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Security and Self-stabilization
in Sensor Network Services

Andreas Larsson
Division of Networks and Systems, Chalmers University of Technology

ABSTRACT

Wireless sensor networks consist of small sensor nodesnhiaitor their envi-

ronment and that together can cover vast geographicalregibis a promising

field with many possible applications in different applioatareas. Typically
the nodes do not have any preexisting information about ¢étwaork topology

when deployed. Instead, they gather information about theal topology by

exchanging information with the other nodes in their viginusing wireless
communication. Using this information they can organizenteelves accord-
ing to the needs of the applications of the network. Sensdesare often very
limited in computing power, memory and battery life. Thewdaraffic pat-

terns different from those of many other types of networkswhlgorithms are
often needed to suit these conditions. For networks thatisbaf a very large
number of nodes, algorithms have to scale well.

Security and fault tolerance are of high importance for maegsor net-
work applications. A sensor network application needs ioaia functioning
even when nodes fail or are attacked in different ways. Semstes often re-
side in harsh environments that can destroy them duringter déployment.
One potent form of fault tolerance is Self-stabilization sélf-stabilizing sys-
tem can recover from an arbitrary state in a finite amountroéti Security in
wireless sensor networks is further complicated by thetfattthe nodes often
are physically available for attackers to destroy, captunmanipulate in other
ways. The threat of compromised nodes inside a network teatantrolled by
an attacker is a concern that needs to be taken into account.

High precision synchronized clocks are a fundamental néethay appli-
cations and of other services. We present the first secureselfidtabilizing
clock synchronization algorithm for sensor networks tlgatesilient against



attacks from outside as well as by compromised nodes froid@nsSensor
nodes also need to organize their own network. A common way @duster
the nodes together into groups. They are used by many apptissand other
fundamental services. We present a self-stabilizing &fyorfor clustering. It
uses redundant paths to be resilient against captured modes network. It
assumes perfect message transfers and lock step synctiiomiaf the nodes.
In addition, we present a clustering algorithm, that is @hferr development of
that work, that can handle unreliable communication mewiiaLansynchronized
nodes, assuming a limit on clock rate differences.

Keywords: Secure and Resilient Computer Systems, Sensor-Network Systerh®,cAd
Networks, Clock-synchronization, Clustering, Self-Stabilization
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Introduction

1.1 Introduction

1.1.1 Sensor Networks

A wireless sensor network is a network of small computensseenodes, that
can gather information via its sensors, do computationsamimunicate wire-
lessly with other sensor nodes. In general a wireless see$aork is an ad hoc
network in which the nodes organize themselves without aegxisting infras-
tructure. Nodes could be deployed randomly, e.g., by bédingan out from a
helicopter over an area that is to be monitored. Once in tha,ahe nodes
that survived the deployment procedure communicate wélother nodes that
happened to end up in their vicinity, and they establish &astructure.

There are many application areas for sensor networks. Thsilplities
span areas as civil security, health care, agriculturesare, environmental,
commercial and military applications [1, 2]. There are mpagameters in these
areas that a sensor network can monitor, e.g., disastes, aesdricted areas,
wildlife, crowds, manufacturing machinery, structurateigrity, earthquakes,
agriculture, traffic, pollution or even heart rates.

The sensor nodes in a sensor network are often small andopgigg. They
can therefore be used in great numbers over a large area.cahigrovide

3



4 CHAPTER 1.

fault tolerance, in which the system can withstand loss n$senodes without
losing coverage of the monitored area or losing functiaynalf the network.
In addition, compared to more centralized long range sensorch a sensor
network can give a high number of more precise local readingslarge areas.
The areas monitored can be chosen according to needs andhaagecover
time [3]. The possibility of rapid deployment can be of higdue for many
areas like medical, civil security and military. One exaeniglrapid monitoring
of disaster areas.

Sensor nodes, in contrast to computers in general ad hooretvare often
very limited in computing power and memory capacity. As aaregle, the
popular MICAz sensor node has a 16 MHz processor and only 4f KRAD/
memory and 128 kB of program memory [4]. These limitatiorstriets the
algorithms that feasibly can be used.

Furthermore, the nodes typically run on battery power amdmanication
is usually the most expensive activity of a sensor node. A Mi@ode in
receive mode uses around 20 mA [5], which would empty 1000 rbatteries
in just 50 hours. The corresponding lifetime for an idle ndkiat does not
communicate or sense could be several years. Thus, it isriergdn many
sensor networks to be conservative in communication.

A sensor network often consists of a large number of nodegh&umnore,
nodes eventually run out of batteries and new nodes are ykblo maintain
the network. Therefore, even if the nodes are immobile, #teork topology
changes over time. Thus, algorithms both have to scale wehrid need to
cope with topology changes.

1.1.2 Security Requirements

Security is critical for many applications of sensor netigor Some concrete
examples of applications obviously needing security idelborder protection,
trespassing and burglar alarm systems, surveillancemgstgystems dealing
with industrial secrets, and law enforcement and militgpplizations in gen-
eral. However, just as for other kinds of networks and systesecurity is
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important for a much wider set of applications. There aragan attacking
many different kind of systems for different purposes. Atitgrihat wants to
attack the network is called auversary

Confidentiality and privacy is needed for sensitive, cléesior proprietary
information, e.g., medical data, sensitive informatiouiinl security, industrial
secrets or military information. It is important to be abtewithstand attacks
that aim to degrade the functionality of the network. Anydkiof application
can come under attack from someone that wants to disturbetveork. For
some applications it is critical to keep as much functidyads possible during
an attack. Applications, e.g., that monitor restrictecaarmight have active
adversaries that have an interest in making the sensor rieteort erroneous
information and the sensor network plays a critical role aimtaining security
and/or safety of the facility.

Sensor networks are deployed in areas that are to be mahifbnés usually
implies that they are physically available to an adversawyrthermore, to de-
ploy large number of nodes, they need to be inexpensive. &apnpof nodes
are therefore often out of the question. The limitations eamputing power,
memory and battery makes many traditional security algor#t inappropriate
for use in sensor networks [7]. This also limits the cryp&gty possibilities,
especially for public key cryptography. Sensor networksrohave very differ-
ent traffic patterns than other networks. Information ugu&ws between the
sensor nodes and a base station, or between nodes closé tatleaic Another
possibility is that someone with a smart device can quenngteork dynam-
ically. Thus, it temporarily takes the base station role@hs place in the
network topology to collect data after which it leaves thenmek. In any case
the traffic does not flow between any pair of nodes in genemaddition, infor-
mation is often aggregated on the way to decrease the totali@nof needed
traffic. The wireless medium makes it easy for an adversagat@sdrop on
the traffic, to jam communication or to inject messages ihtoretwork. This
combination of circumstances that holds for many sensawarés opens up
a set of security issues that needs to be addressed. It abusrtieat security
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protocols that are used in other networks, e.g., the Inteane often unsuitable
for the sensor network setting.

The physical access to nodes, the environment and the opemwoication
medium makes security for sensor networks especiallyytri¢kere are many
ways an adversary can use compromised nodes to attack therkg¢8]. The
adversary could place her own sensor nodes in the area toldist infiltrate
the network. The adversary can capture and reprogram nbhdeare part of
the network. A much stronger node, e.g., a laptop, can be tesatiltrate
and attack the network either as a new node or to replace aredptode after
extracting secret information, like cryptographic keys.alidious nodes like
this inside the networkcompromised nodesire a challenge to deal with and
this is an important area for research. Compromised nodeslcaa lot of
damage to the network. They can use and share encryptednition, they
can report erroneous information and they can degradengitithe network.
They can behave in arbitrary ways and break protocols tleanbat resilient to
misbehavior. If countermeasures against misbehavingsadetaken, they can
report innocent nodes as misbehaving.

Security is rarely something that can be added on top of ursesystems
to be able to withstand attacks. Security needs to be parbef protocols and
algorithms in the system. Otherwise the adversary can doadiesct the atten-
tion to the unsecured parts. Therefore, it is important tetsecure algorithms
for all the basic services that are needed in sensor networks

This is just a short introduction. In the following sectioofsthe chapter
we are going to look at attacks towards sensor networks iergéand look
at cryptography, key management, authentication, loatidim, clock synchro-
nization, clustering, routing, aggregation and self-ditadiion in more detail.
More information on other security challenges can be foumf®j, [10], [11]
and [12].
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1.2 Attacks in general

1.2.1 The Adversary

An adversary is an entity that attempts to break the secafitysystem. The
purpose may be to extract secret information, to gain ureizthd access to the
network or to cause harm to the network. Here, we give a briefview of
the adversary and different general attacks against sessoorks. Additional
details can be found in [13].

We can distinguish betweerpassiveand anactiveadversary:

A passive adversary only monitors the communication lintt Bstens to
every piece of information that passes through. The admertsses this
information offline to try to break confidentiality to gain authorized
information.

» An active adversary can use all the techniques availabdepassive ad-
versary. She can also interfere with the operations of theark by tam-
pering with nodes, sending messages, causing collisiamsnjng com-
munications and performing other active attacks. This hagbtential
to cause much greater harm to the network as it may in turnecatier
changes to the network. Here integrity and availability barattacked in
addition to confidentiality.

We can also distinguish between a mote-class adversary pdop-class
adversary:

» A mote-class adversary has access to one or a few nodesapiiitities
similar to the nodes that are deployed in the network.

 Alaptop-class adversary has access to a much more powlesfige than
the sensor nodes, e.g., a laptop. This allows for a largeofsattack
techniques.

Finally, we can distinguish between an insider and an oet@idversary:
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¢ An insider adversary is able to compromise or capture nofiése net-
work or insert new nodes of her own into the network. Onceith@tone
she can attack the network using these nodes.

¢ An outsider adversary has no such access to nodes insidettiverk.

1.2.2 Physical Layer Attacks
Jamming

Jamming is a physical layer attack in which the adversanstrats signals over
the wireless medium to prevent other nodes from communigdiicause of the
signal to noise ratio being too low [14].

Tampering

The adversary gains physical access to the nodes whererthdgloyed. This
allows for extracting information, e.g., cryptographig&eor even reprogram-
ming them and redeploying them. Such reprogramowadpromiseaodes can
be used in insider attacks [15].

Sensor Manipulation

The sensing hardware itself might also be spoofed or attackRossibilities
range from distant manipulations, e.g., by laser pointerscal manipulations,
e.g., chemical sprays.

1.2.3 Data-link Layer Attacks
Collisions

In collision attacks the adversary sends messages thadeoNMith specific
messages, instead of constantly jamming the medium. Thersaly figures
out when a message is being sent, either from knowing detladat the proto-
cols the sensor nodes are running or simply by listeningeacttmmunication
medium to hear transmissions that are being started. Théme aame time as
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this message is being sent, she sends a message of her ogingaauaollision
preventing other nodes from receiving the message.

Exhaustion Attacks

The batteries of sensor nodes can be exhausted if the netawm® continuous
collisions and back-off in MAC protocols, potentially rdting in degradation
of availability.

1.2.4 Network Layer Attacks
Selective Forwarding

Malicious nodes can refuse to forward some or all messagesth supposed
to be forwarded by it to other nodes. This can break many podécr result in
delays and bandwidth degradation in the network.

Sinkholes

In a sinkhole attack a compromised node sends out incometing informa-
tion to erroneously convince other nodes that it is a gooatriodoute through
to, e.g., towards a base station [16]. This allows for laiggract for selective
forwarding attacks or to tamper with forwarded messages.

Sybil Attacks

A Sybil attack is when a malicious node creates its own migltigentities and
presents them to other nodes in the network [17-19]. Thisgoanthe mali-
cious node a larger influence in many different protocolg,, evith voting or
redundancy, than it would have just using its own identity.

Hello Floods

A laptop-class adversary broadcasts messages with pdwayhals reaching
a large portion of the network. Being regarded as a neighboramy nodes it
can gain undue influence, especially in routing protocds§.[1
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Wormhole Attacks

Two nodes in different regions of the sensor network candaumwormhole
attack if they share have a low latency link, separate fraamtbrmal communi-
cation channels. In this attack one of them relays messagesits neighbor-
hood to the other one that in turn replays these messagesneighborhood.
This can lead nodes to get an incorrect view of the networkltgyy and fool
services that relies on topology knowledge.

1.3 Cryptography, Key Management and Authen-
tication

A set of different attempts to implement secure commurdcesipecifically for
wireless sensor networks appears in the literature. ®olsitsuch as Tiny-
Sec [20], SenSec [21], MiniSec [22], and TinyECC [23] aredsbkigned to
run under TinyOS [24], a widely used operating system foseenodes. Con-
tikiSec [25] presents a system designed for the Contikiatpey system [26].

1.3.1 Security Properties

Security properties that should be provided by a securearktlayer for wire-
less sensor networks are briefly described below. After, thdividual paper
contributions are discussed.

Confidentiality

Confidentiality is a basic property of any secure commuiooaystem. Confi-
dentiality guarantees that information is kept secret frorauthorized parties.
The typical way to achieve confidentiality is by using symiieekey cryptog-

raphy for encrypting the information with a shared secret Kymmetric key

algorithms are often divided into stream ciphers and blapkers. In the case
of block ciphers, a mode of operation is needed to achieveasgmsecurity

(see below).
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Semantic Security

Semantic security guarantees that a passive adversargtaaxtract partial in-
formation about the plaintext by observing the ciphert22{[ Block ciphers do
not hide data patterns since identical plaintext blockseaeypted into iden-
tical ciphertext blocks. Thus, a special mode of operatiwh an initialization

vector (IV) are often used and are needed to provide somenaizdtion. Ini-

tialization vectors have the same length as the block antypieally added in
clear to the ciphertext.

Integrity

Integrity guarantees that the packet has not been modifiedgdihe transmis-
sion. It is typically achieved by including a message intggrode (MIC) or a
checksum in each packet. The MIC is computed by calling atographic hash
function. By comparing the current MIC with the one statethia packet, ma-
licious altering or accidental transmission errors can éected. Checksums
are designed to detect only accidental transmission errors

Authenticity

Data authenticity guarantees that legitimate parties Ishbe able to detect
when a message is sent by unauthorized parties and rej@ctetcommon way
to achieve authenticity is by including a message authaititic code (MAC) in

each packet. The MAC of a packet is computed using a shareet ey, which

could be the same key used to encrypt the plaintext. In suchense, anyone
that knows this shared secret key can issue a MAC for a mestagentrast,

public key authentication algorithms can provide autleation for which any-

one that knows the public key can authenticate that a messdigen the one

entity holding the corresponding private key.
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1.3.2 Symmetric Key Cryptography

In recent years, the increased need of security in wirelessas networks has
prompted research efforts to develop and provide securdgiules for these
platforms. These efforts go from simple stream ciphers tadipkey cryptog-
raphy architectures.

SPINS [27], presented in 2002, is the first security architecdesigned for
wireless sensor networks. Itis optimized for resourcestramed environments
and it is composed of two secure building blocks: SNEP andlaTeESPINS
offers data confidentiality, two-party data authenticatiand data freshness.
However, SNEP was unfortunately neither fully specifiedfnfly implemented
[20].

In 2004, TinySec [20] was presented as the first fully impleted link
layer security suite for wireless sensor networks. It istemi in the nesC lan-
guage and is incorporated in the official TinyOS releaseyS&t provides con-
fidentiality, message authentication, integrity, and sainssecurity. The de-
fault block cipher in TinySec is Skipjack, and the selectextimof operation is
CBC-CS. Skipjack has an 80-bit key length, which is expetdadake the ci-
pher insecure in the near future [28]. In order to generat&& Mt uses Cipher
Block Chaining Message Authentication Code (CBC-MAC), ebhhinas secu-
rity deficiencies [29]. It provides semantic security with&byte initialization
vector, but adds only a 2-byte counter overhead per packeyS&c adds less
than 10% energy, latency, and bandwidth overhead.

SenSec [21] is another cryptographic layer, presented @5.20t is in-
spired by TinySec, and also provides confidentiality, as@emtrol, integrity,
and semantic security. It uses a variant of Skipjack as tbekitipher, called
Skipjack-X. In addition, SenSec provides a resilient kgyimechanism.

MiniSec [22] is a secure sensor network communication &chire de-
signed to run under TinyOS. It offers confidentiality, auttieation, and replay
protection. MiniSec has two operating modes, one tailooedsingle-source
communications, and the other tailored for multi-souraglicast communica-
tion. The authors of MiniSec chose Skipjack as the block aiphut they do
not evaluate other block ciphers as part of their design. mbde of opera-
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tion selected in MiniSec is the OCB shared key encryptionhasism, which
simultaneously provides authenticity and confidentiality

TinyECC [23] is a configurable library for elliptic curve g@tography oper-
ations for sensor nodes. It was released in 2008 and targst®3$. Compared
with the other attempts to implement public key cryptogsaphwireless sen-
sor networks, TinyECC provides a set of optimization swegkhat allow it to
be configured with different resource consumption leveisTihyECC, the en-
ergy consumption of the cryptographic operations is on tderoof millijoules,
whereas using symmetric key cryptography is on the orderiafajoules [30].

1.3.3 Key Management

No cryptographic algorithms can of course be used withouinigathe nodes
share keys in some way, regardless if it is secret keys fonsstnic cryptog-
raphy or public keys for public key cryptography. There arangndifferent
approaches to share keys in a secure manner.

Key Predistribution

In key predistribution solutions the nodes are being loatidii keys before de-
ployment and with these keys the nodes can setup commurisatnd possibly
generate new keys. In regards to the risk of having nodes mmniged, more
sophisticated solutions are needed than merely having @stemkey shared
by all nodes. However, considering the other end of the spegtit is not gen-
erally feasible for all pair of nodes to share a unique keyatTakes up far too
much storage space.

In [31], Eschenauer and Gligor present a random predisivibilscheme
that starts out by drawing a number of keys randomly for eacterbefore de-
ployment from a pool of keys. After deployment nodes discovieat keys they
share with neighboring nodes. They can then set up securenaoiwations
using those shared keys. With properly set parameters thecehof a node
sharing at least one key with a certain neighbor is high.
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To increase the resiliency against compromised nodes indtveork Chan
et al. propose in [32] a method in which it is not enough to glsare one
pregenerated key but a certain number of pregenerated ®&ysr methods set
a threshold on the number of compromised nodes that can éated. These
include [33], [34] and [35].

Various methods, e.g., [36], [37], [38], [39] and [40], aim teduce the
overhead of key predistribution by taking into account fuygvhich areas dif-
ferent nodes will be deployed in and predistribute keys atingly to reduce
the number of needed keys for nodes to keep track of.

The SecLEACH protocol in [41] adapts the idea in [31] to setsepure
communications for the changing clusters generated by Itister algorithm
in [42].

The previous methods are all probabilistic in the sensettteat were no
guarantees that a certain pair of nodes would share keysaith other. Chan
and Perrig presents a method in [43] in which nodes detestigally set up
v/n different keys per node using other nodes as trusted inthamies. Here
n is the size of the network and each key is a pairwise key sharexhly two
nodes.

Other Mechanisms

Zhu et al. reason in [44] that in many systems it takes a lotigey for an ad-
versary to compromise nodes than for nodes to set up keyebattiemselves.
They use a global predistributed key together with uniqueeridentifiers to set
up pairwise keys with direct neighbors and to set up a clusgifor a cluster
of nodes. This predistributed key is erased to limit theaftd compromised
nodes. They also present an efficient way for the base statisinare pairwise
keys with each node in the network and discuss how to upddtsalgietwork
key in case of node compromise.

Anderson et al. present a technique in [45] in which keys amecpted
and transmitted in clear text. Assuming that an eavesdngppdversary can-
not eavesdrop everywhere at once, not all keys will be knanentadversary.
Nodes then take help from other nodes to reinforce the sgafrkeys so that
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a key that might be known by the adversary gets updated to d@hleyis not
known even if the adversary listens in on the update messaygts], Cvrcek
and Svenda verify results from [45] and introduces a varidrihe key rein-
forcement scheme. Miller and Vaidya also exchange keysdrclgar in [47],
but use multiple channels to make it hard for an eavesdrgmaiversary to get
hold of more than a few of the keys that are being broadcats iidinity.

In [48], Oliveira et al. set up keys in clustered heterog@setetworks be-
tween nodes and their cluster heads. They use a hybrid agpbgaartly using
predistributed keys and partly setting up new keys betweeles

More details on key management in wireless sensor netwark®e found
in the survey by Camtepe and Yener in [49] and the review byhgleand Varad-
harajan [50].

1.3.4 Authentication

Authentication is a keystone for secure protocols. Puldiclkased authentica-
tion schemes are very powerful, but may be too expensivesftsa networks.

The SNEP protocol in [27], the LEAP protocol in [44], the T8sc protocol
in [20] and an AES-based protocol in [51] provide node to nadinentication
without resorting to public key cryptography. In [52], agatithm is presented
that is specifically aimed for ZigBee networks that has alydaeen organized
into clusters.

Broadcast Authentication

Broadcasting is important for many sensor network serviddsus there is a
need for authenticating broadcasts in an efficient manner.

In[27], Perrig et al. also introduce the U TESLA algorithmdathenticating
broadcasts. The basic idea is as follows. A chain of keyseated in reverse.
A key in the chain is generated by using a one-way hash fumatiothe next
key of the chain. Time is divided into timeslots and one kewssigned for
each timeslot. The creator of the keys can in one timeslat aanessage with
a MAC calculated by a key in the chain. In a later timeslot it oaveal the later
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key in the chain, which only the creator of the key chain can ldothat way
it authenticates that it sent the message. The last key aftthim, that is not
the hash of some other key, needs to be distributed and digiied separately,
which requires predistribution. In [53], Liu and Ning reduthe setup require-
ments and increase the robustness of UTESLA. In [54], LiuNind introduce
multi-level key chains to allow for better scaling. Liu et atld revocation pos-
sibilities to u«TESLA in [55] and using basic U TESLA as a birigiblock allows
for better scaling with reduced storage needs and bettdierney against de-
nial of service attacks. Luk et al. present in [56] the RPTigrol, based on
UTESLA, that is specially suited for authenticating brcests that are sent at
regular times. They also present the LEA protocol that iseaiifior broadcasts
with low entropy. They discuss different properties of lafcast authentication
and what protocols to use depending on the underlying ndeaisystem.

User Authentication

Separate from the authentication problem, where nodesiatithte themselves
to each other, is the user authentication problem, whereraaighe network
is being authenticated by the nodes in the network. Justrasoide to node
authentication, different methods are based on tools lik#ip key cryptogra-
phy, symmetric key cryptography and one way hash functidhs. user that is
being authenticated can often be assumed to be much morefpbineerms
of processing power, memory, storage, etc.

For node to node authentication in a static network theréntriig no need
for any node to be able to authenticate any other node. Inrasintfor user
authentication, it might be required for any node in the mekito be able to
authenticate any user. Additional challenges arise wheretis a need for
privacy for the users. For details on this topic, we refer résder to papers
such as [57], [58], [59], [60], [61] and [62].
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1.4 Localization

1.4.1 The Importance of Localization

Localization is the service providing information aboutes sensor nodes are
located. This is needed to identify where different evergpened, both by
knowing the location of the nodes sensing the event andgumsinitiple coop-
erating sensors, where the event itself took place. Gebgrapcation infor-
mation is also needed for other services like geographitingugeographic
information querying, geographic key distribution, ldoatbased authentica-
tion and checking geographic network coverage. It is algfulisf the nodes
themselves need to be found, e.g., for repairs or batterggdsa or to find
resources tagged by sensor nodes.

1.4.2 Localization Techniques

The easiest method to localize sensor nodes is to use GPSvpvthis can
be unfeasible due to several reasons: (1) it makes the nodes expensive,
(2) it drains batteries much quicker, and (3) it makes theesddrger. Also,
GPS does not work properly in all environments such as irgjdmatween tall
buildings, etc.

There are two basic categories of localization algorithmi$ie first one
is based on so called infrastructure-based techniques ichvthere are some
entities called beacons, possibly a subset of the sensasrtbémselves, that
are equipped with GPS or know their location by some othemsewith the
help of these beacons the location of the regular nodes inghgork can be
calculated. The second category include autonomous tgabsiin which no
such special hardware or infrastructures are availablettfer characteristic is
if a protocol is range-dependent or range-independent,wleether there is a
need to calculate distances between nodes.

The usual way to measure the location of a node is to colleet flam
nodes in the neighborhood and use this information to caeuhe node’s lo-
cation. The information needed include distances and/gleario other nodes
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together with their respective locations. Distances cacdbeulated using sig-
nal strength or receive time of signals. Finally, the lomattan be calculated
using techniques like triangulation, trilateration or tiateration.

1.4.3 Attacks Against Localization

Attacks include beacon nodes reporting false locationgatbn messages, or-
dinary nodes reporting false locations for location vesifien techniques, mis-
representing distances, e.g., by sending with a differamismission power in
signal strength base techniques or using delay attackSésgmn 1.5.3) to mis-
represent signal propagation times. Impersonation, wolerdittacks and Sybil
attacks can also be used to fool nodes to calculate incdoeations [63].

1.4.4 Secure Localization

The SeRLoc protocol in [64] is a range-independent protmoahich the nodes
of the network are divided into two sets. One set of nodes bavadirectional
antennas and the other set, the locators, are equippedivéttidnal antennas.
The locators send out different beacons in different dioestthat contain the
position of the locator and the broadcasting angle of therard. The normal
nodes use these beacons to calculate their position. Asotiionator nodes
do not participate actively in the protocol, the locatorshair messages would
be the points that adversaries are most interested in matiqto attack the
protocol. The nodes and locators share a symmetric keyshesed to encrypt
the location information. The beacons are authenticated bye-way hash
chain. The protocol defends against a set of compromiseeswaad wormhole
attacks.

In [65], Zeng et al. improve the Monte Carlo based local@atiechnique
for mobile sensor networks described in [66]. They add anttbation, filter
out inconsistent values and add a new sampling method todzbinscase of
detected attacks.

Chen et al. present three localization techniques in [61&}; tise detection
mechanisms to detect and disregard nodes with maliciousvieh The detec-



1.4. LOCALIZATION 19

tion mechanisms look for nodes that send multiple messages ey should
only send one, pair of nodes that claim to be further away feach other than
possible given that both were heard by the same node, and ttratedo not act
consistently with other nodes. Furthermore, nodes thataistently with al-
ready detected misbehaving nodes are also deemed mishghb[68], Chen
et al. present a wormhole localization algorithm based etadce inconsisten-
cies and inconsistencies where nodes receive their ownages®r the same
message multiple times. The algorithm can not deal with gldss though,
but is further refined in [69] where packet loss is taken cére o

Igbal and Murshed use trilateration in [70] on all possihlesets of size
three of the neighboring beacon nodes to find out the areal#tatfrom most
triplets produce. Thus, many malicious beacons need todmlto sway the
result of a node as long as fair number of honest beacons aamge of that
node. Simulations compare the algorithm favorably withEA&RMMSE algo-
rithm in [71].

Algorithms that use received signal strength to calculétadces for use
in localization calculations are vulnerable to attackg thenper with received
signal strength, e.g., by placing absorbing or reflectingens in the area.
In [72], Li suggests that algorithms should instead be irm@leted using signal
strength differences to be resilient against such attacks.

In [73], Jadliwala et al. investigate under which condidacation errors
can be bounded in a setting with captured beacon nodes. THogy & lower
bound on the number of captured nodes and describe a clagpdffans that
can bound the location error. They also present and evatliage algorithms
that are in this class.

In [74], Mi et al. present a technique for secure localizaijtogether with
location-based key distribution) in networks that are nadigyudeployed with
a GPS equipped master node. They defend against wormhatksttrestrict
impact of insider nodes and propose using motion sensorshaslkap if the
GPS module becomes unusable, possibly due to an attack.



20 CHAPTER 1.

In [75], Wozniak et al. investigate the robustness usingtlegedian squares
in a multi-hop distance vector technique and present madiifics that need to
be made in order to withstand attacks.

Above we have described major recent results, but morelsletai be found
in the surveys [63], [76], [77] and [78] that exclusively loat the topic of
secure localization.

1.5 Clock Synchronization

1.5.1 The Importance of Clock Synchronization

Many wireless sensor network applications and protocasl meshared view of
time. Examples include localization schemes, pinpoinéing tracking events,
scheduling of a shared radio medium, e.g., using Time Qmidilultiple Ac-
cess (TDMA), detecting duplicate events. For some apjptioatthe precision
needs to be very high. Therefore, clock synchronizatiorigoas are crucial
for wireless sensor networks. Broadly speaking, existlogkcsynchronization
protocols for more general networks are too expensive fas@enetworks be-
cause of the nature of the hardware and the limited resotleésensor nodes
have.

1.5.2 Clock Synchronization Techniques

Elson et al. present the reference broadcast synchramizchnique in [79],
in which beacon nodes are broadcast wirelessly. Due to theless medium
different recipients will receive the beacon at more or tbgssame time, thus
having a common event to relate to. All recipients of the beasample the
clock when they receive it, and by comparing their clock sesithey can ap-
proximate offsets between their respective clocks.

Another technique for approximate clock offsets is the mbtnp synchro-
nization technique used by Ganeriwal et al. in the TPSN paitdescribed
in [80]. A message is sent from nodeto nodeB and another message back
from B to A. By sampling the clocks at send and receive of the two message
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the clock offset can be approximated, given that the delayythe two messages
are close to equal. The delay can also be approximated frisnmfiormation,
given that the clock rates are approximately equal. Thisb=manseful, espe-
cially when a long delay can be a sign of an attack.

A third technique that Maroti et al. use in the FTSP protoodd1] is to
have a clock source and then using a hierarchy to flood theftomethe source
outwards, with nodes synchronizing their time to the closesle higher up in
the hierarchy that they received the time from.

The clocks of the nodes can be synchronized using the appatixins of
clock offsets gained by the above techniques. Elson et 8].4y3e linear re-
gression to deal with differences in clock rates. Their dakjorithm synchro-
nizes a cluster. Overlapping clusters with shared gatewsales can be used
to convert timestamps among clusters. Karp et al. [82] itk samples for
beacon receive times into an iterative algorithm, basedesistance networks,
to converge to an estimated global time. Romer et al. [83} giv overview of
methods that use samples from other nodes to approximateckbeks. They
present phase-locked looping (PLL) as an alternative walimegression and
present methods for estimating lower and upper bounds ghbers’ clocks.

1.5.3 Attacks Against Clock Synchronization

One threat from insider nodes is that they can send out iacbtimestamps
used at various points in many of the common clock synchatioiz tech-
niques. Another threat is that the malicious nodes in sorsescean be placed,
possibly due to deliberate manipulation of protocol, in artpnt positions in
hierarchies used in global synchronization techniques.

A different threat is the so called delay attack (also knowrthee pulse-
delay attack) described in [84]. An adversary can receivde@st part of) a
message, jam the medium for a set of nodes before they rabeientire mes-
sage, and then replay the message slightly later. Thisnejnd inside nodes
in the network or any cryptographic keys, but the jamming tiappen at a
precise moment in time. This attack can also be performetthowi the time
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requirement for the jamming, by two collaborating insidedes. The first jams
the network in a small area and the second, outside this r@esyes the mes-
sage normally. Then the second node sends out the jammedrbaba later
time or forwards it to the first node to send out at a later time.

Additional details on attacks against clock synchron@atn wireless sen-
sor networks can be found in [85].

1.5.4 Secure Clock Synchronization Techniques

Song et al. present in [86] ways to detect bad timestamp sdhaen insider
nodes using a roundtrip synchronization approach and twbads to filter out
such outlier values. The first uses the generalized extr&uderst deviate algo-
rithm and the other uses a time transformation techniquééo iut timestamps
that have too large offset values.

Sun et al. present in [87] two related schemes to withstatadksd from
insider nodes. One divides nodes into levels depending @in distance to a
clock source node by comparing pairwise clock differenoes ¢hain between
the nodes and the source. The other uses a diffusion schatltws for any
pair of nodes to compare clock differences with each othée duthors also
show how to use several source nodes for this second schéradirdt scheme
is more efficient and provides better precision, whereasst#oond provides
better coverage. The algorithms are vulnerable to delaglatthough.

Sun et al. present in [88] a two-phase algorithm where onseluaes a
roundtrip synchronization technique to give a basic paeasynchronization
between nodes. They present a way to both timestamp and #uehéoation
to messages on the fly while transmitting to be able to tinmegtas close as pos-
sible to the actual transmission. Phase two adapts thegu3elsition from [27]
to get local broadcast authentication (which needs theel@ysichronization
from phase one) and achieves global synchronization. Keynshof rapidly
expiring keys defend against delay attacks.

Sanchez synchronizes nodes both pairwise and, in a cldsteteork, clus-
terwise in [89], using the round-trip synchronization teicjue. They take duty
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cycling into account so that nodes can be sleeping betweechsynization
rounds and their technique defends against some nodes meth®rk being
compromised.

Ganeriwal et al. present a family of clock synchronizatitgogthms in [84]
and [90]. They are based on the roundtrip synchronizatiohriigue in [80]
and filter out over-delayed message exchanges to fend aghilay attacks
and compromised nodes. They present both single and nogtphirwise syn-
chronization techniques as well as group synchronizagehriques, where
some can deal with insider attacks from compromised nodés@me can not.
Byzantine agreement is used to get a group synchronizdtiontam that with-
stands insider attacks in the group synchronization.

Hoepman et al. present in [91] a secure clock synchronizatlgorithm
with a randomized clock sampling algorithm at the core. Tlgerithm is re-
silient against both delay attacks and attacks from insideles. Moreover, the
algorithm is self-stabilizing. The clock sampling allows@mbination of get-
ting the precision of the reference broadcast technique wemy nodes have
common points with the ability of the roundtrip synchrottiaa technique to
detect spurious delays.

Hu et al. [92] consider under-water sensor networks whedesecommu-
nicate using acoustic means and may be following streamiaitgrw Nodes
deployed at different depths move at different speeds.isnsttting the propa-
gation delay is variable and far from negligible and mustdien into account.
They propose a method that synchronizes clocks vertidadiijwveen nodes at
different depths. They consider insider attacks from camnpsed nodes and
use various statistical methods to detect and defend dgaiok attacks.

Li et al. build up a hierarchy under a base station in [93] asel averhear-
ing to get verification that nodes do not send out incorreta.ddu et al. use an
FTSP style flooding protocol in [94] and use a system of ptedjduture clock
values to detect attacks from insider nodes. Roosta et@boge in [95] a set
of attack countermeasures for the FTSP protocol and pressuits from their
testbed implementation. Chen and Leneutre propose a magiod one-way
hash chains in [96] to ensure authenticity and integrityyoichironization bea-
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cons. Rasmussen et al. show in [97] methods to protect agdtasks towards
localization and clock synchronization protocols with tiedp of external navi-
gation stations. Farrugia and Simon use a cross-networkngpgtree in which
the clock values propagate for global clock synchronizaiio[98]. They use
passive overhearing to let some nodes synchronize witheubhéed of active
participation. They defend against replay and worm-holacks. Du et al.
discuss in [99] how to take advantage of high-end nodes witls @ improve
efficiency for secure clock synchronization. Secure clogkchronization in
wireless sensor networks is also discussed in [100].

1.6 Clustering

1.6.1 The Importance of Clustering

Clustering nodes together into groups is an important lewllservice for wire-
less sensor networks. Sensor networks, like other ad-hewories, need to or-
ganize themselves after deployment. Clustering sets upuatste, e.g., for
forming backbones, for routing in general, for aggregatitaga from many
nodes to reduce the amount of data that needs to be sent ihifoeigietwork,
for building hierarchies that allow for scaling and for nede take turns doing
energy-intensive tasks.

1.6.2 Clustering Techniques

One way of clustering nodes in a network is to have nodes edarthem-
selves with one or more cluster heads. In the (k,r)-clusgegroblem, each
node in the network should have at leastluster heads withim communi-
cation hops away. This might not be possible for all nodeséf number of
nodes within- hops is smaller thah. In such cases a best effort approach can
be taken for getting as close kocluster heads as possible. Assuming that the

network allowsk cluster heads for each node, the set of cluster heads forms a

(k,r)-dominating set in the network. If the cluster headsth® havet cluster
heads as well, it forms #otal (k,r)-dominating set, in contrast to an ordinary
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(k,r)-dominating set in which this is only required for ned®ot in the set. The
clustering should be achieved with as few cluster headssshge. Finding the
global minimum number of cluster heads is in general NP ceteplso algo-
rithms usually provide an approximation instead. Many atgms are limited

to providing (1,1)-clustering and some provide (1,r)-tduimg, (k,1)-clustering
or other subsets of (k,r)-clustering.

Some clustering algorithms provide a number of cluster idmd do not
make sure that a certain node has a number of cluster hedds 86ime certain
radius, but instead use random approaches to get a goatistattoverage.

Another way of providing clusters is for nodes to assign tbelves to dif-
ferent clusters without any nodes being assigned as clhstzts. Often these
clusters are based on cliques, sets of nodes that forms detengpaph.

A general overview of clustering in wireless sensor netwar&n be found
in [101] by Abbasi and Younis. A survey on clustering wiralesd-hoc net-
works in general can be found in [102].

1.6.3 Attacks against clustering algorithms

As for other services, an adversary can disturb protocols the outside, e.g.,
by jamming the network, causing collisions, inserting éafsessages and re-
playing possibly altered messages. Apart from defendimjnagysuch outside
attacks, it is important to take attacks by malicious insitles into account.
By not following protocol, malicious nodes can make sure ¢ochister
heads whenever they want in protocols where nodes declatréhtty are clus-
ter heads with a certain probability. Thus they can gain aduaninfluence
in the network and from there have a better platform to lauattdicks against
other protocols that is running on top of the clustering ®ervInstead of as-
signing cluster heads, other algorithms form clusters dfesdy agreeing upon
group membership. For such algorithms, a malicious nodesead conflicting
information to other nodes so that they cannot agree on wiicles are part
of which groups. For multi-hop clustering a malicious node éorward false
information on which nodes are cluster heads and which dre no
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1.6.4 Secure Clustering Algorithms

In [103], Sun et al. present a secure clustering algorithat divides the net-
work into disjoint cliques, sets of nodes that all can comitate directly with
each other and where each node belongs to exactly one clgssibly by it-
self). No cluster heads are assigned. The algorithm takepinised nodes
into account. The use of signed messages allows for nodesablb to prove
misbehavior of malicious nodes to be able to remove them fronsideration.

The SLEACH algorithm that Wang et al. present in [104] is lblase the
LEACH algorithm in [42]. Time is divided into rounds and inakeround nodes
become cluster heads with a certain probability. To make theit no node
can become cluster head too often, or for outsider nodes &bleeto join the
protocol, extensive key exchanges are done with a baserstati

Banerjee et al. present in [105] the GS-LEACH protocol. laimther se-
cured version of the LEACH protocol. It is based on key dsttion that is
done in grids with nodes within the grids taking turns beihgter heads.

Wang and Cho in [106] look at secure clustering from a sederien point
of view and present a scheme based on signal strength toddafminst attacks
that try to split an agreement of election results.

1.6.5 Self-stabilizing Clustering Algorithms

There is a multitude of existing clustering algorithms forfeoc networks of
which a number are self-stabilizing. Johnen and Nguyereptesself-stabilizing
(1,1)-clustering algorithm that converges fast in [107].0l&¥ and Tzachar
tackle a lot of organizational problems in a self-stahilizmanner in [108]. As
part of this work they present a self-stabilizing (1,r)stkring algorithm. Caron
et al. present a self-stabilizing (1,r)-clustering in [10fat takes weighted graphs
into account. Larsson and Tsigas present a self-stalgjliim)-clustering algo-
rithm in [110] and [111].
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1.7 Routing

1.7.1 The Importance of Routing

Unless the user of the network moves around in the area theorieis de-
ployed in and collects data directly from the nodes, infdiomaneeds to be
sent through the network. Therefore the nodes need to duéventiting prob-
lem, i.e., how to forward messages through the network wherssage needs
to travel from some node to another. At times there is only edrfer infor-
mation to flow between each sensor node and the base statierefdre some
algorithms only take care of routing to and from a base statio

1.7.2 Attacks Against Routing Protocols

We present an overview of different attacks that can be uséatérfere with
routing protocols below. Many of the attack techniques a&iadpused against
many other types of protocols, but some, like sinkhole &ttaare specifically
aimed against routing protocols. For further details weréfe reader to [16].

Wormhole Attacks

The idea of the wormhole attack is to tunnel messages via ddtamcy link

between two compromised nodes and replay them in differants pf the net-
work. This can disrupt routing protocols as other nodes géll an incorrect
view of the network topology. If one of the compromised nodeslose to

the base station, the other compromised node can launcklzograttack (see
description below).

Sybil Attacks

By presenting multiple identities to the other nodes of thework a node can
increase its chances of being included in many communicgiaths in the
network. Other nodes will not realize that these identitiefact belongs to one
physical node.
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Clone Attacks

This attack is a relative of the Sybil attack where a node asiisg multiple
existing identities. Keys or other credentials from diffier captured nodes are
being used by different compromised nodes in many diffepéates in the net-
work to maximize the possible damage. By being located fewifit regions no
legitimate nodes can directly hear different traffic soarasing the same cre-
dentials. Therefore, by having many compromised node&ptieg themselves
as many legitimate nodes each, they can gain a large influertice network.

Selective Forwarding

A simple form of the selective forwarding attack is for a canrpised node
to act like a “black hole” by refusing to forward any message®wever, in

many protocols this results in the node being regarded as aled thereafter
being excluded from consideration. A more effective atteak be to forward
certain messages and drop others to disturb the routingquidtself or another
protocol running on top of the routing protocol.

Hello Flood Attacks

Many protocols, including routing protocols, exchange sdorm of so called
hello messages, where they present themselves to thelmbwegy A laptop-
class-adversary, generating a much more powerful siginafsthe normal nodes,
can convince many nodes that the laptop is their neighbouagdhis fact to
get into a position were many nodes include the laptop irr tiogites.

Sinkhole Attacks

Sinkhole attacks are performed by a compromised node byrmmatself an
attractive choice for routing. The goal of this attack is bedt a lot of traffic
to a particular area of the network. This position can be deddunch other
attacks such as selective forwarding attacks.



1.7. ROUTING 29

Routing Loop Attacks

The idea behind the routing loop attacks is to create loog®oim messages
are being routed. The result is that a message are beingaotigsfiorwarded

around in this loop, draining batteries of nodes involvedhi@ loop and pre-
venting the message from reaching its destination.

Using False Information

A compromised node can send out false information aboutitety levels, its
distance to a base station or its location or other metriaséate used to decide
how to route. This can make it seem more attractive from atlogles’ point
of view than it really is, resulting in that the compromiseatia becomes part
of many routing paths after which it can launch selectivevioding or other
attacks.

Base Station Impersonation

In routing algorithms where the goal is to forward messagesids the base
station, a simple attack against an unsecured routing @ubtan be claiming
to be a base station. In protocols that have many possibéedtagons it might
also be possible for a node to insert itself into the listsvafilable base station
without impersonating any existing base stations.

1.7.3 Secure Routing Algorithms

Lee and Choi present the SeRINS algorithm in [112] that usalipte paths
to be resilient against attacks by compromised nodes. Tgwitim defends
against both selective forwarding attacks and injectiofalse routing data.

The SHEER algorithm by Ibrig and Mahgoub is presented in [1kZets
up a hierarchy and uses probabilistic transmissions wighatim to preserve
energy. It adapts to changes of battery in the network. Isdu# cope with
malicious insider nodes.
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Yin and Madria present their SecRout, also known as ESecRo{t14]
which is extended in [115] with more experiments and analyRiis an algo-
rithm for routing query results from nodes towards the sifikey aim to stop
message tampering and selective forwarding attacks by téatklisting.

Du et al. present the TTSR routing algorithm in [116] thataiheteroge-
neous setting, takes advantage of high performance nodtsred throughout
the network together with more limited nodes. It defendsregapoofed rout-
ing information and selective forwarding, sinkhole, wowtehand hello flood
attacks.

The SeRWA algorithm in [117] uses wormhole detection to fiodtes in
the presence of wormhole attacks. It is based on overhetogether with
authentication of messages to detect when a node that i@segpo forward
a message drops it or tampers with it. Such detected madiciodes can be
excluded and routed around.

In [118], Deng et al. present the hierarchical multiple pathting algorithm
INSENS. Here the nodes send their neighbor information ¢obthse station,
that in turn chooses the multiple paths for routing. Kumad dana use the
same basic mechanism for their SCMRP algorithm in [119]thoey build up a
clustered hierarchy to be more energy efficient. The basiesta responsible
for the cluster formation process.

For more details on secure hierarchical routing, we poiatrdader to the
survey in [120].

Geographic Protocols

These protocols assume that the nodes know their locatimhsise the geo-
graphical location knowledge to decide what routes messalgeuld be for-
warded along.

In[121], Du et al. present the SCR algorithm, together wikew manage-
ment scheme. The geographic coordinate system is divideaigrid, or cells.
They choose redundant paths for sending a message and damvessages by
choosing cells rather than individual nodes. They deferiresgattacks such as
sinkhole, Sybil, wormhole, selective forwarding, helloditband clone attacks.
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Wood et al. present a family of secure routing protocols B2]with vary-
ing levels of security and varying amounts of state that a¢ede stored and
kept up to date. The weakest provides probabilistic defehsedoes not need
to keep any state. And stronger ones provides more secuwréyagtees but
requires to keep more state information.

The ATSR geographic routing algorithm is presented in [123] uses a
distributed trust model to defend against attacks. It deteied excludes nodes
that do not forward messages correctly or that do not exdbetérust proto-
col correctly. It also takes remaining battery levels into@unt when making
routing decisions to prolong the network lifetime.

1.8 Aggregation

1.8.1 The Importance of Aggregation

Often information from the sensor nodes in the network ihgettd at a base
station (or by some other entity querying the network). Tatdry constraints
of many wireless sensor networks make it very importantrtot Icommunica-
tions. Instead of having every sensor reading being semt &eery node all the
way to the base station data aggregation can be used to groepaorts from
data gathered by many nodes.

1.8.2 Aggregation Techniques

There are several different aggregation techniques. Omdyfaof methods

forms a tree rooted in the base station and has parents aggrégta from

themselves and their children. Another family has cluseads appointed by
running a clustering algorithm (see Chapter 1.6) and hasetlokister heads
take the role as special aggregator nodes. Aggregatiommashean also be
classified as single aggregator or multiple aggregatorrseke In the former,
aggregation happens once for each piece of data and the ipansferred to
the base station. In the latter, aggregation happens rautipes on the way.
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More details on general aggregation in wireless sensorarksamcan be
found in [124].

1.8.3 Secure Aggregation Algorithms

Hu and Evans introduce in [125] an aggregation method thasifient against
malicious outsider nodes in the network and against a stwigromised key.

Deng et al. present in [126] methods both for nodes to auttaatthem-
selves towards an aggregator, and for an aggregator tordigte itself toward
nodes it aggregates data for.

There are various methods, [127], [128], [129], [130] and81]]l with the
common denominator that an aggregator needs some formtidfoade from
the node it aggregates for.

Data injection attacks are done by compromised insider s\tioket inject
false data to skew the aggregated value [132, 133]. Algostfor which the
largest possible influence done by data injection attacksaportional to the
number of compromised nodes are said to ach@amal security The al-
gorithms in [133], [134] and [135] all achieve optimal setur However the
amount of communication required for a single node mightgign) and
they require two round-trip communication rounds betwéertase station and
the nodes of the network. Miyaji and Omote present in [136dlgorithm that
achieves optimal security with a(1) communication load per node and only
one round-trip communication round by assuming a weakeeradvy model
in which the adversary cannot compromise keys of both a nodeta parent
node.

Aggregating Encrypted Data

Some aggregation algorithms use homomorphic encryptidmtgues. Such
techniques aggregate encrypted data without the need offten. In this way
data from one node can be kept secret from other nodes, hbestiggregated.
Let D be a decrypting function an#l the corresponding encrypting function.
The cryptographic algorithm is additively homomorphidif E(a) + E(b)) =
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a + b, for anya andb. In the same way it is multiplicatively homomorphic if
D(E(a)- E()) =a-b.

Castelluccia et al. present in [137] how to use an additivedraorphic
encryption scheme to let nodes keep their data private sglilldeing able to
efficiently calculate functions over the data from diffdrandes. They support
calculating sums, mean variances and standard deviati®aent nodes in a
tree can aggregate encrypted data from their children withay decryption.
Moreover, the method defends against outside tamperingyfiata with an
authentication scheme. However, there is no preventiorveaéad values
from a node inside the network.

In [138], Huang et al. present a single aggregator scheme&ping sensor
data private. It provides an encryption method that letsggregator evaluate
if two of its children provide the same data without reveglthe value itself.
In [139], Ozdemir and Xiao present an algorithm that alloarsaggregation of
data encrypted with different encryption keys in differesgions. Bahi et al.
achieve homomorphic encryption using elliptic cryptodmnajn [140]. Other
algorithms involving homomorphic encryption include [14[1L42], [143] and
[144].

Further Reading on Secure Aggregation

More details on secure data aggregation for wireless seretarorks can be
found in the surveys [145], [146], [147], and [148].

1.9 Self-stabilization

Self-stabilizing algorithms [149-151] cope with the ocemce of transient
faults in an elegant way. Starting from an arbitrary staétf-stabilizing al-
gorithms let a system stabilize to and stay in a consisteé sts long as the
algorithms’ assumptions hold for a sufficiently long period

There are many reasons why a system could end up in an intamsisate
of some kind. Assumptions that algorithms rely on could teragly be invalid.
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Memory content could be changed by radiation or other el¢ésnafrharsh en-
vironments. Messages could temporarily get lost to a mughéridegree than
anticipated. Topology changes happens when nodes evigntuabut of mem-

ory, if they get physically destroyed in harsh environmemtashen new nodes
are added to the network to maintain coverage. Such topalbggges could
break assumptions and lead to temporary inconsistendiesoften not feasi-
ble to manually reconfigure large ad-hoc networks to rectreen events like

this. Self-stabilization is therefore often a desirableparty of algorithms for
ad-hoc networks and especially for sensor networks [152].

In the sensor network setting assumptions about the systefd eventu-
ally be violated when an adversary, far more powerful thanlitnited sensor
nodes, starts disturbing the sensor network. An exampleéemaorary denial
of service attack that disturbs communications to a levetretassumptions
about message throughput are violated. It can be hard toifzate all possi-
ble states the network could end up in after an attack. Langebers of nodes
could get compromised and send incorrect information, s@deld be physi-
cally attacked in different ways or the adversary might jaiscommunication
medium. Self-stabilization makes sure that the networkreaover from any
state as long as assumptions hold once again, e.g., aftadteesary has been
chased away or more nodes have been added to the network.

As an example, the secure and self-stabilizing clock syorghation algo-
rithm presented in [153] and [91] assumes that there is aerippund on the
fraction of sent messages from each node that are beinguestodmalicious
collisions or attacks. The underlying assumption is thaadwersary wishes to
remain undetected and therefore does not jam or produdsicn8 for all mes-
sages of a node. In a situation where this bound assumptesmdua hold, e.g.,
if the adversary attacks more messages than that, thetalgparannot guarantee
to deliver the specified level of service. In this case it carguarantee to share
a complete set of timestamps between neighboring nodeshigithprobabil-
ity within a certain time span. When message delivery assomgpbnce again
hold, e.g., after the adversary is detected and chasedefglgorithm can, due
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to the self-stabilizing property, quickly recover and detithe promised level
of service.

1.10 Our Research Approach

As we have seen above, both security and self-stabilizatiefpreferable char-
acteristics for algorithms used in sensor networks in opehuenattended envi-
ronments. We have also seen that compromised nodes can tofallomage.
For many needs there are either secure or self-stabilizgayithms, but often
not secure and self-stabilizing. Moreover, many algorghhat take security
into account does not take compromised nodes into account.

Our approach is to provide high level networking protocolssensor net-
works and/or ad hoc networks that are self-stabilizing dnad takes security
into account. We aim for solutions that can withstand botlit§aand attacks.
We saw above that compromised nodes inside the network csleadiother
nodes in the network and/or disturb the functionality of tle¢work. This is an
important area of research and a serious threat. We takimtbiaccount in our
research.

We have looked at two fundamental network services, clocicissoniza-
tion and clustering. For many applications it is criticahthhe nodes have a
shared view of time with high precision. For that, clock dyranization pro-
tocols are needed. Examples of areas that requires higfsioreglobal time
include pinpointing and tracking events, e.g. fire propagaand intrusions,
scheduling shared radio medium, e.g. using Time Divisiortille Access
(TDMA), and detecting duplicate events. Clustering nodggther into groups
is a basic need for sensor networks. Sensor networks andaatti®c networks
need to organize themselves after deployment. Clustegtgyup a structure
that, e.g., can be used for nodes to take turns doing enetgysine tasks and
for aggregating data from many nodes to reduce the amourgtaftiat needs
to be sent through the network. It can also be used for forrmdmymunication
backbones, for routing and for building hierarchies thivafor better scaling.
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1.11 Contributions

1.11.1 Paper I: Secure and Self-stabilizing Clock Synchro-
nization in Sensor Networks

As we have seen above, accurate clock synchronization isratipe for many
applications in sensor networks. In the first paper, we pgepbe first self-
stabilizing algorithm for clock synchronization in sensetworks with security
concerns. We consider an adversary that capture nodestanckipts messages
that it later replays — a so callgullse delay attack Our algorithm guaran-
tees automatic recovery after failures from an arbitraagest Moreover, the
algorithm tolerates message omission failures that migbtig say, due to the
algorithm’s message collisions or due to ambient noise.

The core of our clock synchronization algorithm is a mecsianfor sam-
pling the clocks of neighboring nodes in the network. Of esgémportance is
the sampling of clocks at reception of broadcasts calleddrea A beacon acts
as a shared reference point because nodes receive it akepately the same
time (propagation delay is negligible for these radio traissions).

The algorithm secures, with high probability, sets of coetglneighbor-
hood clock samples with a period that(X(log n)?) times the optimum. The
optimum requires, in the worst case, the communication legatO (n?) times-
tamps. Here: is a bound on the number of sensor nodes that can interfelne wit
a node. Our design tolerates transient failures and sabitstes from an ar-
bitrary configuration that could have been created whennagons did not
hold. Once all assumptions hold again, the system will Bzabwithin one
communication timeslot (that is of size(n logn)).

1.11.2 Paper IlI: A Self-stabilizing (k,r)-clustering Algorithm
with Multiple Paths for Wireless Ad-hoc Networks

As we have seen, in large sensor networks it is often impbftarthe nodes to
organize themselves into some infrastructure. Thus, arittign for clustering
nodes together in an ad hoc network serves an important role.
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In the second paper, we present the first distributed satflsting (&, r)-
clustering algorithm for ad hoc networks. The algorithm &séd on syn-
chronous rounds and makes sure that, withifr) rounds, all nodes have at
leastk cluster heads (or all nodes withirhops if a node has less tha&modes
within » hops) using a deterministic scheme. A randomized schemgleem
ments the deterministic scheme and lets the set of clustetsh® stabilize to
a local minimum, with high probability, withi©(gr logn) rounds, whereg;
is a bound on number of nodes withtn hops, andn is the size of the net-
work. Multiple paths are used to improve security in presesfocompromised
nodes, to improve availability and fault tolerance. Theoalhm assumes that
all communication is reliable.

The communication costs in this algorithm might be too steepome sen-
sor network nodes. We discuss some simplifications of thear&tstructure to
reduce message complexity to make it more suitable for selwbos networks.

1.11.3 Paper llI: Self-stabilizing (k,r)-clustering in Clock Rate-
limited Systems

In the third paper we develop the algorithm from the secomkepéurther to
make it more general. That algorithm assumes perfect medsagsfers and
lock step synchronization of the nodes. With regards to ags$oss, in this
article we only assume that out of a certain number of messagéeast one is
transmitted successfully. Furthermore, we only assummaitidin differences in
the clock rate of the local clocks of nodes with no synchration between the
nodes.

In addition to the more general system settings, a veto nmésfmaagainst
nodes leaving the role as a cluster head is introduced talsgeeonvergence.

1.12 Conclusions & Future Work

In this thesis, we have presented three self-stabilizimgip fével networking
protocols that takes security into account in some way. @oerg algorithm for
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clock synchronization and two for clustering with redunchathat can improve
security. Both services are crucial needs for many sensaonles and other ad
hoc networks.

With all the potential application areas, security is goiagpecome more
and more important for sensor networks in the future. Masdystion of small
cheap nodes will open up endless possibilities, but alsa apeeasy venues of
attacks. The general physical availability of sensor nadgsther with the pos-
sibility for an attacker to capture and/or insert contrdlifedes implies that it is
of utmost importance to defend against insider attacksam#twork. Intrusion
detection is also something that could be of help in thesmtsitns. Together
with the possibilities to monitor all kinds of data in all kis of places comes
the importance of privacy, especially in areas like me@&and monitoring of
public places.

To allow for secure and self-stabilizing applications toviidely deployed
in large scale networks many fundamental network servicesneeded. More
research needs to be done to provide algorithms for thegieasgithat are both
self-stabilizing and take security into account. Espéciaiportant is to defend
against attacks from nodes within the network. Anotheraggng direction is
to combine different protocols together into a secure aot falerant package
for increased efficiency and ease of use.

There is more to be done in terms of analyzing our clusteriggrithm
and the result of the clustering. We would like to quanti&lii measure what
security properties we can get from the multiple paths thapaovided in the
clustering algorithm. We also want to investigate ways toas® among possi-
ble paths to retain as much redundancy as possible withlyingeon flooding
when building on top of the (k,r)-clustering algorithms.
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Paper I: Secure and Self-stabilizing Clock
Synchronization in Sensor Networks

In sensor networks, correct clocks have arbitrary stawiifgets and nondeter-
ministic fluctuating skews. We consider an adversary thatait tampering
with the clock synchronization by intercepting messaggslaying intercepted
messages (after the adversary’s choice of delay), andriagtuodes (i.e., re-
vealing their secret keys and impersonating them). We ptese efficient
clock sampling algorithm which tolerates attacks by thigemsary, collisions,
a bounded amount of losses due to ambient noise, and a boundgakr of
captured nodes that can jam, intercept, and send fake nesssHge algorithm
is self-stabilizing, so if these bounds are temporarilylatied, the system can
efficiently stabilize back to a correct state. Using thiskleampling algorithm,
we construct the first self-stabilizing algorithm for sexalock synchronization
in sensor networks that is resilient to the aforementiortheissarial attacks.

2.1 Introduction

Accurate clock synchronization is imperative for many &alons in sensor
networks, such as mobile object tracking, detection of idapgs, and TDMA
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radio scheduling. Broadly speaking, existing clock synaimation protocols
are too expensive for sensor networks because of the nédttine diardware
and the limited resources that sensor nodes have. The ndettenvironment,
in which sensor nodes typically reside, necessitates seslutions and au-
tonomous system design criteria that are self-defensigaaga malicious ad-
versary.

To illustrate an example of clock synchronization impocgnconsider a
mobile object tracking application that monitors objettattpass through the
network area (see [1]). Nodes detect the passing objeatsrdehe time of
detection, and send the estimated trajectory. Inaccutati& synchronization
would result in an estimated trajectory that could diffgngiicantly from the
actual one.

We propose the first self-stabilizing algorithm for clockskironization in
sensor networks with security concerns. We consider anrsawethat capture
nodes and intercepts messages that it later replays. Ouwnithlg guarantees
automatic recovery after the occurrence of arbitrary fadu Moreover, the
algorithm tolerates message omission failures that migbtig say, due to the
algorithm’s message collisions or due to ambient noise.

The core of our clock synchronization algorithm is a mecsianior sam-
pling the clocks of neighboring nodes in the network. Of esgdémportance is
the sampling of clocks at reception of broadcasts calleddresa A beacon acts
as a shared reference point because nodes receive it akapately the same
time (propagation delay is negligible for these radio traissions). Elson et
al. [2] use such samples to approximate the clocks of neigidpoodes. They
use linear regression to deal with differences in clocksaldne basic algorithm
synchronizes a cluster. Overlapping clusters with shastelgay nodes can be
used to convert timestamps among clusters. Karp et al. [Bpd} clock sam-
ples of beacon receipts into an iterative algorithm, basa@sistance networks,
to converge to an estimated global time. Romer et al. [5] giveverview of
methods that use samples from other nodes to approximatectbeks. They
present phase-locked looping (PLL) as an alternative talimegression and
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present methods for estimating lower and upper bounds ghbers’ clocks.
Note that none of these articles takes security or selflitation into account.

As mentioned above, the short propagation delay of messagksse range
wireless communications allows nodes to use broadcasirigsions to ap-
proximate pulses that mark the time of real physical evargs peacon mes-
sages). In theulse-delayattack, the adversary snoops messages, jams the
synchronization pulses, and replays them at the advessahgice of time
(see [6-8] and Section 2.2.3). We are interested in finexgdaclock syn-
chronization, where there are no cryptographic countesomea for such pulse-
delay attacks. For example, thencetechniques strive to verify the freshness
of a message by issuing pseudo-random numbers for enshangltd commu-
nications could not be reused in replay attacks (see [9]jottimately, the lack
of fine-grained clock synchronization implies that the rdrip time of mes-
sage exchange cannot be efficiently estimated. Therefasaat clear how the
nonce technique could detect pulse-delay attacks.

The system strives to synchronize its clocks while forevenitoring the
adversary. We assume that the adversary cannot breakngxéstiptographic
primitives for sensor networks by eavesdropping (e.g.1{8). However, we
assume that the adversary @@pturenodes, reveal their entire state (including
private variables), stop their execution, and impersotteen. The adversary
can also lead them to send erroneous information and laancimjng (or col-
lision) attacks.

We assume that, at any time, the adversary has a distindtdoda space
and a bounded influence radius, uses omnidirectional baséslérom that dis-
tinct location, and cannot intercept broadcasts for antraridly long period.
(Namely, we consider system settings that are comparahieetsettings of
Gilbert et al. [11], which consider the minimal requireneefdr message deliv-
ery under broadcast interception attacks.) We explain loosift out responses
to delayed beacons by following the above assumptions thagider many
practical issues.

A secure synchronization protocol should mask attacks tadasrsary that
aims to make the protocol give an erroneous output. Unfatiip due to the
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unattended environment and the limited resources, it ikeiglthat all the de-
signer’s assumptions hold forever. We consider systenshthee the capabil-
ity of monitoring the adversary, and then stopping it by exdé intervention.
In this case, the nodes start executing their program frorarhitrary state.
From that point on, we require rapid system recovery. Salfibzing algo-

rithms [12, 13] cope with the occurrence of transient fairtan elegant way.
Bad configurations might occur due to the occurrence of aitrarp combina-

tion of failures. Self-stabilizing systems can be starte@rny configuration.

From that arbitrary starting point, the algorithm must easthat it accom-
plishes its task if the system obeys the designer’s assangtor a sufficiently
long period.

We focus on the fault-tolerance aspects of secure clocksgnization pro-
tocols in sensor networks. Uncaptured nodes behave dgratetll times. Fur-
thermore, the communication model is fair. It resembles ¢fig14] and does
not consider Byzantine behavior in the communication madidowever, cap-
tured nodes can behave in a Byzantine manner at the prodegsioe design
a distributed algorithm for sampling the clocks gpheighboring nodes in the
presence off captured and/or pulse-delay attacked nodes. Althoughucagbt
nodes remain captured, a node whose pulse-delay attackeshges are no
longer in the buffer of any uncaptured node will not countaodvf anymore.
We focus on captured nodes and delay attacksf lmain be extended to include
nodes with timing failures and other ways of not following{acol.

The clock sampling algorithm facilitates clock synchratian using a va-
riety of existing masking techniques to overcome pulsexgdttacks in the
presence of captured nodes. For example, [7] uses Byzagiement (this
requires3f + 1 < g), and [8] considers the statistical outliers (this reguire
2f + O(1) < g). (See Section 2.7 for details on the masking techniques.)
Although Byzantine agreement is one possible filtering égple, we do not
consider Byzantine faults, as stated above.

The execution of a clock synchronization protocol can besifeed between

two extremeson deman@ndcontinuous Nodes that wish to synchronize their
clocks can invoke a distributed procedure for clock synolaation on demand.
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The procedure terminates as soon as the nodes reach tieirpagcision. An

execution of a clock synchronization program is classified@ntinuous if no

node ever stops invoking the clock synchronization prosedQur generic de-
sign facilitates a trade-off between energy conservaiien ©n-demand oper-
ation) and fine-grained clock synchronization (i.e., amndius operation). The
trade-off allows budget policies to balance between apfbo requirements
and energy constraints (more details appear in [15]).

2.1.1 Our Contribution

We present the first design for secure and self-stabilizZiockcsynchronization
in sensor networks resilient to an adversary that can captodes and launch
pulse-delay attacks. The core is a secure and self-stabiligorithm for sam-
pling clocks of neighboring nodes.

The algorithm secures, with high probability, sets of costplneighbor-
hood clock samples with a period that(X(log n)?) times the optimum. The
optimum requires, in the worst case, the communication leatO (n?) times-
tamps. Here: is a bound on the number of sensor nodes that can interfene wit
a node (potentially the number of nodes within transmissamge of the node).

It is of high importance for high-precision clock synchroation that the clock
sampling period is small since the offsets and frequendi@iseonodes’ clocks
change over time.

Our design tolerates transient failures that may occur dtenporary vio-
lation of the designer’s assumption. For example, the nuofmptured and/or
pulse-delay attacked nodes could exceed more flaard then sink belovy (de-
layed messages eventually vanish from queues). After thteisyresumes op-
eration according to the designer’s assumption, the sysitéirstabilize within
one communication timeslot (that is of sigénlogn)). We assume that (be-
fore and after the system'’s recovery) there are messageiomifailures, say,
due to ambient noise, attacks or the algorithm’s messadjsionk.
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The correct node sends beacons and responds to the othal hedeons.
We use a randomized strategy for beacon scheduling thatgess regular
message delivery with high probability.

2.1.2 Document structure

We start by describing the system settings (Section 2.2)famdally present

the algorithm (Section 2.3). A description of our executsgstem model (Sec-
tion 2.4) and a proof of the algorithm correctness (Sectiéj &re followed by

a performance evaluation (Section 2.6). Then we reviewitiature and draw
our conclusions (Section 2.7).

2.2 System Settings

We model the system as one that consists of a set of commingjcaitities,
which we call processors (or nodes). We denote the set okepsocs byP.
In addition, we assume that every procesgpre P has a unique identifier,
i. A processor identifier can be represented by a known and finetber of
bits in memory. In that respect there is a known upper bounith@mumber of
processors.

2.2.1 Time, Clocks, and Their Notation

We follow settings that are compatible with those of Hermad Zhang [16].
We consider three notations of timesal timeis the usual physical notion of
continuous time, used for definition and analysis omigtive timeis obtained
from a native clock, implemented by the operating systemmfinardware coun-
ters;logical timebuilds on native time with an additive adjustment factorisTh
factor is adjusted to approximate a shared clock, whetlead ko a neighbor-
hood or global to the entire netwotk.

ILenzen et al. [17, 18] and Sommer and Wattenhofer [19] also teféne term of logical time
as “logical clock values”. Herman and Zhang [16] refer to itasl time and build global time on
top of the local time. See Section 2.7.
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We consider applications that require the clock interfada¢lude theread
operation, which returnstimestampwith 7' possible state$.Let C?(t) denote
the valuep; € P gets from aread of the native clock at real time

Clock counters do not increment at ideal rates, becausesttusvare oscil-
lators have manufacturing variations and the rates aretaffeby voltage and
temperature. The clock synchronization algorithm adjtrstslogical clock in
order to achieve synchronization, but never adjusts thigenatock. We de-
fine the native clocloffsetbetween any two processgssandp; asd; ;(t) =
C(t) — CI(t). We assume that, at any given time, the native clock offsat-is
bitrary. Moreover, theskewof p;’s native clock,p;, is the first derivative of the
clock value with respect to real time. Thps= lim,_,o(C*(t+ 1) — C(t)) /7.
We assume thai; € [pmin, Pmax] fOr any processop; , wherepy,in = 1 — &
andpn.x = 1 + « are known constantg,is the real time unit ané > 0. The
second derivative of the clock’s offset is callédft. \We allow non-zero drift as

Iong asp; € [Pmin, pmax]-

2.2.2 Communications

Wireless transmissions are subject to collisions and ndise processors com-
municate among themselves using the primitivBsast andLBrecv, for local
broadcast, with a transmission radius of at m@gt We consider the potential
of any pair of processors to communicate directly, or torfete with each
other’s communications.

We associate every processpf, with a fixed and unknown location in
space,L;. We denote the potential set of processors that processerP can
directly communicate with by, C {p, € P | Ry, > |L,—L,|}. Furthermore,
we denote the set of processors that can interfere with threrzmications of
Di bya C {p; € P | 2Ry, > |L; — L;|}. We note thaty; is not something
processop; needs to know in advance, but something it discovers asaives
messages from other processors.

2|n footnote 6 we show what the minimal sizeBfis.
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A successful broadcast by a procesgpoccurs when the message is re-
ceived by all other processors ;. A successful broadcast to a 96tC G,
occurs when the message is received by all other processars i

We assume that > |C_¥,>»| for any processop;. In other wordsn is a
known upper bound on the number of nodes that can interfette any one
node’s communication (including that node itself). In therst-case scenario
G, = a and thus potentiallyG;| = n. Furthermore, a node will receive
information from neighbors about their neighbors, so inviloest-case scenario
a node needs to keep track of data aboubdes. For simplicity we therefore
usen as a bound of the number of neighbors (including the nodH)isewell.
This does not mean that we only consider a cluster nbdes.

Communication Operations

We model the communication channgleue; ;, from processop; to processor
p; € G; as a FIFO queue of the messages hdtas sent tp; andp; is about
to receive. Whem; broadcasts message the operatioh.Bcast inserts a copy
of m to everyqueue, ;, such thap; € G,. Every message: € queue; ; iS
associated with a particular time at whieh arrives atp;. Oncem arrives,
p; executed Brecv. We require that the period between the time at which
enters the communication channel and the time at whidbaves it is at most
a constantd. We assume that is a known and efficient upper bound on the
communication delay between two neighboring processarsncludes both
transmission delay and propagation delay, even thoughrtmapation delay is
negligible in comparison with the transmission delay.

We associate eadtBcast andLBrecv operation with a native clock times-
tamp for the moment of sending and receiving. We assume ik&eage of an
efficient algorithm for timestamping a message in transfieramessage being
received as close to the physical layer as possible (seg [10]
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The Environment

Messages might be lost to ambient noise as well as collisibriee nodes’
transmissions. Collisions due to attacks made by the aaweos by captured
nodes are calleddversarial collisions Message collisions due to concurrent
transmissions of nodes that follow the message schedulitige @lgorithm are
callednon-adversarial collisions A broadcast that is not lost due to ambient
noise or adversarial collisions is said to faér. We note that a fair broadcast
can still be lost due to non-adversarial collisions.

The environment can execute the operatomission(m;) (which is asso-
ciated with a particular message,;, sent by processqs;) immediately after
LBcast;(m;). The environment selects a (possibly empty) subsgt'e®heigh-
bors (K; C G;) and removes any messagg from their queuegueue; ; (such
thatp; € K;).

Below we talk about what “the environment” selects when ihes to mes-
sage omission. Here we see the environment as a global adyessparate
and independent from the “regular” malicious and locallyihd adversary of
Section 2.2.3. The term “adversary” is only used for thagtlar’” malicious
adversary.

When a processgy; and a processqy; < C_lz do concurrent broadcasts
of messagesn; andm; we assume that the environment arbitrarily selects
K; C G; N G; when invokingomission(m;) due to the collision (and vice
versa form;). For details on what it means in our execution system maoekel s
Section 2.4.3. In other words, when two processors withlapgping commu-
nication ranges broadcast concurrently, there are no gtees of delivery, for
those messages, within the overlap (regardless of noides$.iJ a simple and
general model for message collisions. It is possible to letoae specialized
physical layer model resolve the subsét

The environment selects messages to omit due to ambieeta®gescribed
at the end of Section 2.2.2. The adversary selects messagssit due to
omission attacks as described at the end of Section 2.2.3.
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Ambient noise

The paramete¢ > 1 denotes the maximal number of repeated transmissions
required (by any particular processor) to get at least oindfaadcast. Such a
broadcast can still be lost due to non-adversarial colisid’ hese assumptions
model the ambient noise of the communication channel, dsas@mission at-
tacks by the adversary and by captured nodes (see Secti@h E@rthermore,
we assume that all processors kngw

The environment selects messages to remove due to ambiset bat is
limited by ¢ as described above. We assume that the choice of messagesiomi
due to ambient noise is independent from the choice of messamitted due
to non-adversarial collisions.

2.2.3 The Adversary

We assume that there is a single adversary. The goal of thersady is to
disturb the clock synchronization algorithm so that cloeknglings become
erroneous, or even misleading. At the same time, the adyeds&s not want
to let its presence be known by launching obvious attacks.

Omission Attacks and Delay Attacks

The adversary can launch omission and delay attacks agaimstssage sent
by another processor. We assume that at any time the adyersstrlike all
processors, has a distinct (unknown) location in space. %8amae that the
adversary's radio transmitter sends omnidirectional dcaats (using antennas
that radiate equally in space). Therefore, the adversamyatarbitrarily control
the distribution in space of the set of recipients for whidieacon’s broadcast
is omitted or delayed.

Consider a messagey;, broadcast by a processef, and attacked by the
adversary. We assume that the adversary chooses a sphertswitn location
in the center. We denote the set of processors within therggheThe nodes
in S N G; will be affected by the attack against;.
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The adversary launches message omission attacks (alsamlasointercep-
tion attacks) by jamming the medium. The environment ingakaission(m;)
for all processors it N G;. This selection is limited by the assumptions re-
gardingé, as described in Section 2.2.3.

For delay attacks, we follow the model of Ganeriwal et al.7p, The ad-
versary can receive (at least part of) a message, jam theumedr a set of
nodes before they receive itin whole, and then replay thesagesslightly later.
The adversary resends the message to the process®rs (#; after a chosen
delay. The resent message is potentially lost due to amba@sé or collisions,
like any other message. The processorS in G; that receiven; thus receive
it later than they normally would have.

Other ways to do delay attacks include considering an admeveith direc-
tional antennas (which we do not consider) sending the sagseaye at slightly
different times in different directions, or having a caginode sending a mes-
sage within a smaller radius and having the adversary riegetitat within an
area that was left out (see [8] for details). Both these dattacks require the
delayed message to originate from the adversary impeisgraataptured node
or from a captured node. We make the weaker assumption thassage from
any processor can, potentially, be delayed by the adversary

Omission Attack Limitations

We leté (see Section 2.2.2) include ambient noise as well as antiésdleliber-
ately produced by the adversary and by captured nodes. Megsady or the
captured nodes could jam the medium such that the assungdtipdoes not
hold. If too many messages are lost, however, that can act alem that an
adversary is present. This is something that the adversdny, wants to go
undetected, wants to avoid. Furthermore, if the adversdaajly jams the com-
munication medium, clock synchronization will not takeqaaAs a result, the
adversary has no possibility to directly influence the labatock. Thus, this is
not an option for an adversary that wants to manipulate ingcklgorithms to
present a misleading view of its whereabouts and movements.
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We note that the adversary cannot predict the broadcasthegsle of un-
captured nodes. Thus, adversarial collisions, covered(lygether with ambi-
ent noise), are independent from non-adversarial cafigsio

Gilbert et al. [11] consider the minimal requirements forssege delivery
under broadcast interception attacks. They assume thattrezsary intercepts
no more thans broadcasts of the algorithm, whefeis an unknown constant
that reflects the maximum amount of energy an adversary waunise for dis-
ruption of communications. We note that the result of Gille¢al. is applicable
in a model in which, in every period, the algorithm is able todzlcast at most
« messages and the adversary can intercept at fhosthe algorithm’s mes-
sages. Our system settings are comparable to the assumptaate by Gilbert
et al. [11] on the ratio of3/a. However, in contrast to the unknowh we
assume that the maximum ratio is a known constant that reflleetmaximum
amount of disruption the adversary can get away with, with@ing detected.

Captured Nodes

The adversary can capture nodes by moving to their locatimhacessing
them physically. For any processer, we assume that the number of captured
and/or pulse-delay attacked nodes is no more thamithin its neighborhood,
G;. Here, f depends onG;| and the filtering mechanism that is being used.
(For example3df + 1 < |G,| for the Byzantine agreement masking technique
as in [7] and2f + ¢ < |G;| for the outlier masking technique as in [8]; see
Section 2.7 for more details.)

When the adversary captures a procegspthe adversary gains all infor-
mation contained in the processor's memory, like secres kegeds for pseu-
dorandom generators, etc. The adversary can lead a captioegssop; to
send incorrect data to processorgdn It can also lead the captured node to
jam the communication media with noise or with collisionscam processors
in C_JZ The set of target processors are further limited to a sphihethe cap-
tured node in the center (cf. the sphere limitation for &sdaunched directly
by the adversary, in Section 2.2.3.) These noise and awiliattacks are also
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limited by ¢ as described in Section 2.2.3, just like attacks launchesttly by
the adversary.

Security Primitives

The existing literature describes many elements of thersémplementation of
the broadcast primitivesBcast andLBrecv using symmetric key encryption
and message authentication (e.g., [9, 10]). We assumeeigtboring proces-
sors store predefined pairwise secret keys. In other wpyds; € P : p; € G;
store keyss; ; : s;,; = s;;. The adversary cannot efficiently guesg. Confi-
dentiality and integrity are guaranteed by encrypting tlessages and adding a
message authentication code. We can guarantee messagbsidss by adding
a message counter (coupled with the beacon’s timestampetmessage be-
fore applying these cryptographic operations, and bynigtteceivers reject old
messages, say, from the clock’s previous incarnation. Mwatethis requires
maintaining, for each sender, the index of the last propetgived message.
As explained above, the freshness criterion is not a seitaltérnative to fine-
grained clock synchronization in the presence of pulseydattacks.

2.3 Secure and Self-Stabilizing Clock Synchroniz-
ation

In order to explain better the scope of the algorithm, wegmea generic orga-
nization of secure clock synchronization protocols. Thgdtive of the clock
synchronization protocol is (1) to sample the clocks of ggghbors by peri-
odically broadcast beacons, (2) respond to beacons, ared)¢B¢gate beacons
with their responses in records and deliver them to the ulayer. Every node
estimates the logical clock after sifting out responseselayed beacons. Un-
like objectives (1) to (3), the clock estimation task is ndtaad real-time task.
Therefore, the algorithm outputs records to the upper léngisynchronizes the
logical clock after neutralizing the effect of pulse-detdtacks (see Section 2.7
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for details on techniques for filtering out delayed messpagése algorithm
focuses on the following two tasks.

e Beacon Schedulingfhe nodes sample clock values by broadcasting beacons
and waiting for their response. The task is to guaranteed-ttip message
exchange.

e Beacon and Response Aggregati@nce a beacon completes the round-trip
exchange, the nodes can deliver to the upper layer the reobtde beacon and
its set of responses.

We present a design for an algorithm that samples clocks ighhering
processors by continuously sending beacons and responsismut synchro-
nized clocks, the nodes cannot efficiently follow a predefisehedule. More-
over, assuring reliable communication becomes hard in tesemce of noise
and message collisions. The celebrated Aloha protocol (@8]ch does not
consider nondeterministic fluctuating skews) inspiresoutake a randomized
strategy for scheduling broadcasts. We overcome the difésuabove and
show that, with high probability, the neighboring processare able to ex-
change beacons and responses within a short period. Oufuitigestrategy is
simple; the processors choose a random time to broadcastfpyedefined pe-
riod D. We use a redundant number of broadcasting timeslots i toawer-
come the clocks’ asynchrony. Moreover, we use a paramgtased to trade
off between the minimal size dp and the probability of having a collision-free
schedule.

2.3.1 Beacon and Response Aggregation

The algorithm allows the use of clock synchronization téghes such asef-
erence broadcastin§R] and round-trip synchronizatiorié, 7]. For example,
in the round-trip synchronization technique, the sendesends a timestamped
message€t,) to receiversp, € G, which receive the message at time
The receivep, responds with the messagg, ¢, t3), which p; sends at time
t; and p; receives at time,. Thus, the output records are in the form of
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(g, t1, {{k, (ta, t3,t4)) }), Where{(k, (t2,t3,t4))} is the set of all received re-
sponses sent by nodgs.

We piggyback beacon and response messages. For the sakserfitation
simplicity, let us start by assuming that all beacon scheslalke in a (deter-
ministic) Round Robin fashion. Given a particular nggdeand a particular
beacon thap; sends at time, we definet’’s round as the set of responses,
(t2,t7), thatp; sends to node; € G; for p;'s previous beacony/, wheret!
is the time in whictp; receivedp;’s beacon’. Nodep, piggybacks its beacon
with the responses to nodgs;, and the beacon message;), is of the form
(t%, (¢ t3r), (72, ¢32), . . .), which includes all processops, € G;.

Now, suppose that the schedules are not done in a Round Rahiioh. We
denotep;’s sequence of up tLog most recently sent beacons with(k)]y,
where0 < k < BLog, among whicht/(k) is the k-th oldest andBLog is a
predefined constadt.We assume that, in every schedule receives at least
one beacon from; € G; before broadcastingg Log beacons. Thereforg,’s
beacon messagéy;), can include a response tg's most recently received

beacont!(k), whered < k < BLog.

Since not every round includes a response to the last belaatgn sendsp;
stores its lasBLog beacon messages in a FIFO queyés] = [#Z]o<k<BLog-
Moreover, every beacon message includes all responses 9/thg most re-
cently received beacons from all nodes. bet= g;[klo<k<BLog DEP;’S FIFO
queue of the lasB Log records of the forn{t (k), tJ(k)), among whicht’ (k)
is p;'s k-th oldest beacon from;, t/ (k) is the time at which it was received and
i # j. The new form of the beacon messagé&;isg;, , ¢;,, - - -), Which includes
all processorg;, < G;. Inthe round-trip synchronization, the nodes take the
role of asynchronizetthat sends the beacon and waits for responses from the
other nodes. The program of nogeconsiders both cases in whighis, and is
not, respectively, the synchronizer.

3We note thatB Log depends on the safety parameterfor assuring that nodes successfully
broadcast and other parameters such as the bound on numbtsrfering processors, and the
bound on clock skewp,,,i, andpmax (See Section 2.2).
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2.3.2 The Algorithm’s Pseudo-code

The pseudo-code, in Fig. 2.3, includes two procedures: d9-torever loop
that schedules and broadcasts beacon messages (lines@@&tal&2) an upon
message arrival procedure (lines 82 to 87).

The Do-Forever Loop

The do-forever loop periodically tests whether the “timieas expired (in lines
67 to 74)* In case the beacon’s next schedule is “too far in the pasttoar far
in the future”, then processqr;, “forces” the “timer” to expire (line 69). The
algorithm then removes data, gatheredghyitself, that are too old (lines 70
to 71). (Note that under normal circumstances, the datarrima@me too old
before they are pushed out by new data at line 77 or line 86g alporithm
then tests that all the stored data (including data recdieed others) are or-
dered and timely (line 72). Timely here means that timestogilected by a
processop; is not too old or in the future compared to the latest time c§
native clock, thap; has received. In the case where the recorded information
about beacon messages is incorrect, the algorithm fluskepigues (line 73).
The data received by others are tested at line 72 in the samasat reception
(line 83). Data that do not pass the test at line 83 are neverdt Therefore, if
the buffers are flushed it is due to internal data corruptiorie starting con-
figuration), and not due to receipt of bad data (during exeoyut We note that
transient faults can be the source of such internal datajgton. However, bad
data may be received (and therefore rejected) at any timegltive execution,
say, from captured nodes.

When the timeslot arrives, the processor outputs a synceooase record
for the oldest beacon, in the queue with its own beacons T)e It contains,
for each of the other processops,c G, the receive time of that beacon. More-
over, it contains for processpr, the send and receive times for a later message

4Recall that by our assumptions on the system settings ($e2®), the do-forever loop’s timer
will go off within any period ofu/2. Moreover, since the actual time cannot be predicted, we
assume that the actual schedule has a uniform distributientbe periodu. (A straightforward
random scheduler can assist, if needed, to enforce thessstrgotion.)
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back fromp; to p,. These data can be used for the round-trip synchronization
and delay detection in the upper layer. Thgnenqueues the timestamp of the
beacon it is about to send during this schedule (line 77).nex¢ schedule for
processop; is set (lines 78 and 79) just before it broadcasts the beaessage
(line 80).

The Message Arrival

When a beacon message arrives (line 82), processgetsj, the id of the
sender of the beacon, p;’s native time at the receipt of the beacon, anthe
message of the beacon. The algorithm sanity checks theveglogata (line 83).

If they are ordered and timely (not too old or in the future pamed to the
latest timestamp from;) the data are processed (lines 84 to 87). Otherwise the
message is ignored.

Passing the sanity check, procesgpithen outputs a record of the non-
synchronizer case (lines 84 to 85). These data can be uselefoeference
broadcast technique in the upper layer. It finds the oldestdrein the queue
with data on beacons received py. The record contains responses from pro-
cessory,, € G that refer to this beacon. Furthermore, it contains dataiabo
later messages back, from the receiving procesgpte processop;. Now
that the information connected to the oldest beacon fpgrhas been output,
processop; can store the arrival time of newly received message (linea8é
the message itself (line 87).

2.4 Execution System Model

2.4.1 The Interleaving Model

Every processop;, executes a program that is a sequendatafimic) stepsFor
ease of description, we assume the interleaving model veteps are executed
atomically, a single step at any given time. An input everticly can be either
the receipt of a message or a timer going off, triggers eagh atp;. Only
steps that start from a timer going off may include (at mostedranLBcast
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Constants
2 i =id of executing processor
n = bound or# of interfering processorsincl. itself)
4w = compensation time between lin&s and 80
d = upper bound on message communication delay
6 U= size of atimeslot in time uni(@ > d + w)
¢ = tuning paramete(see Corollary2.1)

8 BlLog=2[¢ ““’5'2&(Qgg;;/jyy:ﬂ D)1 backlog size

D =3n([pmax/pmin]| + 1), the broadcast timeslots
10 T = number of possible states of a timestamp

pmin = lower bound on clock skew
12 pmax = upper bound on clock skew

14 Variables:
m[n] = all received messages and timestamp
16 each entry is an array[n]
each entry is a queug[ B Log]
18 each entry is a pai(s, r)

20 native_clock immutable storage of the native clock
cslot: [0,D-1] = current timeslot in use
22 next: [0, T -1] = schedule of next broadcast

cT = last do-forever loogs timestamp

External functions:
26 output(R) : delivers record R to the upper layer
choose(S) : uniform selection of an item from the set S
28 keys(v) : the set of ick that indexes v
enqueue(Q) : adds an element to the end of the queue Q
30 dequeue(Q) : removes the front element of the queue Q
size(Q) : size of the queue Q
32 first(Q) : least recently enqueued element innM@mber0
last(Q) : most recently enqueued element in Q
34 full(Q) : whether queue Q is full
flush(Q) : empties the queue Q
36 get_s(Q) : list elements of field s in Q
get_r(Q) : list elements of field r in Q

Figure 2.1: Constants, variables and external functions for the secure and self-
stabilizing native clock sampling algorithm in Fig. 2.3

operation. We note that there could be steps that read thk alad decide not
to broadcast.

Since no self-stabilizing algorithm terminates (see [18] program of a
processor consists of a do-forever loop. An iteration isl $aibe complete
if it starts in the loop’s first line and ends at the last (relfss of whether it
enters conditional branches). A processor executes o#res pf the program
(and other programs) and activates the loop upon a timeWeatassume that
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Macros and inlines
40 border(t) : (D-cslou+t mod T
schedule(t) : cslotu+t mod T
22 leq(x,y):(3b:0<b<2BLogDuAy mod T=x+b mod T)
enq(qg, m) : {while full(q) do dequeugq); enqueugm) }
44 G(j) : keys(m[j].v)

46 expire_s(q,t): (x Expires data based on send times
while size(q) > 0 A — leq(first(q).s, t) do
48 dequeue(q)
expire_r(q,t): (x Expires data based on receive timesasexpire_s but with.r instead of.s )
s0 check() : A{checkdata(m(j].v,j) :j € keys(m[i].v)}
checkdata(v,j) : (* Coherency test for data from processar)j
52 A {checklist(get_s(v[k].q), Iclock(v,j)) A (j = k V checklist(get_r(v[k].q), Iclock(v,j))) : k € keys(v)}
checklist(q,t) : (* Checks that all elements of a list are chronologically ordered andmthte futurex)
54 size(q) = 0V (leq(first(q),t) Aleq(last(q).t) A {leq(q[by ],q[b2]) : b1 < bz, {b1,b2} C [1,size(q)})
Iclock(v,j) : last(v]j ].q).s
56
(* Get responseecord forpy,, for p; as the synchronizer)
s8 ts(s,j, k) : {if (3b], b3, bF, bh:
s=mij]v(].alb] .s=mik] v ].alb} 1.s A
e mik].vk].abs ].s=m(j]vk].q[b}]sA
leq(m(j].vij ].a(by ].s mij].vik].q[b3 1r) A
62 leq(mfk].vj].q[b} |.r, mk].vk].q[b ].5)) ,
then return (m{k].v[j (b} ].r, mk].v[K].q[b% |.s m(j ].v[k].q[b3 ].r)
64 elsereturn L}

Figure 2.2: Macros and inlines for the for the secure and self-stabilizing native clock
sampling algorithm in Fig. 2.3.

every processor triggers the loop’s time-out within evesyigd ofu/2, where
u > w + d is the(operation) timeslotwherew < u/2 is the time it takes to
execute a complete iteration of the do-forever loop. Sinoegssors execute
programs other than the clock synchronization, the aciom, t, in which the
timer goes off, is hard to predict. Therefore, for the sakesiofplicity, we
assume that timeis uniformly distributec

The state s; of a processop; consists of the value of all the variables
of the processor (including the set of all incoming commatian channels,
{queue;;|p; € G;}). The execution of a step in the algorithm can change the
state of a processor. The tesystem configuratiois used for a tuple of the
form (s1, s2,...), where eackhs; is the state of processgx (including mes-

5We note that a simple random scheduler can be used for the agidh timet does not
follow a uniform distribution.
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Do forever, everyu/2

let cT = read(native_clock +w

if = (leq(next2Du, cT) A leq(cT, nextru)) then
next«— cT

expire_s(m[i .v[i ].q, cT)

Vj e G(i)\{i} doexpire_r(m[i].v[j].q, cT)

if = check() then
Vjk e P doflush(m]j].vlk].q)

if leq(next cT) Aleq(cT, next+ u) then
let s=first(m[i ].v[i ].g).s
output (i, s, {{j,ts(s.i,})) :j € GH)\{i}})
enq(m[i].v[i].q, (cT, L))
(next cslot) <— (border(nexf, choose([0,D-1]))
next<«— schedule(nex®
LBcast(mi ])

Upon LBrecv(j, 1, v) (ki #]x*)
if checkdata(v,j) then
let s=first(m[i ].v[j ].g).s
output (j, s, { (k. ts(s.}, K)) : k€ G()\{i}})
enq(mfi v |.q, (last(v[j |.g).s. 1))
mfjl.v v

Figure 2.3: Secure and self-stabilizing native clock sampling algorithm (code.far
P).

sages in transit fop;). We define arexecutionE’ = ¢[0], a[0], ¢[1], a[1],... as
an alternating sequence of system configuratitmsand steps:[x], such that
each configuratior[z + 1] (except the initial configuration[0]) is obtained
from the preceding configuratiorjz] by the execution of the stegz]. We
often associate the notation of a step with its executinggssorp; using a
subscript, €.9g;.

2.4.2 Tracing Timestamps and Communications

As stated in Section 2.2.2, we associate elaBhast and LBrecv operation
with a timestamp for the moment of sending and receiving. fiimestamp
of an LBcast operation is the native time at which messagds sent, and
this information is included in the sent message. When peuces executes
the LBrecv operation, an event is triggered with the arguments and (m):
p; € G, is the sending processor of message, whichp; receives whemp,’s

native clock ist. We note that every step can be associated with at most one

communication operation. Therefore it is sufficient to ascthe native clock
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counter only once during or at the end of the operation. Weteby C(a;)
the native clock value associated with the communicaticeraton in step;,
which processop; takes.

2.4.3 Concurrent vs. Independent Broadcasts

We say that processar, € P performs anindependent broadcash a step
a; € E if there is no processqy; < C—Jz that broadcasts in a steg € F,
such that either (19; is performed aften; and before stepj, that receives the
message that was sentin(wherep;, € G;), or (2)a; is performed aftes; and
before step:), that receives the message that was seaj ifwherep,: € G;).
We say that processgr, € P performs aconcurrent broadcasin a stepa;

if a; is dependent (i.e., “not independent”). Concurrent braaticcan cause
message collisions, as described in Section 2.2.2.

2.4.4 Fair Executions

We say that executioy hasfair communicationsif, whenever processqr;
broadcastg successive messages (successive in terms of the alg@ithes-
sages sent by;), at least one of these broadcasts is fair, i.e., not losbigeror
adversarial collisions. We note that fair communicatioesinot imply reliable
communication even fof = 1, because a message can still be lost due to non-
adversarial collisions. An executiah is fair if the communications are fair
and every correct processgr, executes steps in a timely manner (by letting
the loop’s timer go off in the manner that we explain above).

2.4.5 The Task

We define the system'’s task by a set of executions céalgal execution$L F)

in which the task’s requirements hold. A configuratiois asafe configuration
for an algorithm and the task dfE provided that any execution that starts in
c is a legal execution (belongs #F). An algorithm isself-stabilizingwith
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relation to the task of F if every infinite execution of the algorithm reaches a
safe configuration with relation to the algorithm and thétas

2.5 Correctness

In this section we demonstrate that the task of random besidszheduling
is achieved by the algorithm that is presented in Fig. 2.3mélg, with high
probability, the scheduler allows the exchange of beacndse@sponses within
a shorttime. The objectives of the random broadcast scimgrhalsk are defined
in Definition 2.1 and considdrsroadcasting roundsTo consider a number of
broadcasting rounds from a point in time (such as the timecist®d with a
stepa), is to consider the time needed for every processor to fiha tany
partitions, i.e., broadcast that many times.

Definition 2.1 (Nice executions)Let us consider the executions of the algo-
rithm presented in Fig. 2.3. Furthermore, let us consider@cpssor; and let

I'; be the set of all execution prefixdsy,, such that, within the firskR broad-
casting rounds of’r,, (1) every processas; € G; (includingyp;) successfully
broadcasts at least one beacon to all procesgegrss G; N G; and (2) every
such processop; gets at least one response from all such procesgprsWe
say that executioy is nicein relation to processop; if £ has a prefix ifl’;.

The proof of Theorem 2.1 (Section 2.5.3, page 93) demoumstthat, when
consideringR = 2R, for any processop;, the algorithm reaches a nice ex-
ecution in relation tg; with probability of at leastt — 2—+!, where/ is a
predefined constant arfel = [¢ ”log{(l[fgr;‘“‘("l/ f;"/i;}“)”)] is the expected time
it takes all processors; € G; (when considering the neighborhood of any pro-
cessolp;) to each broadcast at least one message that is receivet dihel
processors iit;; N G;.°

Once the system reaches a nice execution in relation to &gsomp;, and
the exchange of beacons and responses occurs, the follbwidg. There is a

6 To distinguish between timestamps that should be regardeglragin the past and timestamps
that should be regarded as being in the future, we requitédtha 4R. In other words, we want to
be able to consider at leastound-trips in the past ariround-trips in the future.
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set,S;, of beacon records that are in the queuesipind the records that were
delivered to the upper layer. The sgtincludes a subses, C S;, of records for
beacons that were sent during the [&s{Definition 2.1) broadcasting rounds.
In S., it holds that every processpr € G; — {i} has a beacon recordec;,
such that every processpr € G; N G; —{j} has a beacon recorckc;,, which
includes a response tac;. In other words,R is a bound on the length of
periods for which processgr, needs to store beacon records. Moreover, with
high probability, withinR broadcasting roundss; gathers beacons from all
processorg; € G;. Furthermore, for each such beacon from a processer
G5, p; gathers responses to those beacons from all procegsarsG; N G;.
For this reason, we sétLog to beR.

2.5.1 Scenarios in which balls are thrown into bins

We simplify the presentation of the analysis by depictinffedent system set-
tings in which the message transmissions are described élycd scenarios in
which balls are thrown into bins. The sending of a messagerbgegsomn;
corresponds to a playex throwing a ball. Time is discretized into timeslots
that are long enough for a message to be sent and received.withe times-
lots are represented by an unbounded sequence oflbihsy. Transmitting a
message during a timeslot corresponds to throwing a ba#irdsvandaiming a
ball at the corresponding bin.

Messages from processpy can collide with messages from up to— 1
other processors l@-\ = n. Furthermore, in the worst-case scendg| =
\52\ = n for processop,;. We want to guarantee with high probability that
within G; everyone exchanges messages. Therefore, we loakmdayers
throwing balls into bins when analyzing the message scheglalgorithm. Our
results will also hold for cases whé@;| < n and whedc_lz-\ < n, as the prob-
ability of collisions in those cases is equal to or lower tliaat for the worst
case scenario.

Before analyzing the general system settings, we demoastiapler set-
tings to acquaint the reader with the problem. Concretety)aok at the set-
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tings in which the clocks of the processors are perfectlyckyonized and the
communication channels have no noise (or omission attadkg)ask the fol-

lowing question: How many bins are needed for every playayetbat least
one ball, that is not lost due to collisions, in a bin (Lemma @nd 2.2)? We
then relax the assumptions on the system settings by comgjdéfferent clock

offsets (Claim 2.2) and by considering different clock skd@laim 2.3). We

continue by considering noisy communication channels tani$sion attacks)
(Claim 2.4) and conclude the analysis by considering gémsgsiem settings
(Corollary 2.1).

Collisions

A message collision corresponds to two or more balls aimedeasame bin.
We take the pessimistic assumption that, when balls aredaahaeighboring

bins, they collide as well. This is to take non-discrete tifaed later on, dif-

ferent clock offsets) into account. Broadcasts that “ctheshorders” between
timeslots are assumed to collide with messages that aredastin either bor-
dering timeslot. Therefore, in the scenario in which batksthrown into bins,

two or more balls aimed at the same bin or bordering bins wiliize out, i.e.,

not end up in the bin.

Definition 2.2 When aiming balls at bins in a sequence of binsuacessful
ball is a ball that is aimed at a bih. Moreover, it is required that no other ball
is aimed ab or a neighboring bin ob. A neighboring birof b is the bin directly
before or directly afteb. Anunsuccessful balk a ball that is not successful.

Synchronous timeslots and communication channels that hano noise

We prove a claim that is needed for the proof of Lemma 2.1.
Claim 2.1 For all z > 2 it holds that

(1 - i)z_l > i. (2.2)



2.5. CORRECTNESS 83

Proof: Itis well known that

<1 + i)x <e (2.2)

for anyx > 1. From this it follows that

() () )

1)

1 1 1

=1+ = >= (2.3)
x—1 1\ T e

forz>2. m

Lemmas 2.1 and 2.2 consider an unbounded sequence of birer¢hdi-
vided into “circular” subsequences that we cadirtitions We simplify the
presentation of the analysis by assuming that the paritame independent.
Namely, a ball that is aimed at the last bin of one partitiommally counts as a
collision with a ball in the first bin of the next partition. Withis assumption,
a ball aimed at the last bin and a ball aimed at the first binérstime partition
count as a collision instead. These assumptions do not ealess of gener-
ality, because the probability for balls to collide does doange. It does not
change because the probability for having a certain numblealts in a bin is
symmetric for all bins.

We continue by proving properties of scenarios in whichsate thrown
into bins. Lemma 2.1 states the probability of a single baihb unsuccessful.

Lemma 2.1 Letn balls be, independently and uniformly at random, aimed at
partitions of3n bins. For a specific ball, the probability that it is not susséul
is smaller thanl — 1/e.

Proof: Let b be the bin that the specific ball is aimed at. For the ball to be
successful, there aBout of the3n bins that no other ball should be aimediat,
and the two neighboring bins &f The probability that no other (specific) ball
is aimed at any of these three bins is

3

L= o (2.4)
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The different balls are aimed independently, so the prdihabiat none of the
othern — 1 balls are aimed at bilnor a neighboring bin ob is

o2y ) 29

With the help of Claim 2.1, the probability that at least onieeo ball is aimed
atb or a neighboring bin ob is

1(11)n1<11. (2.6)

n (&

Lemma 2.2 states the probability of any player not having sugcessful
balls after a number of throws.

Lemma 2.2 Consider R independent partitions ob = 3n bins. For each
partition, letn players aim one ball each, uniformly and at random, at one of
the bins in the partition. LeR > (¢+log, n)/(—log, p), wherep = 1—1/eis

an upper bound on the probability of a specific being unsigfakm a partition.
The probability that any player gets no successful ball isl&nthan2—¢.

Proof: By Lemma 2.1, the probability that a specific ball is unsusfidss
upper bounded by = 1 — 1/e. The probability that a player does not get any
successful ball in any o independent partitions is therefore upper bounded
by p’t.

Let X;, ¢ € [1,n] be Bernoulli random variables with the probability of a
ball being successful that is upper boundedBy

1 if playeri gets no successful ball iR partitions
X; = (2.7)

0 if player: gets at least one successful ballRrpartitions

Let X be the number of players that get no successful ball partitions:

X=> X, (2.8)
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The differentX; are a finite collection of discrete random variables with fi-
nite expectations. Therefore we can use the Theorem of tifped Expecta-
tions [21]:

n n

E[X]=E [Xn: Xi‘| =Y EX;] <> pf=np". (2.9)

=1 1=1
The random variables assume only non-negative values. dvarknequal-
ity [21], Pr(X > a) < E[X]/a, therefore gives us

Pr(X #0)=Pr(X >1) < ElX] < np® (2.10)

1
Fornp®™ < 2=¢ we get thaPr(X # 0) < 27¢, which gives us

npf <27t =

log, (npf) < —4 =

logy(n) + Rlogy(p) < —C =
—0 —logon  L+logyn
log,p  —logyp

R> (2.11)

We now turn to relaxing the simplifying assumptions of symactized clocks
and communication channels with no noise. We start by cenisigl clock off-
sets and skews. We then consider noisy communication clganne

Clock offsets

The clocks of the processors have different offsets, ancthie the timeslot
boundaries are not aligned. We consider a scenario thatipa@ble to system
settings in which clocks have offsets. In the scenario ofslthht are thrown
into bins, offsets are depicted as throwing a ball that higsitoundary between
bins and perhaps hits the boundary between partitions.

Claim 2.2 considers players that have individual sequeoideiss. Each se-
quence has its own alignment of the bin boundaries. Naméiy, af one player
may “overlap” with more than one bin of another player. Thhs,different bin
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sequences that have different alignments correspond temnsysettings in which
clocks have different offsets.

The proof of Claim 2.2 describes a variation of the scenariwhich balls
are thrown into bins. In the new variation, balls aimed atriamping bins
will bounce out. For example, consider two balls aimed at #jirand b*",
respectively. If bing* andbf’ overlap, the balls will cause each other to bounce
out.

Claim 2.2 Consider the scenario in which balls might hit the bin bouneka
and takeR and D as defined in Lemma 2.2. Then, we have that the probability
that any player gets no successful ball is smaller tBah.

Proof: The proof is demonstrated by the following two arguments.
Hitting the boundaries between binBrom the point of view of processegs,
a timeslot might be the time interv@d, ¢ + ), whereas for processey the
timeslot interval might be different and partly belong tmtdifferent timeslots
of p;. When considering the scenario in which balls are thrown loits, we
note that a bin of one player might be seen as parts of two bensather player.

In other words, every playef;, has its own view[b ];cn, of the bin se-
quencelbi]ren. The sequencéy]ien corresponds to an ideal discretization
of the real time into timeslots, whereas the sequébigecn, corresponds to a
discretization of processgx’s native time into timeslots. We say that the bins
A and[bi,] overlap when the corresponding real time period@bﬁfand[bﬁ%,]
overlap.

Lemma 2.2 regards balls aimed at neighboring bins as anilsiWe recall
the requirements that are made for ball collisions (seei@e@t5.1). These
requirements say that balls aimed at neighboring bingih.cn will bounce
out. The proof is completed by relaxing the requirementsahamade for ball
collisions in[b;]ren. Let us consider the scenario in which playgrsandyp;
aim their balls at bing}, andb?,, respectively, such that bob¥) andb?, overlap.
The binb}, can either overlap with the birllr%l,_1 andb’, or (exclusively) overlap
with the binsb/, andby, , . Balls aimed at any of the bins possibly overlapping
with b, (namelyb;, _,, b,, andb;, ) are regarded as colliding with the ball of
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playerp;. The same argument applies to tbifp overlapping with bing _,,

bj, andbj_ ;. In other words, the scenario of Lemma 2.2, without offset an
neighboring bins leading to collision, is a superset in teaibin overlap to the
scenario in which offsets are introduced.

Hitting the boundaries between partitionSven if the timeslot boundaries are
synchronized, processpr might regard the time intervét, ¢t + Du) as a par-
tition, whereas processpr might regard the intervat, ¢ + Du) as partly be-
longing to two different partitions. When considering thersario in which
balls are thrown into bins, this means that the players’ vaewwvhich bins are
part of a partition can differ.

For each bin, the probability that a specific player choosesrh a ball at
that bin is1/D, whereD is the number of bins in the partition. Therefore the
probability for a ball being successful does not depend om biher players
partition the bins. =

Clock skews

The clocks of the processors have different skews. Therefwe consider a
scenario that is comparable to system settings in whictkslbave skews.

In Claim 2.3, we consider players that have individual segas of bins.
Each sequence has its own bin size. The size of playgins is inversely
proportional to processgr;’s clock skew, sayl /p;. We assume that the balls
that are thrown by any player can fit into the bins of any othayer. (Say the
ball size is less thah/ pi.x.) Thus, the different bin sizes correspond to system
settings in which clocks have different skews.

Let us consider the number of balls that playgermay aim at bins that
overlap with bins in a partition of another player. Suppds# playerp; has
bins of sizel/pmax and that playep; has bins of siz& /p.,in. Then playem;
may aim up tQ = [ pmax/Pmin | + 1 balls in one partition of playes;.

Claim 2.3 Consider the scenario with clock skews and t&kaend D as defined
in Lemma 2.2. Lep = 1 — 1/e be an upper bound on the probability of
a specific ball being unsuccessful in a partition. By takiRg..., = R >
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(£ +logy pn))/(—logyp) € O(€ + log(n)), we have that the probability that
any player gets no successful ball is smaller tRan.

Proof: By taking the pessimistic assumption that all players seethers, as
well as themselves, as throwipdalls each in every partition we have an upper
bound on how many balls can interfere with each other in atjmart Thus by
taking partitions ofD = 3pn bins instead of th&n bins of Lemma 2.2, and
substitutingn for pn in the R of Lemma 2.2,

_ L+ log, pn)

R> oz, p € O(¢ + log(n)), (2.12)

the guarantees of Lemma 2.2 holdm

Communication channels with noise

In our system settings, message loss occurs due to noisengiggian attacks
and not only due to the algorithm’s message collisions. R ¢ defines the
number of broadcasts required in order to guarantee atdeastair broadcast
(not lost to noise or adversarial collisions; see Secti@2. In the scenario in
which balls are thrown into bins, this correspondingly netmat at mos§ — 1
balls are lost to the player’s trembling hand for any ofitsonsecutive throws.
Omission attacks are incorporated into thassumption and are thus not seen
as a ball being thrown.

Claim 2.4 Consider the communication channels with noise and fakad D
as defined in Lemma 2.2. By takifly,;se > £ R, we have that the probability
that any player gets no successful ball is smaller thah.

Proof: By the system settings (Section 2.2), the noise in the congation
channels is independent of collisions. We take the pessa@pproach and
assume that, when a ball is lost to noise, it can still caukerdballs to be
unsuccessful (just as if it was not lost to noise). In ordefutbll the require-
ments of Lemma 2.2, we can tak& partitions instead of partitions. This
will guarantee that each player gets at ledstair” balls. That is, each player
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gets at leasR balls that are either successful or that bounce out due lisicol
with another ball. Thus, the asymptotic number of bins ishamged and the
guarantees of Lemma 2.2 still hold.m

General system settings

The results gained from studying the scenario in which bedésthrown into
bins are concluded by Corollary 2.1, which is demonstrateddmmma 2.2 and
claims 2.2, 2.3, and 2.4.

Corollary 2.1 Suppose that every processor broadcasts once in everyiparti
of D timeslots. Consider any processgr The probability that every processor
p; € G, successfully broadcasts at least one beacon to every mocgs €
G; N G within R partitions is at leastl — 2=t when

D =3pn € O(n) (2.13)
R= (g%i?} € O(¢ + logn) (2.14)
ﬁ = (pmaw/pmin—l +1 (215)
p=1- 1 (2.16)

e

Corollary 2.1 shows that, for any procesggrwithin a logarithmic number
of broadcasting rounds, all processorgipexchange at least one beacon with
their neighbors ir;, with high probability. (See the beginning of Section 2.5.1
for the discussion on the balls versus a processpy for which \C_JZ\ <n.)

2.5.2 The task of random broadcast scheduling

So far, we have analyzed a general scenario in which ballheoen into bins.
We now turn to showing that the scenario indeed depicts tipéeimentation of
the algorithm (which is presented in Fig. 2.3).

As stated earlier, when we talk about the execution of, orgieta iteration
of, lines 67 to 80, we do not imply that the branch in lines 7B@mecessarily
is entered.
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Definition 2.3 (Safe configurations)Let E be a fair execution of the algorithm
presented in Fig. 2.3 and € E a configuration in whichy; = (leq(next; —
2D, cT;) Aleq(cT;, next;) holds for every processagr,. We say that is safe
with respect taL F.

We show thatcT; follows the native clock of process@r. Namely, the
value ofcT; — wisin [C" — u, C].

Lemma 2.3 Let FE be a fair execution of the algorithm presented in Fig. 2.3,
andc a configuration that is at least after the starting configuration. Then, it
holds that(leq(C? — u, ¢T; — w) Aleq(cT; — w,C?)) in c.

Proof: SinceF is fair, the do-forever loop’s timer goes off in every periafd
u/2. Hence, within a period af, processop; performs a complete iteration of
the do-forever loop in an atomic step.

Suppose that immediately followsa;. According to line 67, the value of
cT; — w is the value ofC? in c. Lett = ¢T; — w = C*. It is easy to see that
leq(t — u,t) Aleq(t,t) inc.

Let a] be an atomic step that includes the execution of lines 83 to 87
(whether entering the branch or not), followsand immediately precedesSe
E. Lett’ = C"in ¢’. Then, within a period of at most/2, processop; exe-
cutes ste, € E, which includes a complete iteration of the do-forever loop
Since the period between andd] is at mostu/2, we have that’ — ¢ < u/2.
Thereforeleq(C? — u, ¢T; — w) holds inc¢’ asleq(C?, ¢T; — w) holds inc. It
also follows thateq(c¢T; — w,C?)) holds inc’ asC® = ¢T; —winc. =

We show that when a procesggrexecutes lines 75 to 80 of the algorithm
presented in Fig. 2.3 it reaches a configuration in whigholds. This claim is
used in Lemma 2.4 and Lemma 2.5.

Claim 2.5 Let £/ be a fair execution of the algorithm presented in Fig. 2.3.
Moreover, leta; € E a step that includes a complete iteration of lines 67 to 80
and ¢ the configuration that immediately follows. Suppose that processpy
executes lines 75 to 80 in; thena; holds inc.
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Proof: Among the lines 75 to 80, only lines 78 to 79 can change thexgadid
«;. Lett; = next; immediately after line 74 and lét = next; immediately
after the execution of line 79. We denote By= ¢, — ¢, the value that lines 78
to 79 add tonext;, i.e.,A = (y+ D — x)u, whered < z,y < D — 1. Note that
2 is the value ot:slot; before line 78 and is the value of:slot; after line 78.
Therefore A € [u, (2D — 1)ul.

By the claim’s assertion, we have the(c¢T;, t; + u) holds before line 78.
Sinceu < A, it holds thateq(cT;, ¢t + A), and thereforéeq(cT;, t2) holds.

Moreover, by the claim assertion we have thei(t, ¢T;) holds. Since
A < (2D — 1)u, it holds thatA — 2Du < —u. This implies thateq(t; —
2Du + A, cT;). Therefordeq(te — 2Du, ¢T;) holds. =

We show that, starting from an arbitrary configuration, aaiy &éxecution
researches a safe configuration.

Lemma 2.4 Let E be a fair execution of the algorithm presented in Fig. 2.3.
Then, within a period ofi, a safe configuration is reached.

Proof: Letp; be a processor for which,; does not hold in the starting config-
uration of E. We show that, within the first complete iteration of linest6 BO,
the predicatey; holds. According to Lemma 2.3, all processqgrs,complete
at least one iteration of lines 67 to 80, within a period.of

Leta; € E be the first step in which processgrcompletes the first itera-
tion. If «; does not hold in the configuration that immediately precegdgthen
either (1) the predicate in line 68 holds and procegs@xecutes line 69 or (2)
the predicate of line 74 holds at line 68.

For case (2), asi(leq(t — 2Du, t) Aleq(t,t)) is false for anyt, immedi-
ately after the execution of line 69, the predicatgeq(next; — 2Du, cT;) A
leq(cT;, next;)) does not hold. Moreover, the predicate in line 74 holds,esinc
leq(t,t + u) holds for anyt.

In other words, the predicate in line 74 holds for both cad¢satd (2).
Therefore,p; executes lines 75 to 80 im;. By Claim 2.5,«; holds for the
configuration that immediately follows;. By repeating this argument for all
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processorg;, we show that a safe configuration is reached within a period o
u. N

We demonstrate the closure property of safe configurations.

Lemma 2.5 Let £ be a fair execution of the algorithm presented in Fig. 2.3
that starts in a safe configuratiof i.e. a configuration in whicla; holds for
every processop; (Definition 2.3). Then, every configuration inis safe with
respect talL F.

Proof: Lett; be the value of;’s native clock in configuratiom anda; € E
be the first step of processpy.

We show thaty; holds in configuration’ thatimmediately follows:;. Lines
83 to 87 do not change the value @f. By Claim 2.5, ifa; executes lines 75
to 80 within one complete iteration, then holds inc’. Therefore, we look at
stepa; that includes the execution of lines 67 to 74, but does ndudethe
execution of lines 75 to 80.

Lett; = ¢T; in candt, = ¢T; in ¢/. According to Lemma 2.3, and by the
fairness ofF/, we have that, —t; modT < w. Furthermore, lefl = next;—Du
and B = next; in c. The values ohext; — Du andB = next; do not change
in ¢’. Sinceq; is true inc, it holds thatleq(A, ¢1) A leq(t1, B). We claim that
leq(A,t2) Aleq(ta, B). Sinceleq(ty, B) in ¢, we have thaleq (t2, B+ta —t1)
while p; executes line 74 im;. As a; does not execute lines 75 to 80, the
predicate in line 74 does not holddn. Asleq(t;, B) andts — t; modT < u
the predicate in line 74 does not hold & (¢2, B). Furthermore, we have that
leq(A,t1), leq(ti, B), andleq(ts, B). As0 < ty —t; modT < u we have
thatleq(A,t2). Thus,c is safe agy; holdsinc. =

2.5.3 Nice executions

We claim that the algorithm (presented in Fig. 2.3) impletagrnice executions
with high probability. We show that, for any processerevery execution (for
which the safe configuration requirements hold) is a niceaten in relation

to p; with high probability.
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Theorem 2.1 Let E be a legal execution of the algorithm presented in Fig. 2.3.
Then, for any processar;, E is nice in relation tap; with high probability.

Proof: Recall thatin a legal execution all configurations are s@éxtion 2.2).
Let a; be a step in which processpr broadcastsq, be the first step aftes;

in which processop; broadcasts, and; be the first step aftes, in which

processop; broadcasts.

Letr, »/, andr” be the values ofext; between lines 78 and 79 i, a/,
anda!, respectively. The only changes donertert; from line 79 ina; to
lines 78 and 79 i, are those two lines, which taken together changet; to

next; + Du mod T.

The period of lengtDw that begins at and ends at’ mod T is divided
in D timeslots of length:. A timeslot begins at time + xu mod T and ends
attimer + (x + 1)u mod T for a unique integet € [0, D — 1]. The timeslot
in which a] broadcasts igslot in c. In other words, processgr, broadcasts
within a timeframe ofr to 7/, which is of lengthDu. By the same arguments,
we can show that processarbroadcasts within a timeframe ofto r”/, which
is of lengthDw. These arguments can be used to show that, @ftgrrocessor
p; broadcasts once per period of lenddh.

Corollary 2.1 considers processgy, and its set;, which includes itself
and its neighbors. The processors@é—] broadcast once in every period bf
timeslots. The timeslots are of lengtha period that each processor estimates
using its native clock. Let us consider a procegs@nd R timeframes of length
Du. By Corollary 2.1, the probability that all processgrse G; successfully
broadcast at least one beacon to all proceggors G; NG is at leastl — 21,
Now, let us conside2R timeframes of lengthDu. Consider the probability
that each of the processars € G; successfully broadcasts to all processors
pr € G;NG; and get a response from all such procesgprd8y Corollary 2.1,
that probability is at leastl — 27¢)? = 1 — 27/ 4 2726 > 1 — 2=¢+1
Therefore, by Definition 2.1, for any procesggr E is nice in relation top;
with high probability. m
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2.6 Performances of the algorithm

Several elements determine the precision of the clock sgn&ration. The

clock sampling technique is one of them. Elson et al. [2] sti@tithe reference
broadcast technique can be more precise than the roundytnighronization

technique. We allow the use of both techniques. Another ntapb precision

factor is the quality of the approximation of the native dl®of neighboring

nodes. Our extensive clock sample records allows for bo#mali regression
and phase-locked looping (see Romer et al. [5]). Moreokerctock synchro-

nization precision improves as neighboring processorslaleeto sample each
other’s clocks more frequently. However, due to the limiéegrgy reserves in
sensor networks, careful considerations are required.

Let us consider the continuous operation mode. If the pasfatie clock
samples is too long, the clock precision suffers, as the skéthe native clocks
are not constant. Thus, an important measureis:d;, whereround; is the
time it takes a processgr and its neighbors ifd7; to exchange beacons and
responses. In other wordsyund; is the time it takes (1) every procesggre
G (includingp;) to successfully broadcast at least one beacon to all psoces
pr € G; NG, and (2) every such procesgorto get at least one response from
all such processors..

Let us consider ideal system settings in which broadcastsrrellide. In
the worst casgG;| = |(7§| = n. Sendingn beacons and getting responses
to each of these beacons requires the communication ofsat¥¢a?) samples.
By Corollary 2.1 and Theorem 2.1, we get tBa&t timeframes of lengttDu are
needed. We also get th&t € O(logn) andD € O(n). The timeslot size:
is needed to fit a message with.og = 2R responses to up to processors.
Hence,u € O(nlogn). Thereforeround; € O(n?(logn)?). Moreover, with
a probability of at least — 2~“+1, the algorithm can secure a clock sampling
period that isO((log n)?) times the optimum.

We note that the required storage isrn? lognlog T'). By Lemma 2.4,
starting in an arbitrary configuration, our system stabgiwvithin« time, and
as we have seen abowe= O(nlogn).
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2.6.1 Optimizations

We can use the following optimization, which is part of mamjséng imple-
mentations. Before accessing the communication mediag@epsorp; waits

for a periodd and broadcasts only if there was no message transmitteagduri
that period. Thus, processpy does not intercept broadcasts, from a processor
p; € G, that it started receiving (and did not finish) before titme d, wheret

is the time of the broadcast hy. In that case it aborts its message. pgrand

for the sake of the worst-case analysis, this counts as igiooll However, for

pj itis a successful broadcast (assuming that the messagel@shto noise or

to collision with another message).

2.7 Discussion

Sensor networks are particularly vulnerable to interfeegrvhether as a result
of hardware malfunction, environmental anomalies, or anatlis intervention.
When dealing with message collisions, message delays agsd, ribis hard to
separate malicious from non-malicious causes. For instanis hard to distin-
guish between a pulse-delay attack and a combination ofrés) e.g., a node
that suffers from a hidden terminal failure, but receivesemo of a beacon. Re-
cent studies consider more and more implementations tkeastcurity, failures
and interference into account when protecting sensor mksn@.g., [22—24],
which consider multi-channel radio networks). We note thahy of the exist-
ing implementations assume the existence of a fine-grayrezhsonized clock,
which we implement.

Message scheduling is important for clock synchronizatibtoradi et al.
compare clock synchronization algorithms for wirelessssemetworks con-
sidering precision, cost and fault tolerance [25]. Theyvsltioat, without a
message scheduling algorithm of some sort, the RefereroaBast algorithm
of [2] suffers heavily from collisions.

Ganeriwal et al. [7] overcome the challenge of delayed bescsing the
round-trip synchronization technique. With this techmdbe average delay of
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a message from processgrto processop; € G;, and a message back from
p; to p;, can be calculated using the send and receive times of thessages.
Thus, a delay attack can be detected if the delay is largargbme known up-
per bound on message delay. They use the Byzantine agrepméatol [26]

for a cluster ofy nodes where alj nodes are within transmission range of each
other. Thus, Ganeriwal et al. requis¢ +1 < g. Song et al. [8] consider
a different approach that uses the reference broadcastionization tech-
nigue. Existing statistics models refer to malicious tinffsets as outliers. The
statistical outlier approach is numerically stabledgr+ ¢ < g, whereg is the
number of neighbors and whetds a safety constant (see [8]). We note that
both approaches are applicable to our work. We further ri@ed processor
pr € G;NG; can detect delay attacks against beacons that nodeslp; have
sent to each other, by the mechanisms of calculating avenagsage delay and
comparing with a known upper bound. This is possible becaysgets send
and receive times of messages back and forth betyweandp;.

Based on our practical assumptions, we are able to avoid yzariine
agreement overheads and follow the approach of Song et]aM& can con-
struct a self-stabilizing version of their strategy, byngsbur sampling algo-
rithm and by detecting outliers using the generalized ex¢éretudentized devi-
ate (GESD) algorithm [27]. LeB be the set of delivered beacon records within
a period ofR and test the seB for outliers using the GESD algorithm.

Existing implementations of secure clock synchronizapootocols [6—8,
10, 28-30] are not self-stabilizing. Thus, their specifaad are not compatible
with security requirements for autonomous systems. Inreartmus systems,
the self-stabilization design criteria are imperativedecure clock synchroniza-
tion. For example, many existing implementations requiitsil clock synchro-
nization prior to the first pulse-delay attack (during thetpcol set up). This
assumption implies that the system uses global restarefbdefense manage-
ment, say, using an external intervention. We note thatdkeraary is capable
of intercepting messages continually. Thus, the adversanyrisk detection
and intercept all pulses for a long period. Assume that tis¢esy detects the
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adversary’s location and stops it. Nevertheless, the systsnot synchronize
its clocks without a global restart.

Sun et al. [31] describe a cluster-wise synchronizatiororéigm that is
based on synchronous broadcasting rounds. The authoraesisat a Byzan-
tine agreement algorithm [26] synchronizes the clocks feetbe system ex-
ecutes the algorithm. Our algorithm is comparable with #guirements of
autonomous systems and makes no assumptions on synchimoagsasting
rounds or start.

Manzo et al. [30] describe several possible attacks on aseured) clock
synchronization algorithm and suggest countermeasuressifigle hop syn-
chronization, the authors suggest using a randomly seléctee” of nodes to
minimize the effect of captured nodes. The authors do nosiden the cases
in which the adversary captures nodes after the core satedti this work, we
make no assumption regarding the distribution of the capitunodes. Farru-
gia and Simon [29] consider a cross-network spanning treehioh the clock
values propagate for global clock synchronization. Howeawve pulse-delay at-
tacks are considered. Sun et al. [28] investigate how to ustate clocks from
external source nodes (e.g., base stations) to increaseditience against an
attack that captures source nodes. In this work, there aseu@e nodes.

In [10], the authors explain how to implement a secure clgeickroniza-
tion protocol. Although the protocol is not self-stabitigi, we believe that some
of their security primitives could be used in a self-stailg manner when im-
plementing our self-stabilizing algorithm.

Herman and Zhang [16] present a self-stabilizing clock byoization
algorithm for sensor networks. The authors present a mantgbroving the
correctness of synchronization algorithms and show thattnverge-to-max
approach is stabilizing. However, the converge-to-maxr@ggh is prone to
attacks with a single captured node that introduces the maxtlock value
whenever the adversary decides to attack. Thus, the adyesa at once set
the clock values “far into the future”, preventing the noétesn implementing
a continuous time approximation function. This work is thistfin the context
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of self-stabilization to provide security solutions foock synchronization in
sensor networks.

2.7.1 Conclusions

Designing secure and self-stabilizing infrastructure §ensor networks nar-
rows the gap between traditional networks and sensor nk$wayr simplifying
the design of future systems. In this work, we use systeringstthat consider
many practical issues, and take a clean-slate approackignieg a fundamen-
tal component: a clock synchronization protocol.

The designers of sensor networks often implement clockreymization
protocols that assume the system settings of traditionsbarks. However,
sensor networks often require fine-grained clock synchediun for which the
traditional protocols are inappropriate.

Alternatively, when the designers do not assume traditisystem settings,
they turn to reinforcing the protocols with masking techu@g. Thus, the de-
signers assume that the adversary never violates the assnspf the masking
techniques, e.g., there are at mpstaptured and/or pulse-delay attacked nodes
in a neighborhood at all times, for a setting whayfe+ 1 < n must hold in the
neighborhood. Since sensor networks reside in an unatiesrdéronment, the
last assumption is unrealistic when considering long tjmaes.

Our design promotes self-defense capabilities once thersyeturns to fol-
lowing the original designer’s assumptions. Interestintile self-stabilization
design criteria provide an elegant way for designing seautenomous sys-
tems.
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Paper II: A Self-stabilizing (k,r)-clustering
Algorithm with Multiple Paths for Wireless
Ad-hoc Networks

Wireless Ad-hoc networks are distributed systems thatoféside in error-
prone environments. Self-stabilization lets the systecover autonomously
from an arbitrary state, making the system recover fromrgigiad temporarily
broken assumptions. Clustering nodes within ad-hoc nésvoan help form-
ing backbones, facilitating routing, improving scalinggeegating information,
saving power and much more. We present the first self-stafilidistributed
(k,n-clustering algorithm. A (k,r)-clustering assignsckister heads within r
communication hops for all nodes in the network while tryiagninimize the
total number of cluster heads. The algorithm uses synclioommunication
rounds and uses multiple paths to different cluster headsiforoved security,
availability and fault tolerance. The algorithm assignkew possible, at least k
cluster heads to each node within O(r) rounds from an argitranfiguration.
The set of cluster heads stabilizes, with high probabititya local minimum
within O(gr log n) rounds, where n is the size of the networ# gris an upper
bound on the number of nodes within 2r hops.

105



106 CHAPTER 3.

3.1 Introduction

Starting from an arbitrary state, self stabilizing aldgomits let a system stabilize
to, and stay in, a consistent state [1]. There are many reasby a system
could end up in an inconsistent state of some kind. Assumgtitat algorithms
rely on could temporarily be invalid. Memory content coulel thanged by
radiation or other elements of harsh environments. Baftewered nodes could
run out of batteries and new ones could be added to the netltasloften not
feasible to manually configure large ad-hoc networks toweicérom events
like this. Self-stabilization is therefore often a desieaproperty of algorithms
for ad-hoc networks. However, self-stabilization comethvimcreased costs,
so a tradeoff is made. A self-stabilizing algorithm can mestep because you
can not know when temporary faults occur, but it can convesgeresult that
holds as long as all assumptions hold. Furthermore, thereféen overheads
in the algorithm tied to the need to recover from arbitramgtest. It can be
added computations, increased size of messages or indneasder of needed
rounds to achieve something.

An algorithm for clustering nodes together in an ad-hoc oekvgerves an
important role. Back bones for efficient communication cenfdrmed using
cluster heads. Clusters can be used for routing messagasteCheads can
be responsible for aggregating data, e.g. sensor readings ad-hoc sensor
network, into reports to decrease the number of individuaésages needed to
rout through the network. Hierarchies of clusters on défelevels can be used
for improved scaling of a large network. Nodes in a clustarld¢dake turns
doing energy costly tasks to save power over all.

Clustering is a well studied problem. Due to space condgafor refer-
ences to the area in general, we point to the survey of the witbaregard
to wireless ad-hoc networks by Chen, Liestam and Liu in [2] #re survey
by Abbasi and Younis in [3] for wireless sensor networks. W f@cus on
self-stabilization, redundancy and some security aspéate way of cluster-
ing nodes in a network is for nodes to associate themselviisone or more
cluster heads. In the (k,r)-clustering problem each nodeeémetwork should
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have at leask cluster heads withim communication hops away. This might
not be possible for all nodes if the number of nodes withimop from them
is smaller thark. In such cases a best effort approach can be taken for getting
as close td: cluster heads as possible for those nodes. The clustermgddsh
be achieved with as few cluster heads possible. To find theagiminimum
number of cluster heads is in general too hard, algorithrogige an approxi-
mation. The (1,r)-clustering problem, a subset of the {&u¥stering problem,
can be formulated as a classical set cover problem. This n@srsto be NP
complete in [4]. Assuming that the network allowscluster heads for each
node, the set of cluster heads forms a total (k,r)-domigatet in the network.
In atotal (k,r)-dominating set the nodes in the set also need to haxales in
the set withinr hops, in contrast to an ordinary (k,r)-dominating set inchhi
this is only required for nodes not in the set.

There is a multitude of existing clustering algorithms fdttzoc networks of
which a number is self-stabilizing. Johnen and Nguyen prtessself-stabilizing
(1,1)-clustering algorithm that converges fast in [5]. ®&ohnd Tzachar tackle
a lot of organizational problems in a self-stabilizing manin [6]. As part
of this work they present a self-stabilizing (1,r)-clugtgralgorithm. Caron,
Datta, Depardon and Larmore present a self-stabilizing-¢luystering in [7]
that takes weighted graphs into account.

There is a number of papers that do not have self-stabiizati mind.
Fu, Wang and Li consider the (k,1)-clustering problem in [8} [9] the full
(k,r)-clustering problem is considered and both a cemedliand a distributed
algorithm for solving this problem are presented. Wu andl&® @onsider the
full (k,r)-clustering in [10].

Other algorithms do not take the cluster head approach. 1j Eets of
nodes that all can communicate directly with each other esaped together
without assigning any cluster heads. In this paper mal&ioades that try to
disturb the protocol are also considered, but self-stadiitin is not considered.
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3.1.1 Our Contribution

We have constructed the first, to the best of our knowleddgé stilizing
(k, r)-clustering algorithm for ad-hoc networks. The algorithenbiased on
synchronous rounds and makes sure that, within) rounds, all nodes have at
leastk cluster heads (or all nodes withirhops if a node has less thamodes
within » hops) using a deterministic scheme. A randomized schem@leem
ments the deterministic scheme and lets the set of clustetshetabilize to a
local minimum. It stabilizes withirO(gr log n) rounds with high probability,
whereg is a bound on the number of nodes witRinhops, and: is the size of
the network.

We prove quick selection of enough cluster heads. Once stermyfulfills
the cluster head requirements, /otluster heads withim hops for all nodes,
the requirements will continue to hold from that point on. ®go prove that
the set of cluster heads converges towards a local minimundetJthe extra
assumption that timers are synchronized, we show an upperdoan the num-
ber of rounds it takes, with high probability, for the set hfster heads to reach
a local minimum. Furthermore, experimentally we show thigheut this extra
assumption used in the proof the system stabilizes appeigignequally fast.
We also present experimental results on how the algoritipeswith changes
to the topology and on how our results compares with globtirap

Some initial ideas that lead to these results was previgugdished in [12].
It is a brief announcement with few technical details andhaitt any proofs or
experimental results.

3.1.2 Document Structure

Our contribution is presented as follows. In section 3.2ntwduce the system
settings. Section 3.3 describes the algorithm. Sectiopives the properties
of the algorithm. We discuss experimental results, secarit redundancy and
how different system settings would affects the propeiethe algorithm in
Section 3.5.
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3.2 System Settings

We assume a static network. Changes in the topology are setarsient
faults. We denote the set of all nodes in the netwBrland the size of the
networkn = |P|. We impose no restrictions on the network topology other
than that an upper boung, on the number of nodes withi hops of any node
is known (see below).

The set of neighborsy;, of a nodep; is all the nodes that can communicate
directly with nodep;. In other words, a nodg; € N, is one hop from node
pi- We assume a bidirectional connection graph, i.e. ghat N; iff p; € N;.
The neighborhood; of a nodep; is all the nodes (including itself) at most
hops away fronp;. Letg > max; |G7"| be a bound, known by the nodes, on
the number of nodes withizr hops.

The system is synchronous and progresses in rounds. Eactl hais two
phases. First in the receipt phase each ngdeceives messages from all of
its immediate neighborg; € N;. Then in the step phase each nqgeaf-
ter performing the appropriate calculations broadcastessage to all nodes
p; € N;. We assume that a broadcast by a npdes received reliably by all
processorg; € V; in the receipt phase of the respective round. In our proofs
for convergence times of our algorithm we use an assumpfisgrehronized
timers. Synchronized timers it an assumption of the algorithm itself and is
not needed for the algorithm to work correctly. Furthermore,deenonstrate
experimentally that it does not significantly affect comgesce times either.

3.3 Self-stabilizing Algorithm for (k, r)-clustering

The goal of the algorithm is, using as few cluster heads asilples for each
nodep; in the network to have a set of at ledstluster heads within its-hop
neighborhood=7. This is not possible if a node; has|G}| < k. Therefore,
we require thatC?| < k;, whereC7 C G7 is the set of cluster heads in the
neighborhood ofp; and k; = min(k, |G7]) is the closest number of cluster
heads tok that nodep; can achieve. We do not strive for a global minimum.
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Constants
i :id of executing processor
r : number of hops within we consider a neighborhood
k : the number of clusterheads to elect
g : upper bound on the number of nodes witBirhop.
T = 8gr : length of an escape period
Variables:
statee {HEAD, ESCAPING, SLAVE} :
The state of the nodénitially set toSLAVE.
timer: Integer Timer for escape attemptsitially set to T-1.
estart: Integer The escape schedulaitially set to0.
estatec {SLEEP, INIT, FLOOD, HOPE} :
State for escape attemptsitially set toSLEEP.
heads: Set of Ids. Initially set to().
S& Z: Sets ok Id,State> tuples
Initially set to{ < i,state> }.
External functions and macros
LBcast(m) : Broadcasts message m to direct neighbors
LBrecv(m) : Receives a message from direct neighbor
smallest(a,A) : Returns themin(|A|,a) smallest ids in A
cds(A): {<jst> € Ait=max, {T:<]sT> €A}
cdj(B): {<jt> €B:t=max, {7: <], 7> €B}

Figure 3.1: Constants, variables, external functions and macros for the algorithm in
Fig. 3.2.

That is too costly. We achieve a local minimum, i.e. a set oét@r heads in
which no cluster head can be removed without violating(the ) goal.

The basic idea of the algorithm is for cluster heads to coigthroadcast
the fact that they are cluster heads and for all nodes to aothgtbroadcast
a list of nodes they consider to be cluster heads. This listladter heads
consists both of nodes that are known to be cluster headsaaiditjonally,
nodes that are elected to become cluster heads. The cofftiet loroadcasts
are forwarded- hops, but in an aggregated form to keep message sizes down.
The election process might establish too many cluster heHusrefore, there
is @ mechanism for cluster heads to drop their cluster heled,rto escape
eventually establishing a local minimum of cluster headmfog a total (k,r)-
dominating set (or, if not possible given the topology, fliffg |C7| > k; for
any nodep;). The choice of which nodes to pick when electing clusterdsea
is based on node ID in order to limit the number of unneedesteitheads that
are elected when new cluster heads are needed.



1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

32
33
34
35
36
37
38
39
40
Pil
42
43
44
45

3.3. SELF-STABILIZING ALGORITHM FOR(K, R)-CLUSTERING 111

on step phase 47 function receivedstate< j, jstate ttl> ), i # j:
if timer < 0 Vv timer > T-1 48 js < jstate
timer <+ 0 49 if js= ESCAPINGA | € heads
else s0 if |head$ < k
timer «<— timer+ 1 51 js <~ HEAD
S+ Z 52 else
heads« {j: < j, HEAD> € § 53 heads« heads! {j}
/* Escaping */ 54 letss={s:<j, s> €2Z} U{js}
if state in{HEAD, ESCAPING} 55 if HEAD € ss
updateestate) 56  js <+ HEAD
if estate= INIT A state= HEAD A |head$ > k 57 else ifESCAPINGE ss
state<— ESCAPING 58 js < ESCAPING
heads« heads {i} 59 else
else ifestate= SLEEPA state= ESCAPING 60  js < SLAVE
state«— SLAVE 61 Z+{<0,s>:<0,s> €ZAN0o#J}U{<],js>}
if state= SLAVE 62
estate«— SLEEP 63 ttl <— max(1, min(r, ttl))
estart<— 0 64 if ttl > 1:
/* Add heads */ 65  forwardstaté < j, jstate ttl-1> )
if |head$ < k 66
leta =k -|head$ 67 function receivedjoirf < j, ttl> ):
letA={j: <j,-> € §\ heads 68 ttl <— max(0, min(r, ttl))
heads« headsJ smallest(a, A) 69 if j =i A estate¢ {INIT, FLOOD}
* Join and send state */ 70  state<— HEAD
for each je heads 71 elseifttl > 1
ifj#£i 72 forwardjoin(< j, ttl -1>)
forwardjoin(< j, r>) 73
else 740n LBrecv(< j, jstatesetjjoinset> ):
state<— HEAD 75 for each< o,ostateottl> € jstateset
Z <+ {<istate>} 76 ifoF#i:
sendstaté< i, state r> ) 77 receivedstate< o,ostateott!> )
78 for each< o,ostateottl> € jjoinset
function updateestate 79 receivedjoirf< o,ottl> )
if imer=10 80
estart<— uniformlyrandon§{0, 1, ... T-2r-2}) s1function forwardstatétuple):
if timer € [0, estart1]: 82 sStatesek— statesetU tuple
estate«— SLEEP 83
else iftimer € [estart estart] 84 function forwardjoin(tuple):
estate« INIT 85 joinset«— joinsetU tuple
else iftimer € [estart-1, estart+2r-1] 86
estates<— FLOOD 87 function sendstatétuple):
else iftimer € [estart-2r, estart-2r | 88 forwardstatgtuple)
estate«<— HOPE 89 statesek— cds(stateset
else iftimer € [estart-2r+1, T-1] 9 joinset«— cdj(joinsef)
estate«— SLEEP 91 LBcast(< i,statesejoinset> )

92 statesek— ()
93 joinset<«— ()

Figure 3.2: Pseudocode for the self-stabilizing clustering algorithm.

One could imagine an algorithm that in a first phase addserib&tads and
thereafter in a second phase removes cluster heads thabareeded. To
achieve self-stabilization however, we cannot rely ontistgrin a predefined
state. Recovery from an inconsistent state might startyatiare. Therefore, in
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our algorithm there are no phases and the mechanism forgdtlister heads
runs in parallel with the mechanism for removing clusterdseand none of
them ever stops.

In each round each node sends out its state and forwards sfat¢hers.
A cluster head node normally has the state HEAD and a noreclhisid node
always has state SLAVE. If a nogein any round finds out that it has less than
k cluster heads it selects a set of other nodes that it deadelett as cluster
heads. Node; then elects established cluster head nodes and any newsdpic
nodes by sending @in message to them. Any node that is not a cluster head
becomes a cluster head if it receives a join addressed to it.

We take a randomized approach for letting nodes try to drep thuster
head responsibility. Time is divided into periods’Bfrounds. A cluster head
nodep; picks uniformly at random one round out of ttie— 2 — 1 first rounds
in the period as a possible starting roumdtart;, for an escape attempt. |If
p; has more thar cluster heads in rounestart;, then it will start an escape
attempt. When starting an escape attempt a node sets it stBE®8GAPING
and keeps it that way for a number of rounds to make sure théteahodes in
G will eventually know that it tries to escape. A nogee G} that would get
fewer thank cluster heads if; would stop being a cluster head can veto against
the escape attempt. This is done by recording the staieas HEAD and thus
continuing to send joins addressed to itpJf on the other hand, has more than
k cluster heads it would not need to veto. Thus, by acceptiagtiéite ofp; as
ESCAPING ,p; will not send any join tg;. After a number of rounds all nodes
G; \ {i} will have had the opportunity to veto the escape attempt.oifenof
them objected, at that poipt will get no joins and can set its state to SLAVE.

If an escape attempt by; does not overlap in time with another escape
attempt it will succeed if and only ifiin, ccr |C7| > k. If there are overlaps
by other escape attempts, the escape attempt; byight fail even in cases
wheremin, egr [C}| > k. The random escape attempt schedule therefore
aims to minimize the risk of overlapping attempts.

The pseudocode for the algorithm is described in Fig. 3.8 agicompany-
ing constants, variables, external functions and macr&sgn3.1. In the step
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phase of each round lines 1-31 are executed. The code foetiedpt phase
can be found in lines 47-72. To have only one message for ezad sent per
round, all forwarding and sending of messages in lines 1s&the functions
in lines 74-93 that collect everything that is to be sentlihé end of the step
phase where one message is sent out.

3.4 Correctness

In Section 3.4.1 we will show that withi@(r) rounds we will haveC?r| > k;
for any nodep;. First we show that this holds while temporarily disregagthe
escaping mechanism, and then that it holds for the genesalina’heorem 3.1.

In Section 3.4.2 we will show that a cluster head npgean become slave
if it is not needed and if it tries to escape undisturbed byeotiodes inG2".
We continue to show that the set of nodes converges, withgrigibability, to a
local minimum withinO(gr log n) rounds under the assumption that the timers
of all nodes in the network are synchronized in Theorem 3.2.

Finally we present the message complexity in Theorem 3.8dtian 3.4.3.

Definition 3.1 If all assumptions about the network hold and all nodes follo
the protocol throughout the entire roundhen rounds is called alegalround.

Definition 3.2 For a nodep; to be acluster heads equivalent tostate; €
{HEAD, ESCAPING. For a nodep; to be a slave is equivalent taate; =
SLAVE. For a nodg;, we defineC} as the set of cluster heads @;. Fur-
thermore, we definél,, to be the set of cluster heads in the network in a round

x.

Definition 3.3 A nodeinitiates an escape attemiptround s if lines 12-13 are
executed in round. In other words in rounds nodep; hasstate; = HEAD at
line 1, |heads;| > k after executing line 7 and then line 10 setgate; to INIT.

Thereafter, the condition holds at line 11 and lines 12-18 executed.
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3.4.1 Getting Enough Cluster Heads

In this section we build up a case showing that the algorithlinetect enough
cluster heads. We show that nodes get to know their neigbbdrfLemma 3.1),
that they get to know the state of nodes in their neighboregbdmma 3.2),
that cluster heads are elected (Lemmas 3.3, 3.4 and 3.5nll\sim Theo-
rem 3.1, we show that within &(r) rounds each node in the network have
enough cluster heads withinhops (topology allowing).

We begin by showing that nodes get to learn their neighbathG.

Lemma 3.1 Assume that round and all following rounds are legal. For any
nodep;, {p; : < p;,- >€ S;} = G} holds in the step phase of rousd- r and
throughout rounds + r + 1 + ¢ for any non-negative.

Proof: In every round any nodg; broadcasts its id and state (line 31) with
ttl set tor. Thettl is atime to livevalue that denotes how many more hops a
message should be forwarded and is decreased by one everhérassociated
message is received. Whaireached the message is not forwarded any more.
Therefore, during the following rounds the id and the state is forwardeubps
away (lines 63-65). Consider a noglee G7 (i # j) that isi hops away from
p;. Atrounds +r+ ¢ nodep; gets the id and state message that originated from
nodep; at rounds + r — 7 +t. Ast is non-negative and < r we know that;
sent a message with its state and id at rogsrd — 7 +¢ > s. For nodep; itself:

(1) it adds itself toZ during each round (line 30), and (2) the only other line
that could chang# is line 61 and is not executed in cage- ¢ and (3)S is set

to Z at the beginning of the step phase. TherefGteC {p, : < p;,- >€ S;}

in the step phase of round+ r and thereafter.

A message with id and state of a noge¢ G that is being received by
some node; in rounds could potentially lead to an id i§; that is not inG}
However such a message can not be sent out in rewwith a ¢t/ greater than
t — 1 (lines 63-65) andZ is cleared from nodep; # p; in every round in
line 30. Thereforg; could reactp; in roundss + 1to s 4+ — 1, but not as late
ass + r + t for a non-negative. ThereforeG} D {p, : < p,,- >€ S;} inthe
step phase of round+ r and thereafter. m
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We continue with showing that nodes withimops get to know the state of
a node that stays in one state.

Lemma 3.2 If a nodep; has the same statein roundss to s 4+ r — 1, then any
nodep; € GI \ {p;} will receive the stater and only stater for p; in round
s+

Proof: Nodep; sends out its state witht&l of » in each round (line 31). Nodes
that receive this state message witktlagreater tharl will forward the state
with attl of one less (lines 64-65). Thus a message fppriginating in round
s — t (for a positivet) can possibly be received by nodesG#i in the rounds
s —t+1tos+r—t, but notinround + r as that would need an origin&l
of r + t. Furthermore a state’ sent in rounds + r — 1 + ¢ (for a positivet)
can be received earliest in rousd- r 4 t. Thus only states sent in rounsi$o
s+ r — 1 can be received by a noge € G7 inrounds + .

Now consider any nodg; € G7 \ {p;}. Let# € [1,r] be the smallest
number of hops between andp;. By the Lemma statement noggsends out
states in rounds + r — 7. That message is forwarded one step each round and
7 rounds later in round + r it reaches nodg;. =

We now look how the addition of cluster heads work while terapity
disregarding the escaping mechanism. In this setting wleshilw that within
a finite number of rounds we will hay€?| > k; for any nodep,. Later on
we will lift this restriction and show thatC7| > k; will still hold even when
regarding the more general case.

Lemma 3.3 Let rounds and all following rounds be legal. Assume that the
state of a node can never be ESCAPINGtate is always SLEEP and that
lines 8-18 are not going to be executed. With these assumpfter round
s+ 2r + t for a non-negative any nodep; will have k; cluster heads withim
hops.



116 CHAPTER 3.

Proof: The limiting assumptions leave only one way for the statehange,
namely by the execution of line 70 where state is set to HEAD.

From Lemma 3.1 we know that in rourd-r, at the latest, node; will have
all nodes inG?% in S;. We also know thatG?| > k;. Let's look at rounds + .

At line 20, heads; might already contain nodes. We have the one case where
|heads;| > k > k; already and one case wheferads;| < k. In the second
case lines 21-23 will be executed. Out of the 4eif nodes inG that are not in
heads;, the smallestnin(|A|, k — |heads;|) nodes will be added theads; in

line 23. Thus after execution of line Z&ads; will contain min(|G%|, k) = k;
nodes and at line 2Bieads;| > k;.

For each nodg; € heads; either a join message witht& of r is sent out
(at line 27, whenj # i) or the state is set to HEAD directly (at line 29, when
J = 1). For the nodeg; # p; the join messages are forwarded (line 72) to all
nodes inG} within » hops inr rounds (in a similar fashion as forwarded state
as discussed in the proof of Lemma 3.1).

Each node; € heads; thus gets a join addressed to itself at the latest in
rounds + 2r and it will become a cluster head by setting its state to HEAD a
line 70. Thus after round+ 2 any nodep; will have k; cluster heads within
hops. m

Now we consider the full escape mechanisms and show that & thadi
receive joins become a cluster head.

Lemma 3.4 Consider a node; that receives a join during the receipt phase of
the legal round: that follows the legal round — 1. Then node; is a cluster
head at the end of round. Furthermore, if nodey; is a cluster at the end of
roundz — 1 then it is a cluster head throughout the entire round

Proof: Let o be state; ande be estate; at the reception of a join from any
node in a legal round which follows a legal round — 1. We begin by showing
that the only thing that can happen wittute; during the receipt phase of round
z is for it to either change to HEAD or to stay HEAD or ESCAPINGe\Wave
four different cases for differertando.
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Case 1 € {INIT,FLOOD} Ao = SLAVE: This cannot happen as (1) node
p; inthe previous round (the legal round- 1) could not havetate; = SLAVE
without having executed line 17 that setsate; to SLEEP and (2) there is no
way forestate; to change during the receipt phase of a round.

Case 2¢ € {INIT,FLOOD} A ¢ = HEAD: No change tostate;, that
remains HEAD.

Case ¥ € {INIT,FLOOD} A ¢ = ESCAPING: No change tetate;, that
remains ESCAPING.

Case 4e ¢ {INIT,FLOOD}: Herestate; is set to HEAD.

Furthermore, the only way fottate; to be ESCAPING at the start of the
step phase of round is if e € {INIT,FLOOD}. In that casesstate; must
have been set to FLOOD after line 10 in round 1 from which it follows that
estate; € {FLOOD, HOPE} after execution of line 10 in round. Thus, the
condition in line 14 does not hold in roundand line 15, the only line that can
setstate; to SLAVE, is not executed. Therefore, noglds a cluster head at the
end of roundz and if it were a cluster head at the beginning of rouritlwas
so throughout the round. m

In the following Lemma we show that a node that is continupusinted as
a cluster head eventually becomes one.

Lemma 3.5 Let s and all following rounds be legal rounds and assume a node
p; wants a nodg; € G7 to be cluster head as soon as it knows about it and is
never willing to let it escape. In other words (1pif ¢ heads; after line 7 the
condition in line 21 would always hold ang € A after executing line 22 and
(2) the condition in line 50 would always hold.

Then nodey; will be a cluster head after roung < s + 2r and throughout
all following rounds.

Proof: Let 7 be the number of hops betweepandp; and let rounds be
the first round> s in which nodep; receives a state from;. We know that
s <z < s+ 7. Furthermore, let be the round in whiclp; gets the join from
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p; thatwas sentin roune. We know thaty = x+7 andthuss+1 <y < 5427
and thus both round — 1 andz are legal. According to Lemma 3.4, will be
a cluster head at the end of round

According to the assumptiong; € heads; at line 25 in every round> «
and thusp; sends a join tg; in every such round. This means thatwill
receive a join in every roung y, and thus, by Lemma 3.4, be a cluster head in
the step phase of roundand throughout the following rounds.m

Now we can show that withir + 1 legal rounds from an arbitrary configu-
ration all nodeg; have at least; cluster heads and that the set of cluster heads
in the network can only stay the same or shrink from that pomt

Theorem 3.1 Let rounds and all following rounds be legal. Then any node
p; Will have k; cluster heads within hops in the step phase of roundt 2r
and throughout any following rounds. Moreover, a node tkatat in H,. in a
roundz > s + 2r can not be inH, ., for a non-negative and consequently
|Hytt| < [Hal.

Proof: From Lemma 3.3 we have seen that as long as the escape mechanis
does not allow nodes to change its state to SLAVE after beidlgyster head,
any nodep; will have k; cluster heads within hops in the step phase of round
s + 2r and throughout any following rounds.

Furthermore, from Lemma 3.5 and its proof we have seen thiahgsas a
nodep; wants to have nodg; as a cluster heag; will remain a cluster head.
Now we will look in what situationg; does not wanp; as a cluster head even
though it did at some earlier point in time.

If |heads;| < k atline 20 in a round, then node); finds up tok —|heads;|
nodes in{p; : < p;,- >€ S;} \ heads; and sends a join to them in a rourd
Assumep; € G’ is one of the newly picked nodes it after executing line 22
in rounds. We call this setd in rounds for A. Nodep,; does not get the join
until rounds + 7 wherer is the number of hops between nogesndp;.

As we saw in the proof of Lemma 3.4,dfate; = ESCAPINGA estate; €
{INIT, FLOOD} does not hold in rounsl+7 thenp; will send out HEAD. That
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will reachp; in rounds + 27 and consequently; € heads; in rounds + 27.

If state; = ESCAPING andestate; € {INIT,FLOOD} in rounds + 7, node

p; will not send out HEAD in that round ang; might not get HEAD fromp;

in rounds + 27. If p; got HEAD from some other node; € G’ in a round

x € [s+1, s+ 27] nodep; might not wanip; as a cluster head any more. Node
p; will not send join top; in roundx if (1) |heads;| > k at line 20 or (2)p;
has received HEAD from enough nodes notArso thatp; is not among the
smallest nodes picked out in line 22 in round 27. On the other hand if none
of these cases holg, will continue to send joins tp; and by Lemma 3.5 node
p; will remain a cluster head.

The second way for anoge € G'; to be SLAVE even though it earlier were
in heads; is to escape using the escape mechanism. In other words i@ som
round z nodep; initiates an escape attempt. When receiving different state
for a node, HEAD takes precedence over ESCAPING that takesegence
over SLAVE (lines 55-60). This combined with Lemma 3.2 metirasg in some
roundy € [z + 1,z + r] nodep; get the state ESCAPING fromy and that in
the previous roung — 1 p; got HEAD fromp;.

Nodep; will have p; € heads; after executing line 7 in round — 1 as
p; receives HEAD fromp; in roundy — 1. Thusp; € heads; at line 47 in
roundy whenp; receives ESCAPING from;. If |heads;| < k at that point
thenp; will interpret the state as HEAD for all purposes other thamérding
the message (lines 50-51). Thuse heads; after executing line 7 in round
y as well, andp; will send a join. By Lemma 3.5 and its proof, nogewill
remain cluster head in that case. If on the other h&mdds;| > k for node
p; atline 47 in roundy thenp; removesp; from heads and will consequently
not send any join in roung. Whenp; gets ESCAPING fronp; in the coming
roundsy + 1,y + 2,. .., thenp; will not be in heads; and thus no joins will be
sent in those rounds either. If nogereceives ESCAPING for more than one
nodep; € heads; in roundsy,y + 1, ... thenp; will let them go in first come
first served fashion. When noge decides to let a node go it is immediately
removed fromheads; in line 53. Thus, node; will not let so many nodes go
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that|heads;| > k would not be fulfilled (ifk; < & no node is ever allowed to
go).

Finally, a nodep; ¢ G} might be inheads; in aroundz € [s,s +r — 1]
but by Lemma 3.1 such a node is notSnin rounds + r and thus node; will
pick some other node instead of such;ao send join to in round + r if not
earlier.

So any node; will have k; cluster heads within hops in the step phase of
rounds + 2r and throughout any following rounds. Therefore in any ofthe
rounds no node will fulfill the condition in line 20. Hence, nodep; that is not
a cluster head at the beginning of the state phase of reun2h- can be picked
by any node; in line 22. Therefore no such noggcan become a cluster head
in the state phase of round of round- 2r or thereafter.

Thus a node that is not in set of cluster heads in the entivganktat round
x, H,, for a roundz > s + 2r can never be inff,,; for a non-negative.
Moreover,|H | < |H,| foranyz > s + 2r and any non-negative ®

3.4.2 Convergence to a Local Minimum

In this section we show that the set of cluster heads consega local mini-
mum. We show that a cluster head node that is not needed capesthe cluster
head responsibility if not interfered by other escape gttsriLemma 3.6). We
show that an unneeded cluster head node escapes \iflgin) rounds with
high probability under assumptions of synchronized tinfeemma 3.7). Fi-
nally, in Theorem 3.2, we show that with high probability tmetire network
reaches a local minimum withi®(gr log n) rounds. We begin by looking at
the escape of an uninterfered node.

Lemma 3.6 Consider a rounds for which all rounds froms — 2r — 1 and
forward are legal. Assume that nogge initiates an escape attempt in round
s and assume that in rounds, s + r| all nodesp; € G} have|C}| > k. If
no other nodey; € G?” than nodep; initiates an escape attempt in any round
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€ [s—2r—1, s+r—1] then node; will setstate; to SLAVE in round+2r+1
and havestate; = SLAVE throughout any roungH 2r 4+ 1 + ¢ for a positivet.

Proof: Assume that a nodg initiates an escape attempt in roundin round
x + 2r nodep,; will set estate; to HOPE. In all rounds iz, = + 2r] nodep,
will send outstate; = ESCAPING. If nodep; gets a join to itself in the receipt
phase of round: + 2r + 1 it setsstate; to HEAD in line 70. Otherwise; sets
state; to SLAVE in line 15 in rounde + 2r + 1. Let o be thestate; that is sent
out by p; in roundx + 2r + 1. We know thato # ESCAPING. We assume
that nodep; does not initiate any more escape attempts in the time spamave
looking at. Therefore nodg, sends out in the rounds ifz + 2r + 1, x + 3r].
By Lemma 3.2, in round: + 3r + 1 all nodesp; € GJ \ {p:} receivess and
only o for p; in the receipt phase. Therefore, either all nogdes G} (including
i) havep;, € heads; (if o = HEAD) or none of them havp; € heads; (if

o = SLAVE) after executing line 7 in the step phase of round- 3r + 1.
This continues to hold in the receive phase of roung 3r + 2. Thus in round
z + 3r + 1 + ¢, for a positivet, no nodep; € G can havep, € C} without
havingp; € heads;.

Now if nodep; initiates an escape attempt in rousdby Lemma 3.2, all
nodesp; € G7 will receive ESCAPING and only ESCAPING for nogle in
rounds+r. As we saw above no nogg initiating an escape attempt in a round
< s —2r —2caninrounds + r be inC7, for a nodep; € G7, without being
in heads;. By the Lemma assumptions, no noglece G?” makes an escape
attempt in a round itis — 2r — 1, s + r — 1]. In addition, consider a nods
that initiates an escape attempt in a roundt » — 1 + ¢ for a positivet. A
nodep; € G7 can only receive ESCAPING from that escape attempt in rounds
> s+r+t. Therefore a nodg; € G} will in round s + r receive ESCAPING
for nodep; but not for any other node.

Inroundss, s+r] allnodep; € G7\{p;} have|C}| > k. Therefore, when
p; receives ESCAPING fap; in rounds + r either (1)p; ¢ heads; because;
received ESCAPING and hatleads;| > kin some round ifs+1, s+r—1] or
(2) pi € heads; and|heads;| > k in which casey; removes; from heads; at
line 53. Thus in the step phase of roundssit r, s+27] no nodep; sends a join
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to p;. Therefore, in the round+ 2r + 1 no join is received by, and therefore
p; Setsstate; to SLAVE in rounds + 2r + 1. There is no round s in which
p; sends out HEAD and, by Theorem 3.1, no node will need to addnueles
as cluster heads in any rounds. Hence, node; will have state; = SLAVE
in the step phase of roundt 2r + 1 and throughout any roung+ 2r + 1 + ¢
for a positivet. m

Definition 3.4 We say that the timers of the nodes in the network are synchro-
nized iftimer; = timer; for all pair of nodesp;, p; € P for all legal rounds.

Under the added assumption of synchronized timers we shatath un-
needed cluster head node either escapes wilim) rounds, unless it becomes
needed due to other escaped cluster heads.

Lemma 3.7 Let rounds and all following rounds be legal. Furthermore, let
g = max; |G3"| be a bound on the number of nodes withirhops. Consider a
nodep; that is a cluster head in any round s. Assume thaC7| > k holds for
all nodesp; € G from rounds + 2r and as long ag; remains a cluster head.
If the timers of all nodes in the network are synchronized&nd 8gr, nodep;
will be SLAVE in any round + 2r + 8(8 + 1)gr — 2 + ¢ for a non-negative
with probability at leastl — 275,

Proof: From Theorem 3.1 we know that from roure- 2r nodes can only go
from being cluster heads to being slaves. Consider a clhsgat node;. Let
x? be the first round> s + 2r in which timer; = 0 at line 8. As long as node
p; remain a cluster head it will execute line 35 every roufid= 2? + 7', for
a non-negativeé and a giverl’, and schedule an escape attempt inghegod
! = [z; + tT,z; + (t + 1)T — 1]. Nodep; picks one of the first’ — 2r — 1
rounds in the period, uniformly at random and independeintdgn any other
random choice, to initiate an escape attempt in. Thus thiegfibty that node
p; initiates an escape attempt in any given round is/ (7' — 2r — 1).
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Now consider a periodll! in which p; initiates an escape attempt. LBf
be the set of rounds:! — 2r — 1, 2 +r — 1]. The number of nodes that could be
cluster heads i7" is bounded by;. If F}, is the event that a node € G*"
initiates an escape attempt in any roundifithen P[F};] < (3r + 1)/(T —
2r — 1) =: p. Let A! be the event that none of the nodesG#" initiate an
escape attempt in a round I»{. We say thatd! is the event that node; gets
anuninterfered escape attemiptperiodIl:. Then we get

PIAY > (1—p)" ' = [p:=—]

1\ A1 (9—1)/(p—1)
(-
n
<1>(9—1)/(H—1)_ ( g—l)
>\ - =exp| ———
e w—1

g—1

3r+1

We can simplify this, using the fact that> 1, to get that forl” = 8¢gr we
haveP[A!] > 1/2.

According to the Lemma assumption the timers of all nodekémetwork
are synchronized. Thus we have a globak= z! andII* = II! holding for all
nodesp; € P. Consider a period starting in round The earliest in a period a
nodep; can initiate an escape attempt is in rounglhenestart;, = 0. The latest
a nodep; could initiate an escape attempt in the period starting +n7" is in
round(z—T)+(T—-2r—2) = z—2r—2. Thus by Lemma 3.6 an escape attempt
initiated in an earlier period cannot affect an escape gitémthis period. The
latest in a period a node can initiate an escape attempt s in rourel”’—2r—2
whenestart; =T —2r —2. Howeverz+T —2r —2+r—1 < T and therefore,
by Lemma 3.6, no escape attempt in a later period could afféstperiod.
This together with the fact that the random choices in différexecutions of
the line 35 are all mutually independent would make what kappn different
rounds mutually independent. However if a nggéecomes SLAVE in a round
t it is not doing an escape attempt in rouhd- 1 which only increases the
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probability forA§.+1 for another nodg;. Therefore, by assuming independence
the calculated lower bound on the probability of an undistdrescape attempt
gets worse.

Consider the3 periodslI® to II°~! and let4; = f;ol At. Thus with the
assumption of period independence that gives us a worselhoeiget

B—1 p-1 B—1
PlA)=P || Al =1-P | A =1-]] PlA]
t=0 t=0 t=0
B-1 1
>I—-[[z=1-27". 3.2
EJ 5 (3.2)

The latest periodI® could start iss 4+ 2r + 7 — 1 in which casdI1’~! ends in
rounds +2r + T — 1+ T —1=s+2r +8(f+1)gr —2. =

From Theorem 3.1 we got that all nodgshave at leask; cluster heads
within » hops in2r rounds after an arbitrary configuration.

Assuming that the timers of all nodes in the network are ssordhed, we
show that with at least probabiliy—2~< the set of cluster heads in the network
stabilizes to a local minimum withi®((« + log n)gr) rounds.

Theorem 3.2 Let rounds and all following rounds be legal. Consider round
f=s+2r+8(a+logn+ 1)gr — 2, wheren is the number of nodes in the
network. Assume that the timers of all nodes in the netwaksgnchronized.
Then, with at least probability — 2—<, in round f there will be no cluster head
nodep; in the network for whichniny, cc, |C}| > k holds andHy, = Hy
holds for any positive.

Proof: We use the notationH?, 2! and A; and the concept of uninterfered
escape attempts from the proof of Lemma 3.7.

Let 3 = « + logn, wheren = |P|. Let A be the event all nodes in the
network get at least one uninterfered escape attempt inethiedsI1° to 1171,
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We get that

P[A]=1—P[A] =1- P[] 4] > [Boole’s inequality

pi€EP
>1- Y PIA]>[Lemma3y>1- > 277
piEP pi,EP
=1-—n2F=1-_2len=F_1_9- (3.3)

Thus by the proof of Lemma 3.7 all nodes in the network getsranterfered
escape attempt with at least probabillty- 2~ by the roundf = s + 2r +
8(ar + logn + 1)gr — 2. Together with Lemma 3.7 This concludes that with
high probability all nodew; for which |C7| > k holds at their uninterfered
escape attempt will have sefate; to SLAVE by roundf. From this follows
that at roundf there is no node for whichin,, ¢, |C7| > & holds. Hence,
by Lemma 3.1, no nodg; that is cluster head in rounfican ever settate; to
SLAVE inaround> f andH ¢, = H holds for any positivé. ®

3.4.3 Message Complexity

We now show the message complexity for the algorithm.

Theorem 3.3 Let rounds and all following rounds be legal. Then the size, in
bits, of the message sent by a npden any round> s+risin O(|G;|- (log n+
logr)).

Proof: By Lemma 3.1 we have that for any noglg {p; : < p;,- >€ S;} =

GT holds in the step phase of rourd-r and throughout rounds+r + 1+t for

any non-negative. Following the proof steps of that Lemma, we can conclude
that the only nodes representedstinteset; andjoinset; are the ones i} .

The only message a nogie transmits in a round, is transmitted in line 91.
Before thatstateset; is shrunk in line 89 so that, for every possible pair of node
id j and states, only the maximuntt/ is kept. Similarly,joinset; is shrunk in
line 90, so that for every possible nodejidonly the maximunitl is kept.
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Eachstateset entry contains a node id which is encodeddgn bits, one
of three possible states that is encoded bits and aitl value that is encoded
in log r bits. Eachjoinset entry contains a node id andtd value. Thus the
number of bits transmitted per node @ is in O(logn + logr). Therefore,
the size, in bits, of the message sent by a nad@ any round> s + r is in
O(|G4| - (logn +1logr)). =

3.5 Discussion

We prove convergence withi@(gr logn) rounds with high probability under
the assumption of independent rounds (apart from the obvdependence that
nodes that escape are out of the contention for uninterfesedpe attempts).
To see if the timers really need to be synchronized to achtd@seperformance
we did simulations of the algorithm for various settingg:@ndr and network
densities. We placed nodes with a communication radius of 1 uniformly at
random in a 5 by 5 rectangular area, with varyintpr different experiments.

From our experiments we concluded that wi¥en= 8gr we get a much
faster convergence than the upper bound we have provethd@Eteven lower
decrease the convergence time even further.

A representative picture of the general results can be seEiyi 3.3. The
experiments show that when allner; are independently and uniformly dis-
tributed in[0, T — 1] at beginning of the experiment the convergence time is not
far from what it is in the case with synchronized timers. Wsoadee that if the
nodes starts up with random information in their variabfesdonvergence time
is faster than for an initialized start where each npgddoes not knowZ; and
sets itself as cluster head in the first round. To concludeamendth good mar-
gin use the result of convergence witliif{gr log n) rounds from Theorem 3.2
for the unsynchronized setting.

For the rest of the experiments we did a small change to theitign. A
node that is added to the network do not elect new cluster hedds for the
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Figure 3.3: Simulation results of the algorithm indicating that synchronization of timers
is not needed. Her& = gr/2, n = 39.

firstr full rounds. It performs all parts of the algorithm excepttthe condition
in line 20 is always regarded as false in those rounds ans #iti¢o 23 are not
executed. It is trivial to make this mechanism self-stahily.

In Fig. 3.4 we can see the convergence behavior of the satistecltowards
local minima over time. The same trend can be seen for otheceh ofk and

n.

We have performed experiments to investigate the range sdilple re-
sults regarding the (k,r)-dominating sets generated bytmarithm on random
graphs. We compare the global minima with results given atgorithm and
with the worst (i.e., largest) possible local minima in RAd¢s. The results of our
algorithm is in general placed in the middle between theglatinima and the
worst possible local minima. We can also see that even thstywossible local
minima are still quite close to the global minima. Thus eviesur algorithm is
“unlucky” it provides a good result. This trend holds true édher choices of.
andk as well.
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in given round over the eventually reached local minimum number of cliséels. Here
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Figure 3.6: Convergence times from a fresh start, after 5% node additions, after 5%
node removes and after 5% node moves. Here gr andn = 39.

We also performed experiments on recovery from small chengehe
topology from a converged state. The convergence times &omwly started
network (“Start”) is compared in Fig. 3.6 with the convergertimes after
a change to a initially converged network. We investigilte added nodes
(“Add™), 5% removed nodes (“Remove”) &% moved nodes (“Move”). We
achieve similar results for other choicesroés well.

We can see that the least obtrusive change to the topologidedanodes.
The chance is good that a new node ends up in a position in th@riewere
there already is enough or close to enough cluster headsdglr&Remove is
more expensive than add. Cluster heads could be among tles tiwat are re-
moved. Additionally removed nodes can also have been uskkadetween
nodes and their cluster heads. A move is like both a removeaaratld (with-
out the rounds of abstaining from electing new cluster heatiserefore, it is
anticipated that this case converges slower than the orte®nly adds or only
removes.
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The flooding of messages makes sure that if there exist rulpiaths of
at most lengthr between a nodg; and a nodeg; then joins and state updates
will traverse all possible paths. This can give us highetltfianlerance if there
are communication disturbances on some links (i.e. betweare immediate
neighbors) and also higher availability for nodes to reaéirtcluster heads.

The multiple paths can also give applications higher secifrsome nodes
in the network can be compromised. If there is at least orteqdatt most- hops
between a nodg; and a nodeg; that is not passing through any compromised
nodes then the flooding makes sure that ngdendp; gets to know about each
other. Moreover, ifp; wantsp; to be cluster head then the compromised nodes
cannot stop that. If nodes add information to the messagag #te paths they
have taken during message forwarding then the nodes getots &bout the
multiple paths. With this knowledge they can in an applmatiayer use as
diverse paths as possible to communicate with their clisgads. Thus even if
a compromised node is on the path to one cluster head and egsages or
do other malicious behavior there can be other cluster hieadghere there is
no compromised nodes on the chosen paths.

Consider a compromised noggthat can lie and not follow protocol. First
assume thap. cannot introduce node id:s that does not exist (Sybil atack
[13]) or node id:s for nodes that are not withi#{, (wormhole attacks, [14])
and thatp. cannot do denial of service attacks. Thencan make any or all
nodes withinG’, become and stay cluster heads by sending joins to them or
having them repeatedly go on and off cluster head duty owes by alternating
between sending joins and letting the node escape. Corsidedep; that is
a cluster head and has a path to a npgef length < r hops that does not
pass throughp.. In this situationp. can not give the false impression that
is not a cluster head as HEAD takes precedence over ESCARiBIGakes
precedence over SLAVE at message receiptp.lbn the other hand is in a
bottleneck between nodes without any other paths betwesn then it can lie
about a node; being a cluster heads and refuse to forward any joips.thlow
if we assume thas,. is not restricted in what id:s it can include in false message
it can convince a nodg; that nodes not irf¥] are cluster heads. In the worst
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case it can eventually makg rely exclusively on non-existent cluster heads
with paths that all go througp.. In any case the influence by a compromised
nodep. is contained withinG?" as the maximuntt/ of a message is and is
enforced at message receipt.

The flooding of messages might make the algorithm too expemsisome
sensor networks with limited battery power. If that is theecghe algorithm
might be run on an overlay network for which the flooding beesmrmuch
cheaper. For instance a self-stabilizing spanning treeridtign like the one
in [15] might be used to set up this overlay network. This om dther hand
effectively removes all the pros of having multiple pathsitsis a trade off
between redundant paths and message costs.

3.6 Conclusions

We have presented the first self-stabilizifig )-clustering algorithm for ad-
hoc networks. A deterministic mechanism guarantees thabdkes, if possi-
ble for the given topology, have cluster heads withim hops. A randomized
mechanism lets the set of cluster heads stabilize to a loicétmam. We have
shown, under the extra assumption of synchronized timeasthe set of cluster
heads converges, with high probability, to a local minimuithin O(gr logn)
rounds, wherg is an upper bound on number of nodes withinhops, and:
is the size of the network. With simulations we have shownm ¢van without
this extra assumption the system converges much fastethiibgmoved bounds
and thatg does not have to be known very accurately. We have also disdus
how the algorithm can help us with fault tolerance and sécuamd that the
algorithm can be run on an overlay network, e.g. a spannag if message
costs needs to be reduced.
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Paper lll: Self-stabilizing (k,r)-clustering in
Clock Rate-limited Systems

Wireless Ad-hoc networks are distributed systems thamnoféside in error-
prone environments. Self-stabilization lets the systecover autonomously
from an arbitrary system state, making the system recower &rrors and tem-
porarily broken assumptions. Clustering nodes within ad+retworks can help
forming backbones, facilitating routing, improving scajj aggregating infor-
mation, saving power and much more. We present a self-gialgildistributed
(k,r)-clustering algorithm. A K,r)-clustering assigng cluster heads within
r communication hops for all nodes in the network while tgytio minimize
the total number of cluster heads. The algorithm assumesuadbon clock
frequency differences and a limited guarantee on messdigergelt uses mul-
tiple paths to different cluster heads for improved seguanailability and fault
tolerance. The algorithm assigns, when possible, at leastister heads to
each node withirD (r7\?) time from an arbitrary system configuration, where
m is a limit on message loss andis a limit on pulse rate differences. The
set of cluster heads stabilizes, with high probability, toaal minimum within
O(rmA*glogn) time, wheren is the size of the network ands an upper bound
on the number of nodes withi2» hops.
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4.1 Introduction

Starting from an arbitrary system state, self stabilizilgpathms let a system
stabilize to, and stay in, a consistent system state [1].rélThee many rea-
sons why a system could end up in an inconsistent systematatane kind.
Assumptions that algorithms rely on could temporarily bealid. Memory
content could be changed by radiation or other elementsrehlenvironments.
Battery powered nodes could run out of batteries and new cmdd be added
to the network. It is often not feasible to manually configlange ad-hoc net-
works to recover from events like this. Self-stabilizatisrtherefore often a
desirable property of algorithms for ad-hoc networks. Hasvethe trade off is
that self-stabilization often comes with increased costself-stabilizing algo-
rithm can never stop because it is not known in advance whepdeary faults
occur. Nevertheless, as long as all assumptions hold, itoaverge to stable
result, or, after convergence, stay within a set of accéptstates. Moreover,
there are often overheads in the algorithm tied to the neeécmver from ar-
bitrary system states. They can be additional computatianger messages,
larger data structures or longer required times to achiextaio goals.

An algorithm for clustering nodes together in an ad-hoc oetvgerves an
important role. Back bones for efficient communication carfdrmed using
cluster heads. Clusters can be used for routing messagasteCheads can
be responsible for aggregating data into reports to deetd@snumber of indi-
vidual messages that needs to be routed through the neteigrkaggregating
sensor readings in a wireless sensor network. Hierarchiehisters on dif-
ferent levels can be used for improved scaling of a large oxtwNodes in a
cluster could take turns doing energy-costly tasks to redwerall power con-
sumption.

Clustering is a well studied problem. Due to space congsafor refer-
ences to the area in general, we point to the survey of thevéiteaegard to
wireless ad-hoc networks by Chen, Liestam and Liu in [2] dreldurvey by
Abbasi and Younis in [3] for wireless sensor networks. Irs théper we focus
on self-stabilization, redundancy and security aspectse Way of clustering
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nodes in a network is for nodes to associate themselves wiélobomore clus-
ter heads. In the (k,r)-clustering problem each node in #t@ork should have
at leastk cluster heads within communication hops away. This might not be
possible for all nodes if the number of nodes withihop from them is smaller
thank. In such cases a best effort approach can be taken for gatinlpse to

k cluster heads as possible for those nodes. The clustermgdshe achieved
with as few cluster heads as possible. To find the global mimimumber of
cluster heads is in general computationally hard, and délgos usually provide
approximations. The (1,r)-clustering problem, a subsdhef(k,r)-clustering
problem, can be formulated as a classical set cover problémns. was shown
to be NP complete in [4]. Assuming that the network allowsluster heads
for each node, the set of cluster heads forms a total (kmhalating set in the
network. In atotal (k,r)-dominating set the nodes in the set also need to have
nodes in the set within hops, in contrast to an ordinary (k,r)-dominating set in
which this is only required for nodes not in the set.

There is a multitude of existing clustering algorithms fdttzoc networks of
which a number is self-stabilizing. Johnen and Nguyen prtessself-stabilizing
(1,2)-clustering algorithm that converges fast in [5]. ®&ohnd Tzachar tackle
a lot of organizational problems in a self-stabilizing manin [6]. As part
of this work they present a self-stabilizing (1,r)-clugtgralgorithm. Caron,
Datta, Depardon and Larmore present a self-stabilizing-¢luystering in [7]
that takes weighted graphs into account. Self-stabibraith systems with un-
reliable communications was introduced in [8]. In [9] a s&Hibilizing (k,1)-
clustering algorithm, that can cope with message loss gisgmted.

There is a number of papers that do not have self-stabiizati their set-
tings. Fu, Wang and Li consider the (k,1)-clustering probie [10]. In [11]
the full (k,r)-clustering problem is considered and botteatcalized and a dis-
tributed algorithm for solving this problem are presentétl and Li also con-
sider the full (k,r)-clustering in [12].

Other algorithms do not take the cluster head approach. 3h Eets of
nodes that all can communicate directly with each other esaped together
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without assigning any cluster heads. In this paper malgiooades that try to
disturb the protocol are also considered, but self-statithn is not considered.

4.1.1 Our Contribution

We have constructed a self-stabiliziig, r)-clustering algorithm for ad-hoc
networks that can deal with message loss, as long as at leasiud ofr con-
secutive broadcasts are successful, and that uses unggirgt pulses, for
which the ratios between pulse rates are limited by a faktoFhe algorithm
makes sure that, withio)(r7\?) time, all nodes have at leaktcluster heads
(or all nodes within- hops if a node has less thamodes withinr hops) using
a deterministic scheme. A randomized scheme complementdetierministic
scheme and lets the set of cluster heads stabilize to a ldnahom. It stabi-
lizes within O(rwA*glog n) time with high probability, wherg is a bound on
the number of nodes withizv hops, and: is the size of the network.

We presented the first distributed self-stabilizing (kl)stering in [14].
There, the system settings assumed perfect message tsaasfk lock step
synchronization of the nodes. The current article is a &rthevelopment of
that work and the main idea of the algorithm is the same. Theliable com-
munication media, the unsynchronized nodes and the inttemuof a veto
mechanism to speed up convergence, all have made the calgenthm quite
different, yet clearly related to the one in [14]. We presamtrectness proofs
for quick selection of enough cluster heaél<{uster heads within hops when
possible) and that the set of cluster heads converges tewadatal minimum
and stays at that local minimum. This includes an upper baumthe time it
takes, with high probability, for that convergence to happEurthermore, we
also present experimental results on the convergence afgloeithm and how
it copes with changes to the topology.

4.1.2 Document Structure

The rest of the paper is organized as follows. In section 42ntroduce the
system settings. Section 4.3 describes the algorithm. id®edt4 gives the
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overview of the proofs of the algorithm. We discuss expentakresults, secu-
rity and redundancy in Section 4.5.

4.2 System Settings

We assume a static network. Changes in the topology are setarnsient
faults. We denote the set of all nodes in the netwBrland the size of the
networkn = |P|. We impose no restrictions on the network topology other
than that an upper boung, on the number of nodes withir hops of any node

is known (see below).

The set of neighborsy;, of a nodep; is all the nodes that can communicate
directly with nodep;. In other words, a nodg; € N; is one hop from nodg;.

We assume a bidirectional connection graph, i.e.,ghat N; iff p; € N;. The
neighborhood(} of a nodep; is all the nodes (including itself) at mostiops
away fromp; andG = G7 \ {p;}. Letg > max; |G%"| be a bound, known by
the nodes, on the number of nodes witkinhops from any node.

Nodes are driven by a pulse going off evartime unit (with respect to its
local clock). Pulses are not synchronized between nodes pililse frequency,
in real time, of a node; is denotedp;. For any pair of nodeg,; andp; the
ratio p; /p; < A, avalue is a known to the nodes. Without loss of generality we
assume that the frequency of the slowest clock in the systdnamd thus the
clock frequency of any nodg is in [1, A].

Among successive messages sent from one node there is at leaseshe m
sage, such that allimmediate neighbpys= N; receive that particular message.
Such a message is calledaccessful broadcasthe nodes know the value of
. Apart from that assumption, messages from a ng@an be lost, be received
by a subset ofV;, or received by all nodes if;.

4.3 Self-stabilizing Algorithm for (&, r)-clustering

The goal of the algorithm is, using as few cluster heads asilples for each
nodep; in the network to have a set of at ledstluster heads within its-hop
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Constants, and variables
i : Constantid of executing processor
T, Teoots Tf100d, K - Constants derived from k, A and . See Definitiont. 4.
statee {HEAD, ESCAPING, SLAVE} : The state of the node
timer: Integer Timer for escape attempts
estart: Integer The escape schedule
estatec {SLEEP, INIT, FLOOD} : State for escape attempts
headsslaves Sets of Ids tracking what nodes have which role
smemsendsetdata: Infotuple sets for keeping and forwarding state data
External functions and macros
LBcast(m) : Broadcasts message m to direct neighbors
LBrecv(m) : Receives a message from direct neighbor
smallest(a,A) : Returns themin (|A|,a) smallest ids in A
pruneset(A): maxt«— { < jjittlttf> € A:ttl = max, {7: <jji,7 ttf> € A}}
return { < jjitthttf> € maxt: ttf = maxy {¢ : < jjitth¢> € maxi}
prunemem(A): return { < jji.{> € A: & =max, {z: <]jjix> €A})}

Figure 4.1: Constants, variables, external functions and macros for the algorithm in
Figures 4.2 and 4.3.

neighborhood=?. This is not possible if a node; has|G?| < k. Therefore,
we require thatC}| < k;, whereC] C G is the set of cluster heads in the
neighborhood ofy; andk; = min(k, |G7]) is the closest number of cluster
heads td: that nodep; can achieve. We do not strive for a global minimum.
That is too costly. We achieve a local minimum, i.e., a setle$ter heads in
which no cluster head can be removed without violating(the ) goal.

The basic idea of the algorithm is for cluster heads to coigthroadcast
the fact that they are cluster heads and for all nodes to aothgtbroadcast
which nodes they consider to be cluster heads. The set ofdawed cluster
heads consists both of nodes that are known to be clustesreat] addi-
tionally, nodes that are elected to become cluster heads. c@htent of the
broadcasts are forwardechops, but in an aggregated form to keep the size of
messages down. The election process might establish top ohasier heads.
Therefore, there is a mechanism for cluster heads to drdp ¢hester head
roles, toescape Eventually a local minimum of cluster heads forms a total
(k,r)-dominating set (or, if not possible given the topgloig fulfills [C7| > k;
for any nodep;). The choice of which nodes that are picked when electingrclu
ter heads is based on node ID:s in order to limit the numbenpéaded cluster
heads that are elected when new cluster heads are needed.
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10n pulse

timer < (timer + 1) mod T

if estate= SLEEPA 3t st. (4, JOIN, t) € smem then state<— HEAD

if state= HEAD then (newheads, newslaves) < ({i}, 0)
else(newheads, newslaves) < (0, {i})

for eachje {k|k#i A3 ki # JOINtst. (kkit) € smerh do handlestatéj)
(heads, slaves) < (newheads, newslaves)

© ® N o U s®N

/* Escaping */
if state € {HEAD, ESCAPING
estates— updateestate()
if estate = INIT A state = HEAD A |heads| > k
state<— ESCAPING
< headsslaves> «+ < heads\ {i}, slavesu {i} >
if state= ESCAPINGA estate= SLEEP
if 3t st. (4, JOIN, t) € smem then state<— HEAD
elsestate<— SLAVE
if state= SLAVE then < estatgestart> < < SLEEP;1>

P T T S
© ©® N o R ®N R O

/* Add heads */

if |head$ < k
heads« headsJ {smallest(k -|head$, slaveg}
slaves«— slaves\ heads

NONNN N
A2 W N PO

/* Join and send state */
for each je heads
if j # i then sendset— pruneset(sendsety { < j, JOIN,r, 7> })
elsestate<— HEAD
smemk— stepmem(smem
< sendsetlata> < stepset(pruneset(sendsety { < i, state r, 7> }))
LBcast(< i,data> )

WwWNN NN N
kO ©®N o’

32
33 function updateestate

34 if timer = O then estart«— uniformlyrandong{0, 1, . . ., T-To0;-1})
5 if estarte [0,T-Teoor-1]

36 if timer € [estart estart] then return INIT

37 elseiftimere [estart-1, estart-T's;,04-1] then return FLOOD
38 return SLEEP

w

Figure 4.2: Pseudocode for the self-stabilizing clustering algorithm (1/2).

One could imagine an algorithm that in a first phase addseriistads and
thereafter in a second phase removes cluster heads thabtareeded. To
achieve self-stabilization however, we cannot rely ontistgrin a predefined
system state. Recovery from an inconsistent system stajbt refart at any
time. Therefore, in our algorithm there are no phases andngehanism for
adding cluster heads runs in parallel with the mechanismeimoving cluster
heads and none of them ever stops.
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40 function handlestatéj):

41 js < prioritystate(j,smem

42 if js=HEAD

43 newheads— newheads) {j}

44 sendset— pruneset(sendset { < j, JOIN,r, 7> })
45 else ifjs = ESCAPINGA j € heads

46 if [head$ < k

47 newheads— newheadsJ {j}

48 sendset— pruneset(sendset { < j, VETO,r, w> })
49 elseheads«+ heads\ {j}

50 newslaves— (newslaves) {j}) \ newheads
51

52 function prioritystate(j,memn):

53 if tst. (j, HEAD,t) € mem

54 return HEAD

55 if 3tst. (j, ESCAPING) € mem

56  return ESCAPING

57 return SLAVE

58

59 function stepmertmeny:

60 newmem— ()

61 for each< j,js,ttk> in mem

62 ttk «— min(ttk,x)-1

63 ifttk>0
64 newmen¥— prunemem(
65 newmenu { < j,js,ittk> })

66 return newmem

67

68 function stepsetsef):

69 < newsetnewdata> <« < 0, 0>

70 for each< jjittl,ttf> in set

71 <t ttf> < < min(ttl,r), min(ttf,r)-1>
72 if ttf > O Attl > Othen

73 newsek— pruneset(newsetJ { < jjittlttf>})
7 if ttf > 0 Attl > Othen

75 newdata«— newdataJ { < j,ji ttl >}

76 return < newsetnewdatg>

77

78 on LBrecv(< k, infoset> ):

79 for each< jji,ttt> € infoset

g0 ttl «<— min(ttlr))

81 if i =VETO

82 if j =i A state= ESCAPING

83 state<— HEAD
8 elseif(j#£i Aji £JOIN) V (j=i Aji = JOIN)
85 smemk— prunemem(sment { < j,ji,x>})

86 ifjAiAtl>1
87 sendset— pruneset(sendsetU { < jji,ttl-1,7> })

Figure 4.3: Pseudocode for the self-stabilizing clustering algorithm (2/2).

At each pulse a node sends out its state (the algorithmie, stat, which
role it takes in the algorithm) and forwards the states oéhA cluster head
node normally has the state HEAD and a non cluster head nadgsihas state
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SLAVE. If a nodep; in any pulse finds out that it has less thacluster heads it
selects a set of other nodes that it decides to elect asichesids. Node; then
elects established cluster head nodes and any newly electig by sending
ajoin message to them. Any node that is not a cluster head beconhester c
head if it receives a join addressed to it.

We take a randomized approach for letting nodes try to drep thuster
head responsibility. Time is divided into periods’Bfpulses. A cluster head
nodep; picks uniformly at random one pulse out of the- T, first pulses in
the period as a possible starting puls€art;, for an escape attempt. pf has
more thank cluster heads in pulssstart;, then it will start an escape attempt.
When starting an escape attempt a node sets it state to ESGARMN keeps
it that way for a number of pulses to make sure that all the siadé&r] will
eventually know that it tries to escape. A nagdec G} that would get fewer
thank cluster heads ip; would stop being a cluster head can veto against the
escape attempt. This is done by continuing to regatd be a cluster head and
send a VETO back tp,. If p;, on the other hand, has more thaoluster heads
it would not need to veto. Thus, by accepting the state; @s ESCAPINGp;
will not send any join tg;. After a number of pulses all nodes@f will have
had the opportunity to veto the escape attempt. If none of thigiected, at that
point p; will get no joins and can set its state to SLAVE.

If an escape attempt by; does not overlap in time with another escape
attempt it will succeed if and only ifiin,;ccr |C7| > k. If there are overlaps
by other escape attempts, the escape attempt; byight fail even in cases
wheremin, ecr |C7| > k. The random escape attempt schedule therefore
aims to minimize the risk of overlapping attempts.

The pseudocode for the algorithm is described in Figureadd?4.3 with
accompanying constants, variables, external functiodsv@acros in Figure 4.1.
At each pulse of a node the lines 1-31 are executed resuttingnessage that
is broadcast at some time before the next pulse of that noden\&message
is being received, the lines 78-87 are executed.
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4.4 Correctness

In Section 4.4.1 we show some basic results that we use fuotiheIn Sec-
tion 4.4.2 we will show that withirO(rm\%) time we will have|CT| > k; for
any nodep;. First we show that this holds while temporarily disregagdihe
escaping mechanism, and then that it holds for the genesalinalheorem 4.1.
In Section 4.4.3 we will show that a cluster head npgean become slave if
it is not needed and if it tries to escape undisturbed by atbdes inG2". We
continue to show that the set of nodes converges, with higbatility, to a
local minimum inO(rxA*glog n) time in Theorem 4.2.

Definition 4.1 When all system assumptions hold from a peim time and
forward, we say that “we have a legal system execution fsbnWe denote a
pulse ofp; with .. for some integer:. Consecutive pulses pf have consec-
utive indices, e.gI',, I |, I': . ,, etc. We denote the time betwdé&nand
I, with 2.

Definition 4.2 We define the set sfatesas {SLAVEHEAD, ESCAPING. An
infotupleis a tuple(y, js, ttx) or (4, js,ttl, ttf), wherejs is a either a state
or one of {VETQ JOIN} and is said to bdor nodep; regardless ifp; is the
original sender or final receiver of the infotuple. The field can either be a
ttl, the number of hops the info is to be forwarded, ot/g the number of pulses
for which the infotuple should be kept émem before being discarded. & f
field denotes the number of resends that is left to be donén&rparticular
tuple.

We say that a state earlier in the list [HEAD, ESCAPING, SLAVE&ES
priority over a state that is later in that list.

We say that an infotuplgj, o, 7) is memorable; if and only if eitherj # i
ando is a state, or ifj = i ando = JOIN and that it isrelevant; if and only
if either it ismemorable; or if i = j ando = VETO.

Definition 4.3 A nodep; is said tohandlea statec for a nodep; in a pulse
', when thehandlestate function is called with parameterrat line 6 and the
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subsequent call to therioritystate with j as a parameter returns, setting
js; = o atline 41.

4.4.1 Basic properties

This section builds up a base on how the algorithm works tegewith the
system settings. First up is the definition of various camtstavhose value is
the result of later lemmas.

Definition 4.4 We define: = [(2rm + 1)A], Ti00a = [1(4m 4+ 2)A% + 1 (27 +
2)A], ts = rCr+ DA +r(m+ DAA=1, te = (Tfi00a— L)A+7(T+1)A+ KA,
th = k—r(r—1)A—1,andT o0 = [te + (7 + 1)\]. Furthermore, we define
T =Tos + Teoor, WhereT,, = [25 (¢ +t. — 2t + 1)].

Lemma 4.1 Assume that we have a legal system execution fromstimér —
1)\ and consider a nodg; that has a pulsé™ at times. Now, assume that;
has(k, o, T, ), withT > 0, in sendset; just before executing line 30 irf, and
consider anode; € N; and atime interval = [s — (7 — 1)\, s+ (7 + 1)A].

First, there exist a puls&} € I so that(k, 0, 7’) is received irmj_l, for a
T >

Second, if(k, o, 7’) is memorable;, then (k,o,x) € smem; in I’} just
before executing line 2.

Third, if £ # j, regardless of what is, and if7 > 1, then there exist a
pulsel’) € I (possibly equal td"}) in which (k, 0,0, ) € sendset; with an
0 > 7 — 1, just before executing line 30.

Proof: Consider a puls€’, in which (k, o, 7, ¢) € sendset;, with 0 < 7 and

0 < ¢ < m, just before executing line 30. At line 3@epset is called and
lines 6876, which results ik, o, 7) € data;, which is broadcast by, in ~.
due to line 31. Furthermore, i$ > 1, the infotuplen = (k,o, 7,0 — 1) €
sendset; just after executing line 30. The only mechanism that carokem
from sendset; between line 30 if™, and line 30 inC™, , ; are when sendset are
updated after usingruneset on the union of sendset and an infotuple=
(k,o0,0,7) with @ > 7 in which case; is replaced by)’. Note thatr is the only
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possible value used in the fourth fieldigf Thus, ife > 1, then(k, o, 7/, ¢’) €
sendset;, wherer’ > 7 andy’ > ¢ — 1, just before executing line 30 irY, , ;.

Applying this argument td* , we get thap; broadcastsk, o, ) afterI":
and havek,o, 7,1, ¢, 1) € sendset;, wherer, ,, > 7, andy), | > ¢} —1.
lterating the argument we get that broadcastsk, o, 7, ) afterI' , and
have(k,o, 7,4, ¢, 2) € sendset;, wherer, , > 7, andy,, o > ¢, — 2,
etc. Therefore we know that for all € [0, 7 — 1] it holds thatp; broadcasts
(k 0,7l q) iNYL,, With 7., > 7. By the system settings, out of thoseon-
secutive broadcasts, at least one is successful. As themmaaxtime between
two pulses op; is A we get that at time 4 7\ all nodes inV; have successfully
received one of those tuples frggn Any nodep; have at least one pulse in any
time interval of length\. Thus for any node; € N;, there exist a pulsg} in
the time intervals, s + (7 + 1) A] such thap; receive a tuplék, o, 7’) in %{_1,
forar’ > 7. Thus, the first lemma claim is validated.

Now consider what can happen wherreceives thigk, o, ') and executes
the LBrecv function starting at line 78. Ik, o, 7’) is memorable;, the condi-
tion at line 81 will not hold and line 85 will be executed, adgli. = (k, o, k)
to smem;. Nothing can removg from smem; before line 1 as is the maxi-
mum possible value in that field, and only callgptainemem can do changes
to smem;; before the execution of line 1 i). Thus, the second claim of the
lemma holds.

Regardless of what is, if 7 > 1 we know thatr’ > 1 and ifk # j,
thenp; will attempt to add) = (k,0, 7" — 1, 7) to sendset; when executing
line 87. Here we need to consider cases of an existing infetip= (k, 0,0, ¢)
already insendset ;, or added to sendset before the execution of linell/inif
7" —1 > 6 or¢ = m, the remaining infotuple iBendset; is the one out of
andn’ with the largest third field (which i& 7/ — 1) and fulfills the third claim
of the lemmal}, =T9.

Now consider the case in whieH — 1 < # and¢ < =, in which 4, that
does not fulfill the third claim of the lemma, is kept. Addit®(i.e., excluding
changes made bytepset) to sendset; can only haver in the fourth field.
Given the execution is legal since time— (v — 1)\, the only way to have
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(k,0,0,¢) € sendset; in ’Y;—l is if (k,0,0,¢ + 1) € sendset; just before
line 30 inl“‘{jf1 is for. By iterating this argument we eventually reach plﬂ§e
whereg = y — m + ¢, in which (k, 0,0, 1) € sendset; just before executing
line 30. We know that) > 0, becausej could not have remained withGin
the fourth field after the call tetepset in 1“;71. Therefore, with'J, in the time
interval[s, s + (7 +1)A] and a maximum time of between consecutive pulses,
the time ofrg is in the intervalls — (7 — 1)\, s + (7 + 1)A]. Thus, the third
claim of the lemma holds for this final case as welm

This lemma shows that the algorithm forwards informatianfrany node
p; such that it reaches alll nodes@? within time O(rwA). The three factors
are due to forwarding hops, only one inr messages are guaranteed to arrive
and the clock skew can allows for pulses to be up tome apart.

Lemma 4.2 Assume that we have a legal system execution fromstime = —
1)) and consider a nodg; that has a pulsé™ at times. Now, assume that;
has(k, 0,7, ) in sendset; just before executing line 30 iR, and consider a
nodep; € G7,p; # p; and atime interval = [s — 7(m — 1)\, s + (7 + 1)\].

First, if (k,0,7') is relevant;, there exist a puls&), € I so that(k, o, ')
is received irry;_l, forar’ > 1.

Second, if(k,0,7') is memorable;, then(k,o,x) € smem; in T just
before executing line 2.

Proof: We say that a nodg; fulfills X, if 1) there exist a puIsEﬁl in the time
interval Iy, = [s — h(m — 1)\, s + h(m + 1) A] such thap, receives an infotuple
(k,o,7))in 75@71, with 7; > r — h + 1, and 2) if (k, o, 7)) is memorabley,
then(k, o, k) € smem, just before executing line 2 iKY, and 3) ifh < r and
k # ¢, there exists a pulsg!,, € I, in which (k, 0,0, 7) € sendset; with an
0, > r — h, just before executing line 30.

As (k,o,7,7) € sendset; just before executing line 30 i, with » > 0,
by Lemma 4.1 any nodg; € V; fulfills ;.

Consider a nodg, thatis1 < h < r hops away fronp; and that fulfillsX;,.
As p, fulfills Xy, it has(k, o, 0., m) € sendset;, with af, > r — h, just before

executing line 30 in a pulsg,, atatimes € [s — h(m — 1)\, s + k(7 + 1)A].
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Applying Lemma 4.1, anodg,, € N, hasapulsé¢”’ cI' =[5 — (7 —
1)A, 5+ (m 4+ 1)A] such thap,, receives an infotuplék, o, 7,,) inv" _, with
7)., >0 > 1r—h=r—(h+1)+1. Furthermore, i{k, o, 7),) ismemorable,,,
then (k,o,k) € smem,, just before executing line 2 i’ . Moreover, if
h+1<r,thenr —h > 1= 6, > 1and by Lemma 4.1 there exists a pulse
I e I'inwhich(k,0,0,,,7) € sendset; withand,,, > 0,—1 > r—(h+1),
just before executing line 30k # j. Given thats € [s — h(m — 1)\, s+ h(m+
1A we getthatl’ C [s — (h+ 1)(m — 1)\, s+ (h + 1)(7 + 1) A]. Therefore,
if k& # (¢, any nodep,,, € Ny, including the subset oV, that areh + 1 hops
away fromp;, fulfills ;. A tuple that is forwarded through the network can
therefore be withheld from forwarding either when= ¢ ando is a state and
reaches back tp;, or whenk = j ando is JOIN or VETO, and reachgs (in
which case; is the only node for which it iselevant anyway). Therefore, by
the induction principle}, therefore holds for any nodg € G that is notp;
and that do not have nogg. # p; on all possible paths of lengtd » to p;,
which proves the Lemma. m

Lemma 4.3 Assume that we have a legal system execution fromstimer —
1)\ and consider a node; that has a pulsd™ at times. If p; € G7, then
i € slave; U head; from times + r(7 + 1)\ and forward.

Proof: Consider a node; € Gj. We say that: holds wheni € slave; U
head; and say thakt, holds for a pulsé&? when(i, o, &) € smem; just before
executing line 7iMZ, fora¢ > a > 0.

In pulsel™, p; adds(i, state;, r, m) to sendset; at line 30. We denote this
value ofstate; aso and note thati, o, -) is relevant; to all nodesp; # p;.
By Lemma 4.2, for any nodg; € G there will exist a puIseF; in the time
spanfs — r(m — 1)\, s + (7w + 1)A] in which smem; containg(i, o, k) before
executing line 2. In other wordg;,,_; holds forFi,.

Consider a puls&’ for which X, holds. No lines between lines 1-7 can do
any changes temem;. Therefore, théwandlestate function starting at line 40
will be called inT*J with i as an argument. In thexndlestate functioni might
be added towewheads; at lines 44 or 48. Line 50 addsto newslaves; if



4.4. CORRECTNESS 151

i & newheads;. Thereforeu holds after executing line 7 i The only thing
that can switch: from holding to not holding is when at line 7 when lines 6—7
executes without callingandlestate for p;. This can only happen in a pulse

if 39 does not hold for that pulse. Furthermoreyifolds at line 1 inl*J (for
which ¥, holds)u will never cease to hold when executing lines 1-7 as the only
change in those lines are the assignment in 7 that bginiem a state where
holds to another state wheteholds. Also, as no other lines can makeease

to hold,« holds from just after executing line 7 If{. up to, at least, just before
executing line 7, as well.

Now, consider a pulsg?, for which ¥, holds for ana > 0, i.e., (i, 0,¢) €
smem,; just before executing line 7 fora > a > 0 = ¢ > 1. During
the execution of lines 7-31 i/, the only line that can remowvg, o, ) from
smem; is line 29. For¢ > 1, this replacesi, o, &) with (¢,0,& — 1). The only
mechanism that can remoyg o, £ — 1) from smem; between line 31 of/,
and the execution of line 1 iﬁfwr1 is the execution of line 85. The infotuple
u = (k,0,& — 1) can only be removed if another infotuplé = (k,0,¢’) is
added wheré —1 < &' < k. Therefore(k, 0,¢’) € smem;, forag’ > {—1 >
a—1>0atline 1inI7 . In other wordsy,_; holds forl} , ;.

We know, from the beginning of the lemma proof, that ; holds forl“@.
By the induction principle, for. € [0, x — 1], we get that,._,_; holds (and
that>}, holds as: > 0) for Fiﬂ. Thereforeu holds from just after line 7 iﬂ]‘g
until just before line 7 i’ The pulsel“g; of p; can not occur earlier than

+re
times—r(m—1)A\. Therefoie, by the system settin@%w can not occur earlier
than times — (7 — 1)\ + . The latest possible time @F is s + (7 + 1)\
Thus,u holds in the intervals + (7 + 1)\, s — r(m — 1)\ + &].

By the system settings! | ; of p; occurs in the time intervab + 1, s + A],
in which p; once again adds its statedendset; at line 30. By the proof above
this means that holds in the intervals + (7 +1)A+ A, s — (7 — 1) A+ +1]
aswell. As(s—r(m—1)A+k) —(s+r(m+ DA+ X)) =Kk —2rtA—A >0,
there will be overlap between the intervals guaranteefi’ogndT™, ;. In the
border case in which the guarantees fiBjrends in the same puli%M asthe
guarantees from’ | ; begin,u continues to hold as holds from the beginning



152 CHAPTER 4.

of I/ . due tol'; and ¥, holds forT?,, due toI% . lterating the logic
starting withI"; ,, and then with['; ,,, etc., we get that: holds from time

s+ r(m + 1)\ and forward as long as the execution is legai

Lemma 4.4 Assume that we have a legal system execution from diieed
consider a node; that has a puls&*, at times and that hagi, o, r, ), where
o is a state, insendset; just before executing line 30 .. Assume thap;
do not add(¢, o, r, 7) t0 sendset; in the time intervall = (s,s + a), for an
a>s+r(r+1)A+ (k— 1)\ In other wordsp; does not execute line 30 with
state; = o in any pulses or between any pulses in the time intefv@onsider
any nodep; in the network. Under these assumptions, the last dDg,s'm the
time intervall for p; € Gf such thatp; receives(i, o, T) for any  in 7;_1,
can not be later thas + (7 + 1)A. Furthermore, for any pulse qf; in the
time interval(s + r(m + 1)A + (k — 1)\, s + a), and between those pulses,
(1,0,€) ¢ smem,; for anyé.

Proof: We start by assuming that will neveradd(i, o, r, 7) to sendset; after

I'.. Apart from line 30, line 30 is the only line that could add plefi, o, 7, ¢)

for any 7 or ¢ and by the Lemma assumption that can not happen. Line 30 in
I': will change(i, o, 7, ) to (¢, 0,7, 7 — 1), I'; ., will change(i, o, r,m — 1) to
(i,0,r,m — 2), etc. Thus the last pulse for whigh sends(i, o, r) isT". .

With a maximum time of\ between two consecutive pulses of a node, the last
possible puls&'* for a nodep,, € N; for which p;, receives(i, o, ) from p; in
vk _, can not happen later thant (7 + 1) \. There can be no case in whiph
receives(i, o,7) in v¥ _, from another node itV,, as no other node than can
add(z, o, r, m) to their sendset during the legal execution.

When p;, receives(i, o, r), it will put (i,o,7 — 1,7) in sendset; and it-
erating the argument above the last possible plifséor a nodep, € N, to
receives(i, o, — 1) from p;, can not happen later than+ 2(w + 1)A. There
can be no case in whichy receives(i,o,r — 1) in v¥ . for anyc > 0 from
another node inV, as (i,0,7 — 1,7) expires just as fopy. Iterating fur-
ther, in a similar manner as for the proof of Lemma 4.2, we bat the last
pulsel’} for p; € G},i # j such thap; receives(i,o, ) for anyrin v, _,,
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can not be later thas + (7 + 1)X. It follows thatT? is the last pulse for
which (i, 0, k) € smem; just before executing line 29. Executing line 29 in
I reduces the infotuple t6i,0, s — 1) € smem;;, line 29 inT? reduces it
to (i,0,k — 2), etc., until finally inl‘,‘{;ﬂ_1 line 29 (i, 0,1) is removed from
smem;. Therefore, withz: = y 4+ x — 1, we get that(i, 0, &) ¢ smem; (for
any¢) in Fi+b or 7§+b_1 for all b > 1. The pulse, can not happen later than
s+r(m+ 1A+ (k= 1A,

We now have to deal with the cases in whigldoadd(i, o, r, 7) to sendset;
inal% atatimes > s + a. By the arguments above, no noggin the net-
work have any(i, 0,0, ¢) € sendset; for any 6 or ¢ at times + r(m + 1)A.
Therefore, even ip, adds(i, o, r, ) t0 sendset, at times, no nodep; € G}
can have a puIsE; in the time interval(s + (7 + 1)A + (k — 1)A, s + a) in
which (i,0,¢) € smem;. R

Lemma 4.5 Lets = s — r(2m + 1)A\? and assume that we have a legal system
execution from timé, and consider a nodg; that has a pulsé&®, at times and
that has(k, o, r, ) in sendset; just before executing line 30 if,. Assume that
(k,0,-) is memorable;. Then, there exists a pul§§ € I = [s+r(m + 1)\ —
1,s+r(m+ 1)A + X — 1] in which3¢ > 0 such that(k, o, &) € smem,.

Second, now consider only the case whesn i and o is a state and con-
sider a states # 0. Assuming thap; do not have(i, 6,7, 7) € sendset; just
before executing line 2 in any pulse in the time interfial- r(2 + 1)\, s +
r(m+1)A+ X —1). Inthis Lemma we denote this Bs holding forl";.. Then,
B¢’ such that(i, 6, ¢') € smem, just before executing line 2 iy .

Third, if X,/ holds for all ¢’ that have a higher priority thatw, thenp;
handleso for p; in T} (see Definition 4.2).

Proof: By Lemma 4.2, there exists a pulEé € [s—r(rm— 1)\, s+7(7+1)\]

in which (k, o, k) € smem; just before executing line 2. Furthermore, by the
arguments in the proof of Lemma 4.3, 0, &) € smem; for some¢ > 1 just
before executing line 2 ilﬁiﬁ_l. Moreover,FJZ'Jm_1 cannot happen before
s—r(r=1)A+r—1=s—r(r=1)A+[2rr+1)A\] -1 > s+r(r+1)A+A—1.
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Therefore, there exists a pulBg € I = [s+r(7+1)A—1, s+r(m+1)A+A—1]
in which (k, 0, &) € smem,; just before executing line 2 for sone> 1.

We now consider only the case when= i ando is a state and consider a
states # o. Without loss of generality, we assume thatave(i, 5, r,m) €
sendset; just before executing line 2ina pulﬁé attimes. By Lemma 4.4, for
any nodep; in the networkp; does not havéi, 5, &) € smem; for any¢ in the
time interval(tou, thign) = (§+r(m+ 1A+ (k=LA s+r(r+ 1A+ —1).
Furthermoret o, = s —r(2r + DA2 +r(m + DA+ (k — DA < s+ (7 +
DA =X < s+r(m+ 1)A — 1, which is the lower end of. In the other end,
thigh = s +r(m 4+ 1)+ X — 1, which is the higher end af.

Now, if 3, holds for allo’ that have a higher priority than then?¢’ such
that (i, 0’,¢') € smem; just before executing line 2 iR for any suchy’. We
have established thét, 0,&) € smem; just before executing line 2 iﬁ{, for
some¢. Therefore, théwandlestate function will be called with parameter
at line 6 infg which implies that theyrioritystate function will be called in
line 41 with parametei andsmem;. The prioritystate function in lines 52-57
simply returns the state for the node in the argument withédég priority that
exists insmem, which iso for i. Thus,p; handless for p; in F@. [ |

The corollary shows that the mechanisms that keeps datectentain time,
guarantees that eventually nodeﬁp will see the correct state of noge if it
stays in that state long enough. Compared to Lemma 4.2 thislunces another
factor O(\) time. This is because if a node wants to make sure@Hatr\)
time has passed it needs to codhtrw\) pulses, buO(rm ) pulses can take
O(rm)?) time. Building Lemmas on top of each other, this is the meisgman
that adds additional factors afthe further we go in the proof chain.

Corollary 4.1 Assume that we have a legal system execution from dime
A and consider a nodg; that has a puls€™, at times. Lety = [r(2m +

DA% + r(m + 1)A + 2A]. Now assume that a noge, in each of the pulses
r.-T%, _,,adds(i,0,7) to sendset; and does not addi, o', ) to sendset;
for anyo # o’. Then, for any node,; € G}, p; has a pulsng’, at a time

§=s+r2r+1)A\>+r(r+1)A—1+tforat € [0,2)], in whichp; handles
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o for p;. Furthermore,s happens between the execution of the pul¥eand
o

Proof: There will be a puls&™, atatimesy = s+ (27 +1)A\*+1o, for aty €
[0, A] that fulfills the requirements of Lemma 4.5 of (@ J,r, 7) € sendset;
forag # o in the time intervals) — r(27 + 1)A%, 50 + r(m + DA+ X — 1).
Therefore, there exists a pulfeg atatimes; = so+r(r+ DA -1+
for aty € [0,A] in which p,; handless for p,. We can expand this tg; =
s+ 727+ A2+ r(m + 1)A — 1 + ¢ for aty € [0,2)]. According to the
system settings[, 1 = T%, [\ (rr1)ar2:)_1 = Can not happen before
s+t+r(r+DA+22 —-1. =

4.4.2 Getting Enough Cluster Heads

This section builds up a case showing that the algorithmedéitt enough clus-
ter heads. We show how cluster heads are elected in Lemma4. 4.&nd 4.8.
In Lemma 4.9 we take a look at how the escape mechanism woitkallykin
Theorem 4.1, we put it all together and show that witifrmA?) time from
starting a legal execution, each nagen the network will gett; cluster heads
within r hops.

Definition 4.5 For a nodep; to be acluster heads equivalent tostate; €
{HEAD, ESCAPING. For a nodep; to be a slave is equivalent tgate; =
SLAVE. For a nodg;, we defineC} as the set of cluster heads d;. Fur-
thermore, we definél,. to be the set of cluster heads in the network at time

x.

We now look how the addition of cluster heads work while terapity
disregarding the escaping mechanism. In this setting wiestviiw that within
a finite time we will havgC7| > k; for any nodep,. Later on we will lift this
restriction and show th&€?| > k; will still hold even when regarding the more
general case.

Lemma 4.6 Assume that we have a legal system execution from dimfs-
sume that, for all nodes in the network, theinte can never be ESCAPING,
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their estate is always SLEEP and lines 10-18 are never executed. Undsethe
assumptions, any nodg will have k; cluster heads within hops from time
s+ (3rm + 2)) and forward.

Proof: Consider any node; and a nodep; € GJ. By the system settings,
p; has some pulsk), € [s + r(m — 1)\, s + r(7 — 1)\ + A]. Together with
Lemma 4.3 and the proof of that lemmjas slaves; U heads; holds for a pulse
infs+r(m—DA+r(mr+ 1A\ s+ r(mr—1)A+r(7r+ 1)A + A] and from that
point forward.

Thus there exists a pul$® before times = s+r(m — 1)A+7(m+1)A+ A
in whichk € slaves; U heads; holds for allp, € G%. Atline 21inT% heads;
might already contain nodes. We have the one case Wheuds;| > k > k;
already and one case whefeeads;| < k. In the second case, lines 22-23
will be executed. Out of the nodes éfuves; , the smallestnin(|slaves;|, k —
|heads;|) nodes will be added theads; in line 22 and removed fromaves; in
line 23. Thus, after execution of line 23ads; will contain k; = min(|G%|, k).

For each nodg; < heads; either a infotuple(j, JOIN, r, 7) is added to
sendset; (atline 27, whery # i) or the state is set to HEAD directly (at line 28,
whenj = ). By Lemma 4.2, for each of the; # p; in heads;, there exists a
pulseF;'j € [§—r(mr—1)A, s+ r(m + 1)\ such thap; receiveyj, JOIN, 7;)
forar; > 1in~l _;. When(j,JOIN, ;) is received byp; the condition at
line 81 does not hold, the condition at line 84 holds ahdOIN, ) is added
to smem;. Nothing inyij_l can remove j, JOIN, k) from smem,;. Therefore
the condition in line 3 holds i} andstate; is set to HEAD.

Under the lemma assumptions, the only ways #itate; can change are
the execution of lines 3, 28, or 83, all settinigite; to HEAD. Thus, from time
S+ r(m+ 1A= s+ (3rm + 2)\ and forward, any nodg; will have k; cluster
heads within- hops. =

Now we consider the full escape mechanisms and show that & thad
receive joins remains or becomes a cluster head.

Lemma 4.7 Assume that we have a legal system execution fromstimg and
consider a nodg; that has a pulsé’, attimes. If p; has(i, JOIN, &) € smem,,
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for some¢ > 0 before executing line 2, then is a cluster just before executing
line 4inT% and will stay cluster head throughout the restgfand throughout
~%. Furthermore, if node; is a cluster head just before executing line 2in
then it is a cluster head throughout the entire.

Proof: Leto bestate; ande beestate; just before executing line 2 .. By
the lemma assumptions the conditiehsuch that(i, JOIN,¢) € smem holds
just before line 2 and as nothing among lines 1-17 can chamge:; it holds
atline 17 as well. It = SLEEP, therstate; is set to HEAD at line 3, making
p; a cluster head. I # SLEEPA o € {HEAD, ESCAPING}, then no change
in done tostate; in lines 2-3.

The remaining case to consider is wheg SLEEPA o = SLAVE. Now,
estate; can only be changed by lines 11 and 18 ahgke; can only be set to
SLAVE in line 17. Therefore, neithetstate;, nor state; can be changed in
7%, orin lines 21-31 ofi"; _,. However,state; can only be SLAVE after
line 21 during the legal execution &f, _, if state; = SLAVE at line 18, which
would setestate; to SLEEP, contradicting the assumptionseofs SLEEP.
Thus, in all possible cases is a cluster head just before line 41.

The only line in lines 4—-31 that can majgbecoming a non cluster head is
line 17, which will not be executed as the condition holdsra L6. Further-
more, there is no way fattate; to be set to SLAVE in lines 2—3. Therefore, if
nodep; is a cluster head just before executing line 2'in then it is a cluster
head throughout the entif&. m

In the following Lemma we show that a node that is continupusinted as
a cluster head eventually becomes one.

Lemma 4.8 Assume that we have a legal system execution fronmstiiesume
thata nodep; # p; wants anode; € G7 to be cluster head as soon as it knows
about it and is never willing to let it escape. In other wor(lk), if i € slaves;
andi ¢ heads; after line 7 in a pulsel’, we assume that the condition in
line 21 holds inl*, and thati is added toheads; at the execution of line 22,
and (2) the condition in line 46 would hold whéandlestate is called withi

as a parameter in any pulse pf.
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Under these assumptions, there exists a plilssuch thatstate; # SLAVE
after executing line 3 i, and such thastate; # SLAVE inanyl™, ,, or %,
foranyz’ > z.

Proof: As seen in the proof of Lemma 4.6, there exists a pﬂil§ebefore
times = s+ r(m — 1)A + r(m + 1)A + A in whichi € slaves; U heads;
holds before executing line 2. By the lemma assumption®eitle heads;
before executing line 2 i, or i is added toheads; at line 22. Therefore
(1, JOIN,r,m) € sendset; just before executing line 30 m; as itis added at
line 27. Therefore, by Lemma 4.2, there exists a pllssuch thaip; receive
(4, JOIN, T) for somerin~_;.

By Lemma 4.3i € slaves; U heads; holds before executing line 2 in
any pulsefg, for y' > y. Therefore,(i, JOIN,r,m) € sendset; just be-
fore executing line 30 in each sucﬂj/, and, with similar arguments as in the
proof of Lemma 4.3p; will have (7, JOIN, §) € smem;, for some, just be-
fore executing line 3 in all pulsel!, for 2/ > z. Therefore, by Lemma 4.7
state; # SLAVE after the execution of line 3 andate; # SLAVE in al“;url
orvi, foranyz’ > z. m

We continue to take a look at how the escape mechanism ope¢ogkeow
in what ways it could interfere with electing enough clusteads.

Definition 4.6 A nodep; initiates an escape attenipta pulsel™, if the condi-
tion holds in line 12 and lines 13-14 are executed'jn

Lemma 4.9 shows that the escape mechanism works, that erdhestd that
is not needed can escape that responsibility.

Lemma 4.9 Assume that we have a legal system execution fromstime..,.;
and consider a nodg; that initiates an escape attempt in a puldgat times.
If all nodesp; € G} have|C;| > k at times + t; and no nodep, €
G?T, initiates an escape attempt in any pulsddn- t. + t,, s + ts — t3] then
nodep; will set state; to SLAVE in pulsé& and havestate; = SLAVE

T+Tt100d
throughout anyy?, or I, , | foranyz’ > = + Tfp04-
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If, on the other hand, there exists a nqdec G thatis havingheads;| <
k with k € heads; whenp; is first handling ESCAPING fay;, thenp; will not
setstate; to SLAVE in this escape attempt.

Proof: The escape attempt initiated if, can only happen in the follow-
ing way. InT¢, state; = HEAD before executing line 2. Line 11 calls
updateestate. The condition at line 35 holds and line 36 finds thater; =
estart; and therefore returns INIT settingtate; = INIT. The execution con-
tinues at line 12 where the condition holds andte; is set to ESCAPING and
1 is removed fromheads; and added talaves;. The branch at line 15 will not
be entered i, asestate; # SLEEP. The branch at line 18 will not be entered
in T asstate; = ESCAPING. The branch at line 21 will not be entered’in
as|heads;| will be at leastk as it was strictly larger thak and one entry was
removed. The loop at line 26 will not be run fpr= i in T'. asi was removed
from heads;. Thus at the end df, state; = ESCAPING.

Consider a puls&,, wherez > z, that is the first pulse aftdr’ in which
state; is set to something else that ESCAPING (or in the case of IBeed-
ting state; to HEAD, the pulse after that event, i.e., that change happens
in 7% _,). The only two ways forstate; to change is either in line 11, that
will set estate; to FLOOD inT ~T", 7, unlessstate; has been set to
SLAVE or line 18, that will only be executed Htate; = SLAVE. Thus, for
any condition that requiresstate; = SLEEP, eithestate; will have to be set
to SLAVE (which in will in turn setestate;), or the condition can only hold in
pulsel’, ., . orlater.

We will see that|heads;| < k will not hold for p; after ' in which
|heads;| > k held before executing line 12. Therefore line 28 will not be
executed in';. The assignment in line 3 will not be executedIih for any
& € [z, + Triooa — 1] as the condition requiresstate; = SLEEP. Likewise,
line 16 or line 17 will not be executed i, for anyz € [z, + Tfip0a — 1]
as the condition in line 15 requiresstate; = SLEEP as well. Thus, the
only way for estate; to change strictly between puls€§ and T, S Thra
& € [z,z + Trioa — 1] is if p; receives an infotuplé:, VETO, -) and conse-
quently executes line 83 settingate; = HEAD. We say thap, aborts it's

for
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escape attempt in such a case. A npgde G7 will only send such a VETO as
by executing line 48 by handling ESCAPING farwhich in turn only happens
as a result of receiving an infotuplé ESCAPING ).

If p; does not abort its escape attempt, it setaite; to FLOOD in pulses
Iy —Tiir,,.,—1- Therefore, by Lemma 4.5 any noge € G have had a
pulse that handles ESCAPING forat times +7 (27 + 1)A2 +7(7+ 1)A+ X —

1 = s+t Moreover, as long gs; does not abort its escape attempﬂ,“mTﬂood
estate; is set to SLEEP and the condition holds at line 12 after whiglte;

is either set to HEAD in line 16 or to SLAVE in line 17. Thus ttest pulse
(for this escape attempt) in whigh adds(i, ESCAPING r, ) to sendset; is
F;+Tﬂood_1. That pulse cannot happen aftes (7004 — 1)A. Therefore, by
Lemma 4.4 no node handles ESCAPING fpafters + (T'fi00a — 1) A +17(7+
DA+ (k— 1)\ = s+t. — A (for this escape attempt). Thus by t. any node
Dj € G‘;’[ have handled the state changed to and if that is HEAD,& heads;
again. Furthermore, by arguments similar to the proof of irexd .4, after time
s+te+r(m+1)\ = s+Teo0, NO potentials, VETO, -, -) is left in sendset ; for
any nodep; € G;. Therefore, a new escape attemptbyfters + T.,,; would
not be affected by remnants of the escape attempt startedeat.t Moreover,
there is at leasT,,,; pulses between two escape attempts (see line 34). As we
assume a legal execution from time- 7,,,;, we know that no remnants from
earlier escape attempts or from old invalid data in datacstires will interfere
with the escape attempt started at timeln the other end, before the escape
attempt,p; adds(i, HEAD, r, ) to sendset; in ', that can not happen after
s — 1. By Lemma 4.2 the last possible pulE@ such thatp; € G;‘ receive
of (i,HEAD, ) in 75_1 (before this escape attempt) is,sat r(m — 1)\ — 1.
The first pulse in which HEAD is cleared froemem; is T, ., which cannot
happen before time+ x — (7 — 1)\ — 1 = s + t5.

Now, instead, assume that all noggsc G} have|C;| > k ats + t; and
no nodep, € G#7, wherep, # p;, initiates an escape attempt in any pulse in
[s —te+th,s+ts—tp). INT%, nodep; haveestate; setto INIT andstate; set
to ESCAPING. We saw above that as longpasloes not receive an infotuple
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(i, VETO, ) in pulsesl', ;I 7 ., line 11 setsstate; to FLOOD in
each of those pulses.

Consider the puls@% of a nodep; € G‘; that is the first pulse aftes in
which p; handles ESCAPING. By Corollary 4.1 there do exist a pulseat
atimesy = s +r2m + DA + r(m + 1)A — 1 + to for aty € [0,2)] in
which p; handles ESCAPING fop;. But I'J might not be the first one, so
y < z. Whenp; handles ESCAPING fop; in F%, the condition at line 42
does not hold and consequently the condition at line 45 véllchecked. It
holds asI/ is the first in which ESCAPING are handledi— heads; as
HEAD must have been handleditj_,. Furthermore, the condition at line 46
will not hold, as according to the assumptions that all nodes G have
|C;| > k and therebyjheads;| > k, as no other nodg, € G?" have any
interfering remnants of escape attempts left in the systethen cannot start
afters — t, + t;, or starts escape attempts early enough (befere, — ;) to
interfere with this escape attempt py Only nodes irf;?r have the potential to
interfere with an escape attemptpyas othelG; NG’ = () for any nodep,,, ¢
G?"“. Therefore,p; do not send any infotuplé, VETO, -) andi is removed
from heads; at line 49. This removal makes sure thatdoes not allow too
many nodes to escape, i.e., it ensures theids;| > k. Line 50 will ensure
thati is added tonewheads;. The execution then continues down to line 7
that ensures that € slaves; andi ¢ heads;. No (i, JOIN,r,m) is added
to sendset at line 27 ift,. By the proof of Lemma 4.3, pulsd¥,,, I} ,,
etc. will all handle ESCAPING. In these pulses the condifiotine 45 does
not hold asi is already not inkeads;. Thus puIseF;_1 is the last pulse (in
the time interval of this escape attempt) in whighJOIN, r, 7) is added to
sendset;. By the arguments in the proof of Lemma 4.4, as long;asontinues
to not send any JOIN:s, there will be rfg JOIN, -) originating fromp, in
smem; after timesy = s; + (7 + 1)A + (k — 1)\, wheres; = 59 — A <=
s+ 727 + 1)A2 + r(7 + 1)A + A — 1 is the latest possibl&? _,. Thus,
s < s+r2r+ DN +r(r+ DA+ A -1 +r(mn+ DA+ (k- DA =
sHr2m+ A2 +7r2r +2)A+ A =1 < s+ [r(dn+2)A2+r(2r+2)A] -1 =
s+ Tf100a — 1. Now puIsel“g'[/,JrTﬂM71 can not happen beforet T'tj00q — 1.
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Thus at pulsd“;,”ﬂm in which p; setsestate; to SLEEP and the condition
at line 15 therefore holds, it does not handle any JOINyforAs this holds for
anyp; € G*IT, the condition does not hold at line 16 asidte; is set to SLAVE
in line 17, proving that part of the lemma.

Now, we will instead assume that there will be a nggdethat handles
ESCAPING forp,; while having: € heads; and|heads;| < k. Consider the
first pulse,I’, (afters) in which p; handles ESCAPING. Havinge heads;,
the condition at line 45 holds mg and execution continues to line 46 in which
the condition will also hold according to our assumptionspen An infotu-
ple (i, VETO, r, ) is added tosendset;, and, more importantly is added to
newheads; so thati € heads; will continue to hold after line 7 ifi"}, and there-
fore whenp; handles ESCAPING fop; in future pulses. There cannot be a
case in whiclp; setsstate; to SLAVE without any node handling ESCAPING
for p;, asp; can only changetate; either by setting it to HEAD or chang-
ing it to SLAVE after havingstate; = ESCAPING forl’s;..q pulses in which
Lemma 4.5 guarantee that all node&ﬁlf’l handles ESCAPING fagp;. We have
already seen in Lemma 4.8 that as long as a ngde G7 continues to send
(i,JOIN, -) in every pulse, thep; will never setstate; to SLAVE. Therefore,
p; will not setstate; to SLAVE as long agheads;| < k continues to hold. The
(1, VETO, -) infotuple that will reactp; is therefore not needed for the algo-
rithm to work, but wherp; receives it will setstate; to HEAD and abort the
escape attempt earlier to lessen the probability of diffeescape attempts to
interfere with each other by having possibly stop sending out ESCAPING
earlier and thus having other nodgsput back: into |heads;| earlier and thus
potentially allow for other nodes to escape.

Now we still need to address the claim thatads;| will not suddenly dip
belowk. We assume that we have a legal execution from timel,,;, SO any
remnants of bad values or old escape attempts have beeed:I€arthermore,
we saw above that a noge that wants to escape from being a cluster head
must get clearance from all nodesG#j. Thusp; would turn down the escape
attempt by a nodg, such that’ € heads;. Thereforeheads; will not go from
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|heads;| > k to |heads;| < k. This holds for any node iG; (not merely a
nodep; that are in the middle of an escape attemptim

Theorem 4.1 shows that, within tin®,.; + (577 + )X € O(Tf100dA) =
O(rm\?) from an arbitrary configuration, all nodes have at least; cluster
heads withinr hops and that the set of cluster heads in the network can only
stay the same or shrink from that point on. From Corollarywelget the factor
O(A\?) time for a node to know that it has reached out. This theoréradnces
another factor o (\) because a node needs to be sure that another node has
finished something as discussed previously.

Theorem 4.1 Assume that we have a legal system execution fromstimiben
any nodep; will have k; cluster heads from time + T, + (377 + 2)\ and
onward. Moreover, a node that is not i, for atimet > s+T,o0 + (5rm+4)\
can not be ini, forat’ > t and consequently;. | < |H;| for anys+ 70, +
(brom+ X <t <t

Proof: From Lemma 4.6 we have seen that as long as the escape mechanis
does not allow nodes to change its state to SLAVE after beahgsder head, any
nodep; will have k; cluster heads within hops in any pulses or pulse intervals
after time(3rm + 2)\. From Lemma 4.9 we get that after timet T.,,; N0
nodep; that is a cluster head can changete; to SLAVE if that would leave a
nodep; € G} with |heads;|. Therefore, any nodg; will have k; cluster heads
from times + Teoor + (3rm + 2) A

Furthermore, by Lemma 4.2 any such nqdewill know it by receiving
(¢,HEAD, ) or (i, HEAD, -) befores = s + Teoor + (3rm 4+ 2)A + r(m + 1) A.
Thus no node is trying to elect new cluster heads after iraed by similar
arguments as the proof of Lemma 4.4 no npgdéhat is not already a cluster
head will receivg(, JOIN, -) afters 4 (7 + 1)A. So with all nodeg; having
|heads;| > k; buy $ and all JOIN:s received by+ (7 + 1)\ the condition in
line 21 can only hold i afters if |slaves;| = 0 and therefore no additional
node can be elected. Thus, a node that is not in the set otclusads in the
entire network at a time > s + To0 + (577 + 4)A, Hy, can never be i
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forat’ > t. Therefore|Hy | < |H| foranyt’ > ¢ > s+ Troor + (Brm+4)) €
s+O0(rmA%). =m

4.4.3 Convergence to a Local Minimum

Lemma 4.9 shows that a cluster head node that is not needegiscape the
cluster head responsibility if it does not interfere witlcagse attempts by other
nodes. This section shows that the set of cluster heads rgas/éo a local
minimum. We first show that an unneeded cluster head nodeszape, with
high probability (Lemma 4.10) if(T'\) = O(grzA*) time. The extra\ is due
to the usual reason aifd € O(grr\?). The factorg is a bound on the number
of nodes that could interfere with a given escape attempg.péart of 7" to give

a node a constant probability of escaping in its one try ingodeof 7" time
(given that it is not needed as a cluster head).

Lemma 4.10 Assume that we have a legal system execution from diared
consider a node; that is a cluster head. Assume that;| > & holds for all
nodesp; € G from times + T.,o + (577 + 4)\ and as long ag; remains a
cluster head. Then, node will have state; = SLAVE after time + T,.,,; +

(5rm + 4)A + (8 + 1)T'\ with at least probabilityl — 275.

Proof: Aslong as node; remain a cluster head it will in each pulse enter the
branch in line 10 and callpdateestate in line 11. From Theorem 4.1 we know
that from timesy = s 4+ T + (577 + 4)\ @ node can only stay slave or to go
from being a cluster head to being a slave. Assumegthstiarts a periodn T,
attimes, i.e.,timer; = 0 at line 34 in["!, and that it is the first pulse, for which

§ > sp, that starts a period. By the system settings and the fatpitsarts a
new period every” pulses, we get that < s + T, + (5rm + 4)\ + TA.

In T%, estart; is set randomly, from a uniform distribution, to an integer
in [0,T.s — 1]. Thereby,p; is scheduled to initiate an escape attempt in pulse
I, forw = x + estart; at times’. With our assumptions, Lemma 4.9 gives
that if no other node; < G?’” initiates any escape attempt in the time span
[§' —te+tn, s +ts —ty), thenp; will set state; = SLAVE in F;}JFTNM. If no
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such escape attempts are done by any such pode say that nodg; initiates
anuninterfered escape attemiptI,.

The maximum number escape attempts by a ngde G?T that can inter-
fere with the escape attempt initiated pyin I, is two (as the time between
the first and last of three escape attempts is larger Tharich is larger than
required time span for Lemma 4.9. Thus, the maximum numbeterfering
escape attempts that can interfere with the escape attbatpstinitiated byp;
inI', is2(g — 1). The probability that a nodg; initiates an escape attempt in
atime intervalty, t1] is always less thaft; — ¢ty + 1)/7es. Thus the probabil-
ity that a specific escape attempt will interfere with theaecattempt initiated
by p; in T?, cannot, with the help of Lemma 4.9, be more thas /7., for
t =t, +t. — 2t, + 1. By making the extremelpessimisti@assumption (i.e.,
that gives us a higher probability for interference than tibaeally the case)
that we not only hav@(g — 1) potentially interfering escape attempts, but that
they are all independent as well. Escape attempts made tsathe node;
is not really independent, but by assuming they are we iseréize probability
of interference. Letd!, be the event that the escape attempt initiated’jris
uninterfered. Then we get

r_1N 2(g=1)/(p" 1)
PlAL] > (1 - f@]){’~1} (11>p
wl = P P p p/

(2(g=1))/(p'=1)
1 2(g — 1
> () = exp (—(€ )) (4.1)
e p—1
_ 2(g—1)
From this it is straightforward to show that:
2g , 1
T.o = | —(ts — 2t 1 PlA' ] > —. 4.
es ’—1n2(té + e th + ﬂ = [ w] =9 ( 3)

The random choices in different executions of the line 34n@ysame node
or by different nodes are all mutually independent. Howewdrat happens
in different periods are not mutually independent. If a npgeetsstate; =
SLAVE not initiating any more escape attempts. This only@ases the proba-
bility for A¢, for a later escape attemptij,, if the one initiated i, was not
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uninterfered. Therefore, by assuming total independerteden all escape
attempts and continue to assume that there are alMgys 1) potentially in-
terfering escape attempts for an escape attempt by motiee calculated lower
bound on the probability of an undisturbed escape attentptvgerse.
Consider thes periods that starts iy, I, 7, ..., T, 5,7, and letw,

be the value such that, isthe pulse in the period startinglij, , , ;- in which
the escape attempt starts. Furthermore Alet= Uf;ol Afva. Thus with the
assumption of period independence that gives us a worsalbheeiget

B—1 -1 B—1
PlA]=P || J A, |=1-P |4, |=1-]]PlA]
a=0 a=0 a=0
B-1 1
1-J[z=1-27%° 4.4
> 1;[0 5 (4.4)

With § < s+ T o0 + (5rm+4) A+ T A, we get that, with probability at least
1—278, state; = SLAVE after times + T,oo + (5rm +4)A+ (B+1)TA. =

Theorem 4.2, shows that with high probability the entirenmek reaches a
local minimum withinO (rmA*glog n) time.

From Theorem 4.1 we got that all nodgshave at leask; cluster heads
within r hops inT.,,; + (3r7 + 2)\ time after an arbitrary configuration.

Theorem 4.2 shows that with at least probability 2~ the set of cluster
heads in the network stabilizes to a local minimum withig 7,0 + (577 +
DA + (a+logn + 1)T A time. The factoiO(log n) is multiplied by the result
from Lemma 4.10 because we go from probabilistic guaramiaedne specific
node gets an uninterrupted escape attempt to that all clussels get such an
attempt. And the number of cluster heads is bounded by thd&eym of nodes
in the network.

Theorem 4.2 Assume that we have a legal system execution fromstiréth
at least probabilityl — 27%, by times§ = s + Teoor + (5rm + )X + (a +
logn + 1)T'A there will be no cluster head noge in the network for which
miny, e, (|C}|) > k holds, andH;, = H; holds for any positive.
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Proof: In this proof we use the same notations and the conceptslas praof
of Lemma 4.10. Herev, is replaced byw! to indicate that the escape attempt
in thea:th period ofp; afters + Teoor + (577 + 4) A is initiated inFiu,- .

Let 8 = a+logn, wheren = |P| is the size of the entire network. Letbe
the event all nodes in the network get at least one unintifescape attempt
iN [s + Teoor + (5rm + 4) A, §]. We get that

P[A]=1-P[A]=1- P[] A;] > [Boole’s inequality

pi€P
>1- Y PIA]>[Lemma4.10>1- Y 27/
pi €P pi€P
=1-n2F=1-28nF -1 97 (4.5)

Thus by the proof of Lemma 4.10 all nodes in the network getsramterfered
escape attempt with at least probability- 27 in [s + Treoor + (5rm + 4) A, 5].
Together with Lemma 4.10, this concludes that with at leestv@bility 1 —2—<

all nodesp; for which |C?'| > k holds at their uninterfered escape attempt will
have settate; to SLAVE before times. From this follows that there is no node
for whichmin, ec, (|C|) > & holds. Hence, by Lemma 4.9, no noglethat

is cluster head at timé can ever sektate; to SLAVE afters and therefore
H;, = H; holds for any positivé. Moreover,s € s + O(rrA*glogn). =

4.5 Discussion

To experimentally test performance, we did simulationshef algorithm for
various settings of andr. We placed!0 nodes with a communication radius
of 1 uniformly at random in a 5 by 5 rectangular area. From oyeements
we concluded that using @that gives us 95% guarantees of being an upper
bound on everyG?T| for any givenp;, is not required to get good performance.
The calculated bounds are not tight. In the experiments we tieerefore used
a tenth of that value fog instead.

In addition, we performed experiments on recovery from sofsnges to
the topology from a converged system state. The convergémes from a
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Figure 4.4: Convergence times from a fresh start, after 10% node additions, after 10%
node removes and after 10% node moves.

newly started network (“Start”) is compared in Figure 4.4hahe conver-
gence times after a change to a initially converged netwdhle investigate
10% added nodes (“Add”)10% removed nodes (“Remove”) di0% moved
nodes (“Move”).

We can see that the least obtrusive change to the topologgniswed nodes.
The chance is good that a removed node is not a cluster heatthamndo not
upset the balance. An add is more expensive than a removeasNoight end
up in an area where there is not so many cluster heads andafeehave to
start elect new nodes. A move is like both a remove and an dugtetore, it is
anticipated that this case converges slower than the orie®nly adds or only
removes.

The flooding of messages makes sure that if there exist reulpiaths of
at most length between a nodg; and a node; then joins and state updates
will traverse all possible paths. This can give us highetftfenlerance if there
are communication disturbances on some links (i.e., betweme immediate
neighbors) and also higher availability for nodes to reaeirtcluster heads.
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The multiple paths can also give applications higher sgcifrsome nodes
in the network can be compromised. If there is at least orfeqdatt most- hops
between a nodg; and a nodeg; that is not passing through any compromised
nodes then the flooding makes sure that nadendp; gets to know about each
other. Moreover, ip; wantsp; to be cluster head then the compromised nodes
cannot stop that. If nodes add information to the messagms #ie paths they
have taken during message forwarding then the nodes getotw &bout the
multiple paths. With this knowledge they can in an applmatiayer use as
diverse paths as possible to communicate with their cligtads. Thus even if
a compromised node is on the path to one cluster head and wiregsages or
do other malicious behavior there can be other cluster hieadghere there is
no compromised nodes on the chosen paths.

Consider a compromised noggthat can lie and not follow protocol. First
assume thap. cannot introduce node id:s that does not exist (Sybil astack
[15]) or node id:s for nodes that are not withi#{, (wormhole attacks, [16])
and thatp. cannot do denial of service attacks. Thencan make any or all
nodes withinG?, become and stay cluster heads by sending joins to them or
having them repeatedly go on and off cluster head duty onex biy alternating
between sending joins and letting the node escape. Corsidedep; that is
a cluster head and has a path to a npgdef length < r hops that does not
pass throughp.. In this situationp. can not give the false impression that
is not a cluster head as HEAD takes precedence over ESCARNGakes
precedence over SLAVE at message receiptp.lbn the other hand is in a
bottleneck between nodes without any other paths betwesn then it can lie
about a node, being a cluster heads and refuse to forward any joips.tdlow
if we assume thai, is not restricted in what id:s it can include in false message
it can convince a nodg, that nodes not iz are cluster heads. In the worst
case it can eventually make rely exclusively on non-existent cluster heads
with paths that all go througp,.. In any case the influence by a compromised
nodep, is contained withinG?" as the maximuntt/ of a message is and is
enforced at message receipt.
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4.6 Conclusions

We have presented a self-stabilizifig r)-clustering algorithm for ad-hoc net-
works that can deal with a bounded amount of message losghahcherely
requires a bound on the rate differences between pulseferkdit nodes in the
network. The algorithm makes sure that, witidir7A\?) time, all nodes have
at leastk cluster heads (when possible) and it stabilizes withinm A\*glog n)
time with high probability. We have also discussed how tlgpathm can help
us with fault tolerance and security.
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Future Work

Wireless sensor networks is an upcoming area that holds gremise for the
future. When the sensor nodes become smaller and smallerhaager and
cheaper the possibilities opens up for a vast number ofrdifteapplications.
However, as with many areas in its infancy, there are a nuwlifferent prob-
lems that arises when taking these applications from idedsployed systems
with interaction from the environment and from attacks t@tnot always been
foreseen.

Attacks from within the network from nodes taken over by anesgary is
a serious threat in a network where the nodes are physiaatlsaible. There-
fore, there is a great need for algorithms that can functi@nen situations
where nodes inside the network attacks the network fromimvititCollusion
between several malicious nodes makes the situation evesewtn addition,
algorithms can not rely on having an undisturbed deployraedtsetup of the
network before having to care about attacks. Otherwisealfaious nodes al-
ready have been deployed in the area, they can become insitds just by
following protocol during the setup.

In addition to malicious attacks, problems arises from theegal environ-
ment. Sensor nodes are often placed in hostile environntleatsan disturb
their functionality, make them faulty and outright destthgm. It is therefore

173
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important to be able to handle loss of nodes, faulty behafiaodes and other
faults in the system. Algorithm are needed that take botlr#tgcand fault
tolerance into account.

In research, there is always a need for proper models. Inrdeedt secu-
rity in sensor networks, two important modelling aspectsthe model of the
adversary and the model of the network and the communicatMmat are the
powers of the adversary. What can be expected in terms of dimgpguower,
what techniques are feasible on the hardware level, how mmatigious node
can we expect the adversary to have command over and whételtinita-
tions of them, etc. For the communication, what kind of agsions can be
made about connectivity between nodes? How reliable is dhentunication
medium, can we rely upon bidirectional communication, & dommunica-
tion links stable over time, are nodes moving around, etc.?

Models, although essential, are just models. An importhatacteristic of
an algorithm is what happens if the assumptions of a modebissm and what
happens after temporary deviations from assumptions. fixpg on in which
way the assumptions are broken, functionality can be uctaffe degraded or
reduced to nothing. Fault tolerance in general tries tosieegoroblems that can
arise and take those into account within the model. Howeaespme point
those assumptions can be broken as well. In the situationlafge sensor
network, trying to recover manually after a break down carnubfeasible or
too costly. This is why self-stabilization is a useful teithue for sensor net-
work. Regardless of what state the network has ended up itoddeviations
from assumptions, if the assumptions once again hold, ttveonke can recover.
Self-stabilization most often comes with a price in term®wérhead and not
being able to ever stop, but the fault tolerance propert@segl by it are pow-
erful. When implementing a sensor network application, tt@deoff needs to
be considered. More research is needed to find self-stalgilEgorithms that
are suitable for sensor networks and that are as resourcieeffas possible.

Many number of services are needed when building a sensaorietp-
plication. The technique of layering services on top of eatiter, building
functionality on top of functionality and at the same timg@ate them into
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manageable units is powerful. In sensor networks wheretyagtower is of

high concern and message transmissions are the most ex@epsrations, the
separation between services can pose a problem. If mamyetitf algorithms,
implementing the needed services, transmit partly the safmenation, battery

power is wasted. In resource constrained sensor netwiksigted is great for
algorithms that play well together in an efficient manner.

In a society where sensor networks exist in abundance,qyrigeof utmost
importance. When we have sensor networks in public spacdbkginffices,
inside the body for medical applications, in the electyicietworks, etc., a lot
of information, possibly highly sensitive, is handled bggsk networks. Here
research is needed to establish methods to handle privacyéfficient manner.
The privacy needs is for knowing users of the networks, sgohteen sensors
collects medical information from a patient, as well as fengral monitoring
of environments that results in peoples personal infoionatieing handled by
the sensor network.

To conclude, research needs to be done to further developesand fault
tolerant algorithms with good models of the environment tizen be combined
in an resource efficient manner.



