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A B S T R A C T

Distributed algorithm designers often assume that system processes execute the same

predefined software. Alternatively, when they do not assume that, designers turn to non-

cooperative games and seek an outcome that corresponds to a rough consensus when

no coordination is allowed. We argue that both assumptions are inapplicable in many

real distributed systems, e.g., the Internet, and propose designing self-stabilizing and

Byzantine fault-tolerant distributed game authorities. Once established, the game authority

can secure the execution of any complete information game. As a result, we reduce costs

that are due to the processes’ freedom of choice. Namely, we reduce the price of malice.
c⃝ 2010 Elsevier Inc. All rights reserved.
d

“Capitalism is the best economic system in the world because
it demands and rewards hard work. It challenges us to be
excellent.

But like everything else in life, capitalism can be perverted
and exploited. Bad people can find ways to cheat. That’s why
the federal government oversees the American economy to
make sure there is some justice and honesty in pursuit of
profit.” [Bill O’Reilly, September 18, 2008 in FOX NEWS].

1. Introduction

Game theory analyzes social structures of agents that have
freedom of choice within a moral code. Society allows free-
dom and selfishness within this moral code, which is en-
forced by existing social structures, i.e., legislative, executive,
and judicial. Social rules encourage individual profit from
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which the entire society gains. Distributed computer systems
can improve their scalability and robustness by using explicit
social structures. We propose using a game authority middle-
ware to enforce the rules of the game, which the honest ma-
jority decides upon.

The power of game theory is in predicting the game
outcome for specific assumptions. The prediction holds as
long as the players cannot tamper with the social structure or
change the rules of the game, e.g., the prisoner cannot escape
from prison in the classical prisoner dilemma. Therefore,
we cannot predict the game outcome without suitable
assumptions on failures and honest selfishness.

There are attempts to define various aspects of selfish-
computer systems: the selfish MAC Layer that does not back
off in [1], the Byzantine Nash equilibrium of a replicated state-
machine in [2], and the selfish mechanism for virus inocu-
lation in the presence of malicious agents in [3], to name a
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few. In fact, [3] discovered that the performance ratio between
selfish mechanisms that do and do not have malicious agents
(named the price of malice, PoM), is as important as the per-
formance ratio between selfish mechanisms and centralistic
mechanisms (named, respectively, the price of anarchy (PoA)
[4,5] and the price of stability (PoS) [6]). We study these perfor-
mance ratios in the presence of game authority implementa-
tion, and discover significant improvements.

We argue that when designing distributed selfish-
computer systems it is unsuitable to assume that all software
layers and components act selfishly. Under this strong
assumption, the designer has to consider a complex game
among all selfish agents, which has many possible software
actions and imprecise cost (utility) in the presence of failures.
Moreover, not all games have a predictable outcome; many
games have very long stabilization periods, and incomplete
information games deteriorate the system efficiency.1

Consequently, designers cannot predict the outcome without
a suitable perspective on the various system aspects.

This paper explains how to implement a game authority
so that the middleware can (1) deter deviation (from the
moral code), and (2) recover after the occurrence of transient
failures.

1.1. The middleware services

The game authority facilitates interaction among agents of
the (higher) application layer, where users control programs.
The middleware implements a social structure that relies
on the common moral code of the majority of entities, and
overcomes the non-moral Byzantine behavior of minorities.2

Our social structure follows the principle of power separation.
The key middleware services are as follows.

• The legislative service, which allows agents to set up the
rules of the game in a democratic manner, e.g., robust
voting [7], which can facilitate a democratic decision about
a preferable outcome for the majority.

• The judicial service, which audits the agents’ actions and
orders the executive service to punish agents following
their foul play.

• The executive service, which executes actions and manages
their associated information: publishing utilities, collect-
ing choice of actions, and announcing the play outcome.
Moreover, by order of the judicial service, this service re-
stricts the action of dishonest agents.

Our proposal for a general game authority focuses on
the implementation of the judicial service and its potential
benefits in the context of distributed systems of selfish
computers. This general design of the game authority is
presented in order to demonstrate the proof of existence
as a general middleware, rather than the most efficient
implementation.

1 Game theory uses this term to describe a game in which
individual agents may not be able to predict (precisely) the effect
their actions will have on the other agents.

2 Assuming standard requirements for Byzantine agreement,
i.e., more than two-thirds of the processes are (selfish but)
honest, and authentication utilizes a Byzantine agreement that
needs only a majority. Moreover, the communication graph is not
partitioned; e.g., there are 2f +1 vertex disjoint paths between any
two processes, in the presence of at most f Byzantine processes.
2. Case study: game authorities that deter
subsystem takeovers

We consider scenarios of joint deviations for which there are
simple yet efficient implementations of the game authority.
The implementation is based on an equilibrium of strategies
that autonomous agents have devised, and all possible joint
deviations by a group of at most D deviators. The autonomous
agents deter the deviation; if any one of all possible joint
deviations happens, then the deviating group will lose payoff,
compared to what they would get by obeying the equilibrium
strategy.

We consider noncooperative games in which every joint
deviation is coordinated by an arbitrary agent—the coordina-
tor. The coordinator selects the actions of its subordinates, and
has no control over the autonomous agents. The coordinator
and autonomous agents maximize their individual payoffs
by a deliberate and optimized selection of actions. The au-
tonomous agents cannot enforce coordinated behavior, and
have no a priori knowledge about the identities of the coordi-
nator and its subordinates.

We present a design of autonomous systems that are
required to deter subsystem takeovers by implementing
the judicial service. Subsystem takeovers can model scenar-
ios in which users abuse their access privileges to remote
machines.3 (Such privileges might be gained by hostile mal-
ware.) We show that a simple strategy can deter subsystem
takeovers. Moreover, we show that this simple strategy guar-
antees system recovery after the occurrence of an unexpected
combination of deviations.

The judicial service is implemented by deterministic self-
stabilizing finite automata. We analyze the complexity of
that simple strategy and demonstrate a lower bound that
asymptotically matches the costs of our implementation.

2.1. Self-stabilization

One of the design enhancements that we consider is
the recovery from transient faults. Self-stabilizing systems
[10,11] can recover after the occurrence of transient faults.
These systems are designed to automatically regain their
consistency from any starting state of the automaton. The
arbitrary state may be the result of violating the assumptions
of the game model or the system settings. The correctness
of a self-stabilizing system is demonstrated by considering
every sequence of actions that follows the last transient fault
and is, therefore, proved assuming an arbitrary starting state
of the automaton. We explain how to implement a general
game authority that can recover from the occurrence of
transient failures. Moreover, in the context of joint deviations,
we demonstrate that the proposed strategy for deterring
subsystem takeovers is self-stabilizing.

3 The abuser (i.e., the coordinator) deprives the individual
benefit of an arbitrary subset of agents (i.e., the remote
machines). We assume that the coordinator does not compensate
its subordinates for their losses. Therefore, the notion of
subordinates’ deviation should bemodeled by games that have no
side payments or transferable utilities (similar to the definitions
in [8]). Hence, neither the sum nor the maximum of the deviators’
payoffs should be considered (our approach is different from that
in [9]).
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3. Document outline

Basic concepts are explained in Section 4. The problem back-
ground in explained in Section 5, together with examples.
A general game authority middleware is presented in
Section 6. A study of a deterministic game authority that de-
ters subsystem takeovers is presented in Section 7, together
with a proof sketch of its optimal strategic complexity. Toler-
ating transient faults is considered in Section 8. The audition
of mixed strategies is considered in Section 9. Some of the
cost benefits and applications of the game authority are ex-
emplified in Section 10. Related results, open problems, and
conclusions appear in Section 11.

4. Preliminaries

Throughout, we follow the definitions and notations of [12].
Throughout, we use N to denote the set of agents, Ai
the set of actions, and %i the preference relation (where
i ∈ N is an agent). We represent single-stage games, G, in
their strategic form as ⟨N, A = (Ai), % = (%i)⟩, and in their ex-
tensive form as ⟨N, H, % = (%i)⟩. We refer to solution concepts
such as the Nash equilibrium, and feasible and enforceable
payoff profiles.

4.1. Profiles

We refer to a collection of values of some variable, one for
each agent, as a profile. Similar to the single element profile
notation (i.e., x = (xi)i∈N, (x−i, xi), and X−i of [12]), we consider
profile notation for subsets of elements s ⊆ N. We define
profiles xs, x−s to be the list of elements (xi)i∈s, respectively
(xi)i∈N\s for all s ⊆ N. Given a list of elements x−s =

(xi)i∈N\s and a profile xs = (xi)i∈s, we denote by (x−s, xs) the
profile (xi)i∈N. We denote by Xs, X−s the sets ×j∈s Xj, ×j∈N\s Xj,
respectively, where the set of elements is defined as Xi for
each i ∈ N.

4.2. Repeated games

Throughout, we consider the game Γ = ⟨N, H, % = (%i)⟩, in
which the constituent game G = ⟨N, A = (Ai), % = (%i)⟩ is
repeated an infinite number of times. We assume that
all periods (plays) are synchronous; i.e., all agents make
simultaneous moves. Moreover, by the end of each round, all
agents have observed the actions taken by all other agents.

4.3. Preference relations for repeated games

A preference relation expresses the desire of the individual
for one particular outcome over another. For the constituent
game, G, the relation %i refers to agent i’s preferences.
Suppose that %i can be represented by a payoff/utility function
ui : A → R, for which ui(a) ≥ ui(b) whenever a %i b. We assume
that, in Γ , agent i’s preference relation %⋆

i is based on a payoff
function ui. Namely, (at) %⋆

i (b
t) depends only on the relation

between the corresponding sequences (ui(a
t)) and (ui(b

t)).
4.4. The limit of means criterion

The limit of the means criterion [13,14] treats the future as
no more important than the present. The sequence vt

i of
real numbers is preferred to the sequence wt

i if and only if

limT→∞ ΣT
t=1(vt

i − wt
i )/T > 0.

4.5. Games in extensive form

The extensive form of a game describes the game as a decision
tree, which is directed from the root downwards. Each node
of the tree represents every reachable stage of the game.
Starting from the initial node, agents take synchronous
(simultaneous) choices of actions. Given any internal node
in the tree, each possible action profile leads from that node
to another node. A node is said to be terminal if it has no
outgoing action profiles.

A history is a sequence of action profiles that corresponds
to a directed path from the root of the decision tree. The set of
all histories is denoted by H. We note that history (ak)k=[1,K] ∈

H is terminal if it is infinite or if there is no (ak)K+1 such that
(ak)k=[1,K+1] ∈ H. The set of terminal histories is denoted Z.
Moreover, for each agent i ∈ N, a preference relation %i is
defined on Z. Let h be a history of length k; we denote by
(h, a) the history of length k + 1 consisting of h followed by a.
We denote an extensive game with perfect information and
synchronous (simultaneous) moves as Γ = ⟨N, H, % = (%i)⟩.

4.6. Subgames

In large (or infinite) decision trees, it is useful to isolate parts
of the tree in order to establish simpler games. When the
initial node of a subgame is reached in a larger game, agents
can concentrate on only that subgame; they can ignore the
history of the rest of the game.

Let Γ = ⟨N, H, %⟩ be an extensive game with perfect
information and synchronous (simultaneous) moves. Let H|h
be the set of sequences h′ of actions for which (h, h′) ∈ H.
We define %i |h as h′ %i |hh′′ if, and only if, (h, h′) %i(h, h′′).
The subgame Γ (h) of game Γ that follows the history h is
the extensive game ⟨N, H|h, %⟩. By defining a new decision
tree, H|h in the subgame, agents can concentrate on only the
subgame Γ (h); they can ignore the history of the rest of the
game.

4.7. Strategies for individuals

Agents protect their benefits by following a long-term plan (or
program) of action selection. We call this plan the (individual)
strategy sti of agent i ∈ N. We define sti as a function that
assigns an action in Ai to every finite sequence of outcomes
in the game Γ = ⟨N, H, % = (%i)⟩.

5. Background of the problem

We illustrate basic notions in game theory and elements
of the problem at hand using an example (a more detailed
tutorial appears in [15]).
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Fig. 1 – The shared responsibility n-agent game.
Our example of a system of selfish computers considers
the shared responsibility service, which is presented in Fig. 1.
We model the service as an uncooperative game among
n agents. An agent decides whether it would participate
as a Server or as a Client. Servers specify their access
list; the list restricts the access of other agents (clients or
servers). Clients benefit the most whenever they can access
a majority of selfish computers via a server that relays the
communications.

5.1. Single-stage games

The payoff matrix that considers a three-agent instance of the
game is presented in Fig. 2. The matrix describes the payoff
that agent 1 gets for every possible combination of actions
that the agents may take. We note that the payoff of any
Server is less than the payoff of any Client (in the single-stage
game). Therefore, all agents decide to be clients and thus
receive the payoff of 0.4 This is a Nash equilibrium.

5.2. Infinitely repeated games

If the single-stage game is repeated infinitely, the agents can
benefit from a sequence of cooperation steps in which the agents
take turns for responsibility. A possible cooperation sequence
is presented in Fig. 3. In this sequence of cooperation, every
agent is supposed to eventually receive the average payoff of
(|N| − 2)/|N|.5 In that sense, if all agents “play along” then
(|N|−2)/|N| is a feasible payoff. Unfortunately, the selfish agent
j might deviate from the sequence of cooperation. Suppose

4 Starting from any entry of the matrix, consider a sequence
of (unilateral) changes to the agents’ choice of action. Once every
agent was able to change its choice, all agents choose to be clients.

5 In every |N| periods of the cooperative sequence there are N−1
periods in which agent i ∈ N is a Client (that is served by others)
and a single period in which the payoff of agent i is −1.
that j knows that all other agents would always allow j to
access their services. Then agent j can decide to deviate and
be a Client whenever it is the turn of j to be a Server.

5.3. Punishment

In uncooperative games, all agents must monitor the actions
of agent j, and deter j from deviation by punishment. The
punishment should hold j to the minimal payoff value that
the punishing agent can enforce. In the shared responsibility
game, j receives a minimal enforceable payoff when the
punishing agents take a sequence of steps in which (1) they
exclude j from their access list, and (2) they “play along”
among themselves. A punishing sequence in which the payoff
of 0 is enforced on agent 3 is shown in Fig. 4. In that sense, 0
is an enforceable payoff.

5.4. Grim trigger strategies

One can consider the following strategy. Initially, agent i
follows the sequence of cooperation. However, as soon as
agent j defects, agent i follows the punishment scheme that
forever holds j down to its minimal enforceable payoff. In
the shared responsibility game, agent j cannot benefit from
defecting, because the punishment eventually reduces j’s
average payoff from (|N| − 2)/|N| to 0. Thus, agent j would
prefer to cooperate. Thus, the grim trigger strategy is the Nash
equilibrium for infinitely repeated games.

There is a clear disadvantage to the grim trigger strategy:
while the agents hold down j to its minimal payoff, their
payoff might be reduced as well. The equilibrium will
continue to be played forever, even if j defects only once.
Thus, the threatened response may seem unreasonable,
especially when it is too costly to the punishing agents. In
other words, the knowledge that the punishing agents will
respond to j’s defection by an unrelenting punishment is what
keeps j from defecting. However, if j does in fact defect, it may
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(a) Agent 3: ⟨Server, {1}⟩ or ⟨Server, {1,2}⟩. (b) Agent 3: ⟨Server, {2}⟩, ⟨Client, {1}⟩, or
⟨Client, {2}⟩.

Fig. 2 – The payoff matrices of the shared responsibility game with three agents. The headings of tables, columns and rows
are in the form of ⟨a, s⟩, where a is the action, and s is the access list of agent 1. The matrix is symmetrical, and thus the
payoffs of agents 2 and 3 are, in fact, described as well.
Fig. 3 – A sequence of cooperation for three agents. The
entry format follows that of Fig. 2.

no longer be beneficial for the punishers to punish. That is
what makes the grim trigger strategy unbelievable.

5.5. The perfect folk theorem

In the context of repeated games, the Nash equilibrium can
be refined to exclude strategies such as the grim trigger
strategy (for example, see the solution concept of subgame
perfect equilibrium [16,12]). Roughly speaking, the “refined
equilibrium” represents the Nash equilibrium in every “stage”
of the repeated game. And thus, if agent j defects only once,
then the punishing agents would punish j merely for a finite
period. At the end of the punishment period, all agents return
to cooperate.

The perfect Nash folk theorem provides strategies that
can deter an agent from deviating unilaterally (see [12], and
references therein). A sketch of a strategy is presented in
Fig. 5. The strategy is a deterministic and finite automaton
that plays the sequence of cooperation as long as there are
no deviations. The automaton retaliates to the deviation of
an agent with a punishment for a sufficiently long (but finite)
period.

6. The middleware

The task of the game authority is to verify that all agents play
the game by its rules. This can be achieved by verifying that
all agents follow the rules of the game in each play. Namely,
before the start of every play, the agents make sure that
there is a majority of (honest but selfish) agents that agree
on their cost functions and on the result of the previous play
(if there was such a play). The agents then play the game and
the system publishes the outcome of the play to all agents.
Fig. 4 – A scheme for punishing agent 3. The entry format
follows that of Fig. 2.

Once the outcome is published, the game authority can audit
the actions of the agents and punish the agents that did
not play by the rules. We organize the middleware of game
authority by using the three services (legislative, judicial, and
executive).

6.1. The legislative service

A key decision that the legislative service makes is about the
rules of the game. In more detail, the service is required to
guarantee coherent game settings; i.e., all honest agents agree
on the game Γ = ⟨N, (Πi)i∈N, (ui)i∈N⟩. In particular, the service
defines the cost (utility) functions (ui)i∈N.

We note that existing manipulation resilience voting
algorithms can facilitate these decisions (see [7]). For the
sake of simplicity, we assume that the agents have fixed
preferences throughout the system run and consider a
predefined game Γ , which the society elects before starting
the system. We note that a possible design extension can
follow the agents’ changing preferences and repeatedly
reelect the system’s game.

6.2. The judicial service

The task of the judicial service is to audit the actions that
the agents take in every play. Moreover, the judicial service
orders the executive service to punish agents that do not play
honestly.

In more detail, the service is required to guarantee the
following. (1) Legitimate action choice. Every honest agent i ∈ N
chooses actions πi only from its set of applicable actions Πi.
(2) Private and simultaneous action choice. The choice of actions
of all honest agents is taken simultaneously;, i.e., the system
does not reveal the choice of agent i ∈ N before all have
committed to their actions. (3) Foul plays. Action πi ∈ Πi of
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Fig. 5 – A sketch of a strategy for the shared responsibility game with three agents.
agent i ∈ N is foul if πi is not i’s best response to π−i, where
(π′

i, π−i) is the strategy profile of the previous play. The judicial
service should instruct the executive service to punish the
agents that make foul plays.

6.3. The implementation

We start by considering the cases in which agents follow
merely pure strategies before we turn to considering mixed
strategies (in Section 9).

The algorithm relies on a Byzantine agreement protocol
(BAP) and cryptographic primitives such as commitment
schemes (see [17]). Moreover, we use a Byzantine common
pulse generator (similar to the one of [18]) to synchronize
the different services. Moreover, the Byzantine common
pulse generator allows the system to repeat a sequence
of activating the different instantiations of the Byzantine
agreement protocol.

Requirements (1)–(3) can be guaranteed. Upon a pulse, all
agents start a new play of the game that is carried out by a
sequence of several activations of the Byzantine agreement
protocol. The play starts by announcing the outcome, π ∈ Π ,
of the previous play (if there was such a play). Here the
Byzantine agreement protocol is used to assure that all agents
agree on π. Next, every agent chooses its best response,
π′

i ∈ Πi, to π−i, and uses a commitment scheme in order
to announce its commitment on π′

i without revealing π′

i.
Again, we use the Byzantine agreement protocol in order to
ensure that all agents agree on the set of commitments. Once
all commitments are agreed upon, the agents reveal their
strategy profile of the play, π′. Moreover, all agents audit the
strategy profile of the play and use the Byzantine agreement
protocol to agree on the set, N′

⊂ N, of agents that have made
a foul play. Lastly, the judicial service orders the executive
service to punish N′ and to play according to π′.

6.4. The executive service

The task of the executive service is to carry out the agents’
actions. The service manages the associated information of
the actions: announcing the play outcome, publishing the
utilities, and collecting the choice of actions. Moreover, by
order of the judicial service, this service restricts the action
of dishonest agents according to the punishment scheme.

Punishment schemes. Effective punishment is an essential
mechanism for reducing the price of malice (PoM [3]) when
considering detectable manipulation. However, punishment
is useful when there is a price that the dishonest agent is
not willing to pay. In other words, a complete Byzantine agent
bears any punishment while aiming at maximizing the social



C O M P U T E R S C I E N C E R E V I E W 5 ( 2 0 1 1 ) 6 9 – 8 4 75
cost. Therefore, it seems that the only effective option is
to disconnect Byzantine agents from the network (see [19]).
We note that there are punishment schemes based on agent
reputation or real money deposits. Other approaches consider
more elaborate punishment schemes in which dishonest
agents can be deterred (see [20,21]).

We assume that the executive service is trustworthy. This
assumption is common in the game theory literature under
the name of a trusted third party, e.g., the taxation services
in mechanism design (see [22]). We note that [23] facilitates
such assumptions. In Section 7, we present a miniature game
authority and explain how to construct a punishment scheme
using deterministic autotmata.

7. Case study: game authorities that deter
subsystem takeovers

We consider scenarios of joint deviations for which there are
simple yet efficient implementations of the game authority.
The implementation is based on an equilibrium of strategies
that autonomous agents have devised, and all possible joint
deviations by a group of at most D deviators. We show
how to deter these joint deviations using a simple strategy
that can be implemented by finite automata. We analyze
the complexity of that simple strategy and demonstrate a
lower bound that asymptotically matches the costs of our
implementation.

7.1. Subsystem takeovers

The perfection property is a key feature of the notion of
subgames. This property specifies that a strategy profile is
a Nash equilibrium in every subgame. Given a game Γ =

⟨N, H, %⟩, we define the strategy profile st = (sti)i∈N as a
subgame perfect equilibrium that is t-defendable from joint
deviations of any subordinate group s ∈ S(t), where t ∈ [1, |N|)

is a constant and S(t) = {s : s ∈ 2N
\ {∅, N} ∧ |s| ≤ t} is the set of

all possible subordinate groups.6

Joint strategies Let s ⊆ N be any group of agents, sts = (sti)i∈s
their joint strategies, and h ∈ H a history of the extensive
game Γ = ⟨N, H, %⟩. We denote by Γ (h) the subgame that
follows the history h. Moreover, denote by sts|h the joint
strategies that sts induces in the subgame Γ (h) (i.e., sts|h(h′) =

sts(h, h′) for each h′
∈ H|h). We denote by Oh the outcome

function of Γ (h). Namely, Oh(st−s|h, sts|h) is the outcome of
the subgame Γ (h) when the agents take the strategy profile
(st−s|h, sts|h).

Perfect and t-defendable subgame equilibria. Given a number
t ∈ [1, |N|), we say that the subgame st = (sti)i∈N cannot
recover from a joint deviation of a subordinate group s ∈

S(t) if there is a joint deviation st′s of the agents in s such
that, for any h ∈ H\Z, it holds that, for an arbitrary agent
icoord ∈ s (the coordinator), we have Oh(st−s|h, st′s|h) ≻icoord

|h
Oh(st−s|h, sts|h). When the subgame st can recover from any
joint deviation of the subordinate groups, s ∈ S(t), we say that
st is a t-defendable equilibrium.

6 We do not consider the case when s = N, because it refers to a
system that is controlled by a single agent.
We note that, while the joint deviation st′s is required to
guarantee the benefit of coordinator, there are no guarantees
for the benefits of the subordinates. In more detail,
there could possibly exist a subordinate agent jsubor ∈ s \

{icoord} such that Oh(st−s|h, st′s|h) ≺jsubor
|h Oh(st−s|h, sts|h). We

mention that joint deviations in which agent jsubor may
exist are not considered by [24–29] (see the discussion in
Section 11).

s-enforceable payoff profiles To support a feasible outcome,
each subordinate group and its coordinator must be
deterred from deviating by being “punished”. The concept of
enforceable payoff profiles considers a single agent that may
deviate (see [12]). We extend that concept to consider the
deviation of subordinate groups.

Define the minmax payoff in game Γ of a subordinate
group s ∈ S, denoted vi|s, to be the lowest payoff that the
autonomous agents N′

= N \ s can force upon the coordinator
i ∈ s:

vi|s = min
a−s∈A−s

max
as∈As

ui(a−s, as). (1)

Given a minmax payoff profile vi|s, the payoff profile w|s is
called strictly s-enforceable if wi|s > vi|s for all i ∈ s. Denote by
p−s ∈ A−s one of the solutions of the minimization problem
on the right-hand side of Eq. (1).

7.2. Folk theorem for games with subsystem takeovers

The folk theorem is a class of proofs which show that every
feasible and enforceable profile of payoffs can be achieved
by a subgame perfect equilibrium (see [12], and references
therein). In this section, we present Lemma 1, which is a folk
theorem for games with subsystem takeovers.

Joint deviations are more complex than unilateral ones.
The coordinator of a subordinate group can synchronize its
subordinates’ deviations and divide them in groups: a group
of provoking agents, and a group of “fifth column” agents.7

For example, suppose that in the shared responsibility
game the subordinate is s = {j1, j2}. The coordinator can
synchronize the following deviation: agent j1 provokes the
autonomous agents by not following its duty to be a Server.
The autonomous agents retaliate by punishing agent j1.
We note that the deviation of the provoking agents does
not reveal the fact that the “fifth column” agent, j2, is the
coordinators’ subordinate. Therefore, the autonomous agents
expect j2 to participate in the punishment of its fellow
member j1. Alas, agent j2 betrays the autonomous agents;
while the autonomous group is punishing, agent j2 deviates
from punishing and enters j1 in its access list. Hence, the
synchronized deviation can protect j1’s profit.

Lemma 1 considers the payoff profiles that the au-
tonomous group can guarantee in the presence of subsys-
tem takeovers. A payoff profile w that is strictly s-enforceable
∀s ∈ S(D) is called strictly D-defendable. If a ∈ A is an outcome
of Γ for which u(a) is strictly D-defendable in Γ , then we refer
to a as a strictly D-defendable outcome of Γ .

7 Fifth column [30]: Clandestine group of subversive agents who
attempt to undermine a nation’s solidarity by any means.
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Fig. 6 – A strategy sketch for a repeated game with n agents and the limit of means criterion.
Lemma 1. Let Γ be an infinitely repeated game of G = ⟨N,

(Ai), (ui)⟩ with the limit of means criterion. Every feasible and
strictly D-defendable payoff profile of Γ has a subgame perfect
equilibrium payoff profile that is D-defendable.

Proof outline. The strategy profile of the automata, (atmi)i∈N,
is illustrated in Fig. 6. We use the constant m∗ that we
now turn to estimate. After the first deviation, the sequence
of punishment starts, during which the coordinator might
increase its benefit for ϱ periods of betrayal, where 0 ≤

ϱ ≤ |s′
\s|. However, a suffix of the punishment sequence is

guaranteed to include |s′
|m∗ periods in which there are no

further betrayals and the automaton plays vi|s′ . Thus, the
coordinator’s potential benefit is (γ + ϱ)g∗, where g∗ is the
maximal amount that any coordinator j ∈ N can gain when
any subordinate group s ∈ S(D) deviates from any action
profile in G. (Namely, g∗ is the maximum of uj(a−s, a′

s) − uj(a)

over all j ∈ N, s ∈ S(D), a′
s ∈ As and a ∈ A. Moreover, we assume

that g∗ is given.)
The coordinator cannot increase its benefit during the

punishment suffix, which has no further betrayals. We
explain how to choose a large enough m∗ so that the
punishment is effective. The alternative payoff of the
coordinator is at least the sum of wj − vj|s′ taken over all
|s′

|m∗ periods of the punishment suffix. Since w is strictly D-
defendable, and s ∈ S(D), w|s is s-enforceable, and wj|s > vj|s

(recall vj|s from Eq. (1)). Therefore, there exists an integer
m∗

≥ 1 that is an integral multiple of γ such that, for all j ∈ N
and s′

∈ S(D),

g∗(γ + D − 1) < m∗(wj − vj|s′ ). (2)

The proof specifies the strategy described above. Moreover,
the proof verifies that, in the case where there are
no deviations, the automaton follows the sequence of
cooperation. In addition, for any non-empty subordinate
group that deviates, the automaton follows a finite and
effective sequence of punishment. �

We note that existing work on joint deviation in repeated
games, such as [25,27], does not bound the costs that are
related to the strategy complexity. The finite automaton that
is considered by Lemma 1 allows us to present such bounds
(see Section 11).

7.3. Complexity issues of games with subsystem takeovers

Computational game theory has several ways of measuring
complexity (see [31]). The two most related to games with
subordinates’ deviations are as follows.

Costs of finding strategies. The computational complexity of
a game model describes the asymptotic difficulty of finding
a solution as the game grows arbitrarily. We give the shared
responsibility game as an example for which it is possible to
efficiently find strategies that deter subordinates’ deviations.
Unfortunately, this is not the general case; finding strategies
that deter joint deviations is at least as hard as finding a
Nash equilibrium, which is known to also be computationally
intractable for infinitely repeated games; see [32,33].

Costs of implementing strategies. What is the minimal
amount of memory required for implementing a given
strategy? Kalai and Stanford [34] answer this question in the
context of finite-state machines, and show that it is the size
of the smallest automaton that can implement the strategy.
The difficulty that Lemma 2 raises is that selfish computers
that try to deter subordinates’ deviations may exhaust their
resources.
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Lemma 2. The complexity of a strategy that deters subordinates’
deviations is in Θ(D

 n
D


), where n is the number of agents, and D

is an upper bound on the size of the subordinate group.8

Proof outline. A strategy that deters subordinates’ deviations
is presented in Section 7.2. The automaton that implements
these strategies requires O(D

 n
D


) states. The lower bound

part of this lemma is demonstrated by considering every
subordinate group, s ∈ S(D), and all the possible sequences of
deviations. There are at least

 n
D


− 1 subordinate groups. The

proof verifies the existence of at least D different periods in
which the deviators may deviate before all of them deviate.
Only after the last deviation can the strategy complete
the punishment of the subordinate. Therefore, there are at
least D(

 n
D


− 1) different subgames in which a subordinate

group deviates. Thus, by [34], the strategy complexity is in
Θ(D

 n
D


). �

8. Self(ish)-stabilizing

We now shift focus to show an implementation of the game
authority that can recover from transient failures and periods
during which the agents act upon short-lived myopic logic.
We name the combination of these two properties self(ish)-
stabilization. We start by considering a general game authority
before turning to the example presented in Section 7 and
demonstrate the ability to tolerate transient faults.

8.1. Self-stabilizing judicial services

The game authority can be coded in the form of a do forever
loop that is supported by a self-stabilizing Byzantine pulse
synchronization algorithm (that is similar to [18]). Thus, by
showing that every service is self-stabilizing, we show that
the entire middleware is self(ish)-stabilizing.

It is easy to see that the legislative service is stateless
and therefore self-stabilizing. We note that not every judicial
service is self-stabilizing, because the Byzantine agreement
protocol (BAP) has an internal state (e.g., epoch numbers). We
demonstrate that the judicial service can be self-stabilizing
by showing the existence of a self-stabilizing Byzantine
agreement algorithm. We remark that the executive service
is application dependent, and therefore should be made self-
stabilizing on a case basis.

The self-stabilizing Byzantine agreement algorithm is
a composition of two distributed algorithms. We use the
self-stabilizing Byzantine clock synchronization algorithm
of [18]. Whenever the clock value reaches the value 1, the
self-stabilizing Byzantine agreement algorithm invokes the
Byzantine agreement protocol (BAP) (e.g., [35,36]). We take
the clock size, logM, to be large enough to allow exactly one
Byzantine agreement, where M is the number of clock values.

Theorem 1 ([37,38,20]). The algorithm described above is a self-
stabilizing Byzantine agreement protocol.

8 The lower bound holds when considering t-strong [24] or t-
resilient [27] equilibria, because the t-defendable property implies
the t-strong and t-resilient properties (see Section 11).
We call the self-stabilizing Byzantine agreement described
above SSBA.

The settings of a distributed systemWe formally describe self-
stabilizing distributed systems that stabilize in the presence
of Byzantine faults before we turn to demonstrating the proof.

The system consists of a set of computing and commu-
nicating entities, which we call processors. We denote the set
of processors by P , where |P | is finite. The graph G(V,E ) de-
notes the communication graph of the system, where V is the
set of processors, and where there is an edge in E between ev-
ery pair of processors pi and pj that can directly communicate.
All such pi and pj are called neighbors. We assume that every
processor has a unique identifier.

In the proposed system, every processor emulates an
agent, which is a program that encodes an agent in a strategic
game. The program of a processor pi consists of a sequence
of steps. For ease of description, we assume a synchronous
model in which all processors execute steps automatically
and simultaneously. The state si of a processor pi consists
of the values of all processor variables (including its control
variables such as the value of its program counter).

A common pulse triggers each step of pi. The step starts
sending messages to neighboring processors, receiving all
messages sent by the neighbors, and changing its state
accordingly.

As mentioned before, a processor is Byzantine if it does
not follow its program, i.e., does not execute the agent or
does not participate correctly in implementing the game
authority middleware. We assume standard requirements
for Byzantine protocols, i.e., more than two-thirds of the
processes are (selfish but) honest, and authentication utilizes
a Byzantine agreement that needs only a majority. Moreover,
the communication graph is not partitioned; i.e., there are
2f +1 vertex disjoint paths between any two processes, in the
presence of at most f Byzantine processes.

We describe the global state of the system, the system
configuration, by the vector of the state of the processors
(s1, s2, . . . , sn), where each si is the state of processor pi. We
describe the system configuration in the instance in which
the pulse is triggered, when there are no messages in transit.
We define an execution E = c0, c1, . . . as a sequence of system
configurations ci, such that each configuration ci+1 (except
the initial configuration c0) is reached from the preceding
configuration ci by an execution of steps by all the processors.

The task τ of a distributed system is defined by a set of
executions LE called legal executions. For example, task τ may
be defined by the correct game behavior of agents which is
carried out according to the rules of the game, and in which
the set of enabled agents present rational behavior. By enabled
agents, we mean that rational agents may decide to punish
mischievous agents and disable their foul plays.

Self-stabilizing distributed systems [10,11] can recover after
the occurrence of transient faults. The system is designed
to automatically regain its consistency from any starting
configuration. The arbitrary configuration may be the result
of unexpected faults caused by the environment and/or
mischievous agents’ behavior.

The correctness of a self-stabilizing system is demon-
strated by considering every execution that follows the last
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transient fault and is, therefore, proved by assuming an ar-
bitrary starting configuration. The system should exhibit the
desired behavior (of task τ) in an infinitely long period after a
finite convergence period.

A configuration c is safe with regard to a task τ and to
the distributed system if every nice execution that starts
from c belongs to LE. We say that the algorithm satisfies its
task τ when its execution is in LE (the property of closure).
An algorithm is self-stabilizing if, starting from an arbitrary
configuration, it reaches a safe configuration within a finite
convergence period (the property of convergence).

The proof of Theorem 1. We define the set of legal execu-
tions, with respect to the task of the self-stabilizing Byzan-
tine agreement protocol (BAP), as the set of executions, LE,
in which the Byzantine agreement protocol (BAP) properties
hold (i.e., termination, validity, and agreement). Let E be an
execution, and c ∈ E be a configuration, such that (1) all the
clock values are 1, and (2) the Byzantine agreement protocol
(BAP) is at its starting configuration (e.g., identical epoch and
round numbers).

Lemma 3 (Convergence). Starting from an arbitrary configuration,
we reach a safe configuration within O(n(n−f)) clock pulses.

Proof. Starting from an arbitrary configuration, within an
expected O(n(n−f)) clock pulses, a configuration c is reached
in which all clock values are 1 (see [18]). In the atomic step
that immediately follows c, all processes invoke the Byzantine
agreement protocol (BAP) before changing their clock value.
Hence, c is safe. �

Lemma 4 (Closure). Let E be an execution that starts in a safe
configuration. Then E ∈ LE.

Proof. Starting from a safe configuration, there is a period of
M pulses in which no process assigns 1 to its clock. During this
period, the Byzantine agreement protocol (BAP) is executed
for a long enough time that allows exactly one Byzantine
agreement. Moreover, at the end of this period, all processes
assign 1 to their clocks. Thus, there is an infinite sequence
of such periods in which the Byzantine agreement protocol
(BAP) reaches Byzantine agreements. �

Lemmas 3 and 4 imply Theorem 1.

8.2. Case study: tolerating transient faults in the presence
of subsystem takeovers

When designing a distributed system of selfish computers, it
is unsuitable to assume that failures never occur. Most of the
existing literature on repeated games considers agents that
have identical views on the history of actions. In practice,
it is unlikely that all selfish computers never fail to observe
an action in an infinite system run. Once a single selfish
computer misinterprets an action, the outcome of the game
cannot be predicted by the current theory.

Transient faults are regarded as faults that temporarily
violate the assumptions made by the system designer about
the game model and the system settings. For example, the
system designer may assume the existence of a constant
upper bound, D, on the size of the subordinate group. In this
case, a transient fault could be a joint deviation of more than
D agents. (Recall that Lemma 2 implies a possible failure in
allocating sufficient memory as D grows.)

We show that the automata that are considered in
Section 7 can automatically regain their consistency from
any starting state of the automata. The arbitrary state may
be the result of violating the assumptions about the game
model or the system settings, i.e., transient faults. Lemma 5
extends Lemma 1 by showing that the automata can be made
to recover from transient faults. Thus, there are self(ish)-
stabilizing systems of that deter subordinates’ deviations.

Lemma 5. Let Γ be an infinitely repeated game of G under the limit
of means criterion. Then, there are self(ish)-stabilizing automata
that implement subgame perfect equilibria that are D-defendable
in Γ .

We consider two proofs of Lemma 5: a simple one that
uses known techniques of clock (state) synchronization and a
more general one. Dolev [11] presents clock synchronization
algorithms that within a finite number of steps after the
last transient fault synchronize the clock values. One can
view the clock values as the states of the automata. Namely,
requiring identical state values of the autonomous automata
is the same as requiring the same time values in all clocks.
This simple proof assumes that all states are distinguishable,
e.g., all automata send their state number in every period.
This assumption implies that during the punishment period
all automata have to communicate and that there is no
“punishment by silence”. Sometime this assumption is too
restrictive. For example, in some applications it might be
required that the autonomous agents do not communicate or
interact during the sequence of punishment. In this case, no
communication implies that the states are indistinguishable.
Therefore, we also consider a more general proof in
which only the first state of any punishment sequence is
distinguishable. For the sake of brevity, we present here the
proof outline; the complete and general proof of Lemma 5 can
be found in [20,21].

Proof outline. Let us construct an additional sequence of
punishment using the states P(∅, k), where k ∈ [1, Dm∗

].
In these states, the automaton plays according to a D-
defendable Nash equilibrium. Without loss of generality, sup-
pose that the states P(d, Dm∗) : d ∈ S(D) ∪ {∅} are distinguish-
able from all the other states.9

Self-stabilization requires the properties of closure and
convergence that can be verified by a variant function
(see [11]). Every step of the automatamonotonically decreases
the value of the variant function until it reaches zero, which
implies the end of the stabilization period. In order to define
the potential function, we represent the automata as directed
graphs.

• The automaton as a graph. The graph Φ = (V, E) has the
set of states as the set of vertices, V. Moreover, the transition
function, τ(), induces directed edges of E, i.e., (v, u) ∈ E ↔ ∃a ∈

A : τ(v, a) = u.

9 This assumption can be implemented, for example, by letting
all selfish computers broadcast the indices of their current states
at the end of every period. We note that any additional costs that
the broadcast induces can be compensated by selecting a larger
m∗.
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• The variant function. We define LongDistance(qj) to be the
length of the maximal simple and directed path in graph Φ,
from state qj to state P(∅, Dm∗). (A simple and directed path is
one without any directed cycles.) We define the variant func-
tion Φ() to be 0 if all automata (atmi)i∈N′ are in the same state,
where s ∈ S(D) is the subordinate group and N′

= N \ s. For all
other cases, we define Φ(c) = maxj∈N′ LongDistance(qj). It can

be observed in Fig. 6 that 0 ≤ Φ(c) ≤ (γ + m∗D2).
• Closure. Suppose that Φ() = 0, which means that au-

tomata (atmi)i∈N′ are in the same state. Since the automata
are deterministic they all move to the same state, and Φ() = 0
holds.

• Convergence. The proof verifies this property by show-
ing that all steps decrease the value of Φ(). Let us construct
the automaton such that all undefined transitions move to
state P(∅, Dm∗). In particular, the automaton moves to state
P(∅, Dm∗) whenmore than D deviators are observed. The proof
verifies that, if automaton atmi : i ∈ N′ is in any punishing
state, then all automata (atmi)i∈N′ move to state P(∅, Dm∗),
and stay in P(∅, Dm∗), until all automata (atmi)i∈N′ move to
state P(∅, Dm∗). �

We follow the spirit of Kalai and Stanford [34] and define
the strategy complexity of a self-stabilizing strategy, sti, as
the number of distinct strategies induced by sti in all possible
subgames that start after stabilization. In that sense, Lemma 5
shows a self-stabilizing strategy that has asymptotically the
same complexity as the non-self-stabilizing one (presented
in Lemma 1).

9. Auditing mixed strategies

So far, we have explained that the game authority can audit
agents that use only pure strategies. In this section, we
consider mixed strategies. We start by exploring scenarios in
which mixed strategies raise troubling questions and then we
propose a solution.We explore these scenarios by looking into
the well-known game of matching pennies.

Matching pennies is a game for two agents, A and B, in
which each agent has two strategies: heads and tails. The
agents choose their actions secretly and then reveal their
choices simultaneously. If the pennies match (both heads or
both tails), agent A receives 1 from agent B. If the pennies
do not match (one heads and one tails), agent B receives 1
from agent A. This game has no pure (deterministic) nash
equilibrium, but there is a unique Nash equilibrium in
mixed strategies: each agent chooses heads or tails with equal
probability. This way each agent makes the other indifferent
between choosing heads or tails, so neither agent has an
incentive to try a different strategy.

9.1. Hidden manipulative strategies

Suppose that agent B has a hidden manipulation for the
heads strategy; the manipulation has no effect on the game
whenever the pennies match or when B plays tails. However,
whenever the pennies do not match and B chooses the heads
strategy withmanipulation, then A pays 9 to B. The new game
is presented in Fig. 7. Clearly, since agent B knows that agent
Fig. 7 – Matching pennies with a hidden manipulation
strategy.

A plays each of the two strategies with probability 1/2, then B
plays the manipulated heads strategy with probability 1. The
manipulation by B is successful, because B is able to increase
its expected profit from 0 to 4, while A has decreased its
expected profit from 0 to −4.

9.2. Validating random choices

The above hidden manipulative strategies can be extended to
a more general form. Namely, we consider dishonest agents
that deviate from an equilibrium by selecting actions that,
according to the game model, should decrease their benefit,
i.e., are not the best response. The challenge is in verifying
that a sequence of random choices follows a distribution of a
credible mixed strategy.

9.3. The solution

In every round of the game, the agents use a private pseudo-
random generator for privately selecting actions according to
the strategy profile of the round. We ensure that an action is
indeed random by taking Blum’s approach [17]. Namely, the
agents commit to their strategy profile using a cryptographic
commitment scheme. Before the play and after all agents
have received all commitments, the agents publicly reveal
their private action selection. Therefore, just before the next
play starts, the honest majority can detect any foul play using
a Byzantine agreement protocol (BAP).

We note that, in our implementation of the judicial service,
we take the simplest auditing approach; the agents audit
each other’s actions in every round of the game. A possible
extension can consider any bounded number of rounds. Here,
for the sake of efficiency, the agents commit to the private
seed that they use for their pseudo-random generator; they
reveal their seed at the end of the sequence of rounds and
then audit each other’s actions. In practice, one may consider
several auditing techniques (see [39]) and decide to verify the
honest selfishness of agents that raise suspicion among the
honest majority.

9.4. Benefit: reduced price of malice

By auditing the choices of the agents the game authority
clearly reduces the ability of dishonest agents to manipulate.

10. Application: repeated resource allocation

The agent society is composed of individuals with different
goals and wishes regarding the preferable outcome. The
opportunity to select a game that the honest majority prefers
shifts the perspective of the distributed system designer.
Transitionally, the designer should aim at modeling the
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system precisely, and should consider all possible failures.
Using the proposed middleware of game authority, the
distributed system designer can virtually set the rules of the
game, because the game authority can guarantee that these
rules are followed.

In this new situation, there is a need to estimate the
eventual performance criteria of repeated games, rather than
the cost in a particular play, e.g., the price of anarchy (PoA)
[4,5] that considers the worst Nash equilibrium and the price
of stability (PoS [6]) that considers the best Nash equilibrium.

We consider an example of a repeated resource allocation
(RRA) scenario in which a consortium of Internet companies
shares licenses for advertisement clips on video Web sites.
We note that the unpredictable loads on the hosts cause
service availability issues. There are many complex ways to
model this scenario. One simple way is as follows. In every
play, each agent places a (single-unit) demand for a resource.
We assume that at the end of every play all agents know
the load that exists on the resources. The load of a resource
determines the time it takes to service the demands for this
resource. Every agent wishes to minimize the time it takes
to service its demands for the resources that it chooses. We
assume that the number of plays is unknown, i.e., every play
could be the last one. Thus, selfish agents choose resources in
an ad hoc manner. In other words, the choices are according
to a repeated Nash equilibrium: independent in every round.

Corollary 1 claims that the simplest game of RRA is
optimal. Therefore, it could be that the consortium majority
prefers backlog size as the host’s only selection criterion
(and rejects criteria such as video content and attempts of
synchronized advertisement). In this case, the game authority
can support the agent society’s preferences, whereas in the
case of more complex selection criteria, the game outcome
may be hard to predict, or themulti-round anarchy cost might
be higher. The multi-round anarchy cost is defined as the
(eventually) expected ratio between the cost of the worst-case
equilibrium and that of the optimal (centralistic) solution.

Corollary 1 (Supervised RRA). A game authority that supervises
the RRA game can guarantee an O(1) multi-round anarchy cost.

We now turn to demonstrate Corollary 1 and show
that the repeated resource allocation (RRA) game has an
asymptotically optimal cost whenever the game authority
assures that all agents are honestly selfish. Let B (bins) be
a set of resources (|B| = b > 1), ℓa(k) the load of a ∈ B
(after k rounds), M(k) = max{ℓa(k)}a∈B, m(k) = min{ℓa(k)}a∈B,
and EM(k) the expectation of M(k) after a sequence S =

π(0), π(1), . . . , where π(k) ∈ Π is a result of a Nash equilibrium
way to select resources on the round k. The k-round cost of
anarchy is the ratio R(k) = SC(k)/OPT(k), where SC(k) is the
worst-case EM(k) over all possible sequences S, and OPT(k) is
the optimal solution. As for the repeated resource allocation,
Σa∈Bℓa(k) = nk, OPT(k) = ⌊nk⌋/b + 1, and R(k) ≤ SC(k)b/nk.
Lastly, let R = limk→∞ R(k) be the asymptotic cost of anarchy
(if it exists, R = limsupk→∞ R(k)).

The initial zero demand for all resources is assumed (when
considering the asymptotic behavior of the repeated resource
allocation service). Therefore, by information completeness,
the loads on every resource are known after k plays and a
repeated Nash equilibrium is being formed throughout the
play.
Theorem 2 (Replaces Corollary 1). When the game authority
supervises the repeated resource allocation service, it holds that
∀k : R(k) ≤ 1 + 2b/k, and R = 1.

Proof. For a particular play k, define xa
i to be the probability

that agent i places its demand on resource a ∈ B (Σa∈Bxa
i =

1). Suppose that agent i places its demand on resource a.
The expected load on resource a ∈ B is λa

i = 1 + Σi≠jx
a
j +

ℓa(k). (Since agents make independent choices, we use the
subscript notation to represent agent i’s perspective.)

Lemma 6. ∆(k) = M(k) − ℓa(k) ≤ 2n − 1 (∀a ∈ B).

Proof. Suppose, in contradiction, that the assertion of the
lemma does not hold in round k. Let k′

≤ k be the first round
at which ∆(k) > 2n − 1, and, without the loss of generality,
assume that ∆(k) > 2n − 1 in any round between k′ and k. At
round k + 1, we denote a′

∈ B to be a resource with maximal
load, and i0 ∈ N to be an agent with xa

i0
, xa′

i0
> 0 (a, a′

∈

B). The Nash equilibrium selection requires that λa
i0

= λa′

i0
,

which implies that 1 + Σi≠i0
xa

i + ℓa(k) = 1 + Σi≠i0
xa′

i + ℓa′ (k);

1+Σi≠i0
xa

i = 1+Σi≠i0
xa′

i +∆(k), and ∆(k) = Σi≠i0
(xa

i −xa′

i ). The

lemma is established becauseΣi≠i0
(xa

i −xa′

i ) ≤ n−1 contradicts
n < ∆(k). �

Thus, no agent supports both a and a′ in her/his play, i.e., if
a has any support, then all agents place their demand solely
on a. By Lemma 6, (b − 1)∆(k) ≤ (b − 1)(2n − 1), and by the
definition of∆(k), we get (b−1)M(k)−Σa≠a′ℓa(k) ≤ (b−1)(2n−1)

(denoted as Eq1). We also know that Σa ∈Bℓa(k) = M(k) +

Σa≠a′ℓa(k) and M(k) + Σa≠a′ℓa(k) = nk (denoted as Eq2). By
adding equations Eq1 and Eq2, we get bM(k) ≤ nk+ (b−1)(2n−

1), which implies that M(k) ≤ (nk + (b − 1)(2n − 1))/b. Since
OPT(k) ≤ nk/b, R(k) = EM(K)/OPT(k) ≤ (nk+(b−1)(2n−1))/nk =

1 + (b − 1)(2n − 1)/nk ≤ 1 + 2b/k. �

11. Discussion

The solution concept of strong Nash equilibrium [24–26] aims
at deterring a coalition of deviators that may all benefit from
their joint deviations. Moreover, the solution concept of a
resilient Nash equilibrium [27] aims at deterring a coalition
of deviators that may increase the payoff of at least one
deviator, but is committed to keeping the benefits of all the
other deviators. We mention that coalition-proof strategies
consider agents that can communicate prior to play, but
cannot reach binding agreements (see [28,29]). In the context
of repeated games, the collective dynamic consistency (of
coalition-proof strategies) considers equilibria for which
agents do not wish to jointly renegotiate throughout the
course of the game (see [40]). This work considers harder
deviations, in which the coordinator benefits and the
subordinates may lose payoff. Therefore, our strategy can
deter the deviations that are mentioned above.

Self(ish)-stabilization [41–46] was earlier considered for
single stage games. The game authority [41,42,45] verifies
that no agent violates the game model of the stage game.
Spanning trees among selfish parties are studied by [43,44].
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Reactive systems that are inspired by game theory appear
in [46].

The research path of BAR fault tolerance systems [19,47]
studies cooperative services that span multiple administra-
tive domains, such as a backup service [48], a peer-to-peer
data streaming application [49], and Synchronous Termi-
nating Reliable Broadcast [50]. BAR fault tolerance systems
consider a minority of Byzantine computers that deviate ar-
bitrarily and a single selfish deviator (out of the set of all self-
ish computers). Between every pair of selfish computers, the
grim trigger strategy is used, which suffers primarily from the
inability to recover from transient faults (see [51]). In other
words, an agent that (involuntarily) deviates once is punished
forever. We consider the more realistic model of infinitely re-
peated games, in which any group of D agents can always de-
viate. We offer a more sensible solution: the system punishes
the deviators for a bounded period after the last betrayal. This
type of punishment better fits the cases of non-deliberate
misbehavior of selfish computers and transient faults.

A k-resilient Nash equilibrium [27] is a joint strategy for
which no member of a coalition C of size up to k can do
better. It is shown that such a k-resilient Nash equilibrium of
a single-stage game exists for secret sharing and multiparty
computation. We consider a different problem in a more
realistic game model.

11.1. Critical review of the relevant literature

• Why is the model of repeated games considered? In distributed
systems, single-stage games reflect tasks that are less
common compared to settings of infinitely repeated games.
Repeated games are best known for their ability to model
cooperation among selfish agents. For example, the perfect
folk theorem (see [13,14]) presents a strategy in which its
payoff in infinitely repeated games is better than the payoff of
the single-stage Nash equilibrium. The theorem can explain
periods of war and peace among selfish agents that can
deviate unilaterally. For this reason, the model of repeated
games is regarded as more realistic than the model of single
stage games.

• Why do we use DFA and not Turing machines? Deterministic
and finite automata (DFA) can implement the strategies
of the folk theorem (see [12], and references therein). The
literature considers strategies that can be implemented by
deterministic and finite automata as a separate and “simpler”
class of strategies (see [52,53]). In fact, there is evidence that
this class is strictly weaker than the class of strategies that
Turing machines can implement (see the survey [54], and
references therein).

We note that some of the existing results (such as [27,23])
consider poly-time (or probabilistic) Turing machine, which
can be emulated by finite (or probabilistic) automata. The
reduction increases the number of states that the automaton
uses by a non-polynomial factor. We present simpler
implementations.

• Why do we not consider coalitions in which all agents
are faulty?10 Eliaz [55] and later [50,48,49,19,47] considered

10 One may think about a subordinate agent as a faulty one.
The reason is that a subordinate agent does not selfishly promote
coalitions in which all of the deviators may possibly be
faulty. The inherent difficulty is that no punishment deters
a coalition in which all agents are Byzantine. In this case,
the literature proposes using either strategies for single-stage
games or grim trigger strategies.

In distributed systems, single-stage games reflect tasks
that are less common compared to settings of infinitely
repeated games. Lack of credibility is the Achilles heel of
grim trigger strategies; deviating agents are forever punished
due to mistakes that are made at the moment of weakness.
Furthermore, the system cannot recover from transient faults
in these settings.

We assume that a single rational agent controls a set
of deviators and propose a perfect strategy that deters the
deviators with a finite period of punishment. Thus, in the
context of self-stabilization it is essential to require that not
all deviators are faulty.

• Why do we not consider coalitions in which all agents are
rational? A coalition in which all deviators are rational is
required to promote (or at least protect) the benefit of its
members (see [24–29], and references therein). This is not the
case with subsystem takeovers; here the coordinator dictates
the actions of its subordinates and ignores their benefits.
Therefore, by assuming that not all deviators are rational,
it is “harder” for the autonomous (non-deviating yet selfish)
agents to protect their benefits, because the requirements
regarding joint deviations are explicitly less restrictive.

We do not claim to be the first to consider strategies for
protecting the benefit of the autonomous (non-deviating yet
selfish) agents (see [27,24]). However, we present strategies
for protecting the benefit of autonomous agents in the
presence of deviating coalitions that do not protect the social
benefit of all deviators. It is important to see that previous
work [27,24] considered strategies for protecting the benefit
of autonomous agents in the presence of deviating coalitions
that indeed protect the social benefit of all deviators.

In more detail, footnote 1 of [27] states: “Of course, in a
more refined model of the game . . . everyone in the coalition
would do better”. Namely, Abraham et al. [27] implicitly do
not consider deviations in which the social benefit of the
coalition is worsening. However, the social benefit of the
coalition can be worsening in the case of subsystem takeover,
because only the coordinator is required to benefit, whereas
the subordinates can be made to take their least preferable
actions.

• Are there strategies for coping with more than one
rational deviator within the subordinate group? Our definition
of subsystem takeovers has a straightforward extension that
considers collations of k rational agents that collectively and
totally control t subordinate agents. For example, rational
agent 1 controls subordinating agents 11, 21 and 31, and
rational agent 2 controls subordinating agents 12, 22 and 32.
Another example is when agents 1 and 2 reach an agreement
about the behavior of their subordinates. Our strategies
can deter such deviations because we consider an arbitrary
coordinator and punish the entire subordinate group.

its own benefit, because it is controlled by another selfish (non-
faulty) agent, i.e., the coordinator. However, subordinate agents
do not present an arbitrary behavior (as in [55,50,48,49,19,47]).
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Generally speaking, given an integer t ∈ [1, |N|], we have
that a t-defendable Nash equilibrium is a t-resilient Nash equi-
librium, and a t-resilient Nash equilibrium is a t-strong Nash
equilibrium. Also, let X be any of the properties defendable,
resilient , and strong. Then, for any t ∈ [2, |N|], we have that a
(t + 1)-X Nash equilibrium is also a t-X Nash equilibrium.
Therefore, a 1-X Nash equilibrium [56] is the conventional
Nash equilibrium, and the n-X Nash equilibrium is the con-
ventional strong Nash equilibrium [26,25].

We investigate another aspect of selfish computers in
autonomous systems. Prior work, such as [26,27], assumed
that any coalition of agents deviates only when their benefits
are improved (see [26]), or at least protected (see [27]). This
assumption implies that there are no (faulty) computers that
do not optimize their benefits. Once the coalition includes
at least one such faulty computer, there are no explicit
guarantees for the system’s behavior; the correct members
of any coalition have a larger set of joint deviations from
which they might benefit. This aspect is not considered by
earlier work; subsystem takeovers model a more severe case
in which almost all of the deviating agents are possibly
faulty (e.g., all subordinates are faulty, and the coordinator
optimizes its benefit.) Interestingly, autonomous recovery can
be guaranteed in the presence of subsystem takeovers.

• Do the assumptions of synchrony and observable actions
hold in distributed system? These are well-known settings
that can be realized; every period can be defined to be
sufficiently long to allow the stabilization of the underlying
protocols (i.e., the actions’ implementation). This behavior
can be facilitated by the game authority [41,42,45] in which
a self-stabilizing Byzantine clock synchronization protocol
periodically restarts a Byzantine agreement protocol. The
agreement explicitly facilitates observable actions, and the
synchronization protocol overcomes timing failures.

11.2. Future directions

Several fundamental questions remain to be studied. For
example, can we ensure the players to act in a smart
way? Namely, the smartest possible way, as players may act
irrationally due to lack of analytical skills, or just because it
is too computationally demanding to find the best strategy
profile.

There are several important aspects in this type of
problem. One aspect is the ability to find the best strategy
profile and another aspect is to be able to prove that one
would act in a rational way when following a given strategy.

The following anecdote can depict the problem. Two
people had been walking for many hours on a deserted
country road. At sundown, they decided to sleep on the
road because it was a moonless night. The rational person
decided to sleep on the muddy roadside, to avoid being
harmed by a car, while the other person decided to sleepmore
conveniently in the middle of the road. Just after midnight, a
car approached, and at the last moment the driver noticed the
sleeping person in the middle of the road and turned to the
roadside.

11.3. Conclusions

Distributed algorithm designers often assume that processes
execute identical software. Alternatively, when they do not
assume this, designers turn to non-cooperative games. The
game authority middleware places itself between these
extremes, enabling the majority of the system processes to
vote for and enforce the rules of the game.

Interestingly, the experience gained in structuring human
society proves that scalability and advancement are gained
by promoting honest selfishness and freedom of choice
for individuals. The individual participates in forming the
infrastructures that establish social rules and in their
enforcement. The chosen rules promote competitiveness
and individual gain from individual creativity and effort.
Creativity and effort are imperative for the success of both
individuals and society. Therefore, an honest majority with a
beneficial attitude designs the rules in a way that individual
success is driven by the individual actions whose outcome
advances society.

Our game authority design is a step towards forming
computer system structures that are inspired by a successful
democratic society. We believe that such a middleware
infrastructure is essential for the advancement and scalability
of Internet-wide societies.
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