8x1-asvword 8x1-asvword

8x2-asvword

Fig. 2. An illustration for the asvword model.

the CUDA architecture allows threads from di�erent SIMD cores to communicate
through the global shared memory [7].

The third model is a coalesced memory access model (asvword), an extension of
the second model aiword in which aiword's A units are now replaced by A svwords
of the same size b, b ∈ [1, B]. Namely, the second model aiword is a special case
of the third model asvword where B = 1. This model is inspired by the fact
that in CUDA the read/write instructions of di�erent coalesced global memory
accesses can access words of di�erent size. Let Axb-asvword be the asvword that is
composed of A svwords of which each consists of b memory units. Axb-asvwords
whose size is A ·b must always start at addresses that are multiples of A ·b due to
the memory alignment restriction. We denote Axb-asvwrite to be an Axb-asvword
assignment and Axb-asvread to be an Axb-asvword read operation. Reading only
one unit U (using Ax1-asvread) is denoted by U for short. Due to the memory
alignment restriction, an Axb-asvwrite operation cannot atomically write to b-
svwords located in di�erent Axb-asvwords. Since in reality A and B are a power
of 2, in this model we assume that either B = k ·A, k ∈ N∗ (in the case of B ≥ A)
or A = k ·B, k ∈ N∗ (in the case of B < A). (At the moment, CUDA supports
the atomic coalesced memory access to only words of size 4 and 8 bytes (i.e. only
svwords consisting of 1 and 2 units in our de�nition), cf. Section 5.1.2.1 in [2]).
For the sake of simplicity, we assume that b ∈ {1, B} holds. A more general
model with b = 2c, c = 0, 1, · · · , log2 B, can be established from this model.
Since both Ax1-asvwords and AxB-asvwords are aligned from the address base
of the memory space, any AxB-asvword can be aligned with B Ax1-asvwords as
shown in Figure 2.

Figure 2 illustrates the asvword model in which each dash-dotted rectan-
gle/square represents an svword and each red/solid rectangle represents an asv-

word composed of eight svwords (i.e. A = 8). The two rows show the memory
alignment corresponding to the size b of svwords, where b is 1 or 2 (i.e. B = 2),
on the same sixteen consecutive memory units with addresses from 0 to 15. An
asvwrite operation can atomically write to some or all of the eight svwords of an
asvword. Unlike the aiwrite assignment in the second model, which can atomi-
cally write to at most 8 units (or A units), the asvwrite assignment in the third
model can atomically write to 16 units (or A·B units) using a single 8x2-asvwrite
operation (i.e. write to the whole set of eight 2-svwords, cf. row b = 2). For an
8x1-asvword on row b = 1, there are two methods to update it atomically using
the asvwrite operation: i) writing to the whole set of eight 1-svwords using a
single 8x1-asvwrite (cf. SIMD core 1) or ii) writing to a subset consisting of four
2-svwords using a single 8x2-asvwrite (cf. SIMD core 2). However, if only one
of the eight units of an 8x1-asvword (e.g. unit 14) needs to be updated and the
other units (e.g. unit 15) must remain untouched, the only possible method is
to write to the unit using a single 8x1-asvwrite (cf. SIMD core 3). The other
method, which writes to one 2-svword using a single 8x2-asvwrite, will have to
overwrite another unit that is required to stay untouched (cf. SIMD core 4).

Terminology This paper uses the conventional terminology from bivalency argu-
ments [8, 10, 15]. The con�guration of an algorithm at a moment in its execution
consists of the state of every shared object and the internal state of every process.
A con�guration is univalent if all executions continuing from this con�guration
yield the same consensus value and multivalent otherwise. A con�guration is
critical if the next operation opi by any process pi will carry the algorithm from
a multivalent to a univalent con�guration. The operations opi are called critical
operations. The critical value of a process is the value that would get decided if
that process takes the next step after the critical con�guration.

3 Consensus number of the svword model

Before proving the consensus number of the single-svword assignment, we present
the essential features of any wait-free consensus algorithm ALG for N processes
using only single-*word assignments and registers, where *word can be svword,
aiword or asvword. It has been proven that such an algorithm must have a critical
con�guration, C0, and the next assignment opi (i.e. the critical operation) by
each process pi must write to the same object O [10]. The object O consists of
memory units.

Lemma 1. The critical assignment opi by each process pi must atomically write
to
• a �single-writer� unit (or 1W-unit for short) ui written only by pi and
• �two-writer� units (or 2W-units for short) ui,j written only by two processes

pi and pj, where pj's critical value is di�erent from pi's, ∀j 6= i.

Proof. The proof is similar to the bivalency argument of Theorem 13 in [10]. ut

Algorithm 1 SVW_Consensus(bufi: proposal) invoked by process pi, i ∈
{0, 1, 2}
PROPOSAL[0, 1, 2]: contains proposals of 3 processes. PROPOSAL[i] is only written by process
pi but can be read by all processes.
WR1 = set {u0, u1, u2} of units: initialized to Init and used in the �rst phase. WR1[0] and WR1[2]
are 1W-units written only by p0 and p1, respectively. WR1[1] is a 2W-unit written by both processes
WR2 = set {v0, · · · , v4} of units: initialized to Init and used in the second phase. WR2[0], WR2[2]
and WR2[4] are 1W-units written only by p0, p2 and p1, respectively. WR2[1] and WR2[3] are
2W-units written by pairs {p0, p2} and {p2, p1}, respectively.
Input: process pi's proposal value, bufi.
Output: the value upon which all 3 processes (will) agree.
1V: PROPOSAL[i] ← bufi; // Declare pi's proposal

// Phase 1: Achieve an agreement between p0 and p1.
2V: if i = 0 or i = 1 then
3V: first ← SVW_FirstAgreement(i);
4V: end if

// Phase II: Achieve an agreement between all three processes.
5V: winner ← SVW_SecondAgreement(i, firstref); // firstref is the reference to first

6V: return PROPOSAL[winner]

In this section, we �rst present a wait-free consensus algorithm for 3 processes
using only the single-svword assignment with B ≥ 5 and registers. Then, we
prove that we cannot construct any wait-free consensus algorithms for more than
3 processes using only the single-svword assignment and registers regardless of
how large B is.

The new wait-free consensus algorithm SVW_Consensus is presented in
Algorithm 1. The main idea of the algorithm is to utilize the size-variation fea-
ture of the svwrite operation. Since b-svwrite can atomically write b values of
size 1 unit (instead of just one value of size b units) to b consecutive memory
units, keeping the size of values to be atomically written as small as 1 unit will
maximize the number of processes for which b-svwrite, together with registers,
can solve the consensus problem. Unlike the seminal wait-free consensus algo-
rithm using the m-word assignment by Herlihy [10], which requires the word size
to be large enough to accommodate a proposal value, the new algorithm stores
proposal values in shared memory and uses only two bits (or one unit) to de-
termine the preceding order between two processes. This allows a single-svword
assignment to write atomically up to B (or B

2 if units are single bits) ordering-
related values. The new algorithm utilizes process unique identi�ers, which are
an implicit assumption in Herlihy's consensus model [6].

The SVW_Consensus algorithm has two phases. In the �rst phase, two
processes p0 and p1 will achieve an agreement on their proposal values (cf. Al-
gorithm 2). The agreed value, PROPOSAL[first], is the proposal value of the
preceding process, whose SVWrite (lines 2SF and 4SF) precedes that of the
other process (lines 6SF-11SF).

Due to the memory alignment restriction, in order to be able to allocate mem-
ory for the WR1 variable (cf. Algorithm 1) on which p0's and p1's SVWrites can
partly overlap, p0's and p1's SVWrites are chosen as 2-svwrite and 3-svwrite,
respectively. The WR1 variable is located in a memory region consisting of 4
consecutive units {u0, u1, u2, u3} of which u0 is at an address multiple of 2 and

Algorithm 2 SVW_FirstAgreement(i: bit) invoked by process pi, i ∈ {0, 1}
Output: the preceding process of {p0, p1}
1SF: if i = 0 then
2SF: SVWrite({WR1[0], WR1[1]}, {Lower, Lower}); // atomically write to 2 units
3SF: else
4SF: SVWrite({WR1[1], WR1[2]}, {Higher, Higher}); // i = 1
5SF: end if
6SF: if WR1[(¬i) ∗ 2] =⊥ then
7SF: return i; // The other process hasn't written its value
8SF: else if (WR1[1] = Higher and i = 0) or (WR[1] = Lower and i = 1) then
9SF: return i; // The other process comes later and overwrites pi's value in WR1[1]
10SF: else
11SF: return (¬i);
12SF: end if

Algorithm 3 SVW_SecondAgreement(i: index; firstref : reference) in-
voked by process pi, i ∈ {0, 1, 2}
1SS: if i = 0 then
2SS: SVWrite({WR2[0], WR2[1]}, {Lower, Lower});
3SS: else if i = 1 then
4SS: SVWrite({WR2[3], WR2[4]}, {Lower, Lower});
5SS: else
6SS: SVWrite({WR2[1], WR2[2], WR2[3]}, {Higher, Higher, Higher});
7SS: end if
8SS: if ((WR2[0] 6=⊥ or WR2[4] 6=⊥) and WR2[2] =⊥) or // The predicates are checked in the

writing order.
(WR2[0] 6=⊥ and WR2[1] = Higher) or
(WR2[4] 6=⊥ and WR2[3] = Higher) then

9SS: return first; // p2 is preceded by either p0 or p1. first is obtained by dereferencing
firstref .

10SS: else
11SS: return 2;
12SS: end if

u1 at an address multiple of 3. This memory allocation allows p0 and p1 to write
atomically to the �rst two units {u0, u1} and the last 3 units {u1, u2, u3}, respec-
tively (cf. Figure 3(a)). The WR1 variable is the set {u0, u1, u2} (cf. the solid
squares in Figure 3(a)), namely p1 ignores u3 (cf. line 4SF in Algorithm 2).

Subsequently, the agreed value will be used as the critical value of both p0

and p1 in the second phase in order to achieve an agreement with the other
process p2 (cf. Algorithm 3). Let pfirst be the preceding process of p0 and p1 in
the �rst phase. The second phase returns pfirst's proposal value if either p0 or
p1 precedes p2 (line 9SS) and returns p2's proposal value otherwise.

Units written by processes' SVWrite are illustrated in Figure 3(b). In order
to be able to allocate memory for the WR2 variable, process p0's, p1's and p2's
SVWrites are chosen as 2-svwrite, 3-svwrite and 5-svwrite, respectively. The
WR2 variable is located in a memory region consisting of 7 consecutive units
{u0, · · · , u6} of which u0 is at an address multiple of 2, u4 at an address multiple
of 3 and u1 at an address multiple of 5. Since 2, 3 and 5 are prime numbers,
we always can �nd such a memory region. For instance, if the memory address
space starts from the unit with index 0, the memory region from unit 14 to
unit 20 can be used for WR2 (cf. Figure 1(a)). This memory allocation allows
p0, p1 and p2 to write atomically to the �rst two units {u0, u1}, the last three

0 1 2 3

p0

p1

WR1

(a) SVW_1stAgreement.

0 1 2 3 4 65WR2

p0 p1

p2

(b) SVW_2ndAgreement.

...

pf pl

ur uqup,r up,q

rf qfrl ql

up

(c) S = {p}, S̄ = {q, r, t}

...

pf pl

ur uqup,r up,q

rf rl

up ut,q

qf ql

tf tl

(d) S = {p, t}, S̄ = {q, r}

Fig. 3. Illustrations for the SVW_FirstAgreement,
SVW_SecondAgreement and Lemma 5.

units {u4, u5, u6} and the �ve middle units {u1, · · · , u5}, respectively. The WR2

variable is the set {u0, u1, u2, u5, u6} (cf. the solid squares in Figure 3(b)).

Lemma 2. The SVW_SecondAgreement procedure returns index 2 if p2

precedes both p0 and p1. Otherwise, it returns index first.

Lemma 3. The SVW_Consensus algorithm is wait-free and solves the con-
sensus problem for 3 processes.

Proof. It is obvious from the pseudocode in Algorithms 1, 2 and 3 that the
SVW_Consensus algorithm is wait-free.

From Lemma 2, the SVW_Consensus algorithm returns the same values
for all invoking processes. The value is either PROPOSAL[2] (if p2 precedes
both p0 and p1) or PROPOSAL[first], first ∈ {0, 1} (otherwise). ut
Lemma 4. The single-svword assignment has consensus number at least 3,
∀B ≥ 5.

Lemma 5. The single-svword assignment has consensus number at most 3,
∀B ≥ 2.

Proof. (Intuition; the full proof is in [9]) We prove the lemma by contradiction.
Assume that there is a wait-free consensus algorithm ALG for four processes
p, q, r and t. At the critical con�guration of the algorithm, we can always divide
the set of the four processes into two non-empty subsets S and S̄ where S consists
of at most two processes with the same critical value called V and S̄ consists

of processes with critical values di�erent from V (If three of the four processes
have the same critical value, the other process is chosen as S). Since the svwrite
operation writes to consecutive memory units in the conventional 1-dimensional
memory address space, let [kf , kl] be the range of consecutive units to which
a process k ∈ {p, q, r, t} atomically writes using its critical operation opk (cf.
Lemma 1). For any pair of processes {h, k}, where h and k belong to di�erent
subsets S and S̄, [hf , hl] and [kf , kl] must partly overlap (due to the second
requirement of Lemma 1) and none of them are completely covered by ranges
[vf , vl] of the other processes v (due to the �rst requirements of Lemma 1).

Figures 3(c) and 3(d) illustrate the proof when S consists of one and two
processes, respectively. In Figure 3(c), the range [tf , tl] of process t cannot partly
overlap with that of process p without completely covering (or being covered by)
the range of process r or q. In Figure 3(d), t and r belong to di�erent subsets S
and S̄, respectively, but their ranges cannot partly overlap. ut
Theorem 1. The single-svword assignment has consensus number 3 when B ≥
5 and three is the upper bound of consensus numbers of single-svword assign-
ments ∀B ≥ 2.

4 Consensus number of the aiword model
In this section, we prove that the single-aiword assignment (or aiwrite for short)
has consensus number exactly bA+1

2 c. First, we prove that the aiwrite operation
has consensus number at least bA+1

2 c. We prove this by presenting a wait-free
consensus algorithm AIW_Consensus for N = bA+1

2 c processes (cf. Algorithm
4) using only the aiwrite operation and registers. Subsequently, we prove that
there is no wait-free consensus algorithm for N + 1 processes using only the
aiwrite operation and registers.

The main idea of the AIW_Consensus algorithm is to gradually extend
the set S of processes agreeing on the same value by one at a time. This is to
minimize the number of 1W- and 2W-units that must be written atomically by
the aiword operation (cf. Lemma 9). The algorithm consists of N rounds and
a process pi, i ∈ [1, N], participates from round ri to round rN . A process pi

leaves a round rj , j ≥ i, and enters the next round rj+1 when it reads the value
upon which all processes in the round rj (will) agree. A round rj starts with the
�rst process that enters the round, and ends when all j processes pi, 1 ≤ i ≤ j,
have left the round. At the end of a round rj , the set S consists of j processes
pi, 1 ≤ i ≤ j.

Lemma 6. All correct processes6 pi agree on the same value in round rj, where
1 ≤ i ≤ j ≤ N .

With the assumption that AIWrite can atomically write to pj 's units at
line 2I and pi's units at line 11I, it follows directly from Lemma 6 that all the
N processes will achieve an agreement in round rN .
6 A correct process is a process that does not crash.

Algorithm 4 AIW_Consensus(bufi: proposal) invoked by process pi, i ∈
[1, N]
Ar[i]: pi's agreed value in round r;
Ur

i,j : the 2W-unit written only by processes pi and pj in round r. Ur
i : the 1W-unit written only by

process pi in round r;
Input: process pi's proposal value, bufi.
Output: the value upon which all N processes (will) agree.

// pi starts from round i

1I: Ai[i] ← bufi; // Initialized pi's agreed value for round i

2I: AIWrite({Ui
i , Ui

i,1, · · · , Ui
i,i−1}, {Higher, Higher, · · · , Higher}) // Atomic assignment

3I: for k = 1 to (i− 1) do
4I: if Ui

k 6=⊥ and Ui
i,k = Higher then

5I: Ai[i] ← Ai[k]; // Update pi's agreed value to the set S's agreed value
6I: break;
7I: end if
8I: end for

// Participate rounds from (i + 1) to N
9I: for j = i + 1 to N do
10I: Aj [i] ← Aj−1[i]; // Initialized pi's agreed value for round j

11I: AIWrite({Uj
i , Uj

j,i}, {Lower, Lower}; // Atomic assignment
12I: if Uj

j 6=⊥ and Uj
j,i = Lower then

13I: WinnerIsJ ← true; // Check if pj precedes pk, ∀k < j.
14I: for k = 1 to j − 1 do
15I: if Uj

k 6=⊥ and Uj
j,k = Higher then

16I: WinnerIsJ ← false; // pk precedes pj ;
17I: break;
18I: end if
19I: end for
20I: if WinnerIsJ = true then
21I: Aj [i] ← Aj [j]; // pj precedes pk, ∀k < j,⇒ pj 's value is the agreed value in round j.
22I: end if
23I: end if
24I: end for
25I: return AN [i];

Lemma 7. The AIW_Consensus algorithm is wait-free and can solve the con-
sensus problem for N = bA+1

2 c processes.
Proof. (Intuition; the full proof is in [9]) The time complexity for a process using
AIW_Consensus to achieve an agreement among N processes is O(N2) due
to the for-loops at lines 9I and 14I. Therefore, the AIW_Consensus algorithm
is wait-free.

From Lemma 6, the AIW_Consensus algorithm can solve the consensus
problem for N = bA+1

2 c processes if AIWrite can atomically write to pj 's units
at line 2I and pi's units at line 11I. Indeed, since N = bA+1

2 c, an A-unit aiword (or
A-aiword for short) can accommodate both (N − 1) 2W-units UN

N,i, 1 ≤ i < N,

and N 1W-units UN
k , 1 ≤ k ≤ N, used in round rN . Since the single-aiword

assignment AIWrite can atomically write to an arbitrary subset of the A units
of an aiword and leave the other units untouched, each process pk, 1 ≤ k ≤ N
can atomically write to only7 its 1W and 2W units. ut
Lemma 8. The single-aiword assignment has consensus number at least bA+1

2 c.
7 �Only� here means to leave other units untouched.

... 2W+2W1W 1W1W 1W 2W 2W 1W 1W 2W2W

A1 ABB-svword

AxB-asvword

Fig. 4. An illustration for grouping units in the asvword model.

Lemma 9. The single-aiword assignment has consensus number at most bA+1
2 c.

Proof. (Intuition; the full proof is in [9]) We prove this lemma by contradiction.
Assume that there is a wait-free consensus algorithm ALG for N processes where
N ≥ bA+1

2 c+1. At the critical con�guration of the ALG algorithm, we divide N
processes into two subsets S and S̄ where S consists of processes with the same
critical value called V and S̄ consists of processes with critical values di�erent
from V . Let |S| and |S̄| to be the sizes of the subsets, we have |S| + |S̄| = N .
Due to the memory alignment restriction, all the 1W-units and 2W-units used by
critical assignments in the ALG algorithm must be located in the same A-aiword
called AI. Let M be the number of the 1W-/2W-units, we have M ≤ A.

Since ALG is a wait-free consensus algorithm for N processes, it follows from
Lemma 1 that there are N 1W-units and |S| · |S̄| 2W-units, i.e. M = N + |S| · |S̄|.
Since 1 ≤ |S| ≤ (N − 1), M ≥ (2N − 1). Since N ≥ bA+1

2 c + 1 due to the
hypothesis, M ≥ (A + 1) must hold. This contradicts the requirement M ≤ A.

ut
Theorem 2. The single-aiword assignment has consensus number exactly bA+1

2 c.

5 Consensus number of the asvword model
The intuition behind the higher consensus number of the asvword model com-
pared with the aiword model (cf. Equation (1)) is that process pN in Algorithm
4 can atomically write to A ·B units using AxB-asvwrite instead of only A units
using A-aiwrite. To prevent pN from overwriting unintended units (as illustrated
by SIMD core 4 in Figure 2), each B-svword located in Al, 1 ≤ l ≤ B, contains
either 1W-units or 2W-units but not both as illustrated in Figure 4, where B-
svwords labeled �1W� contain only 1W-units and B-svwords labeled �2W� contain
only 2W-units. This allows pN to atomically write to only B-svwords with 2W-
units UN

N,i (and keep 1W-unit UN
i , i 6= N, untouched) using AxB-asvwrite. For

each process pi, i 6= N , its 1W-unit UN
i and 2W-unit UN

N,i are located in two
B-svwords labeled "1W" and "2W", respectively, that belong to the same Al.
This allows pi to atomically write to only its two units using Ax1-asvwrite. A
complete proof of the exact consensus number can be found in the full version
of this paper [9].

Acknowledgements The authors wish to thank the anonymous reviewers for
their helpful and thorough comments on the earlier version of this paper. Phuong

Ha's and Otto Anshus's work was supported by the Norwegian Research Coun-
cil (grant numbers 159936/V30 and 155550/420). Philippas Tsigas's work was
supported by the Swedish Research Council (VR) (grant number 37252706).

References
1. Cell Broadband Engine Architecture, version 1.01. IBM, Sony and Toshiba Corpo-

rations, 2006.
2. NVIDIA CUDA Compute Uni�ed Device Architecture, Programming Guide, ver-

sion 1.1. NVIDIA Corporation, 2007.
3. S. V. Adve and K. Gharachorloo. Shared memory consistency models: A tutorial.

Computer, 29(12):66�76, 1996.
4. Y. Afek, M. Merritt, and G. Taubenfeld. The power of multi-objects (extended

abstract). In PODC '96: Proceedings of the �fteenth annual ACM symposium on
Principles of distributed computing, pages 213�222, 1996.

5. H. Attiya and J. Welch. Distributed Computing: Fundamentals, Simulations, and
Advanced Topics. John Wiley and Sons, Inc., 2004.

6. H. Buhrman, A. Panconesi, R. Silvestri, and P. Vitanyi. On the importance of
having an identity or, is consensus really universal? Distrib. Comput., 18(3):167�
176, 2006.

7. I. Castano and P. Micikevicius. Personal communication. NVIDIA, 2008.
8. M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility of distributed

consensus with one faulty process. J. ACM, 32(2):374�382, 1985.
9. P. H. Ha, P. Tsigas, and O. J. Anshus. The synchronization power of coalesced

memory accesses. Technical report CS:2008-68, University of Tromsø, Norway,
2008.

10. M. Herlihy. Wait-free synchronization. ACM Transaction on Programming and
Systems, 11(1):124�149, Jan. 1991.

11. P. Jayanti and S. Khanna. On the power of multi-objects. In WDAG '97: Proceed-
ings of the 11th International Workshop on Distributed Algorithms, pages 320�332,
1997.

12. L. Lamport. How to make a multiprocessor computer that correctly executes
multiprocess progranm. IEEE Trans. Comput., 28(9):690�691, 1979.

13. J. D. Owens, D. Luebke, N. Govindaraju, M. Harris, J. Krüger, A. E. Lefohn, and
T. J. Purcell. A survey of general-purpose computation on graphics hardware.
Computer Graphics Forum, 26(1):80�113, 2007.

14. S. Ramamurthy, M. Moir, and J. H. Anderson. Real-time object sharing with
minimal system support. In Proc. of Symp. on Principles of Distributed Computing
(PODC), pages 233�242, 1996.

15. E. Ruppert. Determining consensus numbers. In Proc. of Symp. on Principles of
Distributed Computing (PODC), pages 93�99, 1997.

16. E. Ruppert. Consensus numbers of multi-objects. In Proc. of Symp. on Principles
of Distributed Computing (PODC), pages 211�217, 1998.

