
THESIS FOR THEDEGREE OFDOCTOR OFPHILOSOPHY

Security and Self-stabilization
in Sensor Network Services

ANDREAS LARSSON

Division of Networks and Systems

Department of Computer Science and Engineering

CHALMERS UNIVERSITY OF TECHNOLOGY

Göteborg, Sweden 2012

Security and Self-stabilization in Sensor Network Services

Andreas Larsson

ISBN: 978-91-7385-717-8

Copyright © Andreas Larsson, 2012.

Doktorsavhandlingar vid Chalmers tekniska högskola

Ny serie nr 3398

ISSN: 0346-718X

Technical report 84D

Department of Computer Science and Engineering

Distributed Computing and Systems Research Group

Division of Networks and Systems

Chalmers University of Technology

SE-412 96 GÖTEBORG, Sweden

Phone: +46 (0)31-772 10 00

Author e-mail:larandr@chalmers.se

Printed by Chalmers Reproservice

Göteborg, Sweden 2012

Security and Self-stabilization
in Sensor Network Services

Andreas Larsson

Division of Networks and Systems, Chalmers University of Technology

ABSTRACT

Wireless sensor networks consist of small sensor nodes thatmonitor their envi-

ronment and that together can cover vast geographical regions. It is a promising

field with many possible applications in different application areas. Typically

the nodes do not have any preexisting information about the network topology

when deployed. Instead, they gather information about their local topology by

exchanging information with the other nodes in their vicinity, using wireless

communication. Using this information they can organize themselves accord-

ing to the needs of the applications of the network. Sensor nodes are often very

limited in computing power, memory and battery life. They have traffic pat-

terns different from those of many other types of networks. New algorithms are

often needed to suit these conditions. For networks that consist of a very large

number of nodes, algorithms have to scale well.

Security and fault tolerance are of high importance for manysensor net-

work applications. A sensor network application needs to remain functioning

even when nodes fail or are attacked in different ways. Sensor nodes often re-

side in harsh environments that can destroy them during or after deployment.

One potent form of fault tolerance is Self-stabilization. Aself-stabilizing sys-

tem can recover from an arbitrary state in a finite amount of time. Security in

wireless sensor networks is further complicated by the factthat the nodes often

are physically available for attackers to destroy, captureor manipulate in other

ways. The threat of compromised nodes inside a network that are controlled by

an attacker is a concern that needs to be taken into account.

High precision synchronized clocks are a fundamental need of many appli-

cations and of other services. We present the first secure andself-stabilizing

clock synchronization algorithm for sensor networks that is resilient against

ii

attacks from outside as well as by compromised nodes from inside. Sensor

nodes also need to organize their own network. A common way isto cluster

the nodes together into groups. They are used by many applications and other

fundamental services. We present a self-stabilizing algorithm for clustering. It

uses redundant paths to be resilient against captured nodesin the network. It

assumes perfect message transfers and lock step synchronization of the nodes.

In addition, we present a clustering algorithm, that is a further development of

that work, that can handle unreliable communication media and unsynchronized

nodes, assuming a limit on clock rate differences.

Keywords: Secure and Resilient Computer Systems, Sensor-Network Systems, Ad-hoc

Networks, Clock-synchronization, Clustering, Self-Stabilization

Preface

This thesis is based on the work contained in the following publications:

⊲ Jaap-Henk Hoepman,Andreas Larsson, Elad M. Schiller, and

Philippas Tsigas. “Secure and self-stabilizing clock synchroniza-

tion in sensor networks.” InProoceedings of the 9th International

Symposium on Self Stabilization, Safety, And Security of Distributed

Systems (SSS 2007). volume 4838 ofLecture Notes in Computer

Science, pages 340–356, Springer, 2007.

⊲ Jaap-Henk Hoepman,Andreas Larsson, Elad M. Schiller, and

Philippas Tsigas. “Secure and self-stabilizing clock synchroniza-

tion in sensor networks.”Theoretical Computer Science, volume

412, number 40, pages 5631–5647, 2011.

⊲ Andreas Larsson and Philippas Tsigas. “Self-stabilizing (k,r)-

clustering in wireless ad-hoc networks with multiple paths.” In

Proceedings of the 14th International Conference On Principles

Of Distributed Systems (OPODIS 2010), volume 6490 ofLecture

Notes in Computer Science, pages 79–82, Springer, 2010.

⊲ Andreas Larssonand Philippas Tsigas. “A self-stabilizing (k,r)-

clustering algorithm with multiple paths for wireless ad-hoc net-

works.” In Proceedings of the 31st International Conference on

iii

iv

Distributed Computing Systems (ICDCS 2011), pages 353–362,

IEEE Computer Society, 2011.

⊲ Andreas Larsson and Philippas Tsigas. “Self-stabilizing (k,r)-

clustering in clock rate-limited systems.” InProceedings of the

19th International Colloquium on Structural Information and Com-

munication Complexity (SIROCCO 2012), volume ?? ofLecture

Notes in Computer Science, pages ??–??, Springer, 2012 (To ap-

pear).

To Malin, Elvira, Anne-Marie and Leif-Göran

vi

Acknowledgments

I would like to start with thanking my supervisor Philippas Tsigas for his guid-

ance and support. This thesis would not have been possible without him. His

insights into all matters has helped me greatly. No matter the hurdle, he has got

some idea on how to proceed.

I am honored to have Sébastien Tixeuil from Pierre and Marie Curie Univer-

sity as my opponent. I thank Elad Michael Schiller for the collaboration, discus-

sions and his never-ending support in all matters. I thank Jaap-Henk Hoepman

for the collaboration and discussions. I thank Oliver Theelfrom the University

of Oldenburg for being the discussion leader for my licentiate thesis.

I thank Daniel Cederman for discussions, support and fun times. I want

to give my appreciation to the rest of the colleagues in the Distributed Com-

puting and Systems group: Bapi Chatterjee, Farnaz Moradi, Georgios Geor-

giadis, Magnus Almgren, Marina Papatriantafilou, Nhan Nguyen Dang, Olaf

Landsiedel, Valentin Tudor, Yiannis Nikolakopoulos and Zhang Fu; and to the

former members Anders Gidenstam, Boris Koldehofe, Håkan Sundell, Niklas

Elmqvist, Phuong Hoai Ha and Yi Zhang. All the times spent with you guys

have been great! I would like to give my appreciation to the colleagues, outside

of the Distributed Computing and Systems group, that are involved or previ-

ously were involved in the Security Arena project and in the SysSec project:

Anna Gryszkiewicz, Erland Jonsson, Fang Chen, Laleh Pirzadeh, Morten Fjeld,

Staffan Björk, Tomas Olovsson, Ulf Larson and Vilhelm Verendel.

vii

viii

I thank the Swedish Civil Contingencies Agency for funding and making

the Security Arena project a possibility. I thank all the other participants in the

Security Arena project as well for cooperations, the interesting seminars and the

stimulating environment. I thank the Seventh Framework Program for funding

the SysSec project. I thank all the other members of the project and the expert

group members. I also would like to thank all the master students I have had the

joy of working with and in particular Afshan Samani, Carlos Aleixandre Tudó

and Farinaz Ghasemi. I like to thank all the people I have had fun teaching

together with and everyone else at the department for all thegreat fun and the

stimulating environment. This very much includes the administrative staff that

are always willing and able to help or point in the right direction.

I sincerely thank all my friends for all the fun and all crazy ideas and projects

that takes thoughts off research and charges the mental batteries. Thank you

Björn, Henrik, Per, Perjohan, Peter, Rikard, all the gamingfriends, the Sinus

friends, the Chalmers study friends and all the other good friends from growing

up and living in Västerås and living in Göteborg.

Last, but certainly not least, I cannot thank my family enough for their end-

less love and support and all the fun and sad things I have shared with them. I

thank my wife Malin for all the love, the fun, for complementing me in the right

areas and sharing my values in the right areas, and for alwaysbeing there for

me. I thank my daughter Elvira for her love, her endless energy and curiosity,

and for just being awesome. I thank my father Leif-Göran for the love, the great

inspiration and having solutions to any practical problem.I thank my mother

Anne-Marie for the love, the care and laying the ground for somany of my

values. I thank my brother Kristian for all great fun, all alldiscussions and for

always feeling welcome in his home. I thank Ingrid, Ernst, Roland, Märta and

all my other relatives for good times together, and Rose-Marie and the rest of

my family in law for taking me to heart and for more good times.

Andreas Larsson

Göteborg, 2012

Contents

Abstract i

Preface iii

Acknowledgments vii

I INTRODUCTION 1

1 Introduction 3

1.1 Introduction . 3

1.1.1 Sensor Networks . 3

1.1.2 Security Requirements 4

1.2 Attacks in general . 7

1.2.1 The Adversary . 7

1.2.2 Physical Layer Attacks 8

1.2.3 Data-link Layer Attacks 8

1.2.4 Network Layer Attacks 9

1.3 Cryptography, Key Management and Authentication 10

ix

x

1.3.1 Security Properties . 10

1.3.2 Symmetric Key Cryptography 12

1.3.3 Key Management . 13

1.3.4 Authentication . 15

1.4 Localization . 17

1.4.1 The Importance of Localization 17

1.4.2 Localization Techniques 17

1.4.3 Attacks Against Localization 18

1.4.4 Secure Localization . 18

1.5 Clock Synchronization . 20

1.5.1 The Importance of Clock Synchronization 20

1.5.2 Clock Synchronization Techniques 20

1.5.3 Attacks Against Clock Synchronization 21

1.5.4 Secure Clock Synchronization Techniques 22

1.6 Clustering . 24

1.6.1 The Importance of Clustering 24

1.6.2 Clustering Techniques 24

1.6.3 Attacks against clustering algorithms 25

1.6.4 Secure Clustering Algorithms 26

1.6.5 Self-stabilizing Clustering Algorithms26

1.7 Routing . 27

1.7.1 The Importance of Routing 27

1.7.2 Attacks Against Routing Protocols 27

1.7.3 Secure Routing Algorithms 29

1.8 Aggregation . 31

1.8.1 The Importance of Aggregation 31

1.8.2 Aggregation Techniques 31

1.8.3 Secure Aggregation Algorithms 32

1.9 Self-stabilization . 33

1.10 Our Research Approach . 35

1.11 Contributions . 36

xi

1.11.1 Paper I: Secure and Self-stabilizing Clock Synchroniza-

tion in Sensor Networks 36

1.11.2 Paper II: A Self-stabilizing (k,r)-clustering Algorithm

with Multiple Paths for Wireless Ad-hoc Networks . . . 36

1.11.3 Paper III: Self-stabilizing (k,r)-clustering in Clock Rate-

limited Systems . 37

1.12 Conclusions & Future Work 37

Bibliography . 38

II PAPERS 55

2 Paper I: Secure and Self-stabilizing Clock Synchronization in Sen-

sor Networks 59

2.1 Introduction . 59

2.1.1 Our Contribution . 63

2.1.2 Document structure . 64

2.2 System Settings . 64

2.2.1 Time, Clocks, and Their Notation 64

2.2.2 Communications . 65

2.2.3 The Adversary . 68

2.3 Secure and Self-Stabilizing Clock Synchronization 71

2.3.1 Beacon and Response Aggregation 72

2.3.2 The Algorithm’s Pseudo-code 74

2.4 Execution System Model . 75

2.4.1 The Interleaving Model 75

2.4.2 Tracing Timestamps and Communications 78

2.4.3 Concurrent vs. Independent Broadcasts 79

2.4.4 Fair Executions . 79

2.4.5 The Task . 79

2.5 Correctness . 80

2.5.1 Scenarios in which balls are thrown into bins 81

2.5.2 The task of random broadcast scheduling 89

xii

2.5.3 Nice executions . 92

2.6 Performances of the algorithm 94

2.6.1 Optimizations . 95

2.7 Discussion . 95

2.7.1 Conclusions . 98

2.7.2 Acknowledgments . 98

Bibliography . 99

3 Paper II: A Self-stabilizing (k,r)-clustering Algorithm with Multiple

Paths for Wireless Ad-hoc Networks 105

3.1 Introduction . 106

3.1.1 Our Contribution . 108

3.1.2 Document Structure 108

3.2 System Settings . 109

3.3 Self-stabilizing Algorithm for(k, r)-clustering 109

3.4 Correctness . 113

3.4.1 Getting Enough Cluster Heads 114

3.4.2 Convergence to a Local Minimum 120

3.4.3 Message Complexity 125

3.5 Discussion . 126

3.6 Conclusions . 131

Bibliography . 131

4 Paper III: Self-stabilizing (k,r)-clustering in Clock Ra te-limited Sys-

tems 137

4.1 Introduction . 138

4.1.1 Our Contribution . 140

4.1.2 Document Structure 140

4.2 System Settings . 141

4.3 Self-stabilizing Algorithm for(k, r)-clustering 141

4.4 Correctness . 146

4.4.1 Basic properties . 147

4.4.2 Getting Enough Cluster Heads 155

xiii

4.4.3 Convergence to a Local Minimum 164

4.5 Discussion . 167

4.6 Conclusions . 170

Bibliography . 170

5 Future Work 173

xiv

List of Figures

2.1 Constants, variables and external functions 76

2.2 Macros and inlines . 77

2.3 Secure and self-stabilizing native clock sampling algorithm . . 78

3.1 Constants, variables, external functions and macros 110

3.2 Pseudocode for the clustering algorithm 111

3.3 Simulation results of the algorithm indicating that synchro-

nization of timers is not needed. HereT = gr/2, n = 39. . . . 127

3.4 Cluster head overhead over time as a ratio between numberof

cluster heads in given round over the eventually reached local

minimum number of cluster heads. HereT = gr, k = 2 and

n = 39. 128

3.5 Comparison between global optima, results of our algorithm

and worst possible local minima forn = 31 128

3.6 Convergence times from a fresh start, after 5% node additions,

after 5% node removes and after 5% node moves. HereT =

gr andn = 39. 129

xv

xvi LIST OF FIGURES

4.1 Constants, variables, external functions and macros 142

4.2 Pseudocode for the clustering algorithm 143

4.3 Pseudocode for the clustering algorithm 144

4.4 Convergence times from a fresh start, after 10% node addi-

tions, after 10% node removes and after 10% node moves. . . 168

Part I

INTRODUCTION

1
Introduction

1.1 Introduction

1.1.1 Sensor Networks

A wireless sensor network is a network of small computers, sensor nodes, that

can gather information via its sensors, do computations andcommunicate wire-

lessly with other sensor nodes. In general a wireless sensornetwork is an ad hoc

network in which the nodes organize themselves without any preexisting infras-

tructure. Nodes could be deployed randomly, e.g., by being thrown out from a

helicopter over an area that is to be monitored. Once in the area, the nodes

that survived the deployment procedure communicate with the other nodes that

happened to end up in their vicinity, and they establish an infrastructure.

There are many application areas for sensor networks. The possibilities

span areas as civil security, health care, agriculture, research, environmental,

commercial and military applications [1, 2]. There are manyparameters in these

areas that a sensor network can monitor, e.g., disaster areas, restricted areas,

wildlife, crowds, manufacturing machinery, structural integrity, earthquakes,

agriculture, traffic, pollution or even heart rates.

The sensor nodes in a sensor network are often small and quitecheap. They

can therefore be used in great numbers over a large area. Thiscan provide

3

4 CHAPTER 1.

fault tolerance, in which the system can withstand loss of sensor nodes without

losing coverage of the monitored area or losing functionality of the network.

In addition, compared to more centralized long range sensors, such a sensor

network can give a high number of more precise local readingsover large areas.

The areas monitored can be chosen according to needs and can change over

time [3]. The possibility of rapid deployment can be of high value for many

areas like medical, civil security and military. One example is rapid monitoring

of disaster areas.

Sensor nodes, in contrast to computers in general ad hoc networks, are often

very limited in computing power and memory capacity. As an example, the

popular MICAz sensor node has a 16 MHz processor and only 4 kB of RAM

memory and 128 kB of program memory [4]. These limitations restricts the

algorithms that feasibly can be used.

Furthermore, the nodes typically run on battery power and communication

is usually the most expensive activity of a sensor node. A MICAz node in

receive mode uses around 20 mA [5], which would empty 1000 mAhbatteries

in just 50 hours. The corresponding lifetime for an idle nodethat does not

communicate or sense could be several years. Thus, it is important in many

sensor networks to be conservative in communication.

A sensor network often consists of a large number of nodes. Furthermore,

nodes eventually run out of batteries and new nodes are deployed to maintain

the network. Therefore, even if the nodes are immobile, the network topology

changes over time. Thus, algorithms both have to scale well [6] and need to

cope with topology changes.

1.1.2 Security Requirements

Security is critical for many applications of sensor networks. Some concrete

examples of applications obviously needing security include border protection,

trespassing and burglar alarm systems, surveillance systems, systems dealing

with industrial secrets, and law enforcement and military applications in gen-

eral. However, just as for other kinds of networks and systems, security is

1.1. INTRODUCTION 5

important for a much wider set of applications. There are gains in attacking

many different kind of systems for different purposes. An entity that wants to

attack the network is called anadversary.

Confidentiality and privacy is needed for sensitive, classified or proprietary

information, e.g., medical data, sensitive information incivil security, industrial

secrets or military information. It is important to be able to withstand attacks

that aim to degrade the functionality of the network. Any kind of application

can come under attack from someone that wants to disturb the network. For

some applications it is critical to keep as much functionality as possible during

an attack. Applications, e.g., that monitor restricted areas might have active

adversaries that have an interest in making the sensor network report erroneous

information and the sensor network plays a critical role in maintaining security

and/or safety of the facility.

Sensor networks are deployed in areas that are to be monitored. This usually

implies that they are physically available to an adversary.Furthermore, to de-

ploy large number of nodes, they need to be inexpensive. Tamper-proof nodes

are therefore often out of the question. The limitations in computing power,

memory and battery makes many traditional security algorithms inappropriate

for use in sensor networks [7]. This also limits the cryptography possibilities,

especially for public key cryptography. Sensor networks often have very differ-

ent traffic patterns than other networks. Information usually flows between the

sensor nodes and a base station, or between nodes close to each other. Another

possibility is that someone with a smart device can query thenetwork dynam-

ically. Thus, it temporarily takes the base station role at some place in the

network topology to collect data after which it leaves the network. In any case

the traffic does not flow between any pair of nodes in general. In addition, infor-

mation is often aggregated on the way to decrease the total amount of needed

traffic. The wireless medium makes it easy for an adversary toeavesdrop on

the traffic, to jam communication or to inject messages into the network. This

combination of circumstances that holds for many sensor networks opens up

a set of security issues that needs to be addressed. It also means that security

6 CHAPTER 1.

protocols that are used in other networks, e.g., the Internet, are often unsuitable

for the sensor network setting.

The physical access to nodes, the environment and the open communication

medium makes security for sensor networks especially tricky. There are many

ways an adversary can use compromised nodes to attack the network [8]. The

adversary could place her own sensor nodes in the area to disturb or infiltrate

the network. The adversary can capture and reprogram nodes that are part of

the network. A much stronger node, e.g., a laptop, can be usedto infiltrate

and attack the network either as a new node or to replace a captured node after

extracting secret information, like cryptographic keys. Malicious nodes like

this inside the network,compromised nodes, are a challenge to deal with and

this is an important area for research. Compromised nodes can do a lot of

damage to the network. They can use and share encrypted information, they

can report erroneous information and they can degrade routing in the network.

They can behave in arbitrary ways and break protocols that are not resilient to

misbehavior. If countermeasures against misbehaving nodes are taken, they can

report innocent nodes as misbehaving.

Security is rarely something that can be added on top of insecure systems

to be able to withstand attacks. Security needs to be part of most protocols and

algorithms in the system. Otherwise the adversary can choseto direct the atten-

tion to the unsecured parts. Therefore, it is important to have secure algorithms

for all the basic services that are needed in sensor networks.

This is just a short introduction. In the following sectionsof the chapter

we are going to look at attacks towards sensor networks in general and look

at cryptography, key management, authentication, localization, clock synchro-

nization, clustering, routing, aggregation and self-stabilization in more detail.

More information on other security challenges can be found in [9], [10], [11]

and [12].

1.2. ATTACKS IN GENERAL 7

1.2 Attacks in general

1.2.1 The Adversary

An adversary is an entity that attempts to break the securityof a system. The

purpose may be to extract secret information, to gain unauthorized access to the

network or to cause harm to the network. Here, we give a brief overview of

the adversary and different general attacks against sensornetworks. Additional

details can be found in [13].

We can distinguish between apassiveand anactiveadversary:

• A passive adversary only monitors the communication link and listens to

every piece of information that passes through. The adversary uses this

information offline to try to break confidentiality to gain unauthorized

information.

• An active adversary can use all the techniques available toa passive ad-

versary. She can also interfere with the operations of the network by tam-

pering with nodes, sending messages, causing collisions, jamming com-

munications and performing other active attacks. This has the potential

to cause much greater harm to the network as it may in turn cause other

changes to the network. Here integrity and availability canbe attacked in

addition to confidentiality.

We can also distinguish between a mote-class adversary and alaptop-class

adversary:

• A mote-class adversary has access to one or a few nodes with capabilities

similar to the nodes that are deployed in the network.

• A laptop-class adversary has access to a much more powerfuldevice than

the sensor nodes, e.g., a laptop. This allows for a larger setof attack

techniques.

Finally, we can distinguish between an insider and an outsider adversary:

8 CHAPTER 1.

• An insider adversary is able to compromise or capture nodesof the net-

work or insert new nodes of her own into the network. Once thisis done

she can attack the network using these nodes.

• An outsider adversary has no such access to nodes inside thenetwork.

1.2.2 Physical Layer Attacks

Jamming

Jamming is a physical layer attack in which the adversary transmits signals over

the wireless medium to prevent other nodes from communicating because of the

signal to noise ratio being too low [14].

Tampering

The adversary gains physical access to the nodes where they are deployed. This

allows for extracting information, e.g., cryptographic keys, or even reprogram-

ming them and redeploying them. Such reprogrammedcompromisednodes can

be used in insider attacks [15].

Sensor Manipulation

The sensing hardware itself might also be spoofed or attacked. Possibilities

range from distant manipulations, e.g., by laser pointers,to local manipulations,

e.g., chemical sprays.

1.2.3 Data-link Layer Attacks

Collisions

In collision attacks the adversary sends messages that collides with specific

messages, instead of constantly jamming the medium. The adversary figures

out when a message is being sent, either from knowing detailsabout the proto-

cols the sensor nodes are running or simply by listening to the communication

medium to hear transmissions that are being started. Then, at the same time as

1.2. ATTACKS IN GENERAL 9

this message is being sent, she sends a message of her own, causing a collision

preventing other nodes from receiving the message.

Exhaustion Attacks

The batteries of sensor nodes can be exhausted if the networkfaces continuous

collisions and back-off in MAC protocols, potentially resulting in degradation

of availability.

1.2.4 Network Layer Attacks

Selective Forwarding

Malicious nodes can refuse to forward some or all messages that are supposed

to be forwarded by it to other nodes. This can break many protocols or result in

delays and bandwidth degradation in the network.

Sinkholes

In a sinkhole attack a compromised node sends out incorrect routing informa-

tion to erroneously convince other nodes that it is a good node to route through

to, e.g., towards a base station [16]. This allows for largerimpact for selective

forwarding attacks or to tamper with forwarded messages.

Sybil Attacks

A Sybil attack is when a malicious node creates its own multiple identities and

presents them to other nodes in the network [17–19]. This cangive the mali-

cious node a larger influence in many different protocols, e.g., with voting or

redundancy, than it would have just using its own identity.

Hello Floods

A laptop-class adversary broadcasts messages with powerful signals reaching

a large portion of the network. Being regarded as a neighbor of many nodes it

can gain undue influence, especially in routing protocols [16].

10 CHAPTER 1.

Wormhole Attacks

Two nodes in different regions of the sensor network can launch a wormhole

attack if they share have a low latency link, separate from the normal communi-

cation channels. In this attack one of them relays messages from its neighbor-

hood to the other one that in turn replays these messages in its neighborhood.

This can lead nodes to get an incorrect view of the network topology and fool

services that relies on topology knowledge.

1.3 Cryptography, Key Management and Authen-

tication

A set of different attempts to implement secure communication specifically for

wireless sensor networks appears in the literature. Solutions such as Tiny-

Sec [20], SenSec [21], MiniSec [22], and TinyECC [23] are alldesigned to

run under TinyOS [24], a widely used operating system for sensor nodes. Con-

tikiSec [25] presents a system designed for the Contiki operating system [26].

1.3.1 Security Properties

Security properties that should be provided by a secure network layer for wire-

less sensor networks are briefly described below. After that, individual paper

contributions are discussed.

Confidentiality

Confidentiality is a basic property of any secure communication system. Confi-

dentiality guarantees that information is kept secret fromunauthorized parties.

The typical way to achieve confidentiality is by using symmetric key cryptog-

raphy for encrypting the information with a shared secret key. Symmetric key

algorithms are often divided into stream ciphers and block ciphers. In the case

of block ciphers, a mode of operation is needed to achieve semantic security

(see below).

1.3. CRYPTOGRAPHY, KEY MANAGEMENT & AUTHENTICATION 11

Semantic Security

Semantic security guarantees that a passive adversary cannot extract partial in-

formation about the plaintext by observing the ciphertext [22]. Block ciphers do

not hide data patterns since identical plaintext blocks areencrypted into iden-

tical ciphertext blocks. Thus, a special mode of operation and an initialization

vector (IV) are often used and are needed to provide some randomization. Ini-

tialization vectors have the same length as the block and aretypically added in

clear to the ciphertext.

Integrity

Integrity guarantees that the packet has not been modified during the transmis-

sion. It is typically achieved by including a message integrity code (MIC) or a

checksum in each packet. The MIC is computed by calling a cryptographic hash

function. By comparing the current MIC with the one stated inthe packet, ma-

licious altering or accidental transmission errors can be detected. Checksums

are designed to detect only accidental transmission errors.

Authenticity

Data authenticity guarantees that legitimate parties should be able to detect

when a message is sent by unauthorized parties and reject it.One common way

to achieve authenticity is by including a message authentication code (MAC) in

each packet. The MAC of a packet is computed using a shared secret key, which

could be the same key used to encrypt the plaintext. In such a scheme, anyone

that knows this shared secret key can issue a MAC for a message. In contrast,

public key authentication algorithms can provide authentication for which any-

one that knows the public key can authenticate that a messageis from the one

entity holding the corresponding private key.

12 CHAPTER 1.

1.3.2 Symmetric Key Cryptography

In recent years, the increased need of security in wireless sensor networks has

prompted research efforts to develop and provide security modules for these

platforms. These efforts go from simple stream ciphers to public key cryptog-

raphy architectures.

SPINS [27], presented in 2002, is the first security architecture designed for

wireless sensor networks. It is optimized for resource-constrained environments

and it is composed of two secure building blocks: SNEP and µTesla. SPINS

offers data confidentiality, two-party data authentication, and data freshness.

However, SNEP was unfortunately neither fully specified norfully implemented

[20].

In 2004, TinySec [20] was presented as the first fully implemented link

layer security suite for wireless sensor networks. It is written in the nesC lan-

guage and is incorporated in the official TinyOS release. TinySec provides con-

fidentiality, message authentication, integrity, and semantic security. The de-

fault block cipher in TinySec is Skipjack, and the selected mode of operation is

CBC–CS. Skipjack has an 80-bit key length, which is expectedto make the ci-

pher insecure in the near future [28]. In order to generate a MAC, it uses Cipher

Block Chaining Message Authentication Code (CBC–MAC), which has secu-

rity deficiencies [29]. It provides semantic security with an 8-byte initialization

vector, but adds only a 2-byte counter overhead per packet. TinySec adds less

than 10% energy, latency, and bandwidth overhead.

SenSec [21] is another cryptographic layer, presented in 2005. It is in-

spired by TinySec, and also provides confidentiality, access control, integrity,

and semantic security. It uses a variant of Skipjack as the block cipher, called

Skipjack-X. In addition, SenSec provides a resilient keying mechanism.

MiniSec [22] is a secure sensor network communication architecture de-

signed to run under TinyOS. It offers confidentiality, authentication, and replay

protection. MiniSec has two operating modes, one tailored for single-source

communications, and the other tailored for multi-source broadcast communica-

tion. The authors of MiniSec chose Skipjack as the block cipher, but they do

not evaluate other block ciphers as part of their design. Themode of opera-

1.3. CRYPTOGRAPHY, KEY MANAGEMENT & AUTHENTICATION 13

tion selected in MiniSec is the OCB shared key encryption mechanism, which

simultaneously provides authenticity and confidentiality.

TinyECC [23] is a configurable library for elliptic curve cryptography oper-

ations for sensor nodes. It was released in 2008 and targets TinyOS. Compared

with the other attempts to implement public key cryptography in wireless sen-

sor networks, TinyECC provides a set of optimization switches that allow it to

be configured with different resource consumption levels. In TinyECC, the en-

ergy consumption of the cryptographic operations is on the order of millijoules,

whereas using symmetric key cryptography is on the order of microjoules [30].

1.3.3 Key Management

No cryptographic algorithms can of course be used without having the nodes

share keys in some way, regardless if it is secret keys for symmetric cryptog-

raphy or public keys for public key cryptography. There are many different

approaches to share keys in a secure manner.

Key Predistribution

In key predistribution solutions the nodes are being loadedwith keys before de-

ployment and with these keys the nodes can setup communications and possibly

generate new keys. In regards to the risk of having nodes compromised, more

sophisticated solutions are needed than merely having one master key shared

by all nodes. However, considering the other end of the spectrum, it is not gen-

erally feasible for all pair of nodes to share a unique key. That takes up far too

much storage space.

In [31], Eschenauer and Gligor present a random predistribution scheme

that starts out by drawing a number of keys randomly for each node before de-

ployment from a pool of keys. After deployment nodes discover what keys they

share with neighboring nodes. They can then set up secure communications

using those shared keys. With properly set parameters the chance of a node

sharing at least one key with a certain neighbor is high.

14 CHAPTER 1.

To increase the resiliency against compromised nodes in thenetwork Chan

et al. propose in [32] a method in which it is not enough to justshare one

pregenerated key but a certain number of pregenerated keys.Other methods set

a threshold on the number of compromised nodes that can be tolerated. These

include [33], [34] and [35].

Various methods, e.g., [36], [37], [38], [39] and [40], aim to reduce the

overhead of key predistribution by taking into account roughly which areas dif-

ferent nodes will be deployed in and predistribute keys accordingly to reduce

the number of needed keys for nodes to keep track of.

The SecLEACH protocol in [41] adapts the idea in [31] to set upsecure

communications for the changing clusters generated by the cluster algorithm

in [42].

The previous methods are all probabilistic in the sense thatthere were no

guarantees that a certain pair of nodes would share keys witheach other. Chan

and Perrig presents a method in [43] in which nodes deterministically set up
√
n different keys per node using other nodes as trusted intermediaries. Here

n is the size of the network and each key is a pairwise key sharedby only two

nodes.

Other Mechanisms

Zhu et al. reason in [44] that in many systems it takes a longertime for an ad-

versary to compromise nodes than for nodes to set up keys between themselves.

They use a global predistributed key together with unique node identifiers to set

up pairwise keys with direct neighbors and to set up a clusterkey for a cluster

of nodes. This predistributed key is erased to limit the effect of compromised

nodes. They also present an efficient way for the base stationto share pairwise

keys with each node in the network and discuss how to update a global network

key in case of node compromise.

Anderson et al. present a technique in [45] in which keys are generated

and transmitted in clear text. Assuming that an eavesdropping adversary can-

not eavesdrop everywhere at once, not all keys will be known to an adversary.

Nodes then take help from other nodes to reinforce the security of keys so that

1.3. CRYPTOGRAPHY, KEY MANAGEMENT & AUTHENTICATION 15

a key that might be known by the adversary gets updated to a keythat is not

known even if the adversary listens in on the update messages. In [46], Cvrcek

and Svenda verify results from [45] and introduces a variantof the key rein-

forcement scheme. Miller and Vaidya also exchange keys in the clear in [47],

but use multiple channels to make it hard for an eavesdropping adversary to get

hold of more than a few of the keys that are being broadcast in its vicinity.

In [48], Oliveira et al. set up keys in clustered heterogeneous networks be-

tween nodes and their cluster heads. They use a hybrid approach by partly using

predistributed keys and partly setting up new keys between nodes.

More details on key management in wireless sensor networks can be found

in the survey by Camtepe and Yener in [49] and the review by Zhang and Varad-

harajan [50].

1.3.4 Authentication

Authentication is a keystone for secure protocols. Public key based authentica-

tion schemes are very powerful, but may be too expensive for sensor networks.

The SNEP protocol in [27], the LEAP protocol in [44], the TinySec protocol

in [20] and an AES-based protocol in [51] provide node to nodeauthentication

without resorting to public key cryptography. In [52], an algorithm is presented

that is specifically aimed for ZigBee networks that has already been organized

into clusters.

Broadcast Authentication

Broadcasting is important for many sensor network services. Thus there is a

need for authenticating broadcasts in an efficient manner.

In [27], Perrig et al. also introduce the µTESLA algorithm for authenticating

broadcasts. The basic idea is as follows. A chain of keys is created in reverse.

A key in the chain is generated by using a one-way hash function on the next

key of the chain. Time is divided into timeslots and one key isassigned for

each timeslot. The creator of the keys can in one timeslot send a message with

a MAC calculated by a key in the chain. In a later timeslot it can reveal the later

16 CHAPTER 1.

key in the chain, which only the creator of the key chain can do. In that way

it authenticates that it sent the message. The last key of thechain, that is not

the hash of some other key, needs to be distributed and authenticated separately,

which requires predistribution. In [53], Liu and Ning reduce the setup require-

ments and increase the robustness of µTESLA. In [54], Liu andNing introduce

multi-level key chains to allow for better scaling. Liu et al. add revocation pos-

sibilities to µTESLA in [55] and using basic µTESLA as a building block allows

for better scaling with reduced storage needs and better resiliency against de-

nial of service attacks. Luk et al. present in [56] the RPT protocol, based on

µTESLA, that is specially suited for authenticating broadcasts that are sent at

regular times. They also present the LEA protocol that is aimed for broadcasts

with low entropy. They discuss different properties of broadcast authentication

and what protocols to use depending on the underlying needs of a system.

User Authentication

Separate from the authentication problem, where nodes authenticate themselves

to each other, is the user authentication problem, where a user of the network

is being authenticated by the nodes in the network. Just as for node to node

authentication, different methods are based on tools like public key cryptogra-

phy, symmetric key cryptography and one way hash functions.The user that is

being authenticated can often be assumed to be much more powerful in terms

of processing power, memory, storage, etc.

For node to node authentication in a static network there might be no need

for any node to be able to authenticate any other node. In contrast, for user

authentication, it might be required for any node in the network to be able to

authenticate any user. Additional challenges arise when there is a need for

privacy for the users. For details on this topic, we refer thereader to papers

such as [57], [58], [59], [60], [61] and [62].

1.4. LOCALIZATION 17

1.4 Localization

1.4.1 The Importance of Localization

Localization is the service providing information about where sensor nodes are

located. This is needed to identify where different events happened, both by

knowing the location of the nodes sensing the event and, using multiple coop-

erating sensors, where the event itself took place. Geographic location infor-

mation is also needed for other services like geographic routing, geographic

information querying, geographic key distribution, location-based authentica-

tion and checking geographic network coverage. It is also useful if the nodes

themselves need to be found, e.g., for repairs or battery changes, or to find

resources tagged by sensor nodes.

1.4.2 Localization Techniques

The easiest method to localize sensor nodes is to use GPS. However, this can

be unfeasible due to several reasons: (1) it makes the nodes more expensive,

(2) it drains batteries much quicker, and (3) it makes the nodes larger. Also,

GPS does not work properly in all environments such as indoors, between tall

buildings, etc.

There are two basic categories of localization algorithms.The first one

is based on so called infrastructure-based techniques in which there are some

entities called beacons, possibly a subset of the sensor nodes themselves, that

are equipped with GPS or know their location by some other means. With the

help of these beacons the location of the regular nodes in thenetwork can be

calculated. The second category include autonomous techniques in which no

such special hardware or infrastructures are available. Another characteristic is

if a protocol is range-dependent or range-independent, i.e., whether there is a

need to calculate distances between nodes.

The usual way to measure the location of a node is to collect data from

nodes in the neighborhood and use this information to calculate the node’s lo-

cation. The information needed include distances and/or angles to other nodes

18 CHAPTER 1.

together with their respective locations. Distances can becalculated using sig-

nal strength or receive time of signals. Finally, the location can be calculated

using techniques like triangulation, trilateration or multilateration.

1.4.3 Attacks Against Localization

Attacks include beacon nodes reporting false locations in beacon messages, or-

dinary nodes reporting false locations for location verification techniques, mis-

representing distances, e.g., by sending with a different transmission power in

signal strength base techniques or using delay attacks (seeSection 1.5.3) to mis-

represent signal propagation times. Impersonation, wormhole attacks and Sybil

attacks can also be used to fool nodes to calculate incorrectlocations [63].

1.4.4 Secure Localization

The SeRLoc protocol in [64] is a range-independent protocolin which the nodes

of the network are divided into two sets. One set of nodes haveomnidirectional

antennas and the other set, the locators, are equipped with directional antennas.

The locators send out different beacons in different directions that contain the

position of the locator and the broadcasting angle of the antenna. The normal

nodes use these beacons to calculate their position. As the non-locator nodes

do not participate actively in the protocol, the locators ortheir messages would

be the points that adversaries are most interested in manipulating to attack the

protocol. The nodes and locators share a symmetric key that is used to encrypt

the location information. The beacons are authenticated bya one-way hash

chain. The protocol defends against a set of compromised nodes and wormhole

attacks.

In [65], Zeng et al. improve the Monte Carlo based localization technique

for mobile sensor networks described in [66]. They add authentication, filter

out inconsistent values and add a new sampling method to be used in case of

detected attacks.

Chen et al. present three localization techniques in [67], that use detection

mechanisms to detect and disregard nodes with malicious behavior. The detec-

1.4. LOCALIZATION 19

tion mechanisms look for nodes that send multiple messages when they should

only send one, pair of nodes that claim to be further away fromeach other than

possible given that both were heard by the same node, and nodes that do not act

consistently with other nodes. Furthermore, nodes that actconsistently with al-

ready detected misbehaving nodes are also deemed misbehaving. In [68], Chen

et al. present a wormhole localization algorithm based on distance inconsisten-

cies and inconsistencies where nodes receive their own messages or the same

message multiple times. The algorithm can not deal with packet loss though,

but is further refined in [69] where packet loss is taken care of.

Iqbal and Murshed use trilateration in [70] on all possible subsets of size

three of the neighboring beacon nodes to find out the area thatdata from most

triplets produce. Thus, many malicious beacons need to collude to sway the

result of a node as long as fair number of honest beacons are inrange of that

node. Simulations compare the algorithm favorably with theEARMMSE algo-

rithm in [71].

Algorithms that use received signal strength to calculate distances for use

in localization calculations are vulnerable to attacks that tamper with received

signal strength, e.g., by placing absorbing or reflecting materials in the area.

In [72], Li suggests that algorithms should instead be implemented using signal

strength differences to be resilient against such attacks.

In [73], Jadliwala et al. investigate under which conditions location errors

can be bounded in a setting with captured beacon nodes. They show a lower

bound on the number of captured nodes and describe a class of algorithms that

can bound the location error. They also present and evaluatethree algorithms

that are in this class.

In [74], Mi et al. present a technique for secure localization (together with

location-based key distribution) in networks that are manually deployed with

a GPS equipped master node. They defend against wormhole attacks, restrict

impact of insider nodes and propose using motion sensors as abackup if the

GPS module becomes unusable, possibly due to an attack.

20 CHAPTER 1.

In [75], Wozniak et al. investigate the robustness using least median squares

in a multi-hop distance vector technique and present modifications that need to

be made in order to withstand attacks.

Above we have described major recent results, but more details can be found

in the surveys [63], [76], [77] and [78] that exclusively look at the topic of

secure localization.

1.5 Clock Synchronization

1.5.1 The Importance of Clock Synchronization

Many wireless sensor network applications and protocols need a shared view of

time. Examples include localization schemes, pinpointingand tracking events,

scheduling of a shared radio medium, e.g., using Time Division Multiple Ac-

cess (TDMA), detecting duplicate events. For some applications the precision

needs to be very high. Therefore, clock synchronization protocols are crucial

for wireless sensor networks. Broadly speaking, existing clock synchronization

protocols for more general networks are too expensive for sensor networks be-

cause of the nature of the hardware and the limited resourcesthat sensor nodes

have.

1.5.2 Clock Synchronization Techniques

Elson et al. present the reference broadcast synchronization technique in [79],

in which beacon nodes are broadcast wirelessly. Due to the wireless medium

different recipients will receive the beacon at more or lessthe same time, thus

having a common event to relate to. All recipients of the beacon sample the

clock when they receive it, and by comparing their clock samples they can ap-

proximate offsets between their respective clocks.

Another technique for approximate clock offsets is the round-trip synchro-

nization technique used by Ganeriwal et al. in the TPSN protocol described

in [80]. A message is sent from nodeA to nodeB and another message back

from B to A. By sampling the clocks at send and receive of the two messages,

1.5. CLOCK SYNCHRONIZATION 21

the clock offset can be approximated, given that the delays for the two messages

are close to equal. The delay can also be approximated from this information,

given that the clock rates are approximately equal. This canbe useful, espe-

cially when a long delay can be a sign of an attack.

A third technique that Maroti et al. use in the FTSP protocol in [81] is to

have a clock source and then using a hierarchy to flood the timefrom the source

outwards, with nodes synchronizing their time to the closest node higher up in

the hierarchy that they received the time from.

The clocks of the nodes can be synchronized using the approximations of

clock offsets gained by the above techniques. Elson et al. [79] use linear re-

gression to deal with differences in clock rates. Their basic algorithm synchro-

nizes a cluster. Overlapping clusters with shared gateway nodes can be used

to convert timestamps among clusters. Karp et al. [82] inputclock samples for

beacon receive times into an iterative algorithm, based on resistance networks,

to converge to an estimated global time. Römer et al. [83] give an overview of

methods that use samples from other nodes to approximate their clocks. They

present phase-locked looping (PLL) as an alternative to linear regression and

present methods for estimating lower and upper bounds of neighbors’ clocks.

1.5.3 Attacks Against Clock Synchronization

One threat from insider nodes is that they can send out incorrect timestamps

used at various points in many of the common clock synchronization tech-

niques. Another threat is that the malicious nodes in some cases can be placed,

possibly due to deliberate manipulation of protocol, in important positions in

hierarchies used in global synchronization techniques.

A different threat is the so called delay attack (also known as the pulse-

delay attack) described in [84]. An adversary can receive (at least part of) a

message, jam the medium for a set of nodes before they receivethe entire mes-

sage, and then replay the message slightly later. This requires no inside nodes

in the network or any cryptographic keys, but the jamming must happen at a

precise moment in time. This attack can also be performed, without the time

22 CHAPTER 1.

requirement for the jamming, by two collaborating insider nodes. The first jams

the network in a small area and the second, outside this area,receives the mes-

sage normally. Then the second node sends out the jammed beacon at a later

time or forwards it to the first node to send out at a later time.

Additional details on attacks against clock synchronization in wireless sen-

sor networks can be found in [85].

1.5.4 Secure Clock Synchronization Techniques

Song et al. present in [86] ways to detect bad timestamp values from insider

nodes using a roundtrip synchronization approach and two methods to filter out

such outlier values. The first uses the generalized extreme student deviate algo-

rithm and the other uses a time transformation technique to filter out timestamps

that have too large offset values.

Sun et al. present in [87] two related schemes to withstand attacks from

insider nodes. One divides nodes into levels depending on their distance to a

clock source node by comparing pairwise clock differences in a chain between

the nodes and the source. The other uses a diffusion scheme that allows for any

pair of nodes to compare clock differences with each other. The authors also

show how to use several source nodes for this second scheme. The first scheme

is more efficient and provides better precision, whereas thesecond provides

better coverage. The algorithms are vulnerable to delay attacks though.

Sun et al. present in [88] a two-phase algorithm where one phase uses a

roundtrip synchronization technique to give a basic pairwise synchronization

between nodes. They present a way to both timestamp and add authentication

to messages on the fly while transmitting to be able to timestamp as close as pos-

sible to the actual transmission. Phase two adapts the µTesla solution from [27]

to get local broadcast authentication (which needs the loose synchronization

from phase one) and achieves global synchronization. Key chains of rapidly

expiring keys defend against delay attacks.

Sanchez synchronizes nodes both pairwise and, in a clustered network, clus-

terwise in [89], using the round-trip synchronization technique. They take duty

1.5. CLOCK SYNCHRONIZATION 23

cycling into account so that nodes can be sleeping between synchronization

rounds and their technique defends against some nodes in thenetwork being

compromised.

Ganeriwal et al. present a family of clock synchronization algorithms in [84]

and [90]. They are based on the roundtrip synchronization technique in [80]

and filter out over-delayed message exchanges to fend against delay attacks

and compromised nodes. They present both single and multi-hop pairwise syn-

chronization techniques as well as group synchronization techniques, where

some can deal with insider attacks from compromised nodes and some can not.

Byzantine agreement is used to get a group synchronization algorithm that with-

stands insider attacks in the group synchronization.

Hoepman et al. present in [91] a secure clock synchronization algorithm

with a randomized clock sampling algorithm at the core. The algorithm is re-

silient against both delay attacks and attacks from insidernodes. Moreover, the

algorithm is self-stabilizing. The clock sampling allows acombination of get-

ting the precision of the reference broadcast technique were many nodes have

common points with the ability of the roundtrip synchronization technique to

detect spurious delays.

Hu et al. [92] consider under-water sensor networks where nodes commu-

nicate using acoustic means and may be following streaming water. Nodes

deployed at different depths move at different speeds. In this setting the propa-

gation delay is variable and far from negligible and must be taken into account.

They propose a method that synchronizes clocks vertically,between nodes at

different depths. They consider insider attacks from compromised nodes and

use various statistical methods to detect and defend against such attacks.

Li et al. build up a hierarchy under a base station in [93] and use overhear-

ing to get verification that nodes do not send out incorrect data. Hu et al. use an

FTSP style flooding protocol in [94] and use a system of predicting future clock

values to detect attacks from insider nodes. Roosta et al. propose in [95] a set

of attack countermeasures for the FTSP protocol and presentresults from their

testbed implementation. Chen and Leneutre propose a methodusing one-way

hash chains in [96] to ensure authenticity and integrity of synchronization bea-

24 CHAPTER 1.

cons. Rasmussen et al. show in [97] methods to protect against attacks towards

localization and clock synchronization protocols with thehelp of external navi-

gation stations. Farrugia and Simon use a cross-network spanning tree in which

the clock values propagate for global clock synchronization in [98]. They use

passive overhearing to let some nodes synchronize without the need of active

participation. They defend against replay and worm-hole attacks. Du et al.

discuss in [99] how to take advantage of high-end nodes with GPS to improve

efficiency for secure clock synchronization. Secure clock synchronization in

wireless sensor networks is also discussed in [100].

1.6 Clustering

1.6.1 The Importance of Clustering

Clustering nodes together into groups is an important low level service for wire-

less sensor networks. Sensor networks, like other ad-hoc networks, need to or-

ganize themselves after deployment. Clustering sets up a structure, e.g., for

forming backbones, for routing in general, for aggregatingdata from many

nodes to reduce the amount of data that needs to be sent through the network,

for building hierarchies that allow for scaling and for nodes to take turns doing

energy-intensive tasks.

1.6.2 Clustering Techniques

One way of clustering nodes in a network is to have nodes associating them-

selves with one or more cluster heads. In the (k,r)-clustering problem, each

node in the network should have at leastk cluster heads withinr communi-

cation hops away. This might not be possible for all nodes if the number of

nodes withinr hops is smaller thank. In such cases a best effort approach can

be taken for getting as close tok cluster heads as possible. Assuming that the

network allowsk cluster heads for each node, the set of cluster heads forms a

(k,r)-dominating set in the network. If the cluster heads need to havek cluster

heads as well, it forms atotal (k,r)-dominating set, in contrast to an ordinary

1.6. CLUSTERING 25

(k,r)-dominating set in which this is only required for nodes not in the set. The

clustering should be achieved with as few cluster heads as possible. Finding the

global minimum number of cluster heads is in general NP complete, so algo-

rithms usually provide an approximation instead. Many algorithms are limited

to providing (1,1)-clustering and some provide (1,r)-clustering, (k,1)-clustering

or other subsets of (k,r)-clustering.

Some clustering algorithms provide a number of cluster heads but do not

make sure that a certain node has a number of cluster heads within some certain

radius, but instead use random approaches to get a good statistical coverage.

Another way of providing clusters is for nodes to assign themselves to dif-

ferent clusters without any nodes being assigned as clusterheads. Often these

clusters are based on cliques, sets of nodes that forms a complete graph.

A general overview of clustering in wireless sensor networks can be found

in [101] by Abbasi and Younis. A survey on clustering wireless ad-hoc net-

works in general can be found in [102].

1.6.3 Attacks against clustering algorithms

As for other services, an adversary can disturb protocols from the outside, e.g.,

by jamming the network, causing collisions, inserting false messages and re-

playing possibly altered messages. Apart from defending against such outside

attacks, it is important to take attacks by malicious insider nodes into account.

By not following protocol, malicious nodes can make sure to be cluster

heads whenever they want in protocols where nodes declare that they are clus-

ter heads with a certain probability. Thus they can gain an undue influence

in the network and from there have a better platform to launchattacks against

other protocols that is running on top of the clustering service. Instead of as-

signing cluster heads, other algorithms form clusters of nodes by agreeing upon

group membership. For such algorithms, a malicious node cansend conflicting

information to other nodes so that they cannot agree on whichnodes are part

of which groups. For multi-hop clustering a malicious node can forward false

information on which nodes are cluster heads and which are not.

26 CHAPTER 1.

1.6.4 Secure Clustering Algorithms

In [103], Sun et al. present a secure clustering algorithm that divides the net-

work into disjoint cliques, sets of nodes that all can communicate directly with

each other and where each node belongs to exactly one clique (possibly by it-

self). No cluster heads are assigned. The algorithm takes compromised nodes

into account. The use of signed messages allows for nodes to be able to prove

misbehavior of malicious nodes to be able to remove them fromconsideration.

The SLEACH algorithm that Wang et al. present in [104] is based on the

LEACH algorithm in [42]. Time is divided into rounds and in each round nodes

become cluster heads with a certain probability. To make sure that no node

can become cluster head too often, or for outsider nodes to beable to join the

protocol, extensive key exchanges are done with a base station.

Banerjee et al. present in [105] the GS-LEACH protocol. It isanother se-

cured version of the LEACH protocol. It is based on key distribution that is

done in grids with nodes within the grids taking turns being cluster heads.

Wang and Cho in [106] look at secure clustering from a secure election point

of view and present a scheme based on signal strength to defend against attacks

that try to split an agreement of election results.

1.6.5 Self-stabilizing Clustering Algorithms

There is a multitude of existing clustering algorithms for ad-hoc networks of

which a number are self-stabilizing. Johnen and Nguyen present a self-stabilizing

(1,1)-clustering algorithm that converges fast in [107]. Dolev and Tzachar

tackle a lot of organizational problems in a self-stabilizing manner in [108]. As

part of this work they present a self-stabilizing (1,r)-clustering algorithm. Caron

et al. present a self-stabilizing (1,r)-clustering in [109] that takes weighted graphs

into account. Larsson and Tsigas present a self-stabilizing (k,r)-clustering algo-

rithm in [110] and [111].

1.7. ROUTING 27

1.7 Routing

1.7.1 The Importance of Routing

Unless the user of the network moves around in the area the network is de-

ployed in and collects data directly from the nodes, information needs to be

sent through the network. Therefore the nodes need to solve the routing prob-

lem, i.e., how to forward messages through the network when amessage needs

to travel from some node to another. At times there is only a need for infor-

mation to flow between each sensor node and the base station. Therefore some

algorithms only take care of routing to and from a base station.

1.7.2 Attacks Against Routing Protocols

We present an overview of different attacks that can be used to interfere with

routing protocols below. Many of the attack techniques are being used against

many other types of protocols, but some, like sinkhole attacks, are specifically

aimed against routing protocols. For further details we refer the reader to [16].

Wormhole Attacks

The idea of the wormhole attack is to tunnel messages via a lowlatency link

between two compromised nodes and replay them in different parts of the net-

work. This can disrupt routing protocols as other nodes willget an incorrect

view of the network topology. If one of the compromised nodesis close to

the base station, the other compromised node can launch a sinkhole attack (see

description below).

Sybil Attacks

By presenting multiple identities to the other nodes of the network a node can

increase its chances of being included in many communication paths in the

network. Other nodes will not realize that these identitiesin fact belongs to one

physical node.

28 CHAPTER 1.

Clone Attacks

This attack is a relative of the Sybil attack where a node actsusing multiple

existing identities. Keys or other credentials from different captured nodes are

being used by different compromised nodes in many differentplaces in the net-

work to maximize the possible damage. By being located in different regions no

legitimate nodes can directly hear different traffic sources using the same cre-

dentials. Therefore, by having many compromised nodes presenting themselves

as many legitimate nodes each, they can gain a large influencein the network.

Selective Forwarding

A simple form of the selective forwarding attack is for a compromised node

to act like a “black hole” by refusing to forward any messages. However, in

many protocols this results in the node being regarded as dead and thereafter

being excluded from consideration. A more effective attackcan be to forward

certain messages and drop others to disturb the routing protocol itself or another

protocol running on top of the routing protocol.

Hello Flood Attacks

Many protocols, including routing protocols, exchange some form of so called

hello messages, where they present themselves to their neighbors. A laptop-

class-adversary, generating a much more powerful signals than the normal nodes,

can convince many nodes that the laptop is their neighbor anduse this fact to

get into a position were many nodes include the laptop in their routes.

Sinkhole Attacks

Sinkhole attacks are performed by a compromised node by making itself an

attractive choice for routing. The goal of this attack is to direct a lot of traffic

to a particular area of the network. This position can be usedto launch other

attacks such as selective forwarding attacks.

1.7. ROUTING 29

Routing Loop Attacks

The idea behind the routing loop attacks is to create loops inhow messages

are being routed. The result is that a message are being constantly forwarded

around in this loop, draining batteries of nodes involved inthe loop and pre-

venting the message from reaching its destination.

Using False Information

A compromised node can send out false information about its battery levels, its

distance to a base station or its location or other metrics that are used to decide

how to route. This can make it seem more attractive from othernodes’ point

of view than it really is, resulting in that the compromised node becomes part

of many routing paths after which it can launch selective forwarding or other

attacks.

Base Station Impersonation

In routing algorithms where the goal is to forward messages towards the base

station, a simple attack against an unsecured routing protocol can be claiming

to be a base station. In protocols that have many possible base stations it might

also be possible for a node to insert itself into the lists of available base station

without impersonating any existing base stations.

1.7.3 Secure Routing Algorithms

Lee and Choi present the SeRINS algorithm in [112] that uses multiple paths

to be resilient against attacks by compromised nodes. The algorithm defends

against both selective forwarding attacks and injection offalse routing data.

The SHEER algorithm by Ibriq and Mahgoub is presented in [113]. It sets

up a hierarchy and uses probabilistic transmissions with the aim to preserve

energy. It adapts to changes of battery in the network. It does not cope with

malicious insider nodes.

30 CHAPTER 1.

Yin and Madria present their SecRout, also known as ESecRout, in [114]

which is extended in [115] with more experiments and analysis. It is an algo-

rithm for routing query results from nodes towards the sink.They aim to stop

message tampering and selective forwarding attacks by using blacklisting.

Du et al. present the TTSR routing algorithm in [116] that, ina heteroge-

neous setting, takes advantage of high performance nodes scattered throughout

the network together with more limited nodes. It defends against spoofed rout-

ing information and selective forwarding, sinkhole, wormhole and hello flood

attacks.

The SeRWA algorithm in [117] uses wormhole detection to find routes in

the presence of wormhole attacks. It is based on overhearingtogether with

authentication of messages to detect when a node that is supposed to forward

a message drops it or tampers with it. Such detected malicious nodes can be

excluded and routed around.

In [118], Deng et al. present the hierarchical multiple pathrouting algorithm

INSENS. Here the nodes send their neighbor information to the base station,

that in turn chooses the multiple paths for routing. Kumar and Jena use the

same basic mechanism for their SCMRP algorithm in [119], butthey build up a

clustered hierarchy to be more energy efficient. The base station is responsible

for the cluster formation process.

For more details on secure hierarchical routing, we point the reader to the

survey in [120].

Geographic Protocols

These protocols assume that the nodes know their locations and use the geo-

graphical location knowledge to decide what routes messages should be for-

warded along.

In [121], Du et al. present the SCR algorithm, together with akey manage-

ment scheme. The geographic coordinate system is divided into a grid, or cells.

They choose redundant paths for sending a message and forward messages by

choosing cells rather than individual nodes. They defend against attacks such as

sinkhole, Sybil, wormhole, selective forwarding, hello flood and clone attacks.

1.8. AGGREGATION 31

Wood et al. present a family of secure routing protocols in [122] with vary-

ing levels of security and varying amounts of state that needs to be stored and

kept up to date. The weakest provides probabilistic defenses but does not need

to keep any state. And stronger ones provides more security guarantees but

requires to keep more state information.

The ATSR geographic routing algorithm is presented in [123]and uses a

distributed trust model to defend against attacks. It detects and excludes nodes

that do not forward messages correctly or that do not executethe trust proto-

col correctly. It also takes remaining battery levels into account when making

routing decisions to prolong the network lifetime.

1.8 Aggregation

1.8.1 The Importance of Aggregation

Often information from the sensor nodes in the network is gathered at a base

station (or by some other entity querying the network). The battery constraints

of many wireless sensor networks make it very important to limit communica-

tions. Instead of having every sensor reading being sent from every node all the

way to the base station data aggregation can be used to produce reports from

data gathered by many nodes.

1.8.2 Aggregation Techniques

There are several different aggregation techniques. One family of methods

forms a tree rooted in the base station and has parents aggregate data from

themselves and their children. Another family has cluster heads appointed by

running a clustering algorithm (see Chapter 1.6) and has these cluster heads

take the role as special aggregator nodes. Aggregation schemes can also be

classified as single aggregator or multiple aggregator schemes. In the former,

aggregation happens once for each piece of data and the report is transferred to

the base station. In the latter, aggregation happens multiple times on the way.

32 CHAPTER 1.

More details on general aggregation in wireless sensor networks can be

found in [124].

1.8.3 Secure Aggregation Algorithms

Hu and Evans introduce in [125] an aggregation method that isresilient against

malicious outsider nodes in the network and against a singlecompromised key.

Deng et al. present in [126] methods both for nodes to authenticate them-

selves towards an aggregator, and for an aggregator to authenticate itself toward

nodes it aggregates data for.

There are various methods, [127], [128], [129], [130] and [131], with the

common denominator that an aggregator needs some form of certificate from

the node it aggregates for.

Data injection attacks are done by compromised insider nodes that inject

false data to skew the aggregated value [132, 133]. Algorithms for which the

largest possible influence done by data injection attacks isproportional to the

number of compromised nodes are said to achieveoptimal security. The al-

gorithms in [133], [134] and [135] all achieve optimal security. However the

amount of communication required for a single node might beO(log n) and

they require two round-trip communication rounds between the base station and

the nodes of the network. Miyaji and Omote present in [136] analgorithm that

achieves optimal security with anO(1) communication load per node and only

one round-trip communication round by assuming a weaker adversary model

in which the adversary cannot compromise keys of both a node and its parent

node.

Aggregating Encrypted Data

Some aggregation algorithms use homomorphic encryption techniques. Such

techniques aggregate encrypted data without the need of decryption. In this way

data from one node can be kept secret from other nodes, but still be aggregated.

Let D be a decrypting function andE the corresponding encrypting function.

The cryptographic algorithm is additively homomorphic ifD(E(a) + E(b)) =

1.9. SELF-STABILIZATION 33

a + b, for anya andb. In the same way it is multiplicatively homomorphic if

D(E(a) · E(b)) = a · b.
Castelluccia et al. present in [137] how to use an additive homomorphic

encryption scheme to let nodes keep their data private whilestill being able to

efficiently calculate functions over the data from different nodes. They support

calculating sums, mean variances and standard deviations.Parent nodes in a

tree can aggregate encrypted data from their children without any decryption.

Moreover, the method defends against outside tampering of any data with an

authentication scheme. However, there is no prevention to avoid bad values

from a node inside the network.

In [138], Huang et al. present a single aggregator scheme forkeeping sensor

data private. It provides an encryption method that lets an aggregator evaluate

if two of its children provide the same data without revealing the value itself.

In [139], Ozdemir and Xiao present an algorithm that allows for aggregation of

data encrypted with different encryption keys in differentregions. Bahi et al.

achieve homomorphic encryption using elliptic cryptography in [140]. Other

algorithms involving homomorphic encryption include [141], [142], [143] and

[144].

Further Reading on Secure Aggregation

More details on secure data aggregation for wireless sensornetworks can be

found in the surveys [145], [146], [147], and [148].

1.9 Self-stabilization

Self-stabilizing algorithms [149–151] cope with the occurrence of transient

faults in an elegant way. Starting from an arbitrary state, self-stabilizing al-

gorithms let a system stabilize to and stay in a consistent state as long as the

algorithms’ assumptions hold for a sufficiently long period.

There are many reasons why a system could end up in an inconsistent state

of some kind. Assumptions that algorithms rely on could temporarily be invalid.

34 CHAPTER 1.

Memory content could be changed by radiation or other elements of harsh en-

vironments. Messages could temporarily get lost to a much higher degree than

anticipated. Topology changes happens when nodes eventually run out of mem-

ory, if they get physically destroyed in harsh environmentsor when new nodes

are added to the network to maintain coverage. Such topologychanges could

break assumptions and lead to temporary inconsistencies. It is often not feasi-

ble to manually reconfigure large ad-hoc networks to recoverfrom events like

this. Self-stabilization is therefore often a desirable property of algorithms for

ad-hoc networks and especially for sensor networks [152].

In the sensor network setting assumptions about the system could eventu-

ally be violated when an adversary, far more powerful than the limited sensor

nodes, starts disturbing the sensor network. An example is atemporary denial

of service attack that disturbs communications to a level where assumptions

about message throughput are violated. It can be hard to anticipate all possi-

ble states the network could end up in after an attack. Large numbers of nodes

could get compromised and send incorrect information, nodes could be physi-

cally attacked in different ways or the adversary might jam the communication

medium. Self-stabilization makes sure that the network canrecover from any

state as long as assumptions hold once again, e.g., after theadversary has been

chased away or more nodes have been added to the network.

As an example, the secure and self-stabilizing clock synchronization algo-

rithm presented in [153] and [91] assumes that there is an upper bound on the

fraction of sent messages from each node that are being lost due to malicious

collisions or attacks. The underlying assumption is that anadversary wishes to

remain undetected and therefore does not jam or produce collisions for all mes-

sages of a node. In a situation where this bound assumption does not hold, e.g.,

if the adversary attacks more messages than that, the algorithm cannot guarantee

to deliver the specified level of service. In this case it cannot guarantee to share

a complete set of timestamps between neighboring nodes withhigh probabil-

ity within a certain time span. When message delivery assumptions once again

hold, e.g., after the adversary is detected and chased off, the algorithm can, due

1.10. OUR RESEARCH APPROACH 35

to the self-stabilizing property, quickly recover and deliver the promised level

of service.

1.10 Our Research Approach

As we have seen above, both security and self-stabilizationare preferable char-

acteristics for algorithms used in sensor networks in open and unattended envi-

ronments. We have also seen that compromised nodes can do a lot of damage.

For many needs there are either secure or self-stabilizing algorithms, but often

not secure and self-stabilizing. Moreover, many algorithms that take security

into account does not take compromised nodes into account.

Our approach is to provide high level networking protocols for sensor net-

works and/or ad hoc networks that are self-stabilizing and that takes security

into account. We aim for solutions that can withstand both faults and attacks.

We saw above that compromised nodes inside the network can mislead other

nodes in the network and/or disturb the functionality of thenetwork. This is an

important area of research and a serious threat. We take thisinto account in our

research.

We have looked at two fundamental network services, clock synchroniza-

tion and clustering. For many applications it is critical that the nodes have a

shared view of time with high precision. For that, clock synchronization pro-

tocols are needed. Examples of areas that requires high precision global time

include pinpointing and tracking events, e.g. fire propagation and intrusions,

scheduling shared radio medium, e.g. using Time Division Multiple Access

(TDMA), and detecting duplicate events. Clustering nodes together into groups

is a basic need for sensor networks. Sensor networks and other ad hoc networks

need to organize themselves after deployment. Clustering sets up a structure

that, e.g., can be used for nodes to take turns doing energy intensive tasks and

for aggregating data from many nodes to reduce the amount of data that needs

to be sent through the network. It can also be used for formingcommunication

backbones, for routing and for building hierarchies that allow for better scaling.

36 CHAPTER 1.

1.11 Contributions

1.11.1 Paper I: Secure and Self-stabilizing Clock Synchro-

nization in Sensor Networks

As we have seen above, accurate clock synchronization is imperative for many

applications in sensor networks. In the first paper, we propose the first self-

stabilizing algorithm for clock synchronization in sensornetworks with security

concerns. We consider an adversary that capture nodes and intercepts messages

that it later replays – a so calledpulse delay attack. Our algorithm guaran-

tees automatic recovery after failures from an arbitrary state. Moreover, the

algorithm tolerates message omission failures that might occur, say, due to the

algorithm’s message collisions or due to ambient noise.

The core of our clock synchronization algorithm is a mechanism for sam-

pling the clocks of neighboring nodes in the network. Of especial importance is

the sampling of clocks at reception of broadcasts called beacons. A beacon acts

as a shared reference point because nodes receive it at approximately the same

time (propagation delay is negligible for these radio transmissions).

The algorithm secures, with high probability, sets of complete neighbor-

hood clock samples with a period that isO((log n)2) times the optimum. The

optimum requires, in the worst case, the communication of atleastO(n2) times-

tamps. Heren is a bound on the number of sensor nodes that can interfere with

a node. Our design tolerates transient failures and self-stabilizes from an ar-

bitrary configuration that could have been created when assumptions did not

hold. Once all assumptions hold again, the system will stabilize within one

communication timeslot (that is of sizeO(n log n)).

1.11.2 Paper II: A Self-stabilizing (k,r)-clustering Algorithm

with Multiple Paths for Wireless Ad-hoc Networks

As we have seen, in large sensor networks it is often important for the nodes to

organize themselves into some infrastructure. Thus, an algorithm for clustering

nodes together in an ad hoc network serves an important role.

1.12. CONCLUSIONS & FUTURE WORK 37

In the second paper, we present the first distributed self-stabilizing (k, r)-

clustering algorithm for ad hoc networks. The algorithm is based on syn-

chronous rounds and makes sure that, withinO(r) rounds, all nodes have at

leastk cluster heads (or all nodes withinr hops if a node has less thank nodes

within r hops) using a deterministic scheme. A randomized scheme comple-

ments the deterministic scheme and lets the set of cluster heads to stabilize to

a local minimum, with high probability, withinO(gr log n) rounds, whereg

is a bound on number of nodes within2r hops, andn is the size of the net-

work. Multiple paths are used to improve security in presence of compromised

nodes, to improve availability and fault tolerance. The algorithm assumes that

all communication is reliable.

The communication costs in this algorithm might be too steepfor some sen-

sor network nodes. We discuss some simplifications of the network structure to

reduce message complexity to make it more suitable for such sensor networks.

1.11.3 Paper III: Self-stabilizing (k,r)-clustering in Clock Rate-

limited Systems

In the third paper we develop the algorithm from the second paper further to

make it more general. That algorithm assumes perfect message transfers and

lock step synchronization of the nodes. With regards to message loss, in this

article we only assume that out of a certain number of messages, at least one is

transmitted successfully. Furthermore, we only assume a limit on differences in

the clock rate of the local clocks of nodes with no synchronization between the

nodes.

In addition to the more general system settings, a veto mechanism against

nodes leaving the role as a cluster head is introduced to speed up convergence.

1.12 Conclusions & Future Work

In this thesis, we have presented three self-stabilizing high level networking

protocols that takes security into account in some way. One secure algorithm for

38 CHAPTER 1.

clock synchronization and two for clustering with redundancy that can improve

security. Both services are crucial needs for many sensor networks and other ad

hoc networks.

With all the potential application areas, security is goingto become more

and more important for sensor networks in the future. Mass production of small

cheap nodes will open up endless possibilities, but also open up easy venues of

attacks. The general physical availability of sensor nodestogether with the pos-

sibility for an attacker to capture and/or insert controlled nodes implies that it is

of utmost importance to defend against insider attacks in the network. Intrusion

detection is also something that could be of help in these situations. Together

with the possibilities to monitor all kinds of data in all kinds of places comes

the importance of privacy, especially in areas like medicine and monitoring of

public places.

To allow for secure and self-stabilizing applications to bewidely deployed

in large scale networks many fundamental network services are needed. More

research needs to be done to provide algorithms for these services that are both

self-stabilizing and take security into account. Especially important is to defend

against attacks from nodes within the network. Another interesting direction is

to combine different protocols together into a secure and fault tolerant package

for increased efficiency and ease of use.

There is more to be done in terms of analyzing our clustering algorithm

and the result of the clustering. We would like to quantitatively measure what

security properties we can get from the multiple paths that are provided in the

clustering algorithm. We also want to investigate ways to choose among possi-

ble paths to retain as much redundancy as possible without relying on flooding

when building on top of the (k,r)-clustering algorithms.

Bibliography

[1] Deborah Estrin, Ramesh Govindan, John Heidemann, and Satish Kumar, “Next

century challenges: scalable coordination in sensor networks,” inMobiCom ’99:

BIBLIOGRAPHY 39

Proceedings of the 5th annual ACM/IEEE international conference on Mobile

computing and networking, New York, NY, USA, 1999, pp. 263–270, ACM.

[2] I.F. Akyildiz, Weilian Su, Y. Sankarasubramaniam, and E. Cayirci,“A survey on

sensor networks,”Communications Magazine, IEEE, vol. 40, no. 8, pp. 102 –

114, aug. 2002.

[3] J. Agre and L. Clare, “An integrated architecture for cooperativesensing net-

works,” Computer, vol. 33, no. 5, pp. 106 –108, may. 2000.

[4] “ATmega128(L),” http://www.atmel.com/dyn/resources/prod_

documents/doc2467.pdf, 2009.

[5] “MICAz data sheet,” www.openautomation.net/

uploadsproductos/micaz_datasheet.pdf.

[6] Roger Wattenhofer, “Sensor networks: Distributed algorithms reloaded - or rev-

olutions,” in 13th Colloquium on Structural Information and Communication

Complexity (SIROCCO), United Kingdom, 2006, pp. 24–28.

[7] E. Shi and A. Perrig, “Designing secure sensor networks,”Wireless Communica-

tions, IEEE, vol. 11, no. 6, pp. 38 – 43, dec. 2004.

[8] Xiangqian Chen, K. Makki, Kang Yen, and N. Pissinou, “Node compromise

modeling and its applications in sensor networks,” inComputers and Communi-

cations, 2007. ISCC 2007. 12th IEEE Symposium on, jul. 2007, pp. 575 –582.

[9] X Chen, K. Makki, Kang Yen, and N. Pissinou, “Sensor network security: a

survey,” Communications Surveys Tutorials, IEEE, vol. 11, no. 2, pp. 52 –73,

2009.

[10] Yun Zhou, Yuguang Fang, and Yanchao Zhang, “Securing wireless sensor net-

works: a survey,”Communications Surveys Tutorials, IEEE, vol. 10, no. 3, pp. 6

–28, 2008.

[11] Yong Wang, G. Attebury, and B. Ramamurthy, “A survey of security issues in

wireless sensor networks,”Communications Surveys Tutorials, IEEE, vol. 8, no.

2, pp. 2 –23, 2006.

[12] Adrian Perrig, John Stankovic, and David Wagner, “Security in wireless sensor

networks,”Commun. ACM, vol. 47, no. 6, pp. 53–57, 2004.

[13] Tanya Roosta, Shiuhpyng Shieh, and Shankar Sastry, “Taxonomy of security

attacks in sensor networks and countermeasures,” inThe First IEEE International

40 CHAPTER 1.

Conference on System Integration and Reliability Improvements, Hanoi, 2006, pp.

13–15.

[14] Murat Çakirǒglu and Ahmet Turan Özcerit, “Jamming detection mechanisms for

wireless sensor networks,” inProceedings of the 3rd international conference on

Scalable information systems, ICST, Brussels, Belgium, Belgium, 2008, InfoS-

cale ’08, pp. 4:1–4:8, ICST (Institute for Computer Sciences, Social-Informatics

and Telecommunications Engineering).

[15] Mauro Conti, Roberto Di Pietro, Luigi Vincenzo Mancini, and Alessandro Mei,

“Emergent properties: detection of the node-capture attack in mobile wireless

sensor networks,” inProceedings of the first ACM conference on Wireless network

security, New York, NY, USA, 2008, WiSec ’08, pp. 214–219, ACM.

[16] Chris Karlof and David Wagner, “Secure routing in wireless sensor networks:

Attacks and countermeasures,” inFirst IEEE International Workshop on Sensor

Network Protocols and Applications, 2003, pp. 113–127.

[17] John R. Douceur, “The sybil attack,” in1st International Workshop on Peer-to-

Peer Systems, 2002, IPTPS’02, pp. 251–260.

[18] James Newsome, Elaine Shi, Dawn Song, and Adrian Perrig, “Thesybil attack

in sensor networks: analysis & defenses,” inProceedings of the 3rd international

symposium on Information processing in sensor networks, New York, NY, USA,

2004, IPSN ’04, pp. 259–268, ACM.

[19] Wassim Znaidi, Marine Minier, and Jean-Philippe Babau, “An ontology for at-

tacks in wireless sensor networks,” Research Report RR-6704, INRIA, 2008.

[20] Chris Karlof, Naveen Sastry, and David Wagner, “Tinysec: a linklayer security

architecture for wireless sensor networks,” inProceedings of the 2nd interna-

tional conference on Embedded networked sensor systems, New York, NY, USA,

2004, SenSys ’04, pp. 162–175, ACM.

[21] Tieyan Li, Hongjun Wu, Xinkai Wang, and Feng Bao, “SenSec: Sensor security

framework for TinyOS,” Tech. Rep., Institute for Infocomm Research, Singapore,

2005.

[22] Mark Luk, Ghita Mezzour, Adrian Perrig, and Virgil Gligor, “MiniSec: A secure

sensor network communication architecture,” inProceedings of the 6th Interna-

tional Conference on Information Processing in Sensor Networks. 2007, IPSN

’07, pp. 479–488, ACM Press.

BIBLIOGRAPHY 41

[23] An Liu and Peng Ning, “TinyECC: A configurable library for elliptic curve cryp-

tography in wireless sensor networks,” inProceedings of the 7th international

conference on Information processing in sensor networks, Washington, DC, USA,

2008, IPSN ’08, pp. 245–256, IEEE Computer Society.

[24] “TinyOS,” http://www.tinyos.net.

[25] Lander Casado and Philippas Tsigas, “Contikisec: A secure network layer for

wireless sensor networks under the contiki operating system,” inProceedings

of the 14th Nordic Conference on Secure IT Systems: Identity and Privacy in

the Internet Age, Berlin, Heidelberg, 2009, NordSec ’09, pp. 133–147, Springer-

Verlag.

[26] Adam Dunkels, Bjorn Gronvall, and Thiemo Voigt, “Contiki - a lightweight and

flexible operating system for tiny networked sensors,” inProceedings of the 29th

Annual IEEE International Conference on Local Computer Networks, Washing-

ton, DC, USA, 2004, LCN ’04, pp. 455–462, IEEE Computer Society.

[27] Adrian Perrig, Robert Szewczyk, J.D̃. Tygar, Victor Wen, and David E. Culler,

“Spins: security protocols for sensor networks,”Wirel. Netw., vol. 8, no. 5, pp.

521–534, September 2002.

[28] Devesh Jinwala, Dhiren Patel, and Kankar Dasgupta, “Optimizing theblock ci-

pher and modes of operations overhead at the link layer security framework in the

wireless sensor networks,” inProceedings of the 4th International Conference on

Information Systems Security, Berlin, Heidelberg, 2008, ICISS ’08, pp. 258–272,

Springer-Verlag.

[29] Morris Dworkin, NIST Special Publication 800-38B, Recommendation for Block

Cipher Modes of Operation: The CMAC Mode for Authentication, National In-

stitute of Standards and Technology, Computer Security Division, 2005.

[30] Chih-Chun Chang, S. Muftic, and D.J. Nagel, “Measurement ofenergy costs of

security in wireless sensor nodes,” inICCCN 2007: Proceedings of 16th Interna-

tional Conference on Computer Communications and Networks, aug. 2007, pp.

95–102.

[31] Laurent Eschenauer and Virgil D. Gligor, “A key-managementscheme for dis-

tributed sensor networks,” inProceedings of the 9th ACM conference on Com-

puter and communications security, New York, NY, USA, 2002, CCS ’02, pp.

41–47, ACM.

42 CHAPTER 1.

[32] Haowen Chan, Adrian Perrig, and Dawn Song, “Random key predistribution

schemes for sensor networks,” inProceedings of the 2003 IEEE Symposium on

Security and Privacy, Washington, DC, USA, 2003, SP ’03, pp. 197–, IEEE Com-

puter Society.

[33] Donggang Liu, Peng Ning, and Rongfang Li, “Establishing pairwisekeys in

distributed sensor networks,” New York, NY, USA, February 2005, vol. 8, pp.

41–77, ACM.

[34] Wenliang Du, Jing Deng, Yunghsiang S. Han, Pramod K. Varshney, Jonathan

Katz, and Aram Khalili, “A pairwise key predistribution scheme for wireless

sensor networks,”ACM Trans. Inf. Syst. Secur., vol. 8, pp. 228–258, May 2005.

[35] F. Delgosha and F. Fekri, “Threshold key-establishment in distributed sensor

networks using a multivariate scheme,” inProceedings of the 25th IEEE Interna-

tional Conference on Computer Communications (INFOCOM 2006), Barcelona,

Spain, April 2006.

[36] Donggang Liu and Peng Ning, “Location-based pairwise key establishments for

static sensor networks,” inProceedings of the 1st ACM workshop on Security of

ad hoc and sensor networks, New York, NY, USA, 2003, SASN ’03, pp. 72–82,

ACM.

[37] Dijiang Huang, Manish Mehta, Deep Medhi, and Lein Harn, “Location-aware

key management scheme for wireless sensor networks,” inProceedings of the

2nd ACM workshop on Security of ad hoc and sensor networks, New York, NY,

USA, 2004, SASN ’04, pp. 29–42, ACM.

[38] W. Du, J. Deng, Y.S. Han, S. Chen, and P.K. Varshney, “A key management

scheme for wireless sensor networks using deployment knowledge,”in 23:rd

Annual Joint Conference of the IEEE Computer and Communications Societies

(INFOCOM 2004). IEEE, 2004, vol. 1.

[39] Hao Yang, Fan Ye, Yuan Yuan, Songwu Lu, and William Arbaugh, “Toward

resilient security in wireless sensor networks,” inProceedings of the 6th ACM in-

ternational symposium on Mobile ad hoc networking and computing, New York,

NY, USA, 2005, MobiHoc ’05, pp. 34–45, ACM.

[40] Zhen Yu and Yong Guan, “A key management scheme using deployment knowl-

edge for wireless sensor networks,”IEEE Trans. Parallel Distrib. Syst., vol. 19,

pp. 1411–1425, October 2008.

BIBLIOGRAPHY 43

[41] L.B. Oliveira, H.C. Wong, M. Bern, R. Dahab, and A.A.F. Loureiro, “Secleach

- a random key distribution solution for securing clustered sensor networks,” in

Network Computing and Applications, 2006. NCA 2006. Fifth IEEE International

Symposium on, july 2006, pp. 145 –154.

[42] Wendi Rabiner Heinzelman, Anantha Chandrakasan, and Hari Balakrishnan,

“Energy-efficient communication protocol for wireless microsensornetworks,”

in Proceedings of the 33rd Hawaii International Conference on System Sciences,

Washington, DC, USA, 2000, HICSS ’00, pp. 8020–, IEEE Computer Society.

[43] Haowen Chan, “Pike: Peer intermediaries for key establishment insensor net-

works,” in Proceedings of IEEE Infocom, 2005, pp. 524–535.

[44] Sencun Zhu, Sanjeev Setia, and Sushil Jajodia, “Leap: efficientsecurity mech-

anisms for large-scale distributed sensor networks,” inCCS ’03: Proceedings of

the 10th ACM conference on Computer and communications security, NYC, NY,

USA, 2003, pp. 62–72, ACM Press.

[45] Ross Anderson, Haowen Chan, and Adrian Perrig, “Key infection: Smart trust for

smart dust,”Proceedings of the 13:th IEEE International Conference on Network

Protocols, vol. 0, pp. 206–215, 2004.

[46] Daniel Cvrcek and Petr Svenda, “Smart dust security – key infection revisited,”

Electron. Notes Theor. Comput. Sci., vol. 157, pp. 11–25, May 2006.

[47] Matthew J. Miller and Nitin H. Vaidya, “Leveraging channel diversityfor key

establishment in wireless sensor networks,” inProceedings of the 25th IEEE

International Conference on Computer Communications (INFOCOM 2006),

Barcelona, Spain, April 2006, pp. 1–12.

[48] Leonardo B. Oliveira, Hao Chi Wong, Antonio A. F. Loureiro, and Ricardo Da-

hab, “On the design of secure protocols for hierarchical sensor networks,” Int. J.

Secur. Netw., vol. 2, no. 3/4, pp. 216–227, 2007.

[49] Seyit A. Camtepe and Bülent Yener, “Key distribution mechanisms for wireless

sensor networks: a survey,” Tech. Rep., Department of ComputerScience, Rens-

selaer Polytechnic Institute, Troy, NY, 2005.

[50] Junqi Zhang and Vijay Varadharajan, “Review: Wireless sensornetwork key

management survey and taxonomy,”J. Netw. Comput. Appl., vol. 33, pp. 63–75,

March 2010.

44 CHAPTER 1.

[51] Sherin M. Youssef, A. Baith Mohamed, and Mark A. Mikhail, “An enhanced se-

curity architecture for wireless sensor network,” inProceedings of the 8th WSEAS

international conference on Data networks, communications, computers, Stevens

Point, Wisconsin, USA, 2009, pp. 216–224, World Scientific and Engineering

Academy and Society (WSEAS).

[52] Wei Chen, Xiaoshuan Zhang, Dong Tian, and Zetian Fu, “An identity-based au-

thentication protocol for clustered zigbee network,” inProceedings of the Ad-

vanced intelligent computing theories and applications, and 6th international

conference on Intelligent computing, Berlin, Heidelberg, 2010, ICIC’10, pp. 503–

510, Springer-Verlag.

[53] Donggang Liu and Peng Ning, “Efficient distribution of key chain commitments

for broadcast authentication in distributed sensor networks,” inProceedings of the

Network and Distributed System Security Symposium (NDSS 2003), San Diego,

California, USA, 2003, The Internet Society.

[54] Donggang Liu and Peng Ning, “Multilevel µtesla: Broadcast authentication for

distributed sensor networks,”ACM Trans. Embed. Comput. Syst., vol. 3, pp. 800–

836, November 2004.

[55] D. Liu, P. Ning, S. Zhu, and S. Jajodia, “Practical broadcast authentication in

sensor networks,” inMobile and Ubiquitous Systems: Networking and Services,

2005. MobiQuitous 2005. The Second Annual International Conference on, july

2005, pp. 118 – 129.

[56] Mark Luk, Adrian Perrig, and Bram Whillock, “Seven cardinal properties of sen-

sor network broadcast authentication,” inProceedings of the fourth ACM work-

shop on Security of ad hoc and sensor networks, New York, NY, USA, 2006,

SASN ’06, pp. 147–156, ACM.

[57] Zinaida Benenson, Nils Gedicke, and Ossi Raivio, “Realizing robust user authen-

tication in sensor networks,” inProceedings of Workshop on Real-World Wireless

Sensor Networks (REALWSN’05), 2005.

[58] Canming Jiang, Bao Li, and Haixia Xu, “An efficient scheme for user authen-

tication in wireless sensor networks,” inProceedings of the 21st International

Conference on Advanced Information Networking and Applications Workshops -

Volume 01, Washington, DC, USA, 2007, AINAW ’07, pp. 438–442, IEEE Com-

puter Society.

BIBLIOGRAPHY 45

[59] Kirk H. M. Wong, Yuan Zheng, Jiannong Cao, and Shengwei Wang, “A dynamic

user authentication scheme for wireless sensor networks,” inProceedings of the

IEEE International Conference on Sensor Networks, Ubiquitous, and Trustworthy

Computing -Vol 1 (SUTC’06) - Volume 01, Washington, DC, USA, 2006, pp. 244–

251, IEEE Computer Society.

[60] H.R. Tseng, R.H. Jan, and W. Yang, “An improved dynamic user authentica-

tion scheme for wireless sensor networks,” inIEEE Global Telecommunications

Conference (GLOBECOM’07). IEEE, 2007, pp. 986–990.

[61] L.C. Ko, “A novel dynamic user authentication scheme for wireless sensor net-

works,” in Proceedings of IEEE International Symposium on Wireless Communi-

cation Systems (ISWCS ’08)., Reykjavik, Iceland, October 2008.

[62] Binod Vaidya, Joel J. Rodrigues, and Jong Hyuk Park, “User authentication

schemes with pseudonymity for ubiquitous sensor network in ngn,”Int. J. Com-

mun. Syst., vol. 23, pp. 1201–1222, September 2010.

[63] Waleed Ammar, Ahmed ElDawy, and Moustafa Youssef, “Securelocalization in

wireless sensor networks: A survey,”CoRR, vol. abs/1004.3164, 2010.

[64] Loukas Lazos and Radha Poovendran, “Serloc: Robust localization for wireless

sensor networks,”TOSN, vol. 1, no. 1, pp. 73–100, 2005.

[65] Yingpei Zeng, Jiannong Cao, Jue Hong, Shigeng Zhang, and LiXie, “Secmcl: A

secure monte carlo localization algorithm for mobile sensor networks,” inMobile

Adhoc and Sensor Systems, 2009. MASS ’09. IEEE 6th International Conference

on, oct. 2009, pp. 1054 –1059.

[66] Lingxuan Hu and David Evans, “Localization for mobile sensor networks,” in

Proceedings of the 10th annual international conference on Mobile computing

and networking, New York, NY, USA, 2004, MobiCom ’04, pp. 45–57, ACM.

[67] Honglong Chen, Wei Lou, and Zhi Wang, “A novel secure localization approach

in wireless sensor networks,”EURASIP J. Wirel. Commun. Netw., vol. 2010, pp.

12:1–12:12, February 2010.

[68] Honglong Chen, Wei Lou, and Zhi Wang, “Conflicting-set-basedwormhole at-

tack resistant localization in wireless sensor networks,” inProceedings of the

6th International Conference on Ubiquitous Intelligence and Computing, Berlin,

Heidelberg, 2009, UIC ’09, pp. 296–309, Springer-Verlag.

46 CHAPTER 1.

[69] Honglong Chen, Wei Lou, Xice Sun, and Zhi Wang, “A secure localization ap-

proach against wormhole attacks using distance consistency,”EURASIP J. Wirel.

Commun. Netw., vol. 2010, pp. 8:1–8:11, April 2010.

[70] Anindya Iqbal and M. Manzur Murshed, “Attack-resistant sensor localization

under realistic wireless signal fading,” inProceedings of the 2010 IEEE Wireless

Communications and Networking Conference, WCNC 2010, Sydney, Australia,

April 2010, pp. 1–6, IEEE.

[71] Donggang Liu, Peng Ning, An Liu, Cliff Wang, and Wenliang Kevin Du, “Attack-

resistant location estimation in wireless sensor networks,”ACM Trans. Inf. Syst.

Secur., vol. 11, pp. 22:1–22:39, July 2008.

[72] Xiaoyan Li, “Designing localization algorithms robust to signal strength attacks,”

in Proceedings of the Seventh Annual IEEE Communications Society Confer-

ence on Sensor, Mesh and Ad Hoc Communications and Networks, SECON 2010,

Boston, Massachusetts, USA, June 2010, pp. 1–3, IEEE.

[73] M. Jadliwala, Sheng Zhong, S.J. Upadhyaya, Chunming Qiao, and J.-P. Hubaux,

“Secure distance-based localization in the presence of cheating beaconnodes,”

Mobile Computing, IEEE Transactions on, vol. 9, no. 6, pp. 810 –823, june 2010.

[74] Qi Mi, John A. Stankovic, and Radu Stoleru, “Secure walking gps:a secure

localization and key distribution scheme for wireless sensor networks,” inPro-

ceedings of the Third ACM Conference on Wireless Network Security, WISEC

2010, Hoboken, New Jersey, USA, March 2010, pp. 163–168, ACM.

[75] Sander Wozniak, Tobias Gerlach, and Guenter Schaefer, “Optimization-based

secure multi-hop localization in wireless ad hoc networks,” in17th GI/ITG Con-

ference on Communication in Distributed Systems (KiVS 2011), Norbert Lutten-

berger and Hagen Peters, Eds., Dagstuhl, Germany, 2011, vol. 17 of OpenAccess

Series in Informatics (OASIcs), pp. 182–187, Schloss Dagstuhl–Leibniz-Zentrum

fuer Informatik.

[76] A. Boukerche, H.A.B. Oliveira, E.F. Nakamura, and A.A.F.Loureiro, “Secure lo-

calization algorithms for wireless sensor networks,”Communications Magazine,

IEEE, vol. 46, no. 4, pp. 96 –101, April 2008.

[77] Avinash Srinivasan and Jie Wu,A Survey on Secure Localization in Wireless

Sensor Networks, 2007.

BIBLIOGRAPHY 47

[78] Yingpei Zeng, Jiannong Cao, Jue Hong, Shigeng Zhang, and LiXie, “Secure

localization and location verification in wireless sensor networks: a survey,” The

Journal of Supercomputing, pp. 1–17, 2010, 10.1007/s11227-010-0501-4.

[79] Jeremy Elson, Lewis Girod, and Deborah Estrin, “Fine-grained network time

synchronization using reference broadcasts,”Operating Systems Review (ACM

SIGOPS), vol. 36, no. SI, pp. 147–163, 2002.

[80] Saurabh Ganeriwal, Ram Kumar, and Mani B. Srivastava, “Timing-sync proto-

col for sensor networks,” inSenSys ’03: Proceedings of the 1st international

conference on Embedded networked sensor systems, NYC, NY, USA, 2003, pp.

138–149, ACM Press.

[81] Miklos Maroti, Branislav Kusy, Gyula Simon, and Akos Ledeczi, “The flooding

time synchronization protocol,” inProceedings of the 2nd international confer-

ence on Embedded networked sensor systems (SenSys’04), NYC, NY, USA, 2004,

pp. 39–49, ACM Press.

[82] Richard M. Karp, Jeremy Elson, Christos H. Papadimitriou, and Scott Shenker,

“Global synchronization in sensornets,” inProceedings of the 6th Latin Ameri-

can Symposium on Theoretical Informatics, LATIN’04, Buenos Aires, Argentina,

2004, vol. 2976 ofLNCS, pp. 609–624, Springer.

[83] Kay Römer, Philipp Blum, and Lennart Meier, “Time synchronization and cal-

ibration in wireless sensor networks,” inHandbook of Sensor Networks: Algo-

rithms and Architectures, pp. 199–237. John Wiley and Sons, September 2005.

[84] Saurabh Ganeriwal, Srdjan Capkun, Chih-Chieh Han, and Mani B. Srivastava,

“Secure time synchronization service for sensor networks,” inProceedings of the

4th ACM workshop on Wireless security (WiSe’05), NYC, NY, USA, 2005, pp.

97–106, ACM Press.

[85] Michael Manzo, Tanya Roosta, and Shankar Sastry, “Time synchronization at-

tacks in sensor networks,” inProceedings of the 3rd ACM workshop on Security

of ad hoc and sensor networks (SASN’05), NYC, NY, USA, 2005, pp. 107–116,

ACM Press.

[86] Hui Song, Sencun Zhu, and Guohong Cao, “Attack-resilient time synchronization

for wireless sensor networks.,”Ad Hoc Networks, vol. 5, no. 1, pp. 112–125,

2007.

48 CHAPTER 1.

[87] Kun Sun, Peng Ning, and Cliff Wang, “Secure and resilient clock synchroniza-

tion in wireless sensor networks,”IEEE Journal on Selected Areas in Communi-

cations, vol. 24, no. 2, pp. 395–408, Feb. 2006.

[88] Kun Sun, Peng Ning, and Cliff Wang, “Tinysersync: secure andresilient time

synchronization in wireless sensor networks,” inProceedings of the 13th ACM

conference on Computer and communications security, New York, NY, USA,

2006, CCS ’06, pp. 264–277, ACM.

[89] David Sanchez, “Secure, accurate and precise time synchronization for wireless

sensor networks,” inProceedings of the 3rd ACM workshop on QoS and security

for wireless and mobile networks, New York, NY, USA, 2007, Q2SWinet ’07, pp.

105–112, ACM.

[90] Saurabh Ganeriwal, Srdjan Capkun, and Mani B. Srivastava, “Secure time syn-

chronization in sensor networks,”ACM Transactions on Information and Systems

Security, 2008.

[91] Jaap-Henk Hoepman, Andreas Larsson, Elad M. Schiller, and Philippas Tsigas,

“Secure and self-stabilizing clock synchronization in sensor networks,” Theoret-

ical Computer Science, vol. 412, no. 40, pp. 5631–5647, 2011, Available online

16 April 2010.

[92] Fei Hu, Steve Wilson, and Yang Xiao, “Correlation-based securityin time syn-

chronization of sensor networks.,” inWCNC’08, 2008, pp. 2525–2530.

[93] Hui Li, Yanfei Zheng, Mi Wen, and Kefei Chen, “A secure time synchronization

protocol for sensor network,” inProceedings of the 2007 international confer-

ence on Emerging technologies in knowledge discovery and data mining, Berlin,

Heidelberg, 2007, PAKDD’07, pp. 515–526, Springer-Verlag.

[94] Xin Hu, Taejoon Park, and K.G. Shin, “Attack-tolerant time-synchronization in

wireless sensor networks,” inINFOCOM 2008. The 27th Conference on Com-

puter Communications. IEEE, april 2008, pp. 41 –45.

[95] T. Roosta, Wei-Chieh Liao, Wei-Chung Teng, and S. Sastry, “Testbed implemen-

tation of a secure flooding time synchronization protocol,” inWireless Commu-

nications and Networking Conference, 2008. WCNC 2008. IEEE, 31 2008-april 3

2008, pp. 3157 –3162.

[96] Lin Chen and Jean Leneutre, “Toward secure and scalable time synchronization in

ad hoc networks,”Comput. Commun., vol. 30, pp. 2453–2467, September 2007.

BIBLIOGRAPHY 49

[97] Kasper Bonne Rasmussen, Srdjan Capkun, and Mario Cagalj, “Secnav: secure

broadcast localization and time synchronization in wireless networks,” inPro-

ceedings of the 13th annual ACM international conference on Mobile computing

and networking, New York, NY, USA, 2007, MobiCom ’07, pp. 310–313, ACM.

[98] Emerson Farrugia and Robert Simon, “An efficient and secureprotocol for sensor

network time synchronization,”Journal of Systems and Software, vol. 79, no. 2,

pp. 147–162, 2006.

[99] Xiaojiang Du, M. Guizani, Yang Xiao, and Hsiao-Hwa Chen, “Secure and effi-

cient time synchronization in heterogeneous sensor networks,”Vehicular Tech-

nology, IEEE Transactions on, vol. 57, no. 4, pp. 2387 –2394, july 2008.

[100] A. Boukerche and D. Turgut, “Secure time synchronization protocols for wireless

sensor networks,”Wireless Communications, IEEE, vol. 14, no. 5, pp. 64 –69,

october 2007.

[101] Ameer Ahmed Abbasi and Mohamed Younis, “A survey on clustering algorithms

for wireless sensor networks,”Comput. Commun., vol. 30, no. 14-15, pp. 2826–

2841, 2007.

[102] Yuanzhu Peter Chen, Arthur L. Liestman, and Jiangchuan Liu,Clustering Al-

gorithms for Ad Hoc Wireless Networks, vol. 2, chapter 7, pp. 154–164, Nova

Science Publishers, 2004.

[103] Kun Sun, Pai Peng, Peng Ning, and Cliff Wang, “Secure distributed cluster for-

mation in wireless sensor networks,” inACSAC ’06: Proceedings of the 22nd

Annual Computer Security Applications Conference on Annual ComputerSecu-

rity Applications Conference, Washington, DC, USA, 2006, pp. 131–140, IEEE

Computer Society.

[104] X. Wang, L. Yang, and K. Chen, “Sleach: Secure low-energyadaptive clustering

hierarchy protocol for wireless sensor networks,”Wuhan University Journal of

Natural Sciences, vol. 10, no. 1, pp. 127–131, 2005, Cited By (since 1996): 3.

[105] P. Banerjee, D. Jacobson, and S.N. Lahiri, “Security and performance analysis of

a secure clustering protocol for sensor networks,” inNetwork Computing and Ap-

plications, 2007. NCA 2007. Sixth IEEE International Symposium on, july 2007,

pp. 145 –152.

[106] Gicheol Wang and Gihwan Cho, “Secure cluster head sensor elections using

signal strength estimation and ordered transmissions,”Sensors, vol. 9, no. 6, pp.

4709–4727, 2009.

50 CHAPTER 1.

[107] Colette Johnen and Le Huy Nguyen, “Robust self-stabilizing weight-based clus-

tering algorithm,”Theor. Comput. Sci., vol. 410, no. 6-7, pp. 581–594, 2009.

[108] Shlomi Dolev and Nir Tzachar, “Empire of colonies: Self-stabilizing and self-

organizing distributed algorithm,”Theor. Comput. Sci., vol. 410, no. 6-7, pp.

514–532, 2009.

[109] Eddy Caron, Ajoy Kumar Datta, Benjamin Depardon, and Lawrence L. Larmore,

“A self-stabilizing k-clustering algorithm using an arbitrary metric,” inEuro-Par,

2009, pp. 602–614.

[110] Andreas Larsson and Philippas Tsigas, “Self-stabilizing (k,r)-clustering in wire-

less ad-hoc networks with multiple paths,” inProceedings of the 14th Interna-

tional Conference On Principles Of Distributed Systems (OPODIS 2010), Tozeur,

Tunisia, December 2010, vol. 6490 ofLecture Notes in Computer Science, pp.

79–82, Springer.

[111] Andreas Larsson and Philippas Tsigas, “A self-stabilizing (k,r)-clustering algo-

rithm with multiple paths for wireless ad-hoc networks,” inProceedings of the

31st International Conference on Distributed Computing Systems (ICDCS2011),

Minneapolis, Minnesota, USA, June 2011, pp. 353–362, IEEE Computer Society.

[112] Suk-Bok Lee and Yoon-Hwa Choi, “A secure alternate path routing in sensor

networks,”Comput. Commun., vol. 30, pp. 153–165, December 2006.

[113] Jamil Ibriq and Imad Mahgoub, “A secure hierarchical routingprotocol for wire-

less sensor networks,” inCommunication systems, 2006. ICCS 2006. 10th IEEE

Singapore International Conference on, oct. 2006, pp. 1 –6.

[114] Jian Yin and Sanjay Madria, “Secrout: A secure routing protocolfor sensor

networks,” inProceedings of the 20th International Conference on Advanced

Information Networking and Applications - Volume 01, Washington, DC, USA,

2006, AINA ’06, pp. 393–398, IEEE Computer Society.

[115] Jian Yin and Sanjay K. Madria, “Esecrout: An energy efficient secure routing for

sensor networks,”Int. J. Distrib. Sen. Netw., vol. 4, no. 2, pp. 67–82, 2008.

[116] Xiaojiang Du, M. Guizani, Yang Xiao, and Hsiao-Hwa Chen, “Two tier secure

routing protocol for heterogeneous sensor networks,”Wireless Communications,

IEEE Transactions on, vol. 6, no. 9, pp. 3395 –3401, september 2007.

[117] Sanjay Madria and Jian Yin, “Serwa: A secure routing protocol against wormhole

attacks in sensor networks,”Ad Hoc Netw., vol. 7, pp. 1051–1063, August 2009.

BIBLIOGRAPHY 51

[118] Jing Deng, Richard Han, and Shivakant Mishra, “Insens: Intrusion-tolerant rout-

ing for wireless sensor networks,”Comput. Commun., vol. 29, pp. 216–230,

January 2006.

[119] S. Kumar and S. Jena, “Scmrp: Secure cluster based multipath routing protocol

for wireless sensor networks,” inWireless Communication and Sensor Networks

(WCSN), 2010 Sixth International Conference on, dec. 2010, pp. 1 –6.

[120] Suraj Sharma and Sanjay Kumar Jena, “A survey on secure hierarchical rout-

ing protocols in wireless sensor networks,” inProceedings of the 2011 Inter-

national Conference on Communication, Computing & Security, New York,

NY, USA, 2011, ICCCS ’11, pp. 146–151, ACM.

[121] Xiaojiang Du, Yang Xiao, Hsiao-Hwa Chen, and Qishi Wu, “Secure cell relay

routing protocol for sensor networks: Research articles,”Wirel. Commun. Mob.

Comput., vol. 6, pp. 375–391, May 2006.

[122] Anthony D. Wood, Lei Fang, John A. Stankovic, and Tian He, “Sigf: a family

of configurable, secure routing protocols for wireless sensor networks,” in Pro-

ceedings of the fourth ACM workshop on Security of ad hoc and sensor networks,

New York, NY, USA, 2006, SASN ’06, pp. 35–48, ACM.

[123] Mariano García-Otero, Theodore Zahariadis, Federico Álvarez, Helen C. Leligou,

Adrián Población-Hernández, Panagiotis Karkazis, and Francisco J.Casajús-

Quirós, “Secure geographic routing in ad hoc and wireless sensor networks,”

EURASIP J. Wirel. Commun. Netw., vol. 2010, pp. 10:1–10:12, January 2010.

[124] E. Fasolo, M. Rossi, J. Widmer, and M. Zorzi, “In-network aggregation tech-

niques for wireless sensor networks: a survey,”Wireless Communications, IEEE,

vol. 14, no. 2, pp. 70–87, April 2007.

[125] Lingxuan Hu and David Evans, “Secure aggregation for wireless networks,” in

Proceedings of the 2003 Symposium on Applications and the Internet Workshops

(SAINT’03 Workshops), Washington, DC, USA, 2003, SAINT-W ’03, pp. 384–,

IEEE Computer Society.

[126] Jing Deng, Richard Han, and Shivakant Mishra, “Security support for in-network

processing in wireless sensor networks,” inProceedings of the 1st ACM workshop

on Security of ad hoc and sensor networks, New York, NY, USA, 2003, SASN

’03, pp. 83–93, ACM.

52 CHAPTER 1.

[127] Wenliang Du, Jing Deng, Yunghsiang S. Han, and Pramod Varshney, “A witness-

based approach for data fusion assurance in wireless sensor networks,” in In Pro-

ceedings of the IEEE Global Telecommunications Conference, 2003, pp. 1435–

1439.

[128] Bartosz Przydatek, Dawn Song, and Adrian Perrig, “Sia: secure information ag-

gregation in sensor networks,” inProceedings of the 1st international conference

on Embedded networked sensor systems, New York, NY, USA, 2003, SenSys ’03,

pp. 255–265, ACM.

[129] Sencun Zhu, Sanjeev Setia, Sushil Jajodia, and Peng Ning, “An interleaved

hop-by-hop authentication scheme for filtering false data injection in sensor net-

works,” in IEEE Symposium on Security and Privacy (IEEE-SP’04), 2004.

[130] Harald Vogt, “Exploring message authentication in sensor networks,” in Proceed-

ings of European Workshop on Security of Ad Hoc and Sensor Networks (ESAS).

2004, Springer-Verlag.

[131] Zhen Yu and Yong Guan, “A dynamic en-route scheme for filtering false data

injection in wireless sensor networks,” inProceedings of the 3rd international

conference on Embedded networked sensor systems, New York, NY, USA, 2005,

SenSys ’05, pp. 294–295, ACM.

[132] David Wagner, “Resilient aggregation in sensor networks,” inProceedings of the

2nd ACM workshop on Security of ad hoc and sensor networks, New York, NY,

USA, 2004, SASN ’04, pp. 78–87, ACM.

[133] Haowen Chan, Adrian Perrig, and Dawn Song, “Secure hierarchical in-network

aggregation in sensor networks,” inProceedings of the 13th ACM conference on

Computer and communications security, New York, NY, USA, 2006, CCS ’06,

pp. 278–287, ACM.

[134] Keith B. Frikken and Joseph A. Dougherty, IV, “An efficient integrity-preserving

scheme for hierarchical sensor aggregation,” inProceedings of the first ACM

conference on Wireless network security, New York, NY, USA, 2008, WiSec ’08,

pp. 68–76, ACM.

[135] Mark Manulis and Jörg Schwenk, “Security model and framework for informa-

tion aggregation in sensor networks,”ACM Trans. Sen. Netw., vol. 5, pp. 13:1–

13:28, April 2009.

BIBLIOGRAPHY 53

[136] Atsuko Miyaji and Kazumasa Omote, “Efficient and optimally secure in-network

aggregation in wireless sensor networks,” inProceedings of the 11th interna-

tional conference on Information security applications, Berlin, Heidelberg, 2011,

WISA’10, pp. 135–149, Springer-Verlag.

[137] Claude Castelluccia, Aldar C-F. Chan, Einar Mykletun, and Gene Tsudik, “Ef-

ficient and provably secure aggregation of encrypted data in wireless sensor net-

works,” ACM Trans. Sen. Netw., vol. 5, pp. 20:1–20:36, June 2009.

[138] Shih-I Huang, Shiuhpyng Shieh, and J. D. Tygar, “Secure encrypted-data aggre-

gation for wireless sensor networks,”Wirel. Netw., vol. 16, pp. 915–927, May

2010.

[139] Suat Ozdemir and Yang Xiao, “Integrity protecting hierarchical concealed data

aggregation for wireless sensor networks,”Computer Networks, vol. 55, no. 8,

pp. 1735 – 1746, 2011.

[140] Jacques M. Bahi, Christophe Guyeux, and Abdallah Makhoul, “Efficient and ro-

bust secure aggregation of encrypted data in sensor networks,” inProceedings

of the 2010 Fourth International Conference on Sensor Technologies and Appli-

cations, Washington, DC, USA, 2010, SENSORCOMM ’10, pp. 472–477, IEEE

Computer Society.

[141] C. Castelluccia, E. Mykletun, and G. Tsudik, “Efficient aggregation of encrypted

data in wireless sensor networks,” inMobile and Ubiquitous Systems: Networking

and Services, 2005. MobiQuitous 2005. The Second Annual International Confer-

ence on, july 2005, pp. 109 – 117.

[142] D. Westhoff, J. Girao, and M. Acharya, “Concealed data aggregation for reverse

multicast traffic in sensor networks: Encryption, key distribution, and routing

adaptation,”Mobile Computing, IEEE Transactions on, vol. 5, no. 10, pp. 1417

–1431, oct. 2006.

[143] I. Rodhe and C. Rohner, “n-LDA: n-Layers data aggregationin sensor networks,”

in Distributed Computing Systems Workshops, 2008. ICDCS ’08. 28th Interna-

tional Conference on, june 2008, pp. 400 –405.

[144] Rabindra Bista, Kyoung-Jin Jo, and Jae-Woo Chang, “A new approach to secure

aggregation of private data in wireless sensor networks,” inProceedings of the

2009 Eighth IEEE International Conference on Dependable, Autonomic and Se-

cure Computing, Washington, DC, USA, 2009, DASC ’09, pp. 394–399, IEEE

Computer Society.

54 CHAPTER 1.

[145] Yingpeng Sang, Hong Shen, Yasushi Inoguchi, Yasuo Tan, and Naixue Xiong,

“Secure data aggregation in wireless sensor networks: A survey,”Parallel and

Distributed Computing Applications and Technologies, International Conference

on, vol. 0, pp. 315–320, December 2006.

[146] Alessandro Sorniotti, Laurent Gomez, Konrad Wrona, and Lorenzo Odorico, “Se-

cure and trusted in-network data processing in wireless sensor networks: a sur-

vey,” Journal of Information Assurance and Security, vol. 2, no. 3, September

2007.

[147] Hani Alzaid, Ernest Foo, and Juan Gonzalez Nieto, “Secure data aggregation in

wireless sensor network: a survey,” inProceedings of the sixth Australasian con-

ference on Information security - Volume 81, Darlinghurst, Australia, Australia,

2008, AISC ’08, pp. 93–105, Australian Computer Society, Inc.

[148] Suat Ozdemir and Yang Xiao, “Secure data aggregation in wireless sensor net-

works: A comprehensive overview,”Computer Networks, vol. 53, no. 12, pp.

2022 – 2037, 2009.

[149] Edsger W. Dijkstra, “Self-stabilizing systems in spite of distributed control,”

Communications of the ACM, vol. 17, no. 11, pp. 643–644, 1974.

[150] Shlomi Dolev,Self-Stabilization, MIT Press, March 2000.

[151] Z. Shi and P. K. Srimani, “Self-stabilizing distributed systems & sensor net-

works,” in Handbook on Theoretical and Algorithmic Aspects of Sensor, Ad-Hoc

Wireless, and Peer-to-Peer Networks, chapter 23, pp. 393–402. Auerbach Publi-

cations, 2005.

[152] Ted Herman, “Models of self-stabilization and sensor networks,” in Distributed

Computing - IWDC 2003, Samir R. Das and Sajal K. Das, Eds., vol. 2918 of

Lecture Notes in Computer Science, pp. 836–836. Springer Berlin / Heidelberg,

2004.

[153] Jaap-Henk Hoepman, Andreas Larsson, Elad M. Schiller, andPhilippas Tsi-

gas, “Secure and self-stabilizing clock synchronization in sensor networks,” in

Prooceedings of the 9th International Symposium on Self Stabilization, Safety,

And Security of Distributed Systems (SSS 2007). 2007, vol. 4838 ofLecture Notes

in Computer Science, pp. 340 – 356, Springer-Verlag.

Part II

PAPERS

PAPER I

Jaap-Henk Hoepman, Andreas Larsson, Elad M. Schiller, Philippas Tsigas

Secure and Self-stabilizing Clock Synchronization
in Sensor Networks

Theoretical Computer Science, volume 412, number 40, pages 5631–5647,

2011.

In order to fit the thesis layout, some small non-technical changes has been done

and a figure has been split into two.

This work extends and improves work that appeared in:

Jaap-Henk Hoepman, Andreas Larsson, Elad M. Schiller, and Philippas Tsi-

gas. “Secure and self-stabilizing clock synchronization in sensor networks.” In

Prooceedings of the 9th International Symposium on Self Stabilization, Safety,

And Security of Distributed Systems (SSS 2007). volume 4838 ofLecture Notes

in Computer Science, pages 340–356, Springer, 2007.

2
Paper I: Secure and Self-stabilizing Clock

Synchronization in Sensor Networks

In sensor networks, correct clocks have arbitrary startingoffsets and nondeter-

ministic fluctuating skews. We consider an adversary that aims at tampering

with the clock synchronization by intercepting messages, replaying intercepted

messages (after the adversary’s choice of delay), and capturing nodes (i.e., re-

vealing their secret keys and impersonating them). We present an efficient

clock sampling algorithm which tolerates attacks by this adversary, collisions,

a bounded amount of losses due to ambient noise, and a boundednumber of

captured nodes that can jam, intercept, and send fake messages. The algorithm

is self-stabilizing, so if these bounds are temporarily violated, the system can

efficiently stabilize back to a correct state. Using this clock sampling algorithm,

we construct the first self-stabilizing algorithm for secure clock synchronization

in sensor networks that is resilient to the aforementioned adversarial attacks.

2.1 Introduction

Accurate clock synchronization is imperative for many applications in sensor

networks, such as mobile object tracking, detection of duplicates, and TDMA

59

60 CHAPTER 2.

radio scheduling. Broadly speaking, existing clock synchronization protocols

are too expensive for sensor networks because of the nature of the hardware

and the limited resources that sensor nodes have. The unattended environment,

in which sensor nodes typically reside, necessitates secure solutions and au-

tonomous system design criteria that are self-defensive against a malicious ad-

versary.

To illustrate an example of clock synchronization importance, consider a

mobile object tracking application that monitors objects that pass through the

network area (see [1]). Nodes detect the passing objects, record the time of

detection, and send the estimated trajectory. Inaccurate clock synchronization

would result in an estimated trajectory that could differ significantly from the

actual one.

We propose the first self-stabilizing algorithm for clock synchronization in

sensor networks with security concerns. We consider an adversary that capture

nodes and intercepts messages that it later replays. Our algorithm guarantees

automatic recovery after the occurrence of arbitrary failures. Moreover, the

algorithm tolerates message omission failures that might occur, say, due to the

algorithm’s message collisions or due to ambient noise.

The core of our clock synchronization algorithm is a mechanism for sam-

pling the clocks of neighboring nodes in the network. Of especial importance is

the sampling of clocks at reception of broadcasts called beacons. A beacon acts

as a shared reference point because nodes receive it at approximately the same

time (propagation delay is negligible for these radio transmissions). Elson et

al. [2] use such samples to approximate the clocks of neighboring nodes. They

use linear regression to deal with differences in clock rates. The basic algorithm

synchronizes a cluster. Overlapping clusters with shared gateway nodes can be

used to convert timestamps among clusters. Karp et al. [3, 4]input clock sam-

ples of beacon receipts into an iterative algorithm, based on resistance networks,

to converge to an estimated global time. Römer et al. [5] givean overview of

methods that use samples from other nodes to approximate their clocks. They

present phase-locked looping (PLL) as an alternative to linear regression and

2.1. INTRODUCTION 61

present methods for estimating lower and upper bounds of neighbors’ clocks.

Note that none of these articles takes security or self-stabilization into account.

As mentioned above, the short propagation delay of messagesin close range

wireless communications allows nodes to use broadcast transmissions to ap-

proximate pulses that mark the time of real physical events (i.e., beacon mes-

sages). In thepulse-delayattack, the adversary snoops messages, jams the

synchronization pulses, and replays them at the adversary’s choice of time

(see [6–8] and Section 2.2.3). We are interested in fine-grained clock syn-

chronization, where there are no cryptographic countermeasures for such pulse-

delay attacks. For example, thenoncetechniques strive to verify the freshness

of a message by issuing pseudo-random numbers for ensuring that old commu-

nications could not be reused in replay attacks (see [9]). Unfortunately, the lack

of fine-grained clock synchronization implies that the round-trip time of mes-

sage exchange cannot be efficiently estimated. Therefore, it is not clear how the

nonce technique could detect pulse-delay attacks.

The system strives to synchronize its clocks while forever monitoring the

adversary. We assume that the adversary cannot break existing cryptographic

primitives for sensor networks by eavesdropping (e.g., [9,10]). However, we

assume that the adversary cancapturenodes, reveal their entire state (including

private variables), stop their execution, and impersonatethem. The adversary

can also lead them to send erroneous information and launch jamming (or col-

lision) attacks.

We assume that, at any time, the adversary has a distinct location in space

and a bounded influence radius, uses omnidirectional broadcasts from that dis-

tinct location, and cannot intercept broadcasts for an arbitrarily long period.

(Namely, we consider system settings that are comparable tothe settings of

Gilbert et al. [11], which consider the minimal requirements for message deliv-

ery under broadcast interception attacks.) We explain how to sift out responses

to delayed beacons by following the above assumptions that consider many

practical issues.

A secure synchronization protocol should mask attacks by anadversary that

aims to make the protocol give an erroneous output. Unfortunately, due to the

62 CHAPTER 2.

unattended environment and the limited resources, it is unlikely that all the de-

signer’s assumptions hold forever. We consider systems that have the capabil-

ity of monitoring the adversary, and then stopping it by external intervention.

In this case, the nodes start executing their program from anarbitrary state.

From that point on, we require rapid system recovery. Self-stabilizing algo-

rithms [12, 13] cope with the occurrence of transient faultsin an elegant way.

Bad configurations might occur due to the occurrence of an arbitrary combina-

tion of failures. Self-stabilizing systems can be started in any configuration.

From that arbitrary starting point, the algorithm must ensure that it accom-

plishes its task if the system obeys the designer’s assumptions for a sufficiently

long period.

We focus on the fault-tolerance aspects of secure clock synchronization pro-

tocols in sensor networks. Uncaptured nodes behave correctly at all times. Fur-

thermore, the communication model is fair. It resembles that of [14] and does

not consider Byzantine behavior in the communication medium. However, cap-

tured nodes can behave in a Byzantine manner at the processorlevel. We design

a distributed algorithm for sampling the clocks ofg neighboring nodes in the

presence off captured and/or pulse-delay attacked nodes. Although captured

nodes remain captured, a node whose pulse-delay attacked messages are no

longer in the buffer of any uncaptured node will not count towardf anymore.

We focus on captured nodes and delay attacks, butf can be extended to include

nodes with timing failures and other ways of not following protocol.

The clock sampling algorithm facilitates clock synchronization using a va-

riety of existing masking techniques to overcome pulse-delay attacks in the

presence of captured nodes. For example, [7] uses Byzantineagreement (this

requires3f + 1 ≤ g), and [8] considers the statistical outliers (this requires

2f + O(1) ≤ g). (See Section 2.7 for details on the masking techniques.)

Although Byzantine agreement is one possible filtering technique, we do not

consider Byzantine faults, as stated above.

The execution of a clock synchronization protocol can be classified between

two extremes:on demandandcontinuous. Nodes that wish to synchronize their

clocks can invoke a distributed procedure for clock synchronization on demand.

2.1. INTRODUCTION 63

The procedure terminates as soon as the nodes reach their target precision. An

execution of a clock synchronization program is classified as continuous if no

node ever stops invoking the clock synchronization procedure. Our generic de-

sign facilitates a trade-off between energy conservation (i.e., on-demand oper-

ation) and fine-grained clock synchronization (i.e., continuous operation). The

trade-off allows budget policies to balance between application requirements

and energy constraints (more details appear in [15]).

2.1.1 Our Contribution

We present the first design for secure and self-stabilizing clock synchronization

in sensor networks resilient to an adversary that can capture nodes and launch

pulse-delay attacks. The core is a secure and self-stabilizing algorithm for sam-

pling clocks of neighboring nodes.

The algorithm secures, with high probability, sets of complete neighbor-

hood clock samples with a period that isO((log n)2) times the optimum. The

optimum requires, in the worst case, the communication of atleastO(n2) times-

tamps. Heren is a bound on the number of sensor nodes that can interfere with

a node (potentially the number of nodes within transmissionrange of the node).

It is of high importance for high-precision clock synchronization that the clock

sampling period is small since the offsets and frequencies of the nodes’ clocks

change over time.

Our design tolerates transient failures that may occur due to temporary vio-

lation of the designer’s assumption. For example, the number of captured and/or

pulse-delay attacked nodes could exceed more thanf and then sink belowf (de-

layed messages eventually vanish from queues). After the system resumes op-

eration according to the designer’s assumption, the systemwill stabilize within

one communication timeslot (that is of sizeO(n log n)). We assume that (be-

fore and after the system’s recovery) there are message omission failures, say,

due to ambient noise, attacks or the algorithm’s message collisions.

64 CHAPTER 2.

The correct node sends beacons and responds to the other nodes’ beacons.

We use a randomized strategy for beacon scheduling that guarantees regular

message delivery with high probability.

2.1.2 Document structure

We start by describing the system settings (Section 2.2) andformally present

the algorithm (Section 2.3). A description of our executionsystem model (Sec-

tion 2.4) and a proof of the algorithm correctness (Section 2.5) are followed by

a performance evaluation (Section 2.6). Then we review the literature and draw

our conclusions (Section 2.7).

2.2 System Settings

We model the system as one that consists of a set of communicating entities,

which we call processors (or nodes). We denote the set of processors byP .

In addition, we assume that every processorpi ∈ P has a unique identifier,

i. A processor identifier can be represented by a known and fixednumber of

bits in memory. In that respect there is a known upper bound onthe number of

processors.

2.2.1 Time, Clocks, and Their Notation

We follow settings that are compatible with those of Herman and Zhang [16].

We consider three notations of time:real time is the usual physical notion of

continuous time, used for definition and analysis only;native timeis obtained

from a native clock, implemented by the operating system from hardware coun-

ters;logical timebuilds on native time with an additive adjustment factor. This

factor is adjusted to approximate a shared clock, whether local to a neighbor-

hood or global to the entire network.1

1Lenzen et al. [17, 18] and Sommer and Wattenhofer [19] also refer to the term of logical time

as “logical clock values”. Herman and Zhang [16] refer to it aslocal time and build global time on

top of the local time. See Section 2.7.

2.2. SYSTEM SETTINGS 65

We consider applications that require the clock interface to include theread

operation, which returns atimestampwith T possible states.2 Let Ci(t) denote

the valuepi ∈ P gets from aread of the native clock at real timet.

Clock counters do not increment at ideal rates, because the hardware oscil-

lators have manufacturing variations and the rates are affected by voltage and

temperature. The clock synchronization algorithm adjuststhe logical clock in

order to achieve synchronization, but never adjusts the native clock. We de-

fine the native clockoffsetbetween any two processorspi andpj asδi,j(t) =

Ci(t) − Cj(t). We assume that, at any given time, the native clock offset isar-

bitrary. Moreover, theskewof pi’s native clock,ρi, is the first derivative of the

clock value with respect to real time. Thusρi = limτ→0(Ci(t+τ)−Ci(t))/τ .

We assume thatρi ∈ [ρmin, ρmax] for any processorpi , whereρmin = 1 − κ

andρmax = 1 + κ are known constants,1 is the real time unit andκ ≥ 0. The

second derivative of the clock’s offset is calleddrift. We allow non-zero drift as

long asρi ∈ [ρmin, ρmax].

2.2.2 Communications

Wireless transmissions are subject to collisions and noise. The processors com-

municate among themselves using the primitivesLBcast andLBrecv , for local

broadcast, with a transmission radius of at mostRlb. We consider the potential

of any pair of processors to communicate directly, or to interfere with each

other’s communications.

We associate every processor,pi, with a fixed and unknown location in

space,Li. We denote the potential set of processors that processorpi ∈ P can

directly communicate with byGi ⊆ {pj ∈ P | Rlb ≥ |Li−Lj |}. Furthermore,

we denote the set of processors that can interfere with the communications of

pi by
−→
Gi ⊆ {pj ∈ P | 2Rlb ≥ |Li − Lj |}. We note thatGi is not something

processorpi needs to know in advance, but something it discovers as it receives

messages from other processors.

2In footnote 6 we show what the minimal size ofT is.

66 CHAPTER 2.

A successful broadcast by a processorpi occurs when the message is re-

ceived by all other processors inGi. A successful broadcast to a setK ⊆ Gi

occurs when the message is received by all other processors inK.

We assume thatn ≥ |−→Gi| for any processorpi. In other words,n is a

known upper bound on the number of nodes that can interfere with any one

node’s communication (including that node itself). In the worst-case scenario

Gi =
−→
Gi and thus potentially|Gi| = n. Furthermore, a node will receive

information from neighbors about their neighbors, so in theworst-case scenario

a node needs to keep track of data aboutn nodes. For simplicity we therefore

usen as a bound of the number of neighbors (including the node itself) as well.

This does not mean that we only consider a cluster ofn nodes.

Communication Operations

We model the communication channel,queuei,j , from processorpi to processor

pj ∈ Gi as a FIFO queue of the messages thatpi has sent topj andpj is about

to receive. Whenpi broadcasts messagem, the operationLBcast inserts a copy

of m to everyqueuei,j , such thatpj ∈ Gi. Every messagem ∈ queuei,j is

associated with a particular time at whichm arrives atpj . Oncem arrives,

pj executesLBrecv . We require that the period between the time at whichm

enters the communication channel and the time at whichm leaves it is at most

a constant,d. We assume thatd is a known and efficient upper bound on the

communication delay between two neighboring processors. It includes both

transmission delay and propagation delay, even though the propagation delay is

negligible in comparison with the transmission delay.

We associate eachLBcast andLBrecv operation with a native clock times-

tamp for the moment of sending and receiving. We assume the existence of an

efficient algorithm for timestamping a message in transfer and a message being

received as close to the physical layer as possible (see [10]).

2.2. SYSTEM SETTINGS 67

The Environment

Messages might be lost to ambient noise as well as collisionsof the nodes’

transmissions. Collisions due to attacks made by the adversary or by captured

nodes are calledadversarial collisions. Message collisions due to concurrent

transmissions of nodes that follow the message scheduling of the algorithm are

callednon-adversarial collisions. A broadcast that is not lost due to ambient

noise or adversarial collisions is said to befair. We note that a fair broadcast

can still be lost due to non-adversarial collisions.

The environment can execute the operationomission(mi) (which is asso-

ciated with a particular message,mi, sent by processorpi) immediately after

LBcast i(mi). The environment selects a (possibly empty) subset ofpi’s neigh-

bors (Ki ⊆ Gi) and removes any messagemi from their queuesqueuei,j (such

thatpj ∈ Ki).

Below we talk about what “the environment” selects when it comes to mes-

sage omission. Here we see the environment as a global adversary, separate

and independent from the “regular” malicious and locally bound adversary of

Section 2.2.3. The term “adversary” is only used for that “regular” malicious

adversary.

When a processorpi and a processorpj ∈ −→
Gi do concurrent broadcasts

of messagesmi andmj we assume that the environment arbitrarily selects

Ki ⊆ Gi ∩ Gj when invokingomission(mi) due to the collision (and vice

versa formj). For details on what it means in our execution system model see

Section 2.4.3. In other words, when two processors with overlapping commu-

nication ranges broadcast concurrently, there are no guarantees of delivery, for

those messages, within the overlap (regardless of noise). This is a simple and

general model for message collisions. It is possible to let amore specialized

physical layer model resolve the subsetKi.

The environment selects messages to omit due to ambient noise as described

at the end of Section 2.2.2. The adversary selects messages to omit due to

omission attacks as described at the end of Section 2.2.3.

68 CHAPTER 2.

Ambient noise

The parameterξ ≥ 1 denotes the maximal number of repeated transmissions

required (by any particular processor) to get at least one fair broadcast. Such a

broadcast can still be lost due to non-adversarial collisions. These assumptions

model the ambient noise of the communication channel, as well as omission at-

tacks by the adversary and by captured nodes (see Section 2.2.3). Furthermore,

we assume that all processors knowξ.

The environment selects messages to remove due to ambient noise, but is

limited byξ as described above. We assume that the choice of messages omitted

due to ambient noise is independent from the choice of messages omitted due

to non-adversarial collisions.

2.2.3 The Adversary

We assume that there is a single adversary. The goal of the adversary is to

disturb the clock synchronization algorithm so that clock samplings become

erroneous, or even misleading. At the same time, the adversary does not want

to let its presence be known by launching obvious attacks.

Omission Attacks and Delay Attacks

The adversary can launch omission and delay attacks againsta message sent

by another processor. We assume that at any time the adversary, just like all

processors, has a distinct (unknown) location in space. We assume that the

adversary’s radio transmitter sends omnidirectional broadcasts (using antennas

that radiate equally in space). Therefore, the adversary cannot arbitrarily control

the distribution in space of the set of recipients for which abeacon’s broadcast

is omitted or delayed.

Consider a message,mi, broadcast by a processor,pi, and attacked by the

adversary. We assume that the adversary chooses a sphere with its own location

in the center. We denote the set of processors within the sphereS. The nodes

in S ∩Gi will be affected by the attack againstmi.

2.2. SYSTEM SETTINGS 69

The adversary launches message omission attacks (also known as intercep-

tion attacks) by jamming the medium. The environment invokesomission(mi)

for all processors inS ∩ Gi. This selection is limited by the assumptions re-

gardingξ, as described in Section 2.2.3.

For delay attacks, we follow the model of Ganeriwal et al. [6,7]. The ad-

versary can receive (at least part of) a message, jam the medium for a set of

nodes before they receive it in whole, and then replay the message slightly later.

The adversary resends the message to the processors inS ∩ Gi after a chosen

delay. The resent message is potentially lost due to ambientnoise or collisions,

like any other message. The processors inS ∩ Gi that receivemi thus receive

it later than they normally would have.

Other ways to do delay attacks include considering an adversary with direc-

tional antennas (which we do not consider) sending the same message at slightly

different times in different directions, or having a captured node sending a mes-

sage within a smaller radius and having the adversary repeating that within an

area that was left out (see [8] for details). Both these delayattacks require the

delayed message to originate from the adversary impersonating a captured node

or from a captured node. We make the weaker assumption that a message from

any processor can, potentially, be delayed by the adversary.

Omission Attack Limitations

We letξ (see Section 2.2.2) include ambient noise as well as collisions deliber-

ately produced by the adversary and by captured nodes. The adversary or the

captured nodes could jam the medium such that the assumptionof ξ does not

hold. If too many messages are lost, however, that can act as an alarm that an

adversary is present. This is something that the adversary,who wants to go

undetected, wants to avoid. Furthermore, if the adversary totally jams the com-

munication medium, clock synchronization will not take place. As a result, the

adversary has no possibility to directly influence the logical clock. Thus, this is

not an option for an adversary that wants to manipulate tracking algorithms to

present a misleading view of its whereabouts and movements.

70 CHAPTER 2.

We note that the adversary cannot predict the broadcasting schedule of un-

captured nodes. Thus, adversarial collisions, covered byξ (together with ambi-

ent noise), are independent from non-adversarial collisions.

Gilbert et al. [11] consider the minimal requirements for message delivery

under broadcast interception attacks. They assume that theadversary intercepts

no more thanβ broadcasts of the algorithm, whereβ is an unknown constant

that reflects the maximum amount of energy an adversary wantsto use for dis-

ruption of communications. We note that the result of Gilbert et al. is applicable

in a model in which, in every period, the algorithm is able to broadcast at most

α messages and the adversary can intercept at mostβ of the algorithm’s mes-

sages. Our system settings are comparable to the assumptions made by Gilbert

et al. [11] on the ratio ofβ/α. However, in contrast to the unknownβ, we

assume that the maximum ratio is a known constant that reflects the maximum

amount of disruption the adversary can get away with, without being detected.

Captured Nodes

The adversary can capture nodes by moving to their location and accessing

them physically. For any processorpi, we assume that the number of captured

and/or pulse-delay attacked nodes is no more thanf , within its neighborhood,

Gi. Here,f depends on|Gi| and the filtering mechanism that is being used.

(For example,3f + 1 ≤ |Gi| for the Byzantine agreement masking technique

as in [7] and2f + ǫ ≤ |Gi| for the outlier masking technique as in [8]; see

Section 2.7 for more details.)

When the adversary captures a processorpi, the adversary gains all infor-

mation contained in the processor’s memory, like secret keys, seeds for pseu-

dorandom generators, etc. The adversary can lead a capturedprocessorpi to

send incorrect data to processors inGi. It can also lead the captured node to

jam the communication media with noise or with collisions among processors

in
−→
Gi. The set of target processors are further limited to a spherewith the cap-

tured node in the center (cf. the sphere limitation for attacks launched directly

by the adversary, in Section 2.2.3.) These noise and collision attacks are also

2.3. SECURE AND SELF-STABILIZING CLOCK SYNCH. 71

limited by ξ as described in Section 2.2.3, just like attacks launched directly by

the adversary.

Security Primitives

The existing literature describes many elements of the secure implementation of

the broadcast primitivesLBcast andLBrecv using symmetric key encryption

and message authentication (e.g., [9, 10]). We assume that neighboring proces-

sors store predefined pairwise secret keys. In other words,pi, pj ∈ P : pj ∈ Gi

store keyssi,j : si,j = sj,i. The adversary cannot efficiently guesssi,j . Confi-

dentiality and integrity are guaranteed by encrypting the messages and adding a

message authentication code. We can guarantee messages’ freshness by adding

a message counter (coupled with the beacon’s timestamp) to the message be-

fore applying these cryptographic operations, and by letting receivers reject old

messages, say, from the clock’s previous incarnation. Notethat this requires

maintaining, for each sender, the index of the last properlyreceived message.

As explained above, the freshness criterion is not a suitable alternative to fine-

grained clock synchronization in the presence of pulse-delay attacks.

2.3 Secure and Self-Stabilizing Clock Synchroniz-

ation

In order to explain better the scope of the algorithm, we present a generic orga-

nization of secure clock synchronization protocols. The objective of the clock

synchronization protocol is (1) to sample the clocks of its neighbors by peri-

odically broadcast beacons, (2) respond to beacons, and (3)aggregate beacons

with their responses in records and deliver them to the upperlayer. Every node

estimates the logical clock after sifting out responses to delayed beacons. Un-

like objectives (1) to (3), the clock estimation task is not ahard real-time task.

Therefore, the algorithm outputs records to the upper layerthat synchronizes the

logical clock after neutralizing the effect of pulse-delayattacks (see Section 2.7

72 CHAPTER 2.

for details on techniques for filtering out delayed messages). The algorithm

focuses on the following two tasks.

• Beacon Scheduling:The nodes sample clock values by broadcasting beacons

and waiting for their response. The task is to guarantee round-trip message

exchange.

• Beacon and Response Aggregation:Once a beacon completes the round-trip

exchange, the nodes can deliver to the upper layer the records of the beacon and

its set of responses.

We present a design for an algorithm that samples clocks of neighboring

processors by continuously sending beacons and responses.Without synchro-

nized clocks, the nodes cannot efficiently follow a predefined schedule. More-

over, assuring reliable communication becomes hard in the presence of noise

and message collisions. The celebrated Aloha protocol [20](which does not

consider nondeterministic fluctuating skews) inspires us to take a randomized

strategy for scheduling broadcasts. We overcome the difficulties above and

show that, with high probability, the neighboring processors are able to ex-

change beacons and responses within a short period. Our scheduling strategy is

simple; the processors choose a random time to broadcast from a predefined pe-

riod D. We use a redundant number of broadcasting timeslots in order to over-

come the clocks’ asynchrony. Moreover, we use a parameter,ℓ, used to trade

off between the minimal size ofD and the probability of having a collision-free

schedule.

2.3.1 Beacon and Response Aggregation

The algorithm allows the use of clock synchronization techniques such asref-

erence broadcasting[2] and round-trip synchronization[6, 7]. For example,

in the round-trip synchronization technique, the senderpj sends a timestamped

message〈t1〉 to receivers,pk ∈ Gj , which receive the message at timet2.

The receiverpk responds with the message〈t1, t2, t3〉, whichpk sends at time

t3 and pj receives at timet4. Thus, the output records are in the form of

2.3. SECURE AND SELF-STABILIZING CLOCK SYNCH. 73

〈j, t1, {〈k, 〈t2, t3, t4〉〉}〉, where{〈k, 〈t2, t3, t4〉〉} is the set of all received re-

sponses sent by nodespk.

We piggyback beacon and response messages. For the sake of presentation

simplicity, let us start by assuming that all beacon schedules are in a (deter-

ministic) Round Robin fashion. Given a particular nodepi and a particular

beacon thatpi sends at timetis, we definetis’s round as the set of responses,

〈tjs, tjr〉, thatpi sends to nodepj ∈ Gi for pj ’s previous beacon,tjs, wheretjr
is the time in whichpi receivedpj ’s beacontjs. Nodepi piggybacks its beacon

with the responses to nodes,pj , and the beacon message,〈vi〉, is of the form

〈tis, 〈tj1s , tj1r 〉, 〈tj2s , tj2r 〉, . . .〉, which includes all processorspjk ∈ Gi.

Now, suppose that the schedules are not done in a Round Robin fashion. We

denotepj ’s sequence of up toBLog most recently sent beacons with[tjs(k)]k,

where0 ≤ k < BLog, among whichtjs(k) is thek-th oldest andBLog is a

predefined constant.3 We assume that, in every schedule,pi receives at least

one beacon frompj ∈ Gi before broadcastingBLog beacons. Therefore,pi’s

beacon message,〈vi〉, can include a response topj ’s most recently received

beacon,tjs(k), where0 ≤ k < BLog.

Since not every round includes a response to the last beacon thatpi sends,pi
stores its lastBLog beacon messages in a FIFO queue,qi[k] = [tjs]0≤k<BLog.

Moreover, every beacon message includes all responses to theBLog most re-

cently received beacons from all nodes. Letqj = qj [k]0≤k<BLog bepi’s FIFO

queue of the lastBLog records of the form〈tjs(k), tjr(k)〉, among whichtjs(k)

is pi’s k-th oldest beacon frompj , tjr(k) is the time at which it was received and

i 6= j. The new form of the beacon message is〈qi, qj1 , qj2 , . . .〉, which includes

all processorspjk ∈ Gi. In the round-trip synchronization, the nodes take the

role of asynchronizerthat sends the beacon and waits for responses from the

other nodes. The program of nodepi considers both cases in whichpi is, and is

not, respectively, the synchronizer.

3We note thatBLog depends on the safety parameter,ℓ, for assuring that nodes successfully

broadcast and other parameters such as the bound on number of interfering processors,n, and the

bound on clock skewsρmin andρmax (see Section 2.2).

74 CHAPTER 2.

2.3.2 The Algorithm’s Pseudo-code

The pseudo-code, in Fig. 2.3, includes two procedures: (1) ado-forever loop

that schedules and broadcasts beacon messages (lines 66 to 80) and (2) an upon

message arrival procedure (lines 82 to 87).

The Do-Forever Loop

The do-forever loop periodically tests whether the “timer”has expired (in lines

67 to 74).4 In case the beacon’s next schedule is “too far in the past” or “too far

in the future”, then processorpi “forces” the “timer” to expire (line 69). The

algorithm then removes data, gathered bypi itself, that are too old (lines 70

to 71). (Note that under normal circumstances, the data never become too old

before they are pushed out by new data at line 77 or line 86). The algorithm

then tests that all the stored data (including data receivedfrom others) are or-

dered and timely (line 72). Timely here means that timestamps collected by a

processorpj is not too old or in the future compared to the latest time ofpj ’s

native clock, thatpi has received. In the case where the recorded information

about beacon messages is incorrect, the algorithm flushes the queues (line 73).

The data received by others are tested at line 72 in the same way as at reception

(line 83). Data that do not pass the test at line 83 are never stored. Therefore, if

the buffers are flushed it is due to internal data corruption (in the starting con-

figuration), and not due to receipt of bad data (during execution). We note that

transient faults can be the source of such internal data corruption. However, bad

data may be received (and therefore rejected) at any time during the execution,

say, from captured nodes.

When the timeslot arrives, the processor outputs a synchronizer case record

for the oldest beacon, in the queue with its own beacons (line76). It contains,

for each of the other processors,pj ∈ Gi, the receive time of that beacon. More-

over, it contains for processorpj , the send and receive times for a later message

4Recall that by our assumptions on the system settings (Section 2.2), the do-forever loop’s timer

will go off within any period ofu/2. Moreover, since the actual time cannot be predicted, we

assume that the actual schedule has a uniform distribution over the periodu. (A straightforward

random scheduler can assist, if needed, to enforce the last assumption.)

2.4. EXECUTION SYSTEM MODEL 75

back frompj to pi. These data can be used for the round-trip synchronization

and delay detection in the upper layer. Then,pi enqueues the timestamp of the

beacon it is about to send during this schedule (line 77). Thenext schedule for

processorpi is set (lines 78 and 79) just before it broadcasts the beacon message

(line 80).

The Message Arrival

When a beacon message arrives (line 82), processorpi getsj, the id of the

sender of the beacon,r, pi’s native time at the receipt of the beacon, andv, the

message of the beacon. The algorithm sanity checks the received data (line 83).

If they are ordered and timely (not too old or in the future compared to the

latest timestamp frompj) the data are processed (lines 84 to 87). Otherwise the

message is ignored.

Passing the sanity check, processorpi then outputs a record of the non-

synchronizer case (lines 84 to 85). These data can be used forthe reference

broadcast technique in the upper layer. It finds the oldest beacon in the queue

with data on beacons received bypj . The record contains responses from pro-

cessorspk ∈ Gj that refer to this beacon. Furthermore, it contains data about

later messages back, from the receiving processorspk to processorpj . Now

that the information connected to the oldest beacon frompj has been output,

processorpi can store the arrival time of newly received message (line 86) and

the message itself (line 87).

2.4 Execution System Model

2.4.1 The Interleaving Model

Every processor,pi, executes a program that is a sequence of(atomic) steps. For

ease of description, we assume the interleaving model wheresteps are executed

atomically, a single step at any given time. An input event, which can be either

the receipt of a message or a timer going off, triggers each step of pi. Only

steps that start from a timer going off may include (at most once) anLBcast

76 CHAPTER 2.

Constants:
2 i = id of executing processor

n= bound on# of interfering processors(incl. itself)
4 w = compensation time between lines67 and80

d= upper bound on message communication delay
6 u= size of a timeslot in time units(u> d + w)

ℓ = tuning parameter(see Corollary2.1)

8 BLog= 2⌈ξ
ℓ+log2((⌈ρmax/ρmin⌉+1)n)

− log2 (1−1/e)
⌉, backlog size

D = 3 n (⌈ρmax/ρmin⌉+ 1), the broadcast timeslots
10 T = number of possible states of a timestamp

ρmin = lower bound on clock skew
12 ρmax = upper bound on clock skew

14 Variables:
m[n] = all received messages and timestamp

16 each entry is an arrayv[n]
each entry is a queueq[BLog]

18 each entry is a pair〈s, r〉

20 native_clock: immutable storage of the native clock
cslot : [0, D-1] = current timeslot in use

22 next: [0, T -1] = schedule of next broadcast
cT= lastdo-forever loop′s timestamp

External functions:
26 output(R) : delivers record R to the upper layer

choose(S) : uniform selection of an item from the set S
28 keys(v) : the set of id:s that indexes v

enqueue(Q) : adds an element to the end of the queue Q
30 dequeue(Q) : removes the front element of the queue Q

size(Q) : size of the queue Q
32 first(Q) : least recently enqueued element in Q, number0

last(Q) : most recently enqueued element in Q
34 full(Q) : whether queue Q is full

flush(Q) : empties the queue Q
36 get_s(Q) : list elements of field s in Q

get_r(Q) : list elements of field r in Q

Figure 2.1: Constants, variables and external functions for the secure and self-
stabilizing native clock sampling algorithm in Fig. 2.3

operation. We note that there could be steps that read the clock and decide not

to broadcast.

Since no self-stabilizing algorithm terminates (see [13]), the program of a

processor consists of a do-forever loop. An iteration is said to be complete

if it starts in the loop’s first line and ends at the last (regardless of whether it

enters conditional branches). A processor executes other parts of the program

(and other programs) and activates the loop upon a time-out.We assume that

2.4. EXECUTION SYSTEM MODEL 77

Macros and inlines:
40 border(t) : (D-cslot)u + t mod T

schedule(t) : cslot·u + t mod T
42 leq(x, y) : (∃ b : 0≤ b≤ 2 BLog D u∧ y mod T= x + b mod T)

enq(q, m) : { while full(q) do dequeue(q); enqueue(m) }
44 G(j) : keys(m[j].v)

46 expire_s(q,t): (∗ Expires data based on send times∗)
while size(q)> 0∧¬ leq(first(q).s, t) do

48 dequeue(q)
expire_r(q,t): (∗ Expires data based on receive times− asexpire_s but with .r instead of.s∗)

50 check() : ∧ { checkdata(m[j].v, j) : j ∈ keys(m[i].v)}
checkdata(v,j) : (∗ Coherency test for data from processor j∗)

52 ∧ { checklist(get_s(v[k].q), lclock(v,j)) ∧ (j = k∨ checklist(get_r(v[k].q), lclock(v,j))) : k∈ keys(v)}
checklist(q,t) : (∗ Checks that all elements of a list are chronologically ordered and notin the future∗)

54 size(q) = 0∨ (leq(first(q),t) ∧ leq(last(q),t) ∧ { leq(q[b1],q[b2]) : b1 < b2, {b1,b2} ⊆ [1,size(q)]})
lclock(v,j) : last(v[j].q).s

56

(∗ Get response-record forpk, for pj as the synchronizer∗)

58 ts(s, j, k) : { if (∃ bj1, bj2, bk1 , bk2 :

s= m[j].v[j].q[bj1].s= m[k].v[j].q[bk1].s∧

60 m[k].v[k].q[bk2].s= m[j].v[k].q[bj2].s∧

leq(m[j].v[j].q[bj1].s, m[j].v[k].q[bj2].r) ∧

62 leq(m[k].v[j].q[bk1].r, m[k].v[k].q[bk2].s))

then return 〈m[k].v[j].q[bk1].r, m[k].v[k].q[bk2].s, m[j].v[k].q[bj2].r〉
64 else return⊥}

Figure 2.2: Macros and inlines for the for the secure and self-stabilizing native clock
sampling algorithm in Fig. 2.3.

every processor triggers the loop’s time-out within every period ofu/2, where

u > w + d is the(operation) timeslot, wherew < u/2 is the time it takes to

execute a complete iteration of the do-forever loop. Since processors execute

programs other than the clock synchronization, the actual time, t, in which the

timer goes off, is hard to predict. Therefore, for the sake ofsimplicity, we

assume that timet is uniformly distributed.5

The state si of a processorpi consists of the value of all the variables

of the processor (including the set of all incoming communication channels,

{queuej,i|pj ∈ Gi}). The execution of a step in the algorithm can change the

state of a processor. The termsystem configurationis used for a tuple of the

form (s1, s2, . . .), where eachsi is the state of processorpi (including mes-

5We note that a simple random scheduler can be used for the case in which timet does not

follow a uniform distribution.

78 CHAPTER 2.

66 Do forever, everyu/2
let cT= read(native_clock) + w

68 if ¬ (leq(next-2Du, cT) ∧ leq(cT, next+u)) then
next← cT

70 expire_s(m[i].v[i].q, cT)
∀ j ∈ G(i)\{ i} do expire_r(m[i].v[j].q, cT)

72 if ¬ check() then
∀ j,k∈ P do flush(m[j].v[k].q)

74 if leq(next, cT) ∧ leq(cT, next+ u) then
let s= first(m[i].v[i].q).s

76 output 〈i, s, {〈j, ts(s, i, j)〉 : j ∈ G(i)\{ i}} 〉
enq(m[i].v[i].q, 〈cT,⊥〉)

78 (next, cslot)← (border(next), choose([0, D-1]))
next← schedule(next)

80 LBcast(m[i])

82 Upon LBrecv(j, r, v) (∗ i 6= j ∗)
if checkdata(v,j) then

84 let s= first(m[i].v[j].q).s
output 〈j, s, {〈k, ts(s, j, k)〉 : k∈ G(j)\{ j}} 〉

86 enq(m[i].v[j].q, 〈last(v[j].q).s, r〉)
m[j].v← v

Figure 2.3: Secure and self-stabilizing native clock sampling algorithm (code forpi ∈

P).

sages in transit forpi). We define anexecutionE = c[0], a[0], c[1], a[1], . . . as

an alternating sequence of system configurationsc[x] and stepsa[x], such that

each configurationc[x + 1] (except the initial configurationc[0]) is obtained

from the preceding configurationc[x] by the execution of the stepa[x]. We

often associate the notation of a step with its executing processorpi using a

subscript, e.g.,ai.

2.4.2 Tracing Timestamps and Communications

As stated in Section 2.2.2, we associate eachLBcast andLBrecv operation

with a timestamp for the moment of sending and receiving. Thetimestamp

of an LBcast operation is the native time at which messagem is sent, and

this information is included in the sent message. When processorpi executes

theLBrecv operation, an event is triggered with the argumentsj, t, and〈m〉:
pj ∈ Gi is the sending processor of message〈m〉, whichpi receives whenpi’s

native clock ist. We note that every step can be associated with at most one

communication operation. Therefore it is sufficient to access the native clock

2.4. EXECUTION SYSTEM MODEL 79

counter only once during or at the end of the operation. We denote byCi(ai)

the native clock value associated with the communication operation in stepai,

which processorpi takes.

2.4.3 Concurrent vs. Independent Broadcasts

We say that processorpi ∈ P performs anindependent broadcastin a step

ai ∈ E if there is no processorpj ∈ −→
Gi that broadcasts in a stepaj ∈ E,

such that either (1)aj is performed afterai and before stepark that receives the

message that was sent inai (wherepk ∈ Gi), or (2)ai is performed afteraj and

before stepark′ that receives the message that was sent inaj (wherepk′ ∈ Gj).

We say that processorpi ∈ P performs aconcurrent broadcastin a stepai
if ai is dependent (i.e., “not independent”). Concurrent broadcasts can cause

message collisions, as described in Section 2.2.2.

2.4.4 Fair Executions

We say that executionE hasfair communications, if, whenever processorpi
broadcastsξ successive messages (successive in terms of the algorithm’s mes-

sages sent bypi), at least one of these broadcasts is fair, i.e., not lost to noise or

adversarial collisions. We note that fair communication does not imply reliable

communication even forξ = 1, because a message can still be lost due to non-

adversarial collisions. An executionE is fair if the communications are fair

and every correct processor,pi, executes steps in a timely manner (by letting

the loop’s timer go off in the manner that we explain above).

2.4.5 The Task

We define the system’s task by a set of executions calledlegal executions(LE)

in which the task’s requirements hold. A configurationc is asafe configuration

for an algorithm and the task ofLE provided that any execution that starts in

c is a legal execution (belongs toLE). An algorithm isself-stabilizingwith

80 CHAPTER 2.

relation to the task ofLE if every infinite execution of the algorithm reaches a

safe configuration with relation to the algorithm and the task.

2.5 Correctness

In this section we demonstrate that the task of random broadcast scheduling

is achieved by the algorithm that is presented in Fig. 2.3. Namely, with high

probability, the scheduler allows the exchange of beacons and responses within

a short time. The objectives of the random broadcast scheduling task are defined

in Definition 2.1 and considerbroadcasting rounds. To consider a number of

broadcasting rounds from a point in time (such as the time associated with a

stepa), is to consider the time needed for every processor to fit in that many

partitions, i.e., broadcast that many times.

Definition 2.1 (Nice executions)Let us consider the executions of the algo-

rithm presented in Fig. 2.3. Furthermore, let us consider a processorpi and let

Γi be the set of all execution prefixes,EΓi
, such that, within the firstR broad-

casting rounds ofEΓi
, (1) every processorpj ∈ Gi (includingpi) successfully

broadcasts at least one beacon to all processorspk ∈ Gi ∩ Gj and (2) every

such processorpj gets at least one response from all such processorspk. We

say that executionE is nice in relation to processorpi if E has a prefix inΓi.

The proof of Theorem 2.1 (Section 2.5.3, page 93) demonstrates that, when

consideringR = 2R, for any processorpi, the algorithm reaches a nice ex-

ecution in relation topi with probability of at least1 − 2−ℓ+1, whereℓ is a

predefined constant andR = ⌈ξ ℓ+log2((⌈ρmax/ρmin⌉+1)n)
− log2 (1−1/e) ⌉ is the expected time

it takes all processorspj ∈ Gi (when considering the neighborhood of any pro-

cessorpi) to each broadcast at least one message that is received by all other

processors inGi ∩Gj .6

Once the system reaches a nice execution in relation to a processorpi, and

the exchange of beacons and responses occurs, the followingholds. There is a
6 To distinguish between timestamps that should be regarded as being in the past and timestamps

that should be regarded as being in the future, we require that T > 4R. In other words, we want to

be able to consider at least2 round-trips in the past and2 round-trips in the future.

2.5. CORRECTNESS 81

set,Si, of beacon records that are in the queues ofmi and the records that were

delivered to the upper layer. The setSi includes a subset,S′i ⊆ Si, of records for

beacons that were sent during the lastR (Definition 2.1) broadcasting rounds.

In S′i, it holds that every processorpj ∈ Gi − {i} has a beacon record,recj ,

such that every processorpk ∈ Gi∩Gj −{j} has a beacon record,reck, which

includes a response torecj . In other words,R is a bound on the length of

periods for which processorpi needs to store beacon records. Moreover, with

high probability, withinR broadcasting rounds,pi gathers beacons from all

processorspj ∈ Gi. Furthermore, for each such beacon from a processorpj ∈
Gi, pi gathers responses to those beacons from all processorspk ∈ Gi ∩ Gj .

For this reason, we setBLog to beR.

2.5.1 Scenarios in which balls are thrown into bins

We simplify the presentation of the analysis by depicting different system set-

tings in which the message transmissions are described by a set of scenarios in

which balls are thrown into bins. The sending of a message by processorpi
corresponds to a player̂pi throwing a ball. Time is discretized into timeslots

that are long enough for a message to be sent and received within. The times-

lots are represented by an unbounded sequence of bins,[bk]k∈N. Transmitting a

message during a timeslot corresponds to throwing a ball towards andaiming a

ball at the corresponding bin.

Messages from processorpi can collide with messages from up ton − 1

other processors if|−→Gi| = n. Furthermore, in the worst-case scenario|Gi| =

|−→Gi| = n for processorpi. We want to guarantee with high probability that

within Gi everyone exchanges messages. Therefore, we look atn players

throwing balls into bins when analyzing the message scheduling algorithm. Our

results will also hold for cases when|Gi| < n and when|−→Gi| < n, as the prob-

ability of collisions in those cases is equal to or lower thanthat for the worst

case scenario.

Before analyzing the general system settings, we demonstrate simpler set-

tings to acquaint the reader with the problem. Concretely, we look at the set-

82 CHAPTER 2.

tings in which the clocks of the processors are perfectly synchronized and the

communication channels have no noise (or omission attacks). We ask the fol-

lowing question: How many bins are needed for every player toget at least

one ball, that is not lost due to collisions, in a bin (Lemma 2.1 and 2.2)? We

then relax the assumptions on the system settings by considering different clock

offsets (Claim 2.2) and by considering different clock skews (Claim 2.3). We

continue by considering noisy communication channels (andomission attacks)

(Claim 2.4) and conclude the analysis by considering general system settings

(Corollary 2.1).

Collisions

A message collision corresponds to two or more balls aimed atthe same bin.

We take the pessimistic assumption that, when balls are aimed at neighboring

bins, they collide as well. This is to take non-discrete time(and later on, dif-

ferent clock offsets) into account. Broadcasts that “crossthe borders” between

timeslots are assumed to collide with messages that are broadcast in either bor-

dering timeslot. Therefore, in the scenario in which balls are thrown into bins,

two or more balls aimed at the same bin or bordering bins will bounce out, i.e.,

not end up in the bin.

Definition 2.2 When aiming balls at bins in a sequence of bins, asuccessful

ball is a ball that is aimed at a binb. Moreover, it is required that no other ball

is aimed atb or a neighboring bin ofb. A neighboring binof b is the bin directly

before or directly afterb. Anunsuccessful ballis a ball that is not successful.

Synchronous timeslots and communication channels that have no noise

We prove a claim that is needed for the proof of Lemma 2.1.

Claim 2.1 For all x ≥ 2 it holds that

(
1 − 1

x

)x−1

>
1

e
. (2.1)

2.5. CORRECTNESS 83

Proof: It is well known that
(

1 +
1

x

)x

< e (2.2)

for anyx ≥ 1. From this it follows that
(

1 − 1

x

)x−1

=

(
x− 1

x

)x−1

=

(
x

x− 1

)−(x−1)

=

(
1 +

1

x− 1

)−(x−1)
=

1
(

1 + 1
x−1

)x−1 >
1

e
(2.3)

for x ≥ 2.

Lemmas 2.1 and 2.2 consider an unbounded sequence of bins that are di-

vided into “circular” subsequences that we callpartitions. We simplify the

presentation of the analysis by assuming that the partitions are independent.

Namely, a ball that is aimed at the last bin of one partition normally counts as a

collision with a ball in the first bin of the next partition. With this assumption,

a ball aimed at the last bin and a ball aimed at the first bin in the same partition

count as a collision instead. These assumptions do not causea loss of gener-

ality, because the probability for balls to collide does notchange. It does not

change because the probability for having a certain number of balls in a bin is

symmetric for all bins.

We continue by proving properties of scenarios in which balls are thrown

into bins. Lemma 2.1 states the probability of a single ball being unsuccessful.

Lemma 2.1 Let n balls be, independently and uniformly at random, aimed at

partitions of3n bins. For a specific ball, the probability that it is not successful

is smaller than1 − 1/e.

Proof: Let b be the bin that the specific ball is aimed at. For the ball to be

successful, there are3 out of the3n bins that no other ball should be aimed at,b

and the two neighboring bins ofb. The probability that no other (specific) ball

is aimed at any of these three bins is

1 − 3

3n
. (2.4)

84 CHAPTER 2.

The different balls are aimed independently, so the probability that none of the

othern− 1 balls are aimed at binb or a neighboring bin ofb is

(
1 − 3

3n

)n−1

=

(
1 − 1

n

)n−1

. (2.5)

With the help of Claim 2.1, the probability that at least one other ball is aimed

at b or a neighboring bin ofb is

1 −
(

1 − 1

n

)n−1

< 1 − 1

e
. (2.6)

Lemma 2.2 states the probability of any player not having anysuccessful

balls after a number of throws.

Lemma 2.2 ConsiderR independent partitions ofD = 3n bins. For each

partition, letn players aim one ball each, uniformly and at random, at one of

the bins in the partition. LetR ≥ (ℓ+log2 n)/(− log2 p), wherep = 1−1/e is

an upper bound on the probability of a specific being unsuccessful in a partition.

The probability that any player gets no successful ball is smaller than2−ℓ.

Proof: By Lemma 2.1, the probability that a specific ball is unsuccessful is

upper bounded byp = 1 − 1/e. The probability that a player does not get any

successful ball in any ofR independent partitions is therefore upper bounded

by pR.

Let Xi, i ∈ [1, n] be Bernoulli random variables with the probability of a

ball being successful that is upper bounded bypR:

Xi =





1 if player i gets no successful ball inR partitions

0 if player i gets at least one successful ball inR partitions
(2.7)

LetX be the number of players that get no successful ball inR partitions:

X =
n∑

i=1

Xi. (2.8)

2.5. CORRECTNESS 85

The differentXi are a finite collection of discrete random variables with fi-

nite expectations. Therefore we can use the Theorem of Linearity of Expecta-

tions [21]:

E[X] = E

[
n∑

i=1

Xi

]
=

n∑

i=1

E[Xi] ≤
n∑

i=1

pR = npR. (2.9)

The random variables assume only non-negative values. Markov’s Inequal-

ity [21], Pr(X ≥ a) ≤ E[X]/a, therefore gives us

Pr(X 6= 0) = Pr(X ≥ 1) ≤ E[X]

1
≤ npR (2.10)

FornpR ≤ 2−ℓ we get thatPr(X 6= 0) ≤ 2−ℓ, which gives us

npR ≤ 2−ℓ ⇒
log2(npR) ≤ −ℓ ⇒

log2(n) + R log2(p) ≤ −ℓ ⇒

R ≥ −ℓ− log2 n

log2 p
=

ℓ + log2 n

− log2 p
. (2.11)

We now turn to relaxing the simplifying assumptions of synchronized clocks

and communication channels with no noise. We start by considering clock off-

sets and skews. We then consider noisy communication channels.

Clock offsets

The clocks of the processors have different offsets, and therefore the timeslot

boundaries are not aligned. We consider a scenario that is comparable to system

settings in which clocks have offsets. In the scenario of balls that are thrown

into bins, offsets are depicted as throwing a ball that hits the boundary between

bins and perhaps hits the boundary between partitions.

Claim 2.2 considers players that have individual sequencesof bins. Each se-

quence has its own alignment of the bin boundaries. Namely, abin of one player

may “overlap” with more than one bin of another player. Thus,the different bin

86 CHAPTER 2.

sequences that have different alignments correspond to system settings in which

clocks have different offsets.

The proof of Claim 2.2 describes a variation of the scenario in which balls

are thrown into bins. In the new variation, balls aimed at overlapping bins

will bounce out. For example, consider two balls aimed at binbki and bk
′

j ,

respectively. If binsbki andbk
′

j overlap, the balls will cause each other to bounce

out.

Claim 2.2 Consider the scenario in which balls might hit the bin boundaries

and takeR andD as defined in Lemma 2.2. Then, we have that the probability

that any player gets no successful ball is smaller than2−ℓ.

Proof: The proof is demonstrated by the following two arguments.

Hitting the boundaries between bins.From the point of view of processorpi,

a timeslot might be the time interval[t, t + u), whereas for processorpj the

timeslot interval might be different and partly belong to two different timeslots

of pi. When considering the scenario in which balls are thrown intobins, we

note that a bin of one player might be seen as parts of two bins of another player.

In other words, every player,̂pi, has its own view,[bik]k∈N, of the bin se-

quence[bk]k∈N. The sequence[bk]k∈N corresponds to an ideal discretization

of the real time into timeslots, whereas the sequence[bik]k∈N, corresponds to a

discretization of processorpi’s native time into timeslots. We say that the bins

[bik] and[bjk′] overlap when the corresponding real time periods of[bik] and[bjk′]

overlap.

Lemma 2.2 regards balls aimed at neighboring bins as collisions. We recall

the requirements that are made for ball collisions (see Section 2.5.1). These

requirements say that balls aimed at neighboring bins in[bk]k∈N will bounce

out. The proof is completed by relaxing the requirements that are made for ball

collisions in [bk]k∈N. Let us consider the scenario in which playersp̂i and p̂j
aim their balls at binsbik andbjk′ , respectively, such that bothbik andbjk′ overlap.

The binbik can either overlap with the binsbjk′−1 andbjk′ or (exclusively) overlap

with the binsbjk′ andbjk′+1. Balls aimed at any of the bins possibly overlapping

with bik (namelybjk′−1, bjk′ andbjk′+1) are regarded as colliding with the ball of

2.5. CORRECTNESS 87

player p̂j . The same argument applies to binbjk′ overlapping with binsbik−1,

bik andbik+1. In other words, the scenario of Lemma 2.2, without offset and

neighboring bins leading to collision, is a superset in terms of bin overlap to the

scenario in which offsets are introduced.

Hitting the boundaries between partitions.Even if the timeslot boundaries are

synchronized, processorpi might regard the time interval[t, t + Du) as a par-

tition, whereas processorpj might regard the interval[t, t + Du) as partly be-

longing to two different partitions. When considering the scenario in which

balls are thrown into bins, this means that the players’ viewon which bins are

part of a partition can differ.

For each bin, the probability that a specific player chooses to aim a ball at

that bin is1/D, whereD is the number of bins in the partition. Therefore the

probability for a ball being successful does not depend on how other players

partition the bins.

Clock skews

The clocks of the processors have different skews. Therefore, we consider a

scenario that is comparable to system settings in which clocks have skews.

In Claim 2.3, we consider players that have individual sequences of bins.

Each sequence has its own bin size. The size of playerp̂i’s bins is inversely

proportional to processorpi’s clock skew, say1/ρi. We assume that the balls

that are thrown by any player can fit into the bins of any other player. (Say the

ball size is less than1/ρmax.) Thus, the different bin sizes correspond to system

settings in which clocks have different skews.

Let us consider the number of balls that playerp̂i may aim at bins that

overlap with bins in a partition of another player. Suppose that playerp̂i has

bins of size1/ρmax and that player̂pj has bins of size1/ρmin. Then playerp̂i
may aim up tôρ = ⌈ρmax/ρmin⌉ + 1 balls in one partition of player̂pj .

Claim 2.3 Consider the scenario with clock skews and takeR andD as defined

in Lemma 2.2. Letp = 1 − 1/e be an upper bound on the probability of

a specific ball being unsuccessful in a partition. By takingRskew = R ≥

88 CHAPTER 2.

(ℓ + log2 ρ̂n))/(− log2 p) ∈ O(ℓ + log(n)), we have that the probability that

any player gets no successful ball is smaller than2−ℓ.

Proof: By taking the pessimistic assumption that all players see the others, as

well as themselves, as throwinĝρ balls each in every partition we have an upper

bound on how many balls can interfere with each other in a partition. Thus by

taking partitions ofD = 3ρ̂n bins instead of the3n bins of Lemma 2.2, and

substitutingn for ρ̂n in theR of Lemma 2.2,

R ≥ ℓ + log2 ρ̂n)

− log2 p
∈ O(ℓ + log(n)), (2.12)

the guarantees of Lemma 2.2 hold.

Communication channels with noise

In our system settings, message loss occurs due to noise and omission attacks

and not only due to the algorithm’s message collisions. Recall that ξ defines the

number of broadcasts required in order to guarantee at leastone fair broadcast

(not lost to noise or adversarial collisions; see Section 2.2.2). In the scenario in

which balls are thrown into bins, this correspondingly means that at mostξ − 1

balls are lost to the player’s trembling hand for any of itsξ consecutive throws.

Omission attacks are incorporated into theξ assumption and are thus not seen

as a ball being thrown.

Claim 2.4 Consider the communication channels with noise and takeR andD

as defined in Lemma 2.2. By takingRnoise ≥ ξR, we have that the probability

that any player gets no successful ball is smaller than2−ℓ.

Proof: By the system settings (Section 2.2), the noise in the communication

channels is independent of collisions. We take the pessimistic approach and

assume that, when a ball is lost to noise, it can still cause other balls to be

unsuccessful (just as if it was not lost to noise). In order tofulfill the require-

ments of Lemma 2.2, we can takeξR partitions instead ofR partitions. This

will guarantee that each player gets at leastR “fair” balls. That is, each player

2.5. CORRECTNESS 89

gets at leastR balls that are either successful or that bounce out due to collision

with another ball. Thus, the asymptotic number of bins is unchanged and the

guarantees of Lemma 2.2 still hold.

General system settings

The results gained from studying the scenario in which ballsare thrown into

bins are concluded by Corollary 2.1, which is demonstrated by Lemma 2.2 and

claims 2.2, 2.3, and 2.4.

Corollary 2.1 Suppose that every processor broadcasts once in every partition

ofD timeslots. Consider any processorpi. The probability that every processor

pj ∈ Gi successfully broadcasts at least one beacon to every processor pk ∈
Gi ∩Gj withinR partitions is at least1 − 2−ℓ when

D = 3ρ̂n ∈ O(n) (2.13)

R = ⌈ξ ℓ + log2(ρ̂n)

− log2 p
⌉ ∈ O(ℓ + log n) (2.14)

ρ̂ = ⌈ρmax/ρmin⌉ + 1 (2.15)

p = 1 − 1

e
. (2.16)

Corollary 2.1 shows that, for any processorpi, within a logarithmic number

of broadcasting rounds, all processors inGi exchange at least one beacon with

their neighbors inGi, with high probability. (See the beginning of Section 2.5.1

for the discussion on then balls versus a processorpi for which |−→Gi| < n.)

2.5.2 The task of random broadcast scheduling

So far, we have analyzed a general scenario in which balls arethrown into bins.

We now turn to showing that the scenario indeed depicts the implementation of

the algorithm (which is presented in Fig. 2.3).

As stated earlier, when we talk about the execution of, or complete iteration

of, lines 67 to 80, we do not imply that the branch in lines 75 to80 necessarily

is entered.

90 CHAPTER 2.

Definition 2.3 (Safe configurations)LetE be a fair execution of the algorithm

presented in Fig. 2.3 andc ∈ E a configuration in whichαi = (leq(nexti −
2Du, cTi) ∧ leq(cTi, nexti) holds for every processorpi. We say thatc is safe

with respect toLE.

We show thatcTi follows the native clock of processorpi. Namely, the

value ofcTi − w is in [Ci − u,Ci].

Lemma 2.3 Let E be a fair execution of the algorithm presented in Fig. 2.3,

andc a configuration that is at leastu after the starting configuration. Then, it

holds that(leq(Ci − u, cTi − w) ∧ leq(cTi − w,Ci)) in c.

Proof: SinceE is fair, the do-forever loop’s timer goes off in every periodof

u/2. Hence, within a period ofu, processorpi performs a complete iteration of

the do-forever loop in an atomic stepai.

Suppose thatc immediately followsai. According to line 67, the value of

cTi − w is the value ofCi in c. Let t = cTi − w = Ci. It is easy to see that

leq(t− u, t) ∧ leq(t, t) in c.

Let ari be an atomic step that includes the execution of lines 83 to 87

(whether entering the branch or not), followsc, and immediately precedesc′ ∈
E. Let t′ = Ci in c′. Then, within a period of at mostu/2, processorpi exe-

cutes stepa′i ∈ E, which includes a complete iteration of the do-forever loop.

Since the period betweenai anda′i is at mostu/2, we have thatt′ − t < u/2.

Thereforeleq(Ci − u, cTi − w) holds inc′ asleq(Ci, cTi − w) holds inc. It

also follows thatleq(cTi − w,Ci)) holds inc′ asCi = cTi − w in c.

We show that when a processorpi executes lines 75 to 80 of the algorithm

presented in Fig. 2.3 it reaches a configuration in whichαi holds. This claim is

used in Lemma 2.4 and Lemma 2.5.

Claim 2.5 Let E be a fair execution of the algorithm presented in Fig. 2.3.

Moreover, letai ∈ E a step that includes a complete iteration of lines 67 to 80

andc the configuration that immediately followsai. Suppose that processorpi
executes lines 75 to 80 inai; thenαi holds inc.

2.5. CORRECTNESS 91

Proof: Among the lines 75 to 80, only lines 78 to 79 can change the values of

αi. Let t1 = nexti immediately after line 74 and lett2 = nexti immediately

after the execution of line 79. We denote byA = t2 − t1 the value that lines 78

to 79 add tonexti, i.e.,A = (y +D−x)u, where0 ≤ x, y ≤ D− 1. Note that

x is the value ofcsloti before line 78 andy is the value ofcsloti after line 78.

Therefore,A ∈ [u, (2D − 1)u].

By the claim’s assertion, we have thatleq(cTi, t1 +u) holds before line 78.

Sinceu ≤ A, it holds thatleq(cTi, t1 + A), and thereforeleq(cTi, t2) holds.

Moreover, by the claim assertion we have thatleq(t1, cTi) holds. Since

A ≤ (2D − 1)u, it holds thatA − 2Du ≤ −u. This implies thatleq(t1 −
2Du + A, cTi). Thereforeleq(t2 − 2Du, cTi) holds.

We show that, starting from an arbitrary configuration, any fair execution

researches a safe configuration.

Lemma 2.4 Let E be a fair execution of the algorithm presented in Fig. 2.3.

Then, within a period ofu, a safe configuration is reached.

Proof: Let pi be a processor for whichαi does not hold in the starting config-

uration ofE. We show that, within the first complete iteration of lines 67to 80,

the predicateαi holds. According to Lemma 2.3, all processors,pi, complete

at least one iteration of lines 67 to 80, within a period ofu.

Let ai ∈ E be the first step in which processorpi completes the first itera-

tion. If αi does not hold in the configuration that immediately precedesai, then

either (1) the predicate in line 68 holds and processorpi executes line 69 or (2)

the predicate of line 74 holds at line 68.

For case (2), as¬(leq(t − 2Du, t) ∧ leq(t, t)) is false for anyt, immedi-

ately after the execution of line 69, the predicate¬(leq(nexti − 2Du, cTi) ∧
leq(cTi, nexti)) does not hold. Moreover, the predicate in line 74 holds, since

leq(t, t + u) holds for anyt.

In other words, the predicate in line 74 holds for both cases (1) and (2).

Therefore,pi executes lines 75 to 80 inai. By Claim 2.5,αi holds for the

configuration that immediately followsai. By repeating this argument for all

92 CHAPTER 2.

processorspi, we show that a safe configuration is reached within a period of

u.

We demonstrate the closure property of safe configurations.

Lemma 2.5 Let E be a fair execution of the algorithm presented in Fig. 2.3

that starts in a safe configurationc, i.e. a configuration in whichαi holds for

every processorpi (Definition 2.3). Then, every configuration inE is safe with

respect toLE.

Proof: Let ti be the value ofpi’s native clock in configurationc andai ∈ E

be the first step of processorpi.

We show thatαi holds in configurationc′ that immediately followsai. Lines

83 to 87 do not change the value ofαi. By Claim 2.5, ifai executes lines 75

to 80 within one complete iteration, thenαi holds inc′. Therefore, we look at

stepai that includes the execution of lines 67 to 74, but does not include the

execution of lines 75 to 80.

Let t1 = cTi in c andt2 = cTi in c′. According to Lemma 2.3, and by the

fairness ofE, we have thatt2−ti modT < u. Furthermore, letA = nexti−Du

andB = nexti in c. The values ofnexti −Du andB = nexti do not change

in c′. Sinceαi is true inc, it holds thatleq(A, t1) ∧ leq(t1, B). We claim that

leq(A, t2)∧ leq(t2, B). Sinceleq(t1, B) in c, we have thatleq(t2, B+t2−t1)

while pi executes line 74 inai. As ai does not execute lines 75 to 80, the

predicate in line 74 does not hold inai. As leq(t1, B) andt2 − t1 modT < u

the predicate in line 74 does not hold iffleq(t2, B). Furthermore, we have that

leq(A, t1), leq(t1, B), andleq(t2, B). As 0 < t2 − t1 modT < u we have

that leq(A, t2). Thus,c′ is safe asαi holds inc′.

2.5.3 Nice executions

We claim that the algorithm (presented in Fig. 2.3) implements nice executions

with high probability. We show that, for any processorpi, every execution (for

which the safe configuration requirements hold) is a nice execution in relation

to pi with high probability.

2.5. CORRECTNESS 93

Theorem 2.1 LetE be a legal execution of the algorithm presented in Fig. 2.3.

Then, for any processorpi, E is nice in relation topi with high probability.

Proof: Recall that in a legal execution all configurations are safe (Section 2.2).

Let ai be a step in which processorpi broadcasts,a′i be the first step afterai
in which processorpi broadcasts, anda′′i be the first step aftera′i in which

processorpi broadcasts.

Let r, r′, andr′′ be the values ofnexti between lines 78 and 79 inai, a′i,

anda′′i , respectively. The only changes done tonexti from line 79 inai to

lines 78 and 79 ina′i are those two lines, which taken together changenexti to

nexti + Du mod T .

The period of lengthDu that begins atr and ends atr′ mod T is divided

in D timeslots of lengthu. A timeslot begins at timer + xu mod T and ends

at timer + (x + 1)u mod T for a unique integerx ∈ [0, D− 1]. The timeslot

in which a′i broadcasts iscslot in c. In other words, processorpi broadcasts

within a timeframe ofr to r′, which is of lengthDu. By the same arguments,

we can show that processorpi broadcasts within a timeframe ofr′ to r′′, which

is of lengthDu. These arguments can be used to show that, afterai, processor

pi broadcasts once per period of lengthDu.

Corollary 2.1 considers processorpi, and its setGi, which includes itself

and its neighbors. The processors in
−→
Gi broadcast once in every period ofD

timeslots. The timeslots are of lengthu, a period that each processor estimates

using its native clock. Let us consider a processorpi andR timeframes of length

Du. By Corollary 2.1, the probability that all processorspj ∈ Gi successfully

broadcast at least one beacon to all processorspk ∈ Gi ∩Gj is at least1− 2−ℓ.

Now, let us consider2R timeframes of lengthDu. Consider the probability

that each of the processorspj ∈ Gi successfully broadcasts to all processors

pk ∈ Gi∩Gj and get a response from all such processorspk. By Corollary 2.1,

that probability is at least(1 − 2−ℓ)2 = 1 − 2−ℓ+1 + 2−2ℓ > 1 − 2−ℓ+1.

Therefore, by Definition 2.1, for any processorpi, E is nice in relation topi
with high probability.

94 CHAPTER 2.

2.6 Performances of the algorithm

Several elements determine the precision of the clock synchronization. The

clock sampling technique is one of them. Elson et al. [2] showthat the reference

broadcast technique can be more precise than the round-tripsynchronization

technique. We allow the use of both techniques. Another important precision

factor is the quality of the approximation of the native clocks of neighboring

nodes. Our extensive clock sample records allows for both linear regression

and phase-locked looping (see Römer et al. [5]). Moreover, the clock synchro-

nization precision improves as neighboring processors areable to sample each

other’s clocks more frequently. However, due to the limitedenergy reserves in

sensor networks, careful considerations are required.

Let us consider the continuous operation mode. If the periodof the clock

samples is too long, the clock precision suffers, as the skews of the native clocks

are not constant. Thus, an important measure isroundi, whereroundi is the

time it takes a processorpi and its neighbors inGi to exchange beacons and

responses. In other words,roundi is the time it takes (1) every processorpj ∈
Gi (includingpi) to successfully broadcast at least one beacon to all processors

pk ∈ Gi ∩Gj and (2) every such processorpj to get at least one response from

all such processorspk.

Let us consider ideal system settings in which broadcasts never collide. In

the worst case,|Gi| = |−→Gi| = n. Sendingn beacons and gettingn responses

to each of these beacons requires the communication of at leastO(n2) samples.

By Corollary 2.1 and Theorem 2.1, we get that2R timeframes of lengthDu are

needed. We also get thatR ∈ O(log n) andD ∈ O(n). The timeslot sizeu

is needed to fit a message withBLog = 2R responses to up ton processors.

Hence,u ∈ O(n log n). Thereforeroundi ∈ O(n2(log n)2). Moreover, with

a probability of at least1 − 2−ℓ+1, the algorithm can secure a clock sampling

period that isO((log n)2) times the optimum.

We note that the required storage is inO(n2 log n log T). By Lemma 2.4,

starting in an arbitrary configuration, our system stabilizes withinu time, and

as we have seen aboveu ∈ O(n log n).

2.7. DISCUSSION 95

2.6.1 Optimizations

We can use the following optimization, which is part of many existing imple-

mentations. Before accessing the communication media, a processorpi waits

for a periodd and broadcasts only if there was no message transmitted during

that period. Thus, processorpi does not intercept broadcasts, from a processor

pj ∈ Gi, that it started receiving (and did not finish) before timet− d, wheret

is the time of the broadcast bypi. In that case it aborts its message. Forpi, and

for the sake of the worst-case analysis, this counts as a collision. However, for

pj it is a successful broadcast (assuming that the message is not lost to noise or

to collision with another message).

2.7 Discussion

Sensor networks are particularly vulnerable to interference, whether as a result

of hardware malfunction, environmental anomalies, or malicious intervention.

When dealing with message collisions, message delays and noise, it is hard to

separate malicious from non-malicious causes. For instance, it is hard to distin-

guish between a pulse-delay attack and a combination of failures, e.g., a node

that suffers from a hidden terminal failure, but receives anecho of a beacon. Re-

cent studies consider more and more implementations that take security, failures

and interference into account when protecting sensor networks (e.g., [22–24],

which consider multi-channel radio networks). We note thatmany of the exist-

ing implementations assume the existence of a fine-grained synchronized clock,

which we implement.

Message scheduling is important for clock synchronization. Moradi et al.

compare clock synchronization algorithms for wireless sensor networks con-

sidering precision, cost and fault tolerance [25]. They show that, without a

message scheduling algorithm of some sort, the Reference Broadcast algorithm

of [2] suffers heavily from collisions.

Ganeriwal et al. [7] overcome the challenge of delayed beacons using the

round-trip synchronization technique. With this technique the average delay of

96 CHAPTER 2.

a message from processorpi to processorpj ∈ Gi, and a message back from

pj to pi, can be calculated using the send and receive times of those messages.

Thus, a delay attack can be detected if the delay is larger than some known up-

per bound on message delay. They use the Byzantine agreementprotocol [26]

for a cluster ofg nodes where allg nodes are within transmission range of each

other. Thus, Ganeriwal et al. require3f + 1 ≤ g. Song et al. [8] consider

a different approach that uses the reference broadcasting synchronization tech-

nique. Existing statistics models refer to malicious time offsets as outliers. The

statistical outlier approach is numerically stable for2f + ǫ ≤ g, whereg is the

number of neighbors and whereǫ is a safety constant (see [8]). We note that

both approaches are applicable to our work. We further note that a processor

pk ∈ Gj∩Gj can detect delay attacks against beacons that nodespi andpj have

sent to each other, by the mechanisms of calculating averagemessage delay and

comparing with a known upper bound. This is possible becausepk gets send

and receive times of messages back and forth betweenpi andpj .

Based on our practical assumptions, we are able to avoid the Byzantine

agreement overheads and follow the approach of Song et al. [8]. We can con-

struct a self-stabilizing version of their strategy, by using our sampling algo-

rithm and by detecting outliers using the generalized extreme studentized devi-

ate (GESD) algorithm [27]. LetB be the set of delivered beacon records within

a period ofR and test the setB for outliers using the GESD algorithm.

Existing implementations of secure clock synchronizationprotocols [6–8,

10, 28–30] are not self-stabilizing. Thus, their specifications are not compatible

with security requirements for autonomous systems. In autonomous systems,

the self-stabilization design criteria are imperative forsecure clock synchroniza-

tion. For example, many existing implementations require initial clock synchro-

nization prior to the first pulse-delay attack (during the protocol set up). This

assumption implies that the system uses global restart for self-defense manage-

ment, say, using an external intervention. We note that the adversary is capable

of intercepting messages continually. Thus, the adversarycan risk detection

and intercept all pulses for a long period. Assume that the system detects the

2.7. DISCUSSION 97

adversary’s location and stops it. Nevertheless, the system cannot synchronize

its clocks without a global restart.

Sun et al. [31] describe a cluster-wise synchronization algorithm that is

based on synchronous broadcasting rounds. The authors assume that a Byzan-

tine agreement algorithm [26] synchronizes the clocks before the system ex-

ecutes the algorithm. Our algorithm is comparable with the requirements of

autonomous systems and makes no assumptions on synchronousbroadcasting

rounds or start.

Manzo et al. [30] describe several possible attacks on an (unsecured) clock

synchronization algorithm and suggest countermeasures. For single hop syn-

chronization, the authors suggest using a randomly selected “core” of nodes to

minimize the effect of captured nodes. The authors do not consider the cases

in which the adversary captures nodes after the core selection. In this work, we

make no assumption regarding the distribution of the captured nodes. Farru-

gia and Simon [29] consider a cross-network spanning tree inwhich the clock

values propagate for global clock synchronization. However, no pulse-delay at-

tacks are considered. Sun et al. [28] investigate how to use multiple clocks from

external source nodes (e.g., base stations) to increase theresilience against an

attack that captures source nodes. In this work, there are nosource nodes.

In [10], the authors explain how to implement a secure clock synchroniza-

tion protocol. Although the protocol is not self-stabilizing, we believe that some

of their security primitives could be used in a self-stabilizing manner when im-

plementing our self-stabilizing algorithm.

Herman and Zhang [16] present a self-stabilizing clock synchronization

algorithm for sensor networks. The authors present a model for proving the

correctness of synchronization algorithms and show that the converge-to-max

approach is stabilizing. However, the converge-to-max approach is prone to

attacks with a single captured node that introduces the maximal clock value

whenever the adversary decides to attack. Thus, the adversary can at once set

the clock values “far into the future”, preventing the nodesfrom implementing

a continuous time approximation function. This work is the first in the context

98 CHAPTER 2.

of self-stabilization to provide security solutions for clock synchronization in

sensor networks.

2.7.1 Conclusions

Designing secure and self-stabilizing infrastructure forsensor networks nar-

rows the gap between traditional networks and sensor networks by simplifying

the design of future systems. In this work, we use system settings that consider

many practical issues, and take a clean-slate approach in designing a fundamen-

tal component: a clock synchronization protocol.

The designers of sensor networks often implement clock synchronization

protocols that assume the system settings of traditional networks. However,

sensor networks often require fine-grained clock synchronization for which the

traditional protocols are inappropriate.

Alternatively, when the designers do not assume traditional system settings,

they turn to reinforcing the protocols with masking techniques. Thus, the de-

signers assume that the adversary never violates the assumptions of the masking

techniques, e.g., there are at mostf captured and/or pulse-delay attacked nodes

in a neighborhood at all times, for a setting where3f + 1 ≤ n must hold in the

neighborhood. Since sensor networks reside in an unattended environment, the

last assumption is unrealistic when considering long timespans.

Our design promotes self-defense capabilities once the system returns to fol-

lowing the original designer’s assumptions. Interestingly, the self-stabilization

design criteria provide an elegant way for designing secureautonomous sys-

tems.

2.7.2 Acknowledgments

This work would not have been possible without the contribution of Marina

Papatriantafilou in many helpful discussions, ideas, and analysis. We wish to

thank Ted Herman for many helpful discussions. Many thanks to Edna Oxman

for improving the presentation.

BIBLIOGRAPHY 99

Bibliography

[1] Murat Demirbas, Anish Arora, Tina Nolte, and Nancy A. Lynch, “Ahierarchy-

based fault-local stabilizing algorithm for tracking in sensor networks.,”in

OPODIS. 2004, vol. 3544 ofLNCS, pp. 299–315, Springer.

[2] Jeremy Elson, Lewis Girod, and Deborah Estrin, “Fine-grained network time

synchronization using reference broadcasts,”Operating Systems Review (ACM

SIGOPS), vol. 36, no. SI, pp. 147–163, 2002.

[3] Richard Karp, Jeremy Elson, Deborah Estrin, and Scott Shenker, “Optimal and

global time synchronization in sensornets,” Tech. Rep., 2003.

[4] Richard M. Karp, Jeremy Elson, Christos H. Papadimitriou, and Scott Shenker,

“Global synchronization in sensornets.,” inLATIN. 2004, vol. 2976 ofLNCS, pp.

609–624, Springer.

[5] Kay Römer, Philipp Blum, and Lennart Meier, “Time synchronizationand calibra-

tion in wireless sensor networks,” inHandbook of Sensor Networks: Algorithms

and Architectures, pp. 199–237. John Wiley and Sons, Sep. 2005.

[6] Saurabh Ganeriwal, Srdjan Capkun, Chih-Chieh Han, and Mani B.Srivastava, “Se-

cure time synchronization service for sensor networks,” inProceedings of the 4th

ACM workshop on Wireless security (WiSe’05), NYC, NY, USA, 2005, pp. 97–106,

ACM Press.

[7] Saurabh Ganeriwal, Srdjan Capkun, and Mani B. Srivastava, “Secure time syn-

chronization in sensor networks,”ACM Transactions on Information and Systems

Security, 2008.

[8] Hui Song, Sencun Zhu, and Guohong Cao, “Attack-resilient time synchronization

for wireless sensor networks.,”Ad Hoc Networks, vol. 5, no. 1, pp. 112–125, 2007.

[9] Bruce Schneier,Applied Cryptography, John Wiley & Sons, 2nd edition, 1996.

[10] Kun Sun, Peng Ning, and Cliff Wang, “Tinysersync: secure andresilient time

synchronization in wireless sensor networks.,” inACM Conference on Computer

and Communications Security. 2006, pp. 264–277, ACM.

[11] Seth Gilbert, Rachid Guerraoui, and Calvin C. Newport, “Of maliciousmotes

and suspicious sensors: On the efficiency of malicious interference in wireless

networks.,” inOPODIS. 2006, vol. 4305 ofLNCS, pp. 215–229, Springer.

100 CHAPTER 2.

[12] Edsger W. Dijkstra, “Self-stabilizing systems in spite of distributed control,” Com-

munications of the ACM, vol. 17, no. 11, pp. 643–644, 1974.

[13] Shlomi Dolev,Self-Stabilization, MIT Press, March 2000.

[14] Joffroy Beauquier and Synnöve Kekkonen-Moneta, “Fault tolerance and self-

stabilization: Impossibility results and solutions using self-stabilizing failure de-

tectors,”International Journal of Systems Science, vol. 28, no. 11, pp. 1177–1187,

Nov. 1997.

[15] Kay Römer, “Time synchronization in ad hoc networks,” inMobiHoc ’01: Pro-

ceedings of the 2nd ACM international symposium on Mobile ad hoc networking

& computing, NYC, NY, USA, 2001, pp. 173–182, ACM Press.

[16] Ted Herman and Chen Zhang, “Best paper: Stabilizing clock synchronization

for wireless sensor networks.,” inSSS. 2006, vol. 4280 ofLNCS, pp. 335–349,

Springer.

[17] Christoph Lenzen, Thomas Locher, and Roger Wattenhofer, “Tight bounds for

clock synchronization,” in28th ACM Symposium on Principles of Distributed

Computing (PODC), Calgary, Canada, August 2009, pp. 46–55.

[18] Christoph Lenzen, Thomas Locher, and Roger Wattenhofer, “Clock synchroniza-

tion with bounded global and local skew,” in49th Annual IEEE Symposium on

Foundations of Computer Science (FOCS), Philadelphia, Pennsylvania,USA, Oc-

tober 2008, pp. 509–518.

[19] Philipp Sommer and Roger Wattenhofer, “Gradient clock synchronization in wire-

less sensor networks,” in8th ACM/IEEE International Conference on Information

Processing in Sensor Networks (IPSN), San Francisco, USA, April 2009.

[20] N. Abramson et al.,The Aloha System, Univ. of Hawaii, 1972.

[21] Michael Mitzenmacher and Eli Upfal,Probability and Computing: Randomized

Algorithms and Probabilistic Analysis, Cambridge University Press, New York,

NY, USA, 2005.

[22] Shlomi Dolev, Seth Gilbert, Rachid Guerraoui, Fabian Kuhn, and Calvin C. New-

port, “The wireless synchronization problem,” inPODC. 2009, pp. 190–199,

ACM.

[23] Shlomi Dolev, Seth Gilbert, Rachid Guerraoui, and Calvin C. Newport, “Secure

communication over radio channels,” inPODC. 2008, pp. 105–114, ACM.

BIBLIOGRAPHY 101

[24] Shlomi Dolev, Seth Gilbert, Rachid Guerraoui, and Calvin C. Newport, “Gossiping

in a multi-channel radio network,” inDISC. 2007, vol. 4731 ofLecture Notes in

Computer Science, pp. 208–222, Springer.

[25] Farnaz Moradi and Asrin Javaheri, “Clock synchronization in sensor networks for

civil security,” Technical report, Computer Science and Engineering, Chalmers

University of technology, March 2009.

[26] Leslie Lamport, Robert E. Shostak, and Marshall C. Pease, “The byzantine gener-

als problem.,” ACM Transactions on Programming Languages and Systems, vol.

4, no. 3, pp. 382–401, 1982.

[27] B. Rosner, “Percentage points for a generalizedesd many-outlier procedure,”

Technometrics, vol. 25, pp. 165–172, 1983.

[28] Kun Sun, Peng Ning, and Cliff Wang, “Secure and resilient clock synchronization

in wireless sensor networks,”IEEE Journal on Selected Areas in Communications,

vol. 24, no. 2, pp. 395–408, Feb. 2006.

[29] Emerson Farrugia and Robert Simon, “An efficient and secureprotocol for sensor

network time synchronization,”Journal of Systems and Software, vol. 79, no. 2,

pp. 147–162, 2006.

[30] Michael Manzo, Tanya Roosta, and Shankar Sastry, “Time synchronization attacks

in sensor networks,” inProceedings of the 3rd ACM workshop on Security of ad

hoc and sensor networks (SASN’05), NYC, NY, USA, 2005, pp. 107–116, ACM

Press.

[31] Kun Sun, Peng Ning, and Cliff Wang, “Fault-tolerant cluster-wise clock synchro-

nization for wireless sensor networks,”IEEE Transactions on Dependable and

Secure Computing, vol. 2, no. 3, pp. 177–189, 2005.

102 CHAPTER 2.

PAPER II

Andreas Larsson, Philippas Tsigas

A self-stabilizing (k,r)-clustering algorithm with
multiple paths for wireless ad-hoc networks

In Proceedings of the 31st International Conference

on Distributed Computing Systems (ICDCS 2011),

Minneapolis, Minnesota, USA, June 2011.

This work extends and improves work that appeared in:

Andreas Larsson and Philippas Tsigas. “Self-stabilizing (k,r)-clustering in wire-

less ad-hoc networks with multiple paths.” InProceedings of the 14th Interna-

tional Conference On Principles Of Distributed Systems (OPODIS 2010), vol-

ume 6490 ofLecture Notes in Computer Science, pages 79–82, Springer, 2010.

3
Paper II: A Self-stabilizing (k,r)-clustering

Algorithm with Multiple Paths for Wireless

Ad-hoc Networks

Wireless Ad-hoc networks are distributed systems that often reside in error-

prone environments. Self-stabilization lets the system recover autonomously

from an arbitrary state, making the system recover from errors and temporarily

broken assumptions. Clustering nodes within ad-hoc networks can help form-

ing backbones, facilitating routing, improving scaling, aggregating information,

saving power and much more. We present the first self-stabilizing distributed

(k,r)-clustering algorithm. A (k,r)-clustering assigns kcluster heads within r

communication hops for all nodes in the network while tryingto minimize the

total number of cluster heads. The algorithm uses synchronous communication

rounds and uses multiple paths to different cluster heads for improved security,

availability and fault tolerance. The algorithm assigns, when possible, at least k

cluster heads to each node within O(r) rounds from an arbitrary configuration.

The set of cluster heads stabilizes, with high probability,to a local minimum

within O(gr log n) rounds, where n is the size of the network and g is an upper

bound on the number of nodes within 2r hops.

105

106 CHAPTER 3.

3.1 Introduction

Starting from an arbitrary state, self stabilizing algorithms let a system stabilize

to, and stay in, a consistent state [1]. There are many reasons why a system

could end up in an inconsistent state of some kind. Assumptions that algorithms

rely on could temporarily be invalid. Memory content could be changed by

radiation or other elements of harsh environments. Batterypowered nodes could

run out of batteries and new ones could be added to the network. It is often not

feasible to manually configure large ad-hoc networks to recover from events

like this. Self-stabilization is therefore often a desirable property of algorithms

for ad-hoc networks. However, self-stabilization comes with increased costs,

so a tradeoff is made. A self-stabilizing algorithm can never stop because you

can not know when temporary faults occur, but it can convergeto a result that

holds as long as all assumptions hold. Furthermore, there are often overheads

in the algorithm tied to the need to recover from arbitrary states. It can be

added computations, increased size of messages or increased number of needed

rounds to achieve something.

An algorithm for clustering nodes together in an ad-hoc network serves an

important role. Back bones for efficient communication can be formed using

cluster heads. Clusters can be used for routing messages. Cluster heads can

be responsible for aggregating data, e.g. sensor readings in an ad-hoc sensor

network, into reports to decrease the number of individual messages needed to

rout through the network. Hierarchies of clusters on different levels can be used

for improved scaling of a large network. Nodes in a cluster could take turns

doing energy costly tasks to save power over all.

Clustering is a well studied problem. Due to space constraints, for refer-

ences to the area in general, we point to the survey of the areawith regard

to wireless ad-hoc networks by Chen, Liestam and Liu in [2] and the survey

by Abbasi and Younis in [3] for wireless sensor networks. We will focus on

self-stabilization, redundancy and some security aspects. One way of cluster-

ing nodes in a network is for nodes to associate themselves with one or more

cluster heads. In the (k,r)-clustering problem each node inthe network should

3.1. INTRODUCTION 107

have at leastk cluster heads withinr communication hops away. This might

not be possible for all nodes if the number of nodes withinr hop from them

is smaller thank. In such cases a best effort approach can be taken for getting

as close tok cluster heads as possible for those nodes. The clustering should

be achieved with as few cluster heads possible. To find the global minimum

number of cluster heads is in general too hard, algorithms provide an approxi-

mation. The (1,r)-clustering problem, a subset of the (k,r)-clustering problem,

can be formulated as a classical set cover problem. This was shown to be NP

complete in [4]. Assuming that the network allowsk cluster heads for each

node, the set of cluster heads forms a total (k,r)-dominating set in the network.

In a total (k,r)-dominating set the nodes in the set also need to havek nodes in

the set withinr hops, in contrast to an ordinary (k,r)-dominating set in which

this is only required for nodes not in the set.

There is a multitude of existing clustering algorithms for ad-hoc networks of

which a number is self-stabilizing. Johnen and Nguyen present a self-stabilizing

(1,1)-clustering algorithm that converges fast in [5]. Dolev and Tzachar tackle

a lot of organizational problems in a self-stabilizing manner in [6]. As part

of this work they present a self-stabilizing (1,r)-clustering algorithm. Caron,

Datta, Depardon and Larmore present a self-stabilizing (1,r)-clustering in [7]

that takes weighted graphs into account.

There is a number of papers that do not have self-stabilization in mind.

Fu, Wang and Li consider the (k,1)-clustering problem in [8]. In [9] the full

(k,r)-clustering problem is considered and both a centralized and a distributed

algorithm for solving this problem are presented. Wu and Li also consider the

full (k,r)-clustering in [10].

Other algorithms do not take the cluster head approach. In [11], sets of

nodes that all can communicate directly with each other are grouped together

without assigning any cluster heads. In this paper malicious nodes that try to

disturb the protocol are also considered, but self-stabilization is not considered.

108 CHAPTER 3.

3.1.1 Our Contribution

We have constructed the first, to the best of our knowledge, self-stabilizing

(k, r)-clustering algorithm for ad-hoc networks. The algorithm is based on

synchronous rounds and makes sure that, withinO(r) rounds, all nodes have at

leastk cluster heads (or all nodes withinr hops if a node has less thank nodes

within r hops) using a deterministic scheme. A randomized scheme comple-

ments the deterministic scheme and lets the set of cluster heads stabilize to a

local minimum. It stabilizes withinO(gr log n) rounds with high probability,

whereg is a bound on the number of nodes within2r hops, andn is the size of

the network.

We prove quick selection of enough cluster heads. Once the system fulfills

the cluster head requirements, ofk cluster heads withinr hops for all nodes,

the requirements will continue to hold from that point on. Wealso prove that

the set of cluster heads converges towards a local minimum. Under the extra

assumption that timers are synchronized, we show an upper bound on the num-

ber of rounds it takes, with high probability, for the set of cluster heads to reach

a local minimum. Furthermore, experimentally we show that without this extra

assumption used in the proof the system stabilizes approximately equally fast.

We also present experimental results on how the algorithm copes with changes

to the topology and on how our results compares with global optima.

Some initial ideas that lead to these results was previouslypublished in [12].

It is a brief announcement with few technical details and without any proofs or

experimental results.

3.1.2 Document Structure

Our contribution is presented as follows. In section 3.2 we introduce the system

settings. Section 3.3 describes the algorithm. Section 3.4proves the properties

of the algorithm. We discuss experimental results, security and redundancy and

how different system settings would affects the propertiesof the algorithm in

Section 3.5.

3.2. SYSTEM SETTINGS 109

3.2 System Settings

We assume a static network. Changes in the topology are seen as transient

faults. We denote the set of all nodes in the networkP and the size of the

networkn = |P|. We impose no restrictions on the network topology other

than that an upper bound,g, on the number of nodes within2r hops of any node

is known (see below).

The set of neighbors,Ni, of a nodepi is all the nodes that can communicate

directly with nodepi. In other words, a nodepj ∈ Ni is one hop from node

pi. We assume a bidirectional connection graph, i.e. thatpi ∈ Nj iff pj ∈ Ni.

The neighborhood,Gr
i of a nodepi is all the nodes (including itself) at mostr

hops away frompi. Let g ≥ maxj |G2r
j | be a bound, known by the nodes, on

the number of nodes within2r hops.

The system is synchronous and progresses in rounds. Each round has two

phases. First in the receipt phase each nodepi receives messages from all of

its immediate neighborspj ∈ Ni. Then in the step phase each nodepi af-

ter performing the appropriate calculations broadcasts a message to all nodes

pj ∈ Ni. We assume that a broadcast by a nodepi is received reliably by all

processorspj ∈ Ni in the receipt phase of the respective round. In our proofs

for convergence times of our algorithm we use an assumption of synchronized

timers. Synchronized timers isnot an assumption of the algorithm itself and is

not needed for the algorithm to work correctly. Furthermore, wedemonstrate

experimentally that it does not significantly affect convergence times either.

3.3 Self-stabilizing Algorithm for (k, r)-clustering

The goal of the algorithm is, using as few cluster heads as possible, for each

nodepi in the network to have a set of at leastk cluster heads within itsr-hop

neighborhoodGr
i . This is not possible if a nodepi has|Gr

i | < k. Therefore,

we require that|Cr
i | ≤ ki, whereCr

i ⊆ Gr
i is the set of cluster heads in the

neighborhood ofpi and ki = min(k, |Gr
i |) is the closest number of cluster

heads tok that nodepi can achieve. We do not strive for a global minimum.

110 CHAPTER 3.

Constants:
i : id of executing processor.
r : number of hops within we consider a neighborhood.
k : the number of clusterheads to elect.
g : upper bound on the number of nodes within2r hop.
T = 8gr : length of an escape period.

Variables:
state∈ {HEAD, ESCAPING, SLAVE} :

The state of the node. Initially set toSLAVE.
timer : Integer. Timer for escape attempts. Initially set to T-1.
estart: Integer. The escape schedule. Initially set to0.
estate∈ {SLEEP, INIT, FLOOD, HOPE} :

State for escape attempts. Initially set toSLEEP.
heads: Set of Id:s. Initially set to∅.
S& Z: Sets of< Id,State> tuples.

Initially set to{< i,state> }.

External functions and macros:
LBcast(m) : Broadcasts message m to direct neighbors.
LBrecv(m) : Receives a message from direct neighbor.
smallest(a,A) : Returns themin(|A|,a) smallest id:s in A.
cds(A): {< j,s,t> ∈ A : t =maxτ {τ : < j,s,τ> ∈ A}}
cdj(B): {< j,t> ∈ B : t =maxτ {τ : < j,τ> ∈ B}}

Figure 3.1: Constants, variables, external functions and macros for the algorithm in
Fig. 3.2.

That is too costly. We achieve a local minimum, i.e. a set of cluster heads in

which no cluster head can be removed without violating the(k, r) goal.

The basic idea of the algorithm is for cluster heads to constantly broadcast

the fact that they are cluster heads and for all nodes to constantly broadcast

a list of nodes they consider to be cluster heads. This list ofcluster heads

consists both of nodes that are known to be cluster heads and,additionally,

nodes that are elected to become cluster heads. The content of the broadcasts

are forwardedr hops, but in an aggregated form to keep message sizes down.

The election process might establish too many cluster heads. Therefore, there

is a mechanism for cluster heads to drop their cluster head roles, toescape,

eventually establishing a local minimum of cluster heads forming a total (k,r)-

dominating set (or, if not possible given the topology, fulfilling |Cr
j | ≥ kj for

any nodepj). The choice of which nodes to pick when electing cluster heads

is based on node ID in order to limit the number of unneeded cluster heads that

are elected when new cluster heads are needed.

3.3. SELF-STABILIZING ALGORITHM FOR(K,R)-CLUSTERING 111

1 on step phase:
2 if timer< 0∨ timer≥ T-1
3 timer← 0
4 else
5 timer← timer + 1
6 S← Z
7 heads← { j : < j, HEAD> ∈ S}
8 /* Escaping */
9 if state in{HEAD, ESCAPING}

10 updateestate()
11 if estate= INIT ∧ state= HEAD ∧ |heads|> k
12 state← ESCAPING
13 heads← heads\ { i}
14 else ifestate= SLEEP∧ state= ESCAPING
15 state← SLAVE
16 if state= SLAVE
17 estate← SLEEP
18 estart← 0
19 /* Add heads */
20 if |heads|< k
21 let a = k -|heads|
22 let A = { j: < j, ·> ∈ S} \ heads
23 heads← heads∪ smallest(a, A)
24 /* Join and send state */
25 for each j∈ heads
26 if j 6= i
27 forwardjoin(< j, r>)
28 else
29 state← HEAD
30 Z← {< i,state> }
31 sendstate(< i, state, r>)
32

33 function updateestate:
34 if timer= 0
35 estart← uniformlyrandom({0, 1, . . . T-2r-2})
36 if timer∈ [0, estart-1]:
37 estate← SLEEP
38 else iftimer∈ [estart, estart]
39 estate← INIT
40 else iftimer∈ [estart+1, estart+2r-1]
41 estate← FLOOD
42 else iftimer∈ [estart+2r, estart+2r]
43 estate← HOPE
44 else iftimer∈ [estart+2r+1, T-1]
45 estate← SLEEP

47 function receivedstate(< j, jstate, ttl>), i 6= j:
48 js← jstate
49 if js = ESCAPING∧ j ∈ heads
50 if |heads| ≤ k
51 js← HEAD
52 else
53 heads← heads\ { j}
54 let ss= { s : < j, s> ∈ Z} ∪ { js}
55 if HEAD ∈ ss:
56 js← HEAD
57 else ifESCAPING∈ ss
58 js← ESCAPING
59 else
60 js← SLAVE
61 Z← {< o, s> : < o, s> ∈ Z∧ o 6= j}∪ {< j, js> }
62

63 ttl← max(1, min(r, ttl))
64 if ttl > 1:
65 forwardstate(< j, jstate, ttl-1>)
66

67 function receivedjoin(< j, ttl>):
68 ttl← max(0, min(r, ttl))
69 if j = i ∧ estate/∈ {INIT, FLOOD}
70 state← HEAD
71 else ifttl > 1
72 forwardjoin(< j, ttl -1>)
73

74 on LBrecv(< j, jstateset, jjoinset>):
75 for each< o,ostate,ottl> ∈ jstateset
76 if o 6= i:
77 receivedstate(< o,ostate,ottl>)
78 for each< o,ostate,ottl> ∈ jjoinset
79 receivedjoin(< o,ottl>)
80

81 function forwardstate(tuple):
82 stateset← stateset∪ tuple
83

84 function forwardjoin(tuple):
85 joinset← joinset∪ tuple
86

87 function sendstate(tuple):
88 forwardstate(tuple)
89 stateset← cds(stateset)
90 joinset← cdj(joinset)
91 LBcast(< i,stateset,joinset>)
92 stateset←∅
93 joinset←∅

Figure 3.2: Pseudocode for the self-stabilizing clustering algorithm.

One could imagine an algorithm that in a first phase adds cluster heads and

thereafter in a second phase removes cluster heads that are not needed. To

achieve self-stabilization however, we cannot rely on starting in a predefined

state. Recovery from an inconsistent state might start at any time. Therefore, in

112 CHAPTER 3.

our algorithm there are no phases and the mechanism for adding cluster heads

runs in parallel with the mechanism for removing cluster heads and none of

them ever stops.

In each round each node sends out its state and forwards states of others.

A cluster head node normally has the state HEAD and a non cluster head node

always has state SLAVE. If a nodepi in any round finds out that it has less than

k cluster heads it selects a set of other nodes that it decides to elect as cluster

heads. Nodepi then elects established cluster head nodes and any newly picked

nodes by sending ajoin message to them. Any node that is not a cluster head

becomes a cluster head if it receives a join addressed to it.

We take a randomized approach for letting nodes try to drop their cluster

head responsibility. Time is divided into periods ofT rounds. A cluster head

nodepi picks uniformly at random one round out of theT − 2r− 1 first rounds

in the period as a possible starting round,estarti, for an escape attempt. If

pi has more thank cluster heads in roundestarti, then it will start an escape

attempt. When starting an escape attempt a node sets it state to ESCAPING

and keeps it that way for a number of rounds to make sure that all the nodes in

Gr
i will eventually know that it tries to escape. A nodepj ∈ Gr

i that would get

fewer thank cluster heads ifpi would stop being a cluster head can veto against

the escape attempt. This is done by recording the state ofpi as HEAD and thus

continuing to send joins addressed to it. Ifpj , on the other hand, has more than

k cluster heads it would not need to veto. Thus, by accepting the state ofpi as

ESCAPING,pj will not send any join topi. After a number of rounds all nodes

Gi \ {i} will have had the opportunity to veto the escape attempt. If none of

them objected, at that pointpi will get no joins and can set its state to SLAVE.

If an escape attempt bypi does not overlap in time with another escape

attempt it will succeed if and only ifminpj∈Gr
i
|Cr

j | > k. If there are overlaps

by other escape attempts, the escape attempt bypi might fail even in cases

whereminpj∈Gr
i
|Cr

j | > k. The random escape attempt schedule therefore

aims to minimize the risk of overlapping attempts.

The pseudocode for the algorithm is described in Fig. 3.2 with accompany-

ing constants, variables, external functions and macros inFig. 3.1. In the step

3.4. CORRECTNESS 113

phase of each round lines 1-31 are executed. The code for the receipt phase

can be found in lines 47-72. To have only one message for each node sent per

round, all forwarding and sending of messages in lines 1-72 use the functions

in lines 74-93 that collect everything that is to be sent until the end of the step

phase where one message is sent out.

3.4 Correctness

In Section 3.4.1 we will show that withinO(r) rounds we will have|Cr
i | ≥ ki

for any nodepi. First we show that this holds while temporarily disregarding the

escaping mechanism, and then that it holds for the general case in Theorem 3.1.

In Section 3.4.2 we will show that a cluster head nodepi can become slave

if it is not needed and if it tries to escape undisturbed by other nodes inG2r
i .

We continue to show that the set of nodes converges, with highprobability, to a

local minimum withinO(gr log n) rounds under the assumption that the timers

of all nodes in the network are synchronized in Theorem 3.2.

Finally we present the message complexity in Theorem 3.3 in section 3.4.3.

Definition 3.1 If all assumptions about the network hold and all nodes follow

the protocol throughout the entire rounds then rounds is called alegalround.

Definition 3.2 For a nodepi to be acluster headis equivalent tostatei ∈
{HEAD,ESCAPING}. For a nodepi to be a slave is equivalent tostatei =

SLAVE. For a nodepj , we defineCr
j as the set of cluster heads inGr

j . Fur-

thermore, we defineHx to be the set of cluster heads in the network in a round

x.

Definition 3.3 A nodeinitiates an escape attemptin rounds if lines 12-13 are

executed in rounds. In other words in rounds nodepi hasstatei = HEAD at

line 1, |headsi| > k after executing line 7 and then line 10 setsestatei to INIT.

Thereafter, the condition holds at line 11 and lines 12-13 are executed.

114 CHAPTER 3.

3.4.1 Getting Enough Cluster Heads

In this section we build up a case showing that the algorithm will elect enough

cluster heads. We show that nodes get to know their neighborhood (Lemma 3.1),

that they get to know the state of nodes in their neighborhoods (Lemma 3.2),

that cluster heads are elected (Lemmas 3.3, 3.4 and 3.5). Finally, in Theo-

rem 3.1, we show that within aO(r) rounds each node in the network have

enough cluster heads withinr hops (topology allowing).

We begin by showing that nodes get to learn their neighborhood,Gr
i .

Lemma 3.1 Assume that rounds and all following rounds are legal. For any

nodepi, {pj : < pj , · >∈ Si} = Gr
i holds in the step phase of rounds + r and

throughout roundss + r + 1 + t for any non-negativet.

Proof: In every round any nodepj broadcasts its id and state (line 31) with

ttl set tor. Thettl is a time to livevalue that denotes how many more hops a

message should be forwarded and is decreased by one every time the associated

message is received. Whenttl reaches1 the message is not forwarded any more.

Therefore, during the followingr rounds the id and the state is forwardedr hops

away (lines 63-65). Consider a nodepj ∈ Gr
i (i 6= j) that isr̂ hops away from

pi. At rounds+r+ t nodepi gets the id and state message that originated from

nodepj at rounds+ r− r̂ + t. As t is non-negative and̂r ≤ r we know thatpj
sent a message with its state and id at rounds+r− r̂+t ≥ s. For nodepi itself:

(1) it adds itself toZ during each round (line 30), and (2) the only other line

that could changeZ is line 61 and is not executed in casej = i and (3)S is set

to Z at the beginning of the step phase. ThereforeGr
i ⊆ {pj : < pj , · >∈ Si}

in the step phase of rounds + r and thereafter.

A message with id and state of a nodepj /∈ Gr
i that is being received by

some nodepi in rounds could potentially lead to an id inSi that is not inGr
i

However such a message can not be sent out in rounds with a ttl greater than

t − 1 (lines 63-65) andZ is cleared from nodespj 6= pi in every round in

line 30. Thereforepj could reachpi in roundss+ 1 to s+ r− 1, but not as late

ass + r + t for a non-negativet. ThereforeGr
i ⊇ {pj : < pj , · >∈ Si} in the

step phase of rounds + r and thereafter.

3.4. CORRECTNESS 115

We continue with showing that nodes withinr hops get to know the state of

a node that stays in one state.

Lemma 3.2 If a nodepi has the same stateσ in roundss to s+ r− 1, then any

nodepj ∈ Gr
i \ {pi} will receive the stateσ and only stateσ for pi in round

s + r.

Proof: Nodepi sends out its state with attl of r in each round (line 31). Nodes

that receive this state message with attl greater than1 will forward the state

with attl of one less (lines 64-65). Thus a message frompi originating in round

s − t (for a positivet) can possibly be received by nodes inGr
i in the rounds

s− t + 1 to s + r − t, but not in rounds + r as that would need an originalttl

of r + t. Furthermore a stateσ′ sent in rounds + r − 1 + t (for a positivet)

can be received earliest in rounds + r + t. Thus only states sent in roundss to

s + r − 1 can be received by a nodepj ∈ Gr
i in rounds + r.

Now consider any nodepj ∈ Gr
i \ {pi}. Let r̂ ∈ [1, r] be the smallest

number of hops betweenpi andpj . By the Lemma statement nodepi sends out

stateσ in rounds + r − r̂. That message is forwarded one step each round and

r̂ rounds later in rounds + r it reaches nodepj .

We now look how the addition of cluster heads work while temporarily

disregarding the escaping mechanism. In this setting we will show that within

a finite number of rounds we will have|Cr
i | ≥ ki for any nodepi. Later on

we will lift this restriction and show that|Cr
i | ≥ ki will still hold even when

regarding the more general case.

Lemma 3.3 Let rounds and all following rounds be legal. Assume that the

state of a node can never be ESCAPING,estate is always SLEEP and that

lines 8-18 are not going to be executed. With these assumption after round

s + 2r + t for a non-negativet any nodepi will haveki cluster heads withinr

hops.

116 CHAPTER 3.

Proof: The limiting assumptions leave only one way for the state to change,

namely by the execution of line 70 where state is set to HEAD.

From Lemma 3.1 we know that in rounds+r, at the latest, nodepi will have

all nodes inGr
i in Si. We also know that|Gr

i | ≥ ki. Let’s look at rounds + r.

At line 20, headsi might already contain nodes. We have the one case where

|headsi| ≥ k ≥ ki already and one case where|headsi| < k. In the second

case lines 21-23 will be executed. Out of the setA of nodes inGr
i that are not in

headsi, the smallestmin(|A|, k − |headsi|) nodes will be added toheadsi in

line 23. Thus after execution of line 23headsi will contain min(|Gr
i |, k) = ki

nodes and at line 25|headsi| ≥ ki.

For each nodepj ∈ headsi either a join message with attl of r is sent out

(at line 27, whenj 6= i) or the state is set to HEAD directly (at line 29, when

j = i). For the nodespj 6= pi the join messages are forwarded (line 72) to all

nodes inGr
i within r hops inr rounds (in a similar fashion as forwarded state

as discussed in the proof of Lemma 3.1).

Each nodepj ∈ headsi thus gets a join addressed to itself at the latest in

rounds + 2r and it will become a cluster head by setting its state to HEAD at

line 70. Thus after rounds+ 2r any nodepi will haveki cluster heads withinr

hops.

Now we consider the full escape mechanisms and show that a node that

receive joins become a cluster head.

Lemma 3.4 Consider a nodepi that receives a join during the receipt phase of

the legal roundz that follows the legal roundz − 1. Then nodepi is a cluster

head at the end of roundz. Furthermore, if nodepi is a cluster at the end of

roundz − 1 then it is a cluster head throughout the entire roundz.

Proof: Let σ be statei ande be estatei at the reception of a join from any

node in a legal roundz which follows a legal roundz−1. We begin by showing

that the only thing that can happen withstatei during the receipt phase of round

z is for it to either change to HEAD or to stay HEAD or ESCAPING. We have

four different cases for differente andσ.

3.4. CORRECTNESS 117

Case 1e ∈ {INIT ,FLOOD}∧σ = SLAVE: This cannot happen as (1) node

pi in the previous round (the legal roundz−1) could not havestatei = SLAVE

without having executed line 17 that setsestatei to SLEEP and (2) there is no

way forestatei to change during the receipt phase of a round.

Case 2e ∈ {INIT ,FLOOD} ∧ σ = HEAD: No change tostatei, that

remains HEAD.

Case 3e ∈ {INIT ,FLOOD} ∧ σ = ESCAPING: No change tostatei, that

remains ESCAPING.

Case 4e /∈ {INIT ,FLOOD}: Herestatei is set to HEAD.

Furthermore, the only way forstatei to be ESCAPING at the start of the

step phase of roundz is if e ∈ {INIT ,FLOOD}. In that caseestatei must

have been set to FLOOD after line 10 in roundz− 1 from which it follows that

estatei ∈ {FLOOD,HOPE} after execution of line 10 in roundz. Thus, the

condition in line 14 does not hold in roundz and line 15, the only line that can

setstatei to SLAVE, is not executed. Therefore, nodepi is a cluster head at the

end of roundz and if it were a cluster head at the beginning of roundz it was

so throughout the round.

In the following Lemma we show that a node that is continuously wanted as

a cluster head eventually becomes one.

Lemma 3.5 Lets and all following rounds be legal rounds and assume a node

pj wants a nodepi ∈ Gr
j to be cluster head as soon as it knows about it and is

never willing to let it escape. In other words (1) ifpi /∈ headsj after line 7 the

condition in line 21 would always hold andpi ∈ A after executing line 22 and

(2) the condition in line 50 would always hold.

Then nodepi will be a cluster head after roundy ≤ s + 2r and throughout

all following rounds.

Proof: Let r̂ be the number of hops betweenpi andpj and let roundx be

the first round≥ s in which nodepj receives a state frompi. We know that

s ≤ x ≤ s + r̂. Furthermore, lety be the round in whichpi gets the join from

118 CHAPTER 3.

pj that was sent in roundx. We know thaty = x+r̂ and thuss+1 ≤ y ≤ s+2r̂

and thus both roundx− 1 andx are legal. According to Lemma 3.4,pi will be

a cluster head at the end of roundy.

According to the assumptions,pi ∈ headsj at line 25 in every round≥ x

and thuspj sends a join topi in every such round. This means thatpi will

receive a join in every round≥ y, and thus, by Lemma 3.4, be a cluster head in

the step phase of roundy and throughout the following rounds.

Now we can show that within2r+1 legal rounds from an arbitrary configu-

ration all nodespi have at leastki cluster heads and that the set of cluster heads

in the network can only stay the same or shrink from that pointon.

Theorem 3.1 Let rounds and all following rounds be legal. Then any node

pj will havekj cluster heads withinr hops in the step phase of rounds + 2r

and throughout any following rounds. Moreover, a node that is not inHx in a

roundx ≥ s + 2r can not be inHx+t for a non-negativet and consequently

|Hx+t| ≤ |Hx|.

Proof: From Lemma 3.3 we have seen that as long as the escape mechanism

does not allow nodes to change its state to SLAVE after being acluster head,

any nodepj will havekj cluster heads withinr hops in the step phase of round

s + 2r and throughout any following rounds.

Furthermore, from Lemma 3.5 and its proof we have seen that aslong as a

nodepj wants to have nodepi as a cluster headpi will remain a cluster head.

Now we will look in what situationspj does not wantpi as a cluster head even

though it did at some earlier point in time.

If |headsj | < k at line 20 in a rounds, then nodepj finds up tok−|headsj |
nodes in{pi : < pi, · >∈ Sj} \ headsj and sends a join to them in a rounds.

Assumepi ∈ Gr
j is one of the newly picked nodes inA after executing line 22

in rounds. We call this setA in rounds for Â. Nodepi does not get the join

until rounds + r̂ wherer̂ is the number of hops between nodespi andpj .

As we saw in the proof of Lemma 3.4, ifstatei = ESCAPING∧ estatei ∈
{INIT ,FLOOD} does not hold in rounds+ r̂ thenpi will send out HEAD. That

3.4. CORRECTNESS 119

will reachpj in rounds + 2r̂ and consequentlypi ∈ headsj in rounds + 2r̂.

If statei = ESCAPING andestatei ∈ {INIT ,FLOOD} in rounds + r̂, node

pi will not send out HEAD in that round andpj might not get HEAD frompi
in rounds + 2r̂. If pj got HEAD from some other nodepl ∈ Gr

j in a round

x ∈ [s+ 1, s+ 2r̂] nodepj might not wantpi as a cluster head any more. Node

pj will not send join topi in roundx if (1) |headsj | ≥ k at line 20 or (2)pi
has received HEAD from enough nodes not inÂ so thatpi is not among the

smallest nodes picked out in line 22 in rounds + 2r̂. On the other hand if none

of these cases holdpj will continue to send joins topi and by Lemma 3.5 node

pj will remain a cluster head.

The second way for a nodepi ∈ Gr
j to be SLAVE even though it earlier were

in headsj is to escape using the escape mechanism. In other words in some

roundz nodepi initiates an escape attempt. When receiving different states

for a node, HEAD takes precedence over ESCAPING that takes precedence

over SLAVE (lines 55-60). This combined with Lemma 3.2 meansthat in some

roundy ∈ [z + 1, z + r] nodepi get the state ESCAPING frompi and that in

the previous roundy − 1 pj got HEAD frompj .

Nodepj will have pi ∈ headsj after executing line 7 in roundy − 1 as

pj receives HEAD frompi in roundy − 1. Thuspi ∈ headsj at line 47 in

roundy whenpj receives ESCAPING frompi. If |headsj | ≤ k at that point

thenpj will interpret the state as HEAD for all purposes other than forwarding

the message (lines 50-51). Thuspi ∈ headsj after executing line 7 in round

y as well, andpj will send a join. By Lemma 3.5 and its proof, nodepi will

remain cluster head in that case. If on the other hand|headsj | > k for node

pj at line 47 in roundy thenpj removespi from heads and will consequently

not send any join in roundy. Whenpj gets ESCAPING frompi in the coming

roundsy + 1, y + 2, . . ., thenpi will not be inheadsj and thus no joins will be

sent in those rounds either. If nodepj receives ESCAPING for more than one

nodepl ∈ headsj in roundsy, y + 1, . . . thenpj will let them go in first come

first served fashion. When nodepj decides to let a nodepl go it is immediately

removed fromheadsj in line 53. Thus, nodepi will not let so many nodes go

120 CHAPTER 3.

that |headsj | ≥ k would not be fulfilled (ifkj < k no node is ever allowed to

go).

Finally, a nodepi /∈ Gr
j might be inheadsi in a roundz ∈ [s, s + r − 1]

but by Lemma 3.1 such a node is not inSj in rounds + r and thus nodepi will

pick some other node instead of such apj to send join to in rounds + r if not

earlier.

So any nodepj will havekj cluster heads withinr hops in the step phase of

rounds + 2r and throughout any following rounds. Therefore in any of these

rounds no node will fulfill the condition in line 20. Hence, nonodepi that is not

a cluster head at the beginning of the state phase of rounds + 2r can be picked

by any nodepj in line 22. Therefore no such nodepi can become a cluster head

in the state phase of round of rounds + 2r or thereafter.

Thus a node that is not in set of cluster heads in the entire network at round

x, Hx, for a roundx ≥ s + 2r can never be inHx+t for a non-negativet.

Moreover,|Hx+t| ≤ |Hx| for anyx ≥ s + 2r and any non-negativet.

3.4.2 Convergence to a Local Minimum

In this section we show that the set of cluster heads converges to a local mini-

mum. We show that a cluster head node that is not needed can escape the cluster

head responsibility if not interfered by other escape attempts (Lemma 3.6). We

show that an unneeded cluster head node escapes withinO(gr) rounds with

high probability under assumptions of synchronized timers(Lemma 3.7). Fi-

nally, in Theorem 3.2, we show that with high probability theentire network

reaches a local minimum withinO(gr log n) rounds. We begin by looking at

the escape of an uninterfered node.

Lemma 3.6 Consider a rounds for which all rounds froms − 2r − 1 and

forward are legal. Assume that nodepi initiates an escape attempt in round

s and assume that in rounds[s, s + r] all nodespj ∈ Gr
i have|Cr

j | > k. If

no other nodepl ∈ G2r
i than nodepi initiates an escape attempt in any round

3.4. CORRECTNESS 121

∈ [s−2r−1, s+r−1] then nodepi will setstatei to SLAVE in rounds+2r+1

and havestatei = SLAVE throughout any rounds+ 2r+ 1 + t for a positivet.

Proof: Assume that a nodepl initiates an escape attempt in roundx. In round

x + 2r nodepl will set estatel to HOPE. In all rounds in[x, x + 2r] nodepl
will send outstatel = ESCAPING. If nodepl gets a join to itself in the receipt

phase of roundx + 2r + 1 it setsstatei to HEAD in line 70. Otherwisepl sets

statel to SLAVE in line 15 in roundx+ 2r + 1. Letσ be thestatei that is sent

out bypl in roundx + 2r + 1. We know thatσ 6= ESCAPING. We assume

that nodepl does not initiate any more escape attempts in the time span weare

looking at. Therefore nodepl sends outσ in the rounds in[x+ 2r + 1, x+ 3r].

By Lemma 3.2, in roundx + 3r + 1 all nodespj′ ∈ Gr
l \ {pl} receivesσ and

onlyσ for pl in the receipt phase. Therefore, either all nodespj ∈ Gr
l (including

pl) havepl ∈ headsj (if σ = HEAD) or none of them havepl ∈ headsj (if

σ = SLAVE) after executing line 7 in the step phase of roundx + 3r + 1.

This continues to hold in the receive phase of roundx + 3r + 2. Thus in round

x + 3r + 1 + t, for a positivet, no nodepj ∈ Gr
l can havepl ∈ Cr

j without

havingpl ∈ headsj .

Now if nodepi initiates an escape attempt in rounds, by Lemma 3.2, all

nodespj ∈ Gr
i will receive ESCAPING and only ESCAPING for nodepi in

rounds+r. As we saw above no nodepl initiating an escape attempt in a round

≤ s − 2r − 2 can in rounds + r be inCr
j , for a nodepj ∈ Gr

l , without being

in headsj . By the Lemma assumptions, no nodepl ∈ G2r
i makes an escape

attempt in a round in[s − 2r − 1, s + r − 1]. In addition, consider a nodep′l
that initiates an escape attempt in a rounds + r − 1 + t for a positivet. A

nodepj ∈ Gr
i can only receive ESCAPING from that escape attempt in rounds

≥ s+ r + t. Therefore a nodepj ∈ Gr
i will in round s+ r receive ESCAPING

for nodepi but not for any other node.

In rounds[s, s+r] all nodespj ∈ Gr
i \{pi} have|Cr

j | > k. Therefore, when

pj receives ESCAPING forpi in rounds+ r either (1)pi /∈ headsj becausepj
received ESCAPING and had|headsj | > k in some round in[s+1, s+r−1] or

(2) pi ∈ headsj and|headsj | > k in which casepj removespi from headsj at

line 53. Thus in the step phase of rounds in[s+r, s+2r] no nodepj sends a join

122 CHAPTER 3.

to pi. Therefore, in the rounds+ 2r + 1 no join is received bypi and therefore

pi setsstatei to SLAVE in rounds + 2r + 1. There is no round≥ s in which

pi sends out HEAD and, by Theorem 3.1, no node will need to add newnodes

as cluster heads in any round≥ s. Hence, nodepi will have statei = SLAVE

in the step phase of rounds + 2r + 1 and throughout any rounds + 2r + 1 + t

for a positivet.

Definition 3.4 We say that the timers of the nodes in the network are synchro-

nized iftimeri = timerj for all pair of nodespi, pj ∈ P for all legal rounds.

Under the added assumption of synchronized timers we show that an un-

needed cluster head node either escapes withinO(gr) rounds, unless it becomes

needed due to other escaped cluster heads.

Lemma 3.7 Let rounds and all following rounds be legal. Furthermore, let

g = maxj |G2r
j | be a bound on the number of nodes within2r hops. Consider a

nodepi that is a cluster head in any round≥ s. Assume that|Cr
j | > k holds for

all nodespj ∈ Gr
i from rounds + 2r and as long aspi remains a cluster head.

If the timers of all nodes in the network are synchronized andT = 8gr, nodepi
will be SLAVE in any rounds + 2r + 8(β + 1)gr − 2 + t for a non-negativet

with probability at least1 − 2−β .

Proof: From Theorem 3.1 we know that from rounds+ 2r nodes can only go

from being cluster heads to being slaves. Consider a clusterhead nodepi. Let

x0
i be the first round≥ s + 2r in which timeri = 0 at line 8. As long as node

pi remain a cluster head it will execute line 35 every roundxt
i = x0

i + tT , for

a non-negativet and a givenT , and schedule an escape attempt in theperiod

Πt
i = [xi + tT, xi + (t + 1)T − 1]. Nodepi picks one of the firstT − 2r − 1

rounds in the period, uniformly at random and independentlyfrom any other

random choice, to initiate an escape attempt in. Thus the probability that node

pi initiates an escape attempt in any given round is≤ 1/(T − 2r − 1).

3.4. CORRECTNESS 123

Now consider a periodΠt
i in which pi initiates an escape attempt. LetDt

i

be the set of rounds[xt
i−2r−1, xt

i +r−1]. The number of nodes that could be

cluster heads inG2r
i is bounded byg. If F t

i,l is the event that a nodepl ∈ G2r

initiates an escape attempt in any round inDt
i thenP [F t

i,l] ≤ (3r + 1)/(T −
2r − 1) =: ρ. Let At

i be the event that none of the nodes inG2r
i initiate an

escape attempt in a round inDt
i . We say thatAt

i is the event that nodepi gets

anuninterfered escape attemptin periodΠt
i. Then we get

P [At
i] ≥ (1 − ρ)

g−1
= [µ :=

1

ρ
]

=

((
1 − 1

µ

)µ−1
)(g−1)/(µ−1)

>

(
1

e

)(g−1)/(µ−1)

= exp

(
− g − 1

µ− 1

)

= exp

(
− g − 1

T−2r−1
3r+1 − 1

)
. (3.1)

We can simplify this, using the fact thatr ≥ 1, to get that forT = 8gr we

haveP [At
i] > 1/2.

According to the Lemma assumption the timers of all nodes in the network

are synchronized. Thus we have a globalxt = xt
i andΠt = Πt

i holding for all

nodespi ∈ P. Consider a period starting in roundz. The earliest in a period a

nodepi can initiate an escape attempt is in roundz whenestarti = 0. The latest

a nodepj could initiate an escape attempt in the period starting inz − T is in

round(z−T)+(T−2r−2) = z−2r−2. Thus by Lemma 3.6 an escape attempt

initiated in an earlier period cannot affect an escape attempt in this period. The

latest in a period a nodepi can initiate an escape attempt is in roundz+T−2r−2

whenestarti = T −2r−2. Howeverz+T −2r−2+r−1 < T and therefore,

by Lemma 3.6, no escape attempt in a later period could affectthis period.

This together with the fact that the random choices in different executions of

the line 35 are all mutually independent would make what happens in different

rounds mutually independent. However if a nodepi becomes SLAVE in a round

t it is not doing an escape attempt in roundt + 1 which only increases the

124 CHAPTER 3.

probability forAt+1
j for another nodepj . Therefore, by assuming independence

the calculated lower bound on the probability of an undisturbed escape attempt

gets worse.

Consider theβ periodsΠ0 to Πβ−1 and letAi =
⋃β−1

t=0 At
i. Thus with the

assumption of period independence that gives us a worse bound we get

P [Ai] =P

[
β−1⋃

t=0

At
i

]
= 1 − P

[
β−1⋂

t=0

Āt
i

]
= 1 −

β−1∏

t=0

P [Ai]

>1 −
β−1∏

t=0

1

2
= 1 − 2−β . (3.2)

The latest periodΠ0 could start iss + 2r + T − 1 in which caseΠβ−1 ends in

rounds + 2r + T − 1 + βT − 1 = s + 2r + 8(β + 1)gr − 2.

From Theorem 3.1 we got that all nodespi have at leastki cluster heads

within r hops in2r rounds after an arbitrary configuration.

Assuming that the timers of all nodes in the network are synchronized, we

show that with at least probability1−2−α the set of cluster heads in the network

stabilizes to a local minimum withinO((α + log n)gr) rounds.

Theorem 3.2 Let rounds and all following rounds be legal. Consider round

f = s + 2r + 8(α + log n + 1)gr − 2, wheren is the number of nodes in the

network. Assume that the timers of all nodes in the network are synchronized.

Then, with at least probability1−2−α, in roundf there will be no cluster head

nodepi in the network for whichminpj∈Gi
|Cr

j | > k holds andHf+t = Hf

holds for any positivet.

Proof: We use the notationsΠt, xt andAi and the concept of uninterfered

escape attempts from the proof of Lemma 3.7.

Let β = α + log n, wheren = |P|. Let A be the event all nodes in the

network get at least one uninterfered escape attempt in the periodsΠ0 to Πβ−1.

3.4. CORRECTNESS 125

We get that

P [A] =1 − P [Ā] = 1 − P [
⋃

pi∈P

Āi] ≥ [Boole’s inequality]

≥1 −
∑

pi∈P

P [Āi] ≥ [Lemma 3.7] ≥ 1 −
∑

pi∈P

2−β

=1 − n2−β = 1 − 2logn−β = 1 − 2−α. (3.3)

Thus by the proof of Lemma 3.7 all nodes in the network gets an uninterfered

escape attempt with at least probability1 − 2−α by the roundf = s + 2r +

8(α + log n + 1)gr − 2. Together with Lemma 3.7 This concludes that with

high probability all nodespi for which |Cr
i | > k holds at their uninterfered

escape attempt will have setstatei to SLAVE by roundf . From this follows

that at roundf there is no node for whichminpj∈Gi
|Cr

j | > k holds. Hence,

by Lemma 3.1, no nodepi that is cluster head in roundf can ever setstatei to

SLAVE in a round≥ f andHf+t = Hf holds for any positivet.

3.4.3 Message Complexity

We now show the message complexity for the algorithm.

Theorem 3.3 Let rounds and all following rounds be legal. Then the size, in

bits, of the message sent by a nodepi in any round≥ s+r is inO(|Gi|·(log n+

log r)).

Proof: By Lemma 3.1 we have that for any nodepi, {pj : < pj , · >∈ Si} =

Gr
i holds in the step phase of rounds+r and throughout roundss+r+1+t for

any non-negativet. Following the proof steps of that Lemma, we can conclude

that the only nodes represented instateseti andjoinseti are the ones inGr
i .

The only message a nodepi transmits in a round, is transmitted in line 91.

Before that,stateseti is shrunk in line 89 so that, for every possible pair of node

id j and states, only the maximumttl is kept. Similarly,joinseti is shrunk in

line 90, so that for every possible node idj, only the maximumttl is kept.

126 CHAPTER 3.

Eachstateset entry contains a node id which is encoded inlog n bits, one

of three possible states that is encoded in2 bits and attl value that is encoded

in log r bits. Eachjoinset entry contains a node id and attl value. Thus the

number of bits transmitted per node inGr
i is in O(log n + log r). Therefore,

the size, in bits, of the message sent by a nodepi in any round≥ s + r is in

O(|Gi| · (log n + log r)).

3.5 Discussion

We prove convergence withinO(gr log n) rounds with high probability under

the assumption of independent rounds (apart from the obvious dependence that

nodes that escape are out of the contention for uninterferedescape attempts).

To see if the timers really need to be synchronized to achievethis performance

we did simulations of the algorithm for various settings ofk andr and network

densities. We placedn nodes with a communication radius of 1 uniformly at

random in a 5 by 5 rectangular area, with varyingn for different experiments.

From our experiments we concluded that whenT = 8gr we get a much

faster convergence than the upper bound we have proved. Setting T even lower

decrease the convergence time even further.

A representative picture of the general results can be seen in Fig. 3.3. The

experiments show that when alltimerj are independently and uniformly dis-

tributed in[0, T −1] at beginning of the experiment the convergence time is not

far from what it is in the case with synchronized timers. We also see that if the

nodes starts up with random information in their variables the convergence time

is faster than for an initialized start where each nodepi does not knowGi and

sets itself as cluster head in the first round. To conclude we can with good mar-

gin use the result of convergence withinO(gr log n) rounds from Theorem 3.2

for the unsynchronized setting.

For the rest of the experiments we did a small change to the algorithm. A

node that is added to the network do not elect new cluster headnodes for the

3.5. DISCUSSION 127

 0

 100

 200

 300

 400

 500

(1,1) (1,2) (1,3) (2,1) (2,2) (2,3) (3,2) (3,3) (4,3)

A
v
er

ag
e

co
n

v
er

g
en

ce
 t

im
e

in
 r

ou
n

d
s

Setting for (k,r)

Synchronized timers, initialized start
Unsynchronized timers, initialized start
Synchronized timers, random start
Unsynchronized timers, random start

Figure 3.3: Simulation results of the algorithm indicating that synchronization of timers

is not needed. HereT = gr/2, n = 39.

first r full rounds. It performs all parts of the algorithm except that the condition

in line 20 is always regarded as false in those rounds and lines 21 to 23 are not

executed. It is trivial to make this mechanism self-stabilizing.

In Fig. 3.4 we can see the convergence behavior of the set of cluster towards

local minima over time. The same trend can be seen for other choices ofk and

n.

We have performed experiments to investigate the range of possible re-

sults regarding the (k,r)-dominating sets generated by ouralgorithm on random

graphs. We compare the global minima with results given by our algorithm and

with the worst (i.e., largest) possible local minima in Fig.3.5. The results of our

algorithm is in general placed in the middle between the global minima and the

worst possible local minima. We can also see that even the worst possible local

minima are still quite close to the global minima. Thus even if our algorithm is

“unlucky” it provides a good result. This trend holds true for other choices ofn

andk as well.

128 CHAPTER 3.

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 0 250 500 750 1000 1250 1500

R
a
ti

o
 o

f
cl

u
st

er
 h

ea
d

s
ov

er
 r

ea
ch

ed
 m

in
im

a

Round

r=1 r=2 r=3 r=4 r=5 r=6

Figure 3.4: Cluster head overhead over time as a ratio between number of cluster heads

in given round over the eventually reached local minimum number of cluster heads. Here

T = gr, k = 2 andn = 39.

 0

 5

 10

 15

 20

 25

 30

(3,1) (3,2) (3,3) (3,4) (3,5) (3,6) (3,7) (3,8) (3,9)

N
u

m
b

er
 o

f
cl

u
st

er
 h

ea
d

s

Setting for (k,r)

Optimal Our Worst

Figure 3.5: Comparison between global optima, results of our algorithm and worst

possible local minima forn = 31

3.5. DISCUSSION 129

 0

 50

 100

 150

 200

 250

 300

 350

 400

(1,1) (1,2) (1,3) (2,1) (2,2) (2,3) (3,2) (3,3) (4,3)

A
v
er

a
ge

 c
o
n

v
er

g
en

ce
 t

im
e

in
 r

ou
n

d
s

Setting for (k,r)

Start Add Remove Move

Figure 3.6: Convergence times from a fresh start, after 5% node additions, after 5%

node removes and after 5% node moves. HereT = gr andn = 39.

We also performed experiments on recovery from small changes to the

topology from a converged state. The convergence times froma newly started

network (“Start”) is compared in Fig. 3.6 with the convergence times after

a change to a initially converged network. We investigate5% added nodes

(“Add”), 5% removed nodes (“Remove”) or5% moved nodes (“Move”). We

achieve similar results for other choices ofn as well.

We can see that the least obtrusive change to the topology is added nodes.

The chance is good that a new node ends up in a position in the network were

there already is enough or close to enough cluster heads already. Remove is

more expensive than add. Cluster heads could be among the nodes that are re-

moved. Additionally removed nodes can also have been used aslinks between

nodes and their cluster heads. A move is like both a remove andan add (with-

out the rounds of abstaining from electing new cluster heads). Therefore, it is

anticipated that this case converges slower than the ones with only adds or only

removes.

130 CHAPTER 3.

The flooding of messages makes sure that if there exist multiple paths of

at most lengthr between a nodepi and a nodepj then joins and state updates

will traverse all possible paths. This can give us higher fault tolerance if there

are communication disturbances on some links (i.e. betweensome immediate

neighbors) and also higher availability for nodes to reach their cluster heads.

The multiple paths can also give applications higher security if some nodes

in the network can be compromised. If there is at least one path of at mostr hops

between a nodepi and a nodepj that is not passing through any compromised

nodes then the flooding makes sure that nodepi andpj gets to know about each

other. Moreover, ifpj wantspi to be cluster head then the compromised nodes

cannot stop that. If nodes add information to the messages about the paths they

have taken during message forwarding then the nodes get to know about the

multiple paths. With this knowledge they can in an application layer use as

diverse paths as possible to communicate with their clusterheads. Thus even if

a compromised node is on the path to one cluster head and dropsmessages or

do other malicious behavior there can be other cluster headsfor where there is

no compromised nodes on the chosen paths.

Consider a compromised nodepc that can lie and not follow protocol. First

assume thatpc cannot introduce node id:s that does not exist (Sybil attacks,

[13]) or node id:s for nodes that are not withinGr
c (wormhole attacks, [14])

and thatpc cannot do denial of service attacks. Thenpc can make any or all

nodes withinGr
c become and stay cluster heads by sending joins to them or

having them repeatedly go on and off cluster head duty over time by alternating

between sending joins and letting the node escape. Considera nodepi that is

a cluster head and has a path to a nodepj of length≤ r hops that does not

pass throughpc. In this situationpc can not give the false impression thatpi

is not a cluster head as HEAD takes precedence over ESCAPING that takes

precedence over SLAVE at message receipt. Ifpc on the other hand is in a

bottleneck between nodes without any other paths between them then it can lie

about a nodepl being a cluster heads and refuse to forward any joins topl. Now

if we assume thatpc is not restricted in what id:s it can include in false messages

it can convince a nodepl that nodes not inGr
l are cluster heads. In the worst

3.6. CONCLUSIONS 131

case it can eventually makepl rely exclusively on non-existent cluster heads

with paths that all go throughpc. In any case the influence by a compromised

nodepc is contained withinG2r
c as the maximumttl of a message isr and is

enforced at message receipt.

The flooding of messages might make the algorithm too expensive in some

sensor networks with limited battery power. If that is the case the algorithm

might be run on an overlay network for which the flooding becomes much

cheaper. For instance a self-stabilizing spanning tree algorithm like the one

in [15] might be used to set up this overlay network. This on the other hand

effectively removes all the pros of having multiple paths soit is a trade off

between redundant paths and message costs.

3.6 Conclusions

We have presented the first self-stabilizing(k, r)-clustering algorithm for ad-

hoc networks. A deterministic mechanism guarantees that all nodes, if possi-

ble for the given topology, havek cluster heads withinr hops. A randomized

mechanism lets the set of cluster heads stabilize to a local minimum. We have

shown, under the extra assumption of synchronized timers, that the set of cluster

heads converges, with high probability, to a local minimum within O(gr log n)

rounds, whereg is an upper bound on number of nodes within2r hops, andn

is the size of the network. With simulations we have shown that even without

this extra assumption the system converges much faster thanthe proved bounds

and thatg does not have to be known very accurately. We have also discussed

how the algorithm can help us with fault tolerance and security and that the

algorithm can be run on an overlay network, e.g. a spanning tree, if message

costs needs to be reduced.

Bibliography

[1] Shlomi Dolev,Self-Stabilization, MIT Press, March 2000.

132 CHAPTER 3.

[2] Yuanzhu Peter Chen, Arthur L. Liestman, and Jiangchuan Liu,Clustering Algo-

rithms for Ad Hoc Wireless Networks, vol. 2, chapter 7, pp. 154–164, Nova Science

Publishers, 2004.

[3] Ameer Ahmed Abbasi and Mohamed Younis, “A survey on clustering algorithms

for wireless sensor networks,”Comput. Commun., vol. 30, no. 14-15, pp. 2826–

2841, 2007.

[4] R. Karp, “Reducibility among combinatorial problems,” inComplexity of Com-

puter Computations, R. Miller and J. Thatcher, Eds., pp. 85–103. Plenum Press,

1972.

[5] Colette Johnen and Le Huy Nguyen, “Robust self-stabilizing weight-based clus-

tering algorithm,”Theor. Comput. Sci., vol. 410, no. 6-7, pp. 581–594, 2009.

[6] Shlomi Dolev and Nir Tzachar, “Empire of colonies: Self-stabilizing and self-

organizing distributed algorithm,”Theor. Comput. Sci., vol. 410, no. 6-7, pp. 514–

532, 2009.

[7] Eddy Caron, Ajoy Kumar Datta, Benjamin Depardon, and LawrenceL. Larmore,

“A self-stabilizing k-clustering algorithm using an arbitrary metric,” inEuro-Par,

2009, pp. 602–614.

[8] Yongsheng Fu, Xinyu Wang, and Shanping Li, “Construction k-dominating set

with multiple relaying technique in wireless mobile ad hoc networks,” inCMC

’09: Proceedings of the 2009 WRI International Conference on Communications

and Mobile Computing, Washington, DC, USA, 2009, pp. 42–46, IEEE Computer

Society.

[9] Marco Aurélio Spohn and J. J. Garcia-Luna-Aceves, “Bounded-distance multi-

clusterhead formation in wireless ad hoc networks,”Ad Hoc Netw., vol. 5, no. 4,

pp. 504–530, 2007.

[10] Yiwei Wu and Yingshu Li, “Construction algorithms for k-connectedm-

dominating sets in wireless sensor networks,” inMobiHoc ’08: Proceedings of

the 9th ACM international symposium on Mobile ad hoc networking and comput-

ing, New York, NY, USA, 2008, pp. 83–90, ACM.

[11] Kun Sun, Pai Peng, Peng Ning, and Cliff Wang, “Secure distributed cluster forma-

tion in wireless sensor networks,” inACSAC ’06: Proceedings of the 22nd Annual

Computer Security Applications Conference on Annual Computer SecurityAppli-

cations Conference, Washington, DC, USA, 2006, pp. 131–140, IEEE Computer

Society.

BIBLIOGRAPHY 133

[12] Andreas Larsson and Philippas Tsigas, “Self-stabilizing (k,r)-clustering in wireless

ad-hoc networks with multiple paths,” inOPODIS’10, 14th International Confer-

ence On Principles Of Distributed Systems, Tozeur, Tunisia, December 2010.

[13] James Newsome, Elaine Shi, Dawn Song, and Adrian Perrig, “Thesybil attack

in sensor networks: analysis & defenses,” inIPSN ’04: Proceedings of the 3rd

international symposium on Information processing in sensor networks, New York,

NY, USA, 2004, pp. 259–268, ACM.

[14] Yih chun Hu, Adrian Perrig, and David B. Johnson, “Wormhole detection in wire-

less ad hoc networks,” Tech. Rep., Rice University, Department of Computer Sci-

ence, 2002.

[15] Sudhanshu Aggarwal and Shay Kutten, “Time optimal self-stabilizing spanning

tree algorithms,” inProceedings of the 13th Conference on Foundations of Soft-

ware Technology and Theoretical Computer Science, London, UK, 1993, pp. 400–

410, Springer-Verlag.

134 CHAPTER 3.

PAPER III

Andreas Larsson, Philippas Tsigas

Self-stabilizing (k,r)-clustering in Clock Rate-limited
Systems

Technical Report no. 2012:05, Department of Computer Science and

Engineering, Chalmers University of Technology, Sweden, 2012.

This work, in a shortened form because of space constraints,will appear in:

Andreas Larsson and Philippas Tsigas. “Self-stabilizing (k,r)-clustering in clock

rate-limited systems.” InProceedings of the 19th International Colloquium on

Structural Information and Communication Complexity (SIROCCO 2012), vol-

ume ?? ofLecture Notes in Computer Science, pages ??–??, Springer, 2012.

4
Paper III: Self-stabilizing (k,r)-clustering in

Clock Rate-limited Systems

Wireless Ad-hoc networks are distributed systems that often reside in error-

prone environments. Self-stabilization lets the system recover autonomously

from an arbitrary system state, making the system recover from errors and tem-

porarily broken assumptions. Clustering nodes within ad-hoc networks can help

forming backbones, facilitating routing, improving scaling, aggregating infor-

mation, saving power and much more. We present a self-stabilizing distributed

(k,r)-clustering algorithm. A (k,r)-clustering assignsk cluster heads within

r communication hops for all nodes in the network while trying to minimize

the total number of cluster heads. The algorithm assumes a bound on clock

frequency differences and a limited guarantee on message delivery. It uses mul-

tiple paths to different cluster heads for improved security, availability and fault

tolerance. The algorithm assigns, when possible, at leastk cluster heads to

each node withinO(rπλ3) time from an arbitrary system configuration, where

π is a limit on message loss andλ is a limit on pulse rate differences. The

set of cluster heads stabilizes, with high probability, to alocal minimum within

O(rπλ4g log n) time, wheren is the size of the network andg is an upper bound

on the number of nodes within2r hops.

137

138 CHAPTER 4.

4.1 Introduction

Starting from an arbitrary system state, self stabilizing algorithms let a system

stabilize to, and stay in, a consistent system state [1]. There are many rea-

sons why a system could end up in an inconsistent system stateof some kind.

Assumptions that algorithms rely on could temporarily be invalid. Memory

content could be changed by radiation or other elements of harsh environments.

Battery powered nodes could run out of batteries and new onescould be added

to the network. It is often not feasible to manually configurelarge ad-hoc net-

works to recover from events like this. Self-stabilizationis therefore often a

desirable property of algorithms for ad-hoc networks. However, the trade off is

that self-stabilization often comes with increased costs.A self-stabilizing algo-

rithm can never stop because it is not known in advance when temporary faults

occur. Nevertheless, as long as all assumptions hold, it canconverge to stable

result, or, after convergence, stay within a set of acceptable states. Moreover,

there are often overheads in the algorithm tied to the need torecover from ar-

bitrary system states. They can be additional computations, larger messages,

larger data structures or longer required times to achieve certain goals.

An algorithm for clustering nodes together in an ad-hoc network serves an

important role. Back bones for efficient communication can be formed using

cluster heads. Clusters can be used for routing messages. Cluster heads can

be responsible for aggregating data into reports to decrease the number of indi-

vidual messages that needs to be routed through the network,e.g., aggregating

sensor readings in a wireless sensor network. Hierarchies of clusters on dif-

ferent levels can be used for improved scaling of a large network. Nodes in a

cluster could take turns doing energy-costly tasks to reduce overall power con-

sumption.

Clustering is a well studied problem. Due to space constraints, for refer-

ences to the area in general, we point to the survey of the areawith regard to

wireless ad-hoc networks by Chen, Liestam and Liu in [2] and the survey by

Abbasi and Younis in [3] for wireless sensor networks. In this paper we focus

on self-stabilization, redundancy and security aspects. One way of clustering

4.1. INTRODUCTION 139

nodes in a network is for nodes to associate themselves with one or more clus-

ter heads. In the (k,r)-clustering problem each node in the network should have

at leastk cluster heads withinr communication hops away. This might not be

possible for all nodes if the number of nodes withinr hop from them is smaller

thank. In such cases a best effort approach can be taken for gettingas close to

k cluster heads as possible for those nodes. The clustering should be achieved

with as few cluster heads as possible. To find the global minimum number of

cluster heads is in general computationally hard, and algorithms usually provide

approximations. The (1,r)-clustering problem, a subset ofthe (k,r)-clustering

problem, can be formulated as a classical set cover problem.This was shown

to be NP complete in [4]. Assuming that the network allowsk cluster heads

for each node, the set of cluster heads forms a total (k,r)-dominating set in the

network. In atotal (k,r)-dominating set the nodes in the set also need to havek

nodes in the set withinr hops, in contrast to an ordinary (k,r)-dominating set in

which this is only required for nodes not in the set.

There is a multitude of existing clustering algorithms for ad-hoc networks of

which a number is self-stabilizing. Johnen and Nguyen present a self-stabilizing

(1,1)-clustering algorithm that converges fast in [5]. Dolev and Tzachar tackle

a lot of organizational problems in a self-stabilizing manner in [6]. As part

of this work they present a self-stabilizing (1,r)-clustering algorithm. Caron,

Datta, Depardon and Larmore present a self-stabilizing (1,r)-clustering in [7]

that takes weighted graphs into account. Self-stabilization in systems with un-

reliable communications was introduced in [8]. In [9] a self-stabilizing (k,1)-

clustering algorithm, that can cope with message loss, is presented.

There is a number of papers that do not have self-stabilization in their set-

tings. Fu, Wang and Li consider the (k,1)-clustering problem in [10]. In [11]

the full (k,r)-clustering problem is considered and both a centralized and a dis-

tributed algorithm for solving this problem are presented.Wu and Li also con-

sider the full (k,r)-clustering in [12].

Other algorithms do not take the cluster head approach. In [13], sets of

nodes that all can communicate directly with each other are grouped together

140 CHAPTER 4.

without assigning any cluster heads. In this paper malicious nodes that try to

disturb the protocol are also considered, but self-stabilization is not considered.

4.1.1 Our Contribution

We have constructed a self-stabilizing(k, r)-clustering algorithm for ad-hoc

networks that can deal with message loss, as long as at least one out ofπ con-

secutive broadcasts are successful, and that uses unsynchronized pulses, for

which the ratios between pulse rates are limited by a factorλ. The algorithm

makes sure that, withinO(rπλ3) time, all nodes have at leastk cluster heads

(or all nodes withinr hops if a node has less thank nodes withinr hops) using

a deterministic scheme. A randomized scheme complements the deterministic

scheme and lets the set of cluster heads stabilize to a local minimum. It stabi-

lizes withinO(rπλ4g log n) time with high probability, whereg is a bound on

the number of nodes within2r hops, andn is the size of the network.

We presented the first distributed self-stabilizing (k,r)-clustering in [14].

There, the system settings assumed perfect message transfers and lock step

synchronization of the nodes. The current article is a further development of

that work and the main idea of the algorithm is the same. The unreliable com-

munication media, the unsynchronized nodes and the introduction of a veto

mechanism to speed up convergence, all have made the currentalgorithm quite

different, yet clearly related to the one in [14]. We presentcorrectness proofs

for quick selection of enough cluster heads (k cluster heads withinr hops when

possible) and that the set of cluster heads converges towards a local minimum

and stays at that local minimum. This includes an upper boundon the time it

takes, with high probability, for that convergence to happen. Furthermore, we

also present experimental results on the convergence of thealgorithm and how

it copes with changes to the topology.

4.1.2 Document Structure

The rest of the paper is organized as follows. In section 4.2 we introduce the

system settings. Section 4.3 describes the algorithm. Section 4.4 gives the

4.2. SYSTEM SETTINGS 141

overview of the proofs of the algorithm. We discuss experimental results, secu-

rity and redundancy in Section 4.5.

4.2 System Settings

We assume a static network. Changes in the topology are seen as transient

faults. We denote the set of all nodes in the networkP and the size of the

networkn = |P|. We impose no restrictions on the network topology other

than that an upper bound,g, on the number of nodes within2r hops of any node

is known (see below).

The set of neighbors,Ni, of a nodepi is all the nodes that can communicate

directly with nodepi. In other words, a nodepj ∈ Ni is one hop from nodepi.

We assume a bidirectional connection graph, i.e., thatpi ∈ Nj iff pj ∈ Ni. The

neighborhood,Gr
i of a nodepi is all the nodes (including itself) at mostr hops

away frompi andĜr
i = Gr

i \ {pi}. Let g ≥ maxj |G2r
j | be a bound, known by

the nodes, on the number of nodes within2r hops from any node.

Nodes are driven by a pulse going off every1 time unit (with respect to its

local clock). Pulses are not synchronized between nodes. The pulse frequency,

in real time, of a nodepi is denotedρi. For any pair of nodespi andpj the

ratioρi/ρj ≤ λ, a value is a known to the nodes. Without loss of generality we

assume that the frequency of the slowest clock in the system is 1 and thus the

clock frequency of any nodepi is in [1, λ].

Amongπ successive messages sent from one node there is at least one mes-

sage, such that all immediate neighborspj ∈ Ni receive that particular message.

Such a message is called asuccessful broadcast. The nodes know the value of

π. Apart from that assumption, messages from a nodepi can be lost, be received

by a subset ofNi, or received by all nodes inNi.

4.3 Self-stabilizing Algorithm for (k, r)-clustering

The goal of the algorithm is, using as few cluster heads as possible, for each

nodepi in the network to have a set of at leastk cluster heads within itsr-hop

142 CHAPTER 4.

Constants, and variables:
i : Constant id of executing processor.
T, Tcool, Tflood, κ : Constants derived from r, k, λ andπ. See Definition4.4.
state∈ {HEAD, ESCAPING, SLAVE} : The state of the node.
timer : Integer. Timer for escape attempts.
estart: Integer. The escape schedule.
estate∈ {SLEEP, INIT, FLOOD} : State for escape attempts.
heads, slaves: Sets of Id:s tracking what nodes have which role.
smem, sendset, data : Infotuple sets for keeping and forwarding state data.

External functions and macros:
LBcast(m) : Broadcasts message m to direct neighbors.
LBrecv(m) : Receives a message from direct neighbor.
smallest(a,A) : Returns themin(|A|,a) smallest id:s in A.
pruneset(A): maxt← {< j,ji ,ttl,ttf> ∈ A : ttl = maxτ {τ : < j,ji ,τ ,ttf> ∈ A}}

return {< j,ji ,ttl,ttf> ∈ maxt: ttf =maxφ {φ : < j,ji ,ttl,φ> ∈ maxt}}
prunemem(A): return {< j,ji ,ξ> ∈ A : ξ =maxx {x : < j,ji ,x> ∈ A})}

Figure 4.1: Constants, variables, external functions and macros for the algorithm in
Figures 4.2 and 4.3.

neighborhoodGr
i . This is not possible if a nodepi has|Gr

i | < k. Therefore,

we require that|Cr
i | ≤ ki, whereCr

i ⊆ Gr
i is the set of cluster heads in the

neighborhood ofpi and ki = min(k, |Gr
i |) is the closest number of cluster

heads tok that nodepi can achieve. We do not strive for a global minimum.

That is too costly. We achieve a local minimum, i.e., a set of cluster heads in

which no cluster head can be removed without violating the(k, r) goal.

The basic idea of the algorithm is for cluster heads to constantly broadcast

the fact that they are cluster heads and for all nodes to constantly broadcast

which nodes they consider to be cluster heads. The set of considered cluster

heads consists both of nodes that are known to be cluster heads and, addi-

tionally, nodes that are elected to become cluster heads. The content of the

broadcasts are forwardedr hops, but in an aggregated form to keep the size of

messages down. The election process might establish too many cluster heads.

Therefore, there is a mechanism for cluster heads to drop their cluster head

roles, toescape. Eventually a local minimum of cluster heads forms a total

(k,r)-dominating set (or, if not possible given the topology, it fulfills |Cr
j | ≥ kj

for any nodepj). The choice of which nodes that are picked when electing clus-

ter heads is based on node ID:s in order to limit the number of unneeded cluster

heads that are elected when new cluster heads are needed.

4.3. SELF-STABILIZING ALGORITHM FOR(K,R)-CLUSTERING 143

1 on pulse:
2 timer← (timer + 1) mod T
3 if estate= SLEEP∧∃t s.t. (i, JOIN, t) ∈ smem then state← HEAD
4 if state= HEAD then (newheads, newslaves)← ({i}, ∅)
5 else(newheads, newslaves)← (∅, {i})
6 for each j∈ { k |k 6= i ∧∃ ki 6= JOIN,t s.t. (k,ki,t) ∈ smem} do handlestate(j)
7 (heads, slaves)← (newheads, newslaves)
8

9 /* Escaping */
10 if state ∈ {HEAD, ESCAPING}
11 estate← updateestate()
12 if estate = INIT ∧ state = HEAD ∧ |heads| > k
13 state← ESCAPING
14 < heads, slaves> ←< heads\ { i}, slaves∪ { i}>
15 if state= ESCAPING∧ estate= SLEEP
16 if ∃t s.t. (i, JOIN, t) ∈ smem then state← HEAD
17 elsestate← SLAVE
18 if state= SLAVE then< estate,estart> ←< SLEEP,-1>
19

20 /* Add heads */
21 if |heads|< k
22 heads← heads∪ { smallest(k -|heads|, slaves)}
23 slaves← slaves\ heads
24

25 /* Join and send state */
26 for each j∈ heads
27 if j 6= i then sendset← pruneset(sendset∪ {< j, JOIN,r, π> })
28 elsestate← HEAD
29 smem← stepmem(smem)
30 < sendset,data> ← stepset(pruneset(sendset∪ {< i, state, r, π> }))
31 LBcast(< i,data>)
32

33 function updateestate:
34 if timer= 0 then estart← uniformlyrandom({0, 1, . . ., T-Tcool-1})
35 if estart∈ [0,T-Tcool-1]
36 if timer∈ [estart, estart] then return INIT
37 else iftimer∈ [estart+1, estart+Tflood-1] then return FLOOD
38 return SLEEP

Figure 4.2: Pseudocode for the self-stabilizing clustering algorithm (1/2).

One could imagine an algorithm that in a first phase adds cluster heads and

thereafter in a second phase removes cluster heads that are not needed. To

achieve self-stabilization however, we cannot rely on starting in a predefined

system state. Recovery from an inconsistent system state might start at any

time. Therefore, in our algorithm there are no phases and themechanism for

adding cluster heads runs in parallel with the mechanism forremoving cluster

heads and none of them ever stops.

144 CHAPTER 4.

40 function handlestate(j):
41 js← prioritystate(j,smem)
42 if js = HEAD
43 newheads← newheads∪ { j}
44 sendset← pruneset(sendset∪ {< j, JOIN,r, π> })
45 else if js = ESCAPING∧ j ∈ heads
46 if |heads| ≤ k
47 newheads← newheads∪ { j}
48 sendset← pruneset(sendset∪ {< j, VETO, r, π> })
49 elseheads← heads\ { j}
50 newslaves← (newslaves∪ { j}) \ newheads
51

52 function prioritystate(j,mem):
53 if ∃ t s.t. (j, HEAD, t) ∈ mem
54 return HEAD
55 if ∃ t s.t. (j, ESCAPING,t) ∈ mem
56 return ESCAPING
57 return SLAVE
58

59 function stepmem(mem):
60 newmem←∅
61 for each< j,js,ttk> in mem
62 ttk← min(ttk,κ)-1
63 if ttk > 0
64 newmem← prunemem(
65 newmem∪ {< j,js,ttk> })
66 return newmem
67

68 function stepset(set):
69 < newset, newdata> ←< ∅, ∅>
70 for each< j,ji ,ttl,ttf> in set
71 < ttl, ttf> ←< min(ttl,r), min(ttf,π)-1>
72 if ttf > 0∧ ttl > 0 then
73 newset← pruneset(newset∪ {< j,ji ,ttl,ttf> })
74 if ttf≥ 0∧ ttl > 0 then
75 newdata← newdata∪ {< j,ji ,ttl> }
76 return < newset, newdata>
77

78 on LBrecv(< k, infoset>):
79 for each< j,ji ,ttl> ∈ infoset
80 ttl← min(ttl,r))
81 if ji = VETO
82 if j = i ∧ state= ESCAPING
83 state← HEAD
84 else if(j 6= i ∧ ji 6= JOIN) ∨ (j = i ∧ ji = JOIN)
85 smem← prunemem(smem∪ {< j,ji ,κ> })
86 if j 6= i ∧ ttl > 1
87 sendset← pruneset(sendset∪ {< j,ji ,ttl-1,π> })

Figure 4.3: Pseudocode for the self-stabilizing clustering algorithm (2/2).

At each pulse a node sends out its state (the algorithmic state, i.e., which

role it takes in the algorithm) and forwards the states of others. A cluster head

node normally has the state HEAD and a non cluster head node always has state

4.3. SELF-STABILIZING ALGORITHM FOR(K,R)-CLUSTERING 145

SLAVE. If a nodepi in any pulse finds out that it has less thank cluster heads it

selects a set of other nodes that it decides to elect as cluster heads. Nodepi then

elects established cluster head nodes and any newly electednodes by sending

a join message to them. Any node that is not a cluster head becomes a cluster

head if it receives a join addressed to it.

We take a randomized approach for letting nodes try to drop their cluster

head responsibility. Time is divided into periods ofT pulses. A cluster head

nodepi picks uniformly at random one pulse out of theT −Tcool first pulses in

the period as a possible starting pulse,estarti, for an escape attempt. Ifpi has

more thank cluster heads in pulseestarti, then it will start an escape attempt.

When starting an escape attempt a node sets it state to ESCAPING and keeps

it that way for a number of pulses to make sure that all the nodes in Gr
i will

eventually know that it tries to escape. A nodepj ∈ Gr
i that would get fewer

thank cluster heads ifpi would stop being a cluster head can veto against the

escape attempt. This is done by continuing to regardpi to be a cluster head and

send a VETO back topi. If pj , on the other hand, has more thank cluster heads

it would not need to veto. Thus, by accepting the state ofpi as ESCAPING,pj
will not send any join topi. After a number of pulses all nodes in̂Gr

i will have

had the opportunity to veto the escape attempt. If none of them objected, at that

pointpi will get no joins and can set its state to SLAVE.

If an escape attempt bypi does not overlap in time with another escape

attempt it will succeed if and only ifminpj∈Gr
i
|Cr

j | > k. If there are overlaps

by other escape attempts, the escape attempt bypi might fail even in cases

whereminpj∈Gr
i
|Cr

j | > k. The random escape attempt schedule therefore

aims to minimize the risk of overlapping attempts.

The pseudocode for the algorithm is described in Figures 4.2and 4.3 with

accompanying constants, variables, external functions and macros in Figure 4.1.

At each pulse of a node the lines 1-31 are executed resulting in a message that

is broadcast at some time before the next pulse of that node. When a message

is being received, the lines 78-87 are executed.

146 CHAPTER 4.

4.4 Correctness

In Section 4.4.1 we show some basic results that we use further on. In Sec-

tion 4.4.2 we will show that withinO(rπλ3) time we will have|Cr
i | ≥ ki for

any nodepi. First we show that this holds while temporarily disregarding the

escaping mechanism, and then that it holds for the general case in Theorem 4.1.

In Section 4.4.3 we will show that a cluster head nodepi can become slave if

it is not needed and if it tries to escape undisturbed by othernodes inG2r
i . We

continue to show that the set of nodes converges, with high probability, to a

local minimum inO(rπλ4g log n) time in Theorem 4.2.

Definition 4.1 When all system assumptions hold from a points in time and

forward, we say that “we have a legal system execution froms”. We denote a

pulse ofpi with Γi
x for some integerx. Consecutive pulses ofpi have consec-

utive indices, e.g.,Γi
x, Γi

x+1, Γi
x+2, etc. We denote the time betweenΓi

x and

Γi
x+1 with γi

x.

Definition 4.2 We define the set ofstatesas{SLAVE,HEAD,ESCAPING}. An

infotuple is a tuple(j, js, ttx) or (j, js, ttl, ttf), wherejs is a either a state

or one of{VETO, JOIN} and is said to befor nodepj regardless ifpj is the

original sender or final receiver of the infotuple. Thettx field can either be a

ttl, the number of hops the info is to be forwarded, or attk, the number of pulses

for which the infotuple should be kept insmem before being discarded. Attf

field denotes the number of resends that is left to be done for that particular

tuple.

We say that a state earlier in the list [HEAD, ESCAPING, SLAVE] has

priority over a state that is later in that list.

We say that an infotuple(j, σ, τ) is memorablei if and only if eitherj 6= i

andσ is a state, or ifj = i andσ = JOIN and that it isrelevanti if and only

if either it ismemorablei or if i = j andσ = VETO.

Definition 4.3 A nodepi is said tohandlea stateσ for a nodepj in a pulse

Γi
x when thehandlestate function is called with parameterj at line 6 and the

4.4. CORRECTNESS 147

subsequent call to theprioritystate with j as a parameter returnsσ, setting

jsi = σ at line 41.

4.4.1 Basic properties

This section builds up a base on how the algorithm works together with the

system settings. First up is the definition of various constants whose value is

the result of later lemmas.

Definition 4.4 We defineκ = ⌈(2rπ + 1)λ⌉, Tflood = ⌈r(4π + 2)λ2 + r(2π +

2)λ⌉, ts = r(2π+1)λ2+r(π+1)λ+λ−1, te = (Tflood−1)λ+r(π+1)λ+κλ,

th = κ− r(π−1)λ−1, andTcool = ⌈te + r(π+1)λ⌉. Furthermore, we define

T = Tes + Tcool, whereTes = ⌈ 2g
ln 2 (ts + te − 2th + 1)⌉.

Lemma 4.1 Assume that we have a legal system execution from times− (π −
1)λ and consider a nodepi that has a pulseΓi

x at times. Now, assume thatpi
has(k, σ, τ, π), with τ > 0, in sendseti just before executing line 30 inΓi

x and

consider a nodepj ∈ Ni and a time intervalI = [s− (π− 1)λ, s + (π + 1)λ].

First, there exist a pulseΓj
y ∈ I so that(k, σ, τ ′) is received inγj

y−1, for a

τ ′ ≥ τ .

Second, if(k, σ, τ ′) is memorablej , then(k, σ, κ) ∈ smemj in Γj
y just

before executing line 2.

Third, if k 6= j, regardless of whatσ is, and if τ > 1, then there exist a

pulseΓj
ŷ ∈ I (possibly equal toΓj

y) in which (k, σ, θ̂, π) ∈ sendsetj with an

θ̂ ≥ τ − 1, just before executing line 30.

Proof: Consider a pulseΓi
x̂ in which (k, σ, τ, ϕ) ∈ sendseti, with 0 < τ and

0 < ϕ < π, just before executing line 30. At line 30stepset is called and

lines 68–76, which results in(k, σ, τ) ∈ datai, which is broadcast bypi in γi
x̂

due to line 31. Furthermore, ifϕ > 1, the infotupleη = (k, σ, τ, ϕ − 1) ∈
sendseti just after executing line 30. The only mechanism that can removeη

from sendseti between line 30 inΓi
x̂ and line 30 inΓi

x̂+1 are when sendset are

updated after usingpruneset on the union of sendset and an infotupleη′ =

(k, σ, θ, π) with θ ≥ τ in which caseη is replaced byη′. Note thatπ is the only

148 CHAPTER 4.

possible value used in the fourth field ofη′. Thus, ifϕ > 1, then(k, σ, τ ′, ϕ′) ∈
sendseti, whereτ ′ ≥ τ andϕ′ ≥ ϕ− 1, just before executing line 30 inΓi

x̂+1.

Applying this argument toΓi
x, we get thatpi broadcasts(k, σ, τ ′x) afterΓi

x

and have(k, σ, τ ′x+1, ϕ
′
x+1) ∈ sendseti, whereτ ′x+1 ≥ τ ′x andϕ′x+1 ≥ ϕ′x−1.

Iterating the argument we get thatpi broadcasts(k, σ, τ ′x+1) after Γi
x+1 and

have(k, σ, τ ′x+2, ϕ
′
x+2) ∈ sendseti, whereτ ′x+2 ≥ τ ′x andϕ′x+2 ≥ ϕ′x − 2,

etc. Therefore we know that for alla ∈ [0, π − 1] it holds thatpi broadcasts

(k, σ, τ ′x+a) in γi
x+a with τ ′x+a ≥ τ . By the system settings, out of thoseπ con-

secutive broadcasts, at least one is successful. As the maximum time between

two pulses ofpi isλ we get that at times+πλ all nodes inNi have successfully

received one of those tuples frompi. Any nodepj have at least one pulse in any

time interval of lengthλ. Thus for any nodepj ∈ Ni, there exist a pulseΓj
y in

the time interval[s, s+ (π+ 1)λ] such thatpj receive a tuple(k, σ, τ ′) in γj
y−1,

for a τ ′ ≥ τ . Thus, the first lemma claim is validated.

Now consider what can happen whenpj receives this(k, σ, τ ′) and executes

theLBrecv function starting at line 78. If(k, σ, τ ′) ismemorablej , the condi-

tion at line 81 will not hold and line 85 will be executed, addingµ = (k, σ, κ)

to smemj . Nothing can removeµ from smemj before line 1 asκ is the maxi-

mum possible value in that field, and only calls toprunemem can do changes

to smemj before the execution of line 1 inΓj
y. Thus, the second claim of the

lemma holds.

Regardless of whatσ is, if τ > 1 we know thatτ ′ > 1 and if k 6= j,

thenpj will attempt to addη̂ = (k, σ, τ ′ − 1, π) to sendsetj when executing

line 87. Here we need to consider cases of an existing infotuple η̂′ = (k, σ, θ, φ)

already insendsetj , or added to sendset before the execution of line 1 inΓj
y. If

τ ′ − 1 ≥ θ or φ = π, the remaining infotuple insendsetj is the one out ofη

andη′ with the largest third field (which is≥ τ ′− 1) and fulfills the third claim

of the lemmaΓj
ŷ = Γj

y.

Now consider the case in whichτ ′ − 1 < θ andφ < π, in which η̂, that

does not fulfill the third claim of the lemma, is kept. Additions (i.e., excluding

changes made bystepset) to sendsetj can only haveπ in the fourth field.

Given the execution is legal since times − (π − 1)λ, the only way to have

4.4. CORRECTNESS 149

(k, σ, θ, φ) ∈ sendsetj in γj
y−1 is if (k, σ, θ, φ + 1) ∈ sendsetj just before

line 30 inΓj
y−1 is for. By iterating this argument we eventually reach pulseΓj

ŷ,

whereŷ = y − π + φ, in which (k, σ, θ, π) ∈ sendsetj just before executing

line 30. We know thatφ > 0, becausêη could not have remained with a0 in

the fourth field after the call tostepset in Γj
y−1. Therefore, withΓj

y in the time

interval[s, s+(π+1)λ] and a maximum time ofλ between consecutive pulses,

the time ofΓj
ŷ is in the interval[s − (π − 1)λ, s + (π + 1)λ]. Thus, the third

claim of the lemma holds for this final case as well.

This lemma shows that the algorithm forwards information from any node

pj such that it reaches all nodes in̂Gr
j within timeO(rπλ). The three factors

are due to forwardingr hops, only one inπ messages are guaranteed to arrive

and the clock skew can allows for pulses to be up toλ time apart.

Lemma 4.2 Assume that we have a legal system execution from times− r(π−
1)λ and consider a nodepi that has a pulseΓi

x at times. Now, assume thatpi
has(k, σ, r, π) in sendseti just before executing line 30 inΓi

x and consider a

nodepj ∈ Gr
i , pj 6= pi and a time interval̂I = [s− r(π− 1)λ, s+ r(π + 1)λ].

First, if (k, σ, τ ′) is relevantj , there exist a pulseΓj
y ∈ Î so that(k, σ, τ ′)

is received inγj
y−1, for a τ ′ ≥ 1.

Second, if(k, σ, τ ′) is memorablej , then(k, σ, κ) ∈ smemj in Γj
y just

before executing line 2.

Proof: We say that a nodepℓ fulfills Σh if 1) there exist a pulseΓℓ
zℓ

in the time

intervalIh = [s− h(π− 1)λ, s+ h(π + 1)λ] such thatpℓ receives an infotuple

(k, σ, τ ′ℓ) in γℓ
zℓ−1, with τ ′ℓ ≥ r − h + 1, and 2) if (k, σ, τ ′ℓ) is memorableℓ,

then(k, σ, κ) ∈ smemℓ just before executing line 2 inΓℓ
zℓ

, and 3) ifh < r and

k 6= ℓ, there exists a pulseΓℓ
wℓ

∈ Ih in which (k, σ, θℓ, π) ∈ sendsetj with an

θℓ ≥ r − h, just before executing line 30.

As (k, σ, r, π) ∈ sendseti just before executing line 30 inΓi
x with r > 0,

by Lemma 4.1 any nodepj ∈ Ni fulfills Σ1.

Consider a nodepℓ that is1 < h < r hops away frompi and that fulfillsΣh.

As pℓ fulfills Σh it has(k, σ, θℓ, π) ∈ sendsetj , with aθℓ ≥ r − h, just before

executing line 30 in a pulseΓℓ
wℓ

at a timeŝ ∈ [s− h(π − 1)λ, s + h(π + 1)λ].

150 CHAPTER 4.

Applying Lemma 4.1, a nodepm ∈ Nℓ has a pulseΓm
zm ∈ I ′ = [ŝ − (π −

1)λ, ŝ+ (π + 1)λ] such thatpm receives an infotuple(k, σ, τ ′m) in γm
zm−1, with

τ ′m ≥ θℓ ≥ r−h = r−(h+1)+1. Furthermore, if(k, σ, τ ′m) ismemorablem,

then (k, σ, κ) ∈ smemm just before executing line 2 inΓm
zm . Moreover, if

h + 1 < r, thenr − h > 1 ⇒ θℓ > 1 and by Lemma 4.1 there exists a pulse

Γm
wm

∈ I ′ in which(k, σ, θm, π) ∈ sendsetj with anθm ≥ θℓ−1 ≥ r−(h+1),

just before executing line 30 ifk 6= j. Given that̂s ∈ [s−h(π−1)λ, s+h(π+

1)λ] we get thatI ′ ⊂ [s− (h + 1)(π − 1)λ, s + (h + 1)(π + 1)λ]. Therefore,

if k 6= ℓ, any nodepm ∈ Nℓ, including the subset ofNℓ that areh + 1 hops

away frompi, fulfills Σh+1. A tuple that is forwarded through the network can

therefore be withheld from forwarding either whenk = i andσ is a state and

reaches back topi, or whenk = j andσ is JOIN or VETO, and reachespj (in

which casepj is the only node for which it isrelevant anyway). Therefore, by

the induction principle,Σr therefore holds for any nodepj ∈ Gr
i that is notpi

and that do not have nodepk 6= pi on all possible paths of length≤ r to pi,

which proves the Lemma.

Lemma 4.3 Assume that we have a legal system execution from times− r(π−
1)λ and consider a nodepi that has a pulseΓi

x at times. If pj ∈ Gr
i , then

i ∈ slavej ∪ headj from times + r(π + 1)λ and forward.

Proof: Consider a nodepj ∈ Gr
i . We say thatu holds wheni ∈ slavej ∪

headj and say thatΣa holds for a pulseΓj
z when(i, σ, ξ) ∈ smemj just before

executing line 7 inΓj
z, for aξ > a ≥ 0.

In pulseΓi
x, pi adds(i, statei, r, π) to sendseti at line 30. We denote this

value ofstatei asσ and note that(i, σ, ·) is relevantj to all nodespj 6= pi.

By Lemma 4.2, for any nodepj ∈ Gr
i there will exist a pulseΓj

y in the time

span[s− r(π − 1)λ, s + r(π + 1)λ] in whichsmemj contains(i, σ, κ) before

executing line 2. In other words,Σκ−1 holds forΓj
y.

Consider a pulseΓj
z for whichΣ0 holds. No lines between lines 1–7 can do

any changes tosmemj . Therefore, thehandlestate function starting at line 40

will be called inΓj
z with i as an argument. In thehandlestate functioni might

be added tonewheadsj at lines 44 or 48. Line 50 addsi to newslavesj if

4.4. CORRECTNESS 151

i /∈ newheadsj . Therefore,u holds after executing line 7 inΓj
z. The only thing

that can switchu from holding to not holding is when at line 7 when lines 6–7

executes without callinghandlestate for pi. This can only happen in a pulse

if Σ0 does not hold for that pulse. Furthermore, ifu holds at line 1 inΓj
z (for

whichΣ0 holds)u will never cease to hold when executing lines 1–7 as the only

change in those lines are the assignment in 7 that bringspj from a state whereu

holds to another state whereu holds. Also, as no other lines can makeu cease

to hold,u holds from just after executing line 7 inΓj
z up to, at least, just before

executing line 7 inΓj
z+1 as well.

Now, consider a pulseΓj
w for which Σa holds for ana > 0, i.e.,(i, σ, ξ) ∈

smemj just before executing line 7 for aξ > a > 0 ⇒ ξ > 1. During

the execution of lines 7–31 inΓj
w, the only line that can remove(i, σ, ξ) from

smemj is line 29. Forξ > 1, this replaces(i, σ, ξ) with (i, σ, ξ − 1). The only

mechanism that can remove(i, σ, ξ − 1) from smemj between line 31 ofΓj
w

and the execution of line 1 inΓj
w+1 is the execution of line 85. The infotuple

µ = (k, σ, ξ − 1) can only be removed if another infotupleµ′ = (k, σ, ξ′) is

added whereξ−1 < ξ′ ≤ κ. Therefore,(k, σ, ξ′) ∈ smemj , for aξ′ ≥ ξ−1 >

a− 1 ≥ 0 at line 1 inΓj
w+1. In other words,Σa−1 holds forΓj

w+1.

We know, from the beginning of the lemma proof, thatΣκ−1 holds forΓj
y.

By the induction principle, fora ∈ [0, κ − 1], we get thatΣκ−a−1 holds (and

thatΣ0 holds asa ≥ 0) for Γj
y+a. Thereforeu holds from just after line 7 inΓj

y

until just before line 7 inΓj
y+κ. The pulseΓj

y of pj can not occur earlier than

times−r(π−1)λ. Therefore, by the system settings,Γj
y+κ can not occur earlier

than times− r(π − 1)λ + κ. The latest possible time ofΓj
y is s + r(π + 1)λ.

Thus,u holds in the interval[s + r(π + 1)λ, s− r(π − 1)λ + κ].

By the system settingsΓi
x+1 of pi occurs in the time interval[s + 1, s + λ],

in whichpi once again adds its state tosendseti at line 30. By the proof above

this means thatu holds in the interval[s+r(π+1)λ+λ, s−r(π−1)λ+κ+1]

as well. As(s− r(π− 1)λ+ κ)− (s+ r(π + 1)λ+ λ) = κ− 2rπλ− λ ≥ 0,

there will be overlap between the intervals guaranteed byΓi
x andΓi

x+1. In the

border case in which the guarantees fromΓi
x ends in the same pulseΓj

y+κ as the

guarantees fromΓi
x+1 begin,u continues to hold asu holds from the beginning

152 CHAPTER 4.

of Γj
y+κ due toΓi

x and Σ0 holds for Γj
y+κ due toΓi

x+1. Iterating the logic

starting withΓi
x+1 and then withΓi

x+2, etc., we get thatu holds from time

s + r(π + 1)λ and forward as long as the execution is legal.

Lemma 4.4 Assume that we have a legal system execution from times and

consider a nodepi that has a pulseΓi
x at times and that has(i, σ, r, π), where

σ is a state, insendseti just before executing line 30 inΓi
x. Assume thatpi

do not add(i, σ, r, π) to sendseti in the time intervalI = (s, s + a), for an

a > s+ r(π + 1)λ+ (κ− 1)λ. In other words,pi does not execute line 30 with

statei = σ in any pulses or between any pulses in the time intervalI. Consider

any nodepj in the network. Under these assumptions, the last pulseΓj
y in the

time intervalI for pj ∈ Ĝr
i such thatpj receives(i, σ, τ) for any τ in γi

y−1,

can not be later thans + r(π + 1)λ. Furthermore, for any pulse ofpj in the

time interval(s + r(π + 1)λ + (κ − 1)λ, s + a), and between those pulses,

(i, σ, ξ) /∈ smemj for anyξ.

Proof: We start by assuming thatpi will neveradd(i, σ, r, π) to sendseti after

Γi
x. Apart from line 30, line 30 is the only line that could add a tuple (i, σ, τ, φ)

for anyτ or φ and by the Lemma assumption that can not happen. Line 30 in

Γi
x will change(i, σ, r, π) to (i, σ, r, π− 1), Γi

x+1 will change(i, σ, r, π− 1) to

(i, σ, r, π − 2), etc. Thus the last pulse for whichpi sends(i, σ, r) is Γi
x+π−1.

With a maximum time ofλ between two consecutive pulses of a node, the last

possible pulseΓk
w for a nodepk ∈ Ni for whichpk receives(i, σ, r) from pi in

γk
w−1 can not happen later thans+ (π + 1)λ. There can be no case in whichpk

receives(i, σ, r) in γk
w−1 from another node inNk as no other node thanpi can

add(i, σ, r, π) to their sendset during the legal execution.

Whenpk receives(i, σ, r), it will put (i, σ, r − 1, π) in sendsetk and it-

erating the argument above the last possible pulseΓℓ
v for a nodepℓ ∈ Nk to

receives(i, σ, r − 1) from pk can not happen later thans + 2(π + 1)λ. There

can be no case in whichpℓ receives(i, σ, r − 1) in γk
w+c for any c > 0 from

another node inNℓ as (i, σ, r − 1, π) expires just as forpk. Iterating fur-

ther, in a similar manner as for the proof of Lemma 4.2, we get that the last

pulseΓj
y for pj ∈ Gr

i , i 6= j such thatpj receives(i, σ, τ) for any τ in γi
y−1,

4.4. CORRECTNESS 153

can not be later thans + r(π + 1)λ. It follows that Γj
y is the last pulse for

which (i, σ, κ) ∈ smemj just before executing line 29. Executing line 29 in

Γj
y reduces the infotuple to(i, σ, κ − 1) ∈ smemj , line 29 in Γj

y reduces it

to (i, σ, κ − 2), etc., until finally inΓj
y+κ−1 line 29 (i, σ, 1) is removed from

smemj . Therefore, withz = y + κ − 1, we get that(i, σ, ξ) /∈ smemj (for

anyξ) in Γj
z+b or γj

z+b−1 for all b ≥ 1. The pulseΓj
z can not happen later than

s + r(π + 1)λ + (κ− 1)λ.

We now have to deal with the cases in whichpi doadd(i, σ, r, π) tosendseti
in a Γi

x̂ at a timeŝ ≥ s + a. By the arguments above, no nodepj in the net-

work have any(i, σ, θ, φ) ∈ sendsetj for any θ or φ at times + r(π + 1)λ.

Therefore, even ifpi adds(i, σ, r, π) to sendseti at time ŝ, no nodepj ∈ Gr
i

can have a pulseΓj
ŷ in the time interval(s + r(π + 1)λ + (κ − 1)λ, s + a) in

which (i, σ, ξ) ∈ smemj .

Lemma 4.5 Let ŝ = s− r(2π + 1)λ2 and assume that we have a legal system

execution from timês, and consider a nodepi that has a pulseΓi
x at times and

that has(k, σ, r, π) in sendseti just before executing line 30 inΓi
x. Assume that

(k, σ, ·) ismemorablej . Then, there exists a pulseΓj
y ∈ I = [s + r(π + 1)λ−

1, s + r(π + 1)λ + λ− 1] in which∃ξ > 0 such that(k, σ, ξ) ∈ smemj .

Second, now consider only the case whenk = i andσ is a state and con-

sider a statêσ 6= σ. Assuming thatpi do not have(i, σ̂, r, π) ∈ sendseti just

before executing line 2 in any pulse in the time interval(s − r(2π + 1)λ2, s +

r(π+ 1)λ+λ− 1). In this Lemma we denote this asΣσ̂ holding forΓi
x. Then,

∄ξ′ such that(i, σ̂, ξ′) ∈ smemi just before executing line 2 inΓj
y.

Third, if Σσ′ holds for all σ′ that have a higher priority thanσ, thenpj
handlesσ for pi in Γj

y (see Definition 4.2).

Proof: By Lemma 4.2, there exists a pulseΓj
z ∈ [s−r(π−1)λ, s+r(π+1)λ]

in which (k, σ, κ) ∈ smemj just before executing line 2. Furthermore, by the

arguments in the proof of Lemma 4.3,(k, σ, ξ) ∈ smemj for someξ ≥ 1 just

before executing line 2 inΓj
z+κ−1. Moreover,Γj

z+κ−1 cannot happen before

s−r(π−1)λ+κ−1 = s−r(π−1)λ+⌈(2rπ+1)λ⌉−1 ≥ s+r(π+1)λ+λ−1.

154 CHAPTER 4.

Therefore, there exists a pulseΓj
y ∈ I ≡ [s+r(π+1)λ−1, s+r(π+1)λ+λ−1]

in which (k, σ, ξ) ∈ smemj just before executing line 2 for someξ ≥ 1.

We now consider only the case whenk = i andσ is a state and consider a

stateσ̂ 6= σ. Without loss of generality, we assume thatpi have(i, σ̂, r, π) ∈
sendseti just before executing line 2 in a pulseΓj

x̂ at timeŝ. By Lemma 4.4, for

any nodepj in the network,pj does not have(i, σ̂, ξ) ∈ smemj for anyξ in the

time interval(tlow, thigh) ≡ (ŝ+r(π+1)λ+(κ−1)λ, s+r(π+1)λ+λ−1).

Furthermore,tlow = s − r(2π + 1)λ2 + r(π + 1)λ + (κ − 1)λ ≤ s + r(π +

1)λ − λ < s + r(π + 1)λ − 1, which is the lower end ofI. In the other end,

thigh = s + r(π + 1)λ + λ− 1, which is the higher end ofI.

Now, if Σσ′ holds for allσ′ that have a higher priority thanσ, then∄ξ′ such

that(i, σ′, ξ′) ∈ smemi just before executing line 2 inΓj
y for any suchσ′. We

have established that(i, σ, ξ) ∈ smemi just before executing line 2 inΓj
y for

someξ. Therefore, thehandlestate function will be called with parameteri

at line 6 inΓj
y which implies that theprioritystate function will be called in

line 41 with parameteri andsmemj . The prioritystate function in lines 52-57

simply returns the state for the node in the argument with highest priority that

exists insmem, which isσ for i. Thus,pj handlesσ for pi in Γj
y.

The corollary shows that the mechanisms that keeps data for acertain time,

guarantees that eventually nodes inĜr
j will see the correct state of nodepj if it

stays in that state long enough. Compared to Lemma 4.2 this introduces another

factorO(λ) time. This is because if a node wants to make sure thatO(rπλ)

time has passed it needs to countO(rπλ) pulses, butO(rπλ) pulses can take

O(rπλ2) time. Building Lemmas on top of each other, this is the mechanism

that adds additional factors ofλ the further we go in the proof chain.

Corollary 4.1 Assume that we have a legal system execution from times −
λ and consider a nodepi that has a pulseΓi

x at times. Let χ = ⌈r(2π +

1)λ2 + r(π + 1)λ + 2λ⌉. Now assume that a nodepi, in each of the pulses

Γi
x–Γi

x+χ−1, adds(i, σ, π) to sendseti and does not add(i, σ′, π) to sendseti

for any σ 6= σ′. Then, for any nodepj ∈ Gr
i , pj has a pulseΓj

y at a time

ŝ = s+ r(2π + 1)λ2 + r(π + 1)λ− 1 + t for a t ∈ [0, 2λ], in whichpj handles

4.4. CORRECTNESS 155

σ for pi. Furthermore,ŝ happens between the execution of the pulsesΓi
x and

Γi
x+χ−1

Proof: There will be a pulseΓi
x̂ at a times0 = s+r(2π+1)λ2+t0, for at0 ∈

[0, λ] that fulfills the requirements of Lemma 4.5 of no(i, σ̂, r, π) ∈ sendseti

for a σ̂ 6= σ in the time interval(s0 − r(2π + 1)λ2, s0 + r(π + 1)λ + λ − 1).

Therefore, there exists a pulseΓj
y at a times1 = s0 + r(π + 1)λ − 1 + t1

for a t1 ∈ [0, λ] in which pj handlesσ for pi. We can expand this tos1 =

s + r(2π + 1)λ2 + r(π + 1)λ − 1 + t2 for a t2 ∈ [0, 2λ]. According to the

system settings,Γi
x+χ−1 = Γi

x+⌈t+r(π+1)λ+2λ⌉−1 = can not happen before

s + t + r(π + 1)λ + 2λ− 1.

4.4.2 Getting Enough Cluster Heads

This section builds up a case showing that the algorithm willelect enough clus-

ter heads. We show how cluster heads are elected in Lemmas 4.6, 4.7 and 4.8.

In Lemma 4.9 we take a look at how the escape mechanism works. Finally, in

Theorem 4.1, we put it all together and show that withinO(rπλ3) time from

starting a legal execution, each nodepj in the network will getkj cluster heads

within r hops.

Definition 4.5 For a nodepi to be acluster headis equivalent tostatei ∈
{HEAD,ESCAPING}. For a nodepi to be a slave is equivalent tostatei =

SLAVE. For a nodepj , we defineCr
j as the set of cluster heads inGr

j . Fur-

thermore, we defineHx to be the set of cluster heads in the network at time

x.

We now look how the addition of cluster heads work while temporarily

disregarding the escaping mechanism. In this setting we will show that within

a finite time we will have|Cr
i | ≥ ki for any nodepi. Later on we will lift this

restriction and show that|Cr
i | ≥ ki will still hold even when regarding the more

general case.

Lemma 4.6 Assume that we have a legal system execution from times. As-

sume that, for all nodes in the network, theirstate can never be ESCAPING,

156 CHAPTER 4.

their estate is always SLEEP and lines 10-18 are never executed. Under these

assumptions, any nodepi will have ki cluster heads withinr hops from time

s + (3rπ + 2)λ and forward.

Proof: Consider any nodepi and a nodepj ∈ Gr
i . By the system settings,

pj has some pulseΓj
y ∈ [s + r(π − 1)λ, s + r(π − 1)λ + λ]. Together with

Lemma 4.3 and the proof of that lemma,j ∈ slavesi∪headsi holds for a pulse

in [s + r(π − 1)λ + r(π + 1)λ, s + r(π − 1)λ + r(π + 1)λ + λ] and from that

point forward.

Thus there exists a pulseΓi
x before timês = s+ r(π−1)λ+ r(π+1)λ+λ

in whichk ∈ slavesi ∪ headsi holds for allpℓ ∈ Gr
i . At line 21 inΓi

x headsi

might already contain nodes. We have the one case where|headsi| ≥ k ≥ ki

already and one case where|headsi| < k. In the second case, lines 22-23

will be executed. Out of the nodes inslavesi , the smallestmin(|slavesi|, k −
|headsi|) nodes will be added toheadsi in line 22 and removed fromslavesi in

line 23. Thus, after execution of line 23headsi will containki = min(|Gr
i |, k).

For each nodepj ∈ headsi either a infotuple(j, JOIN, r, π) is added to

sendseti (at line 27, whenj 6= i) or the state is set to HEAD directly (at line 28,

whenj = i). By Lemma 4.2, for each of thepj 6= pi in headsi, there exists a

pulseΓj
zj ∈ [ŝ− r(π − 1)λ, ŝ + r(π + 1)λ] such thatpj receives(j, JOIN, τj)

for a τj ≥ 1 in γj
zj−1

. When(j, JOIN, τj) is received bypj the condition at

line 81 does not hold, the condition at line 84 holds and(j, JOIN, κ) is added

to smemj . Nothing inγj
zj−1

can remove(j, JOIN, κ) from smemi. Therefore

the condition in line 3 holds inΓj
zj andstatej is set to HEAD.

Under the lemma assumptions, the only ways thatstatej can change are

the execution of lines 3, 28, or 83, all settingstatej to HEAD. Thus, from time

ŝ + r(π + 1)λ = s + (3rπ + 2)λ and forward, any nodepi will haveki cluster

heads withinr hops.

Now we consider the full escape mechanisms and show that a node that

receive joins remains or becomes a cluster head.

Lemma 4.7 Assume that we have a legal system execution from times−λ and

consider a nodepi that has a pulseΓi
x at times. If pi has(i, JOIN, ξ) ∈ smemi,

4.4. CORRECTNESS 157

for someξ > 0 before executing line 2, thenpi is a cluster just before executing

line 4 inΓi
x and will stay cluster head throughout the rest ofΓi

x and throughout

γi
x. Furthermore, if nodepi is a cluster head just before executing line 2 inΓi

x,

then it is a cluster head throughout the entireΓi
x.

Proof: Let σ bestatei andǫ beestatei just before executing line 2 inΓi
x. By

the lemma assumptions the condition∃t such that(i, JOIN, t) ∈ smem holds

just before line 2 and as nothing among lines 1–17 can changesmemj it holds

at line 17 as well. Ifǫ = SLEEP, thenstatei is set to HEAD at line 3, making

pi a cluster head. Ifǫ 6= SLEEP∧ σ ∈ {HEAD,ESCAPING}, then no change

in done tostatei in lines 2–3.

The remaining case to consider is whenǫ 6= SLEEP∧ σ = SLAVE. Now,

estatei can only be changed by lines 11 and 18 andstatei can only be set to

SLAVE in line 17. Therefore, neitherestatei, nor statei can be changed in

γi
x−1 or in lines 21–31 ofΓi

x−1. However,statei can only be SLAVE after

line 21 during the legal execution ofΓi
x−1 if statei = SLAVE at line 18, which

would setestatei to SLEEP, contradicting the assumptions ofǫ 6= SLEEP.

Thus, in all possible casespi is a cluster head just before line 4 inΓi
x.

The only line in lines 4–31 that can makepi becoming a non cluster head is

line 17, which will not be executed as the condition holds at line 16. Further-

more, there is no way forstatei to be set to SLAVE in lines 2–3. Therefore, if

nodepi is a cluster head just before executing line 2 inΓi
x, then it is a cluster

head throughout the entireΓi
x.

In the following Lemma we show that a node that is continuously wanted as

a cluster head eventually becomes one.

Lemma 4.8 Assume that we have a legal system execution from times. Assume

that a nodepj 6= pi wants a nodepi ∈ Gr
j to be cluster head as soon as it knows

about it and is never willing to let it escape. In other words,(1) if i ∈ slavesj

and i /∈ headsj after line 7 in a pulseΓj
y, we assume that the condition in

line 21 holds inΓj
y and thati is added toheadsj at the execution of line 22,

and (2) the condition in line 46 would hold whenhandlestate is called withi

as a parameter in any pulse ofpj .

158 CHAPTER 4.

Under these assumptions, there exists a pulseΓi
x such thatstatei 6= SLAVE

after executing line 3 inΓi
j , and such thatstatei 6= SLAVE in anyΓi

x′+1 or γi
x′

for anyx′ ≥ x.

Proof: As seen in the proof of Lemma 4.6, there exists a pulseΓj
y before

time ŝ = s + r(π − 1)λ + r(π + 1)λ + λ in which i ∈ slavesj ∪ headsj

holds before executing line 2. By the lemma assumptions either i ∈ headsj

before executing line 2 inΓj
y, or i is added toheadsj at line 22. Therefore

(i, JOIN, r, π) ∈ sendsetj just before executing line 30 inΓj
y as it is added at

line 27. Therefore, by Lemma 4.2, there exists a pulseΓi
x such thatpi receive

(j, JOIN, τ) for someτ in γi
x−1.

By Lemma 4.3i ∈ slavesj ∪ headsj holds before executing line 2 in

any pulseΓj
y′ for y′ ≥ y. Therefore,(i, JOIN, r, π) ∈ sendsetj just be-

fore executing line 30 in each suchΓj
y′ and, with similar arguments as in the

proof of Lemma 4.3,pi will have (i, JOIN, ξ) ∈ smemj , for someξ, just be-

fore executing line 3 in all pulsesΓi
x′ for x′ ≥ x. Therefore, by Lemma 4.7

statei 6= SLAVE after the execution of line 3 andstatei 6= SLAVE in a Γi
x′+1

or γi
x′ for anyx′ ≥ x.

We continue to take a look at how the escape mechanism operates to know

in what ways it could interfere with electing enough clusterheads.

Definition 4.6 A nodepi initiates an escape attemptin a pulseΓi
x if the condi-

tion holds in line 12 and lines 13–14 are executed inΓi
x.

Lemma 4.9 shows that the escape mechanism works, that a cluster head that

is not needed can escape that responsibility.

Lemma 4.9 Assume that we have a legal system execution from times− Tcool

and consider a nodepi that initiates an escape attempt in a pulseΓi
x at times.

If all nodespj ∈ Gr
i have |Cj | > k at time s + th and no nodepℓ ∈

Ĝ2r
i , initiates an escape attempt in any pulse in[s − te + th, s + ts − th] then

nodepi will set statei to SLAVE in pulseΓi
x+Tflood

and havestatei = SLAVE

throughout anyγi
x′ or Γi

x′+1 for anyx′ ≥ x + Tflood.

4.4. CORRECTNESS 159

If, on the other hand, there exists a nodepj ∈ Gr
i that is having|headsj | ≤

k with k ∈ headsj whenpj is first handling ESCAPING forpi, thenpj will not

setstatei to SLAVE in this escape attempt.

Proof: The escape attempt initiated inΓi
x can only happen in the follow-

ing way. In Γi
x, statei = HEAD before executing line 2. Line 11 calls

updateestate. The condition at line 35 holds and line 36 finds thattimeri =

estarti and therefore returns INIT settingestatei = INIT. The execution con-

tinues at line 12 where the condition holds andstatei is set to ESCAPING and

i is removed fromheadsi and added toslavesi. The branch at line 15 will not

be entered inΓi
x asestatei 6= SLEEP. The branch at line 18 will not be entered

in Γi
x asstatei = ESCAPING. The branch at line 21 will not be entered inΓi

x

as|headsi| will be at leastk as it was strictly larger thank and one entry was

removed. The loop at line 26 will not be run forj = i in Γi
x asi was removed

from headsi. Thus at the end ofΓi
x, statei = ESCAPING.

Consider a pulseΓi
x̂, wherex̂ > x, that is the first pulse afterΓi

x in which

statei is set to something else that ESCAPING (or in the case of line 83 set-

ting statei to HEAD, the pulse after that event, i.e., that change happens

in γi
x̂−1). The only two ways forestatei to change is either in line 11, that

will set estatei to FLOOD inΓi
x+1–Γi

x+Tflood−1
unlessstatei has been set to

SLAVE or line 18, that will only be executed ifstatei = SLAVE. Thus, for

any condition that requiresestatei = SLEEP, eitherstatei will have to be set

to SLAVE (which in will in turn setestatei), or the condition can only hold in

pulseΓi
x+Tflood

or later.

We will see that|headsi| < k will not hold for pi after Γi
x in which

|headsi| > k held before executing line 12. Therefore line 28 will not be

executed inΓi
x̂. The assignment in line 3 will not be executed inΓi

x̂ for any

x̂ ∈ [x, x + Tflood − 1] as the condition requiresestatei = SLEEP. Likewise,

line 16 or line 17 will not be executed inΓi
x̂ for any x̂ ∈ [x, x + Tflood − 1]

as the condition in line 15 requiresestatei = SLEEP as well. Thus, the

only way for estatei to change strictly between pulsesΓi
x andΓi

x+Tflood
for

x̂ ∈ [x, x + Tflood − 1] is if pi receives an infotuple(i,VETO, ·) and conse-

quently executes line 83 settingstatei = HEAD. We say thatpi aborts it’s

160 CHAPTER 4.

escape attempt in such a case. A nodepj ∈ Gr
i will only send such a VETO as

by executing line 48 by handling ESCAPING forpi which in turn only happens

as a result of receiving an infotuple(i,ESCAPING, ·).

If pi does not abort its escape attempt, it setsestatei to FLOOD in pulses

Γi
x+1–Γi

x+Tflood−1
. Therefore, by Lemma 4.5 any nodepk ∈ Ĝr

i have had a

pulse that handles ESCAPING forpi at times+r(2π+1)λ2 +r(π+1)λ+λ−
1 = s+ts Moreover, as long aspi does not abort its escape attempt, inΓi

x+Tflood

estatei is set to SLEEP and the condition holds at line 12 after whichstatei

is either set to HEAD in line 16 or to SLAVE in line 17. Thus the last pulse

(for this escape attempt) in whichpi adds(i,ESCAPING, r, π) to sendseti is

Γi
x+Tflood−1

. That pulse cannot happen afters + (Tflood − 1)λ. Therefore, by

Lemma 4.4 no node handles ESCAPING forpi afters+ (Tflood−1)λ+ r(π+

1)λ+ (κ− 1)λ = s+ te−λ (for this escape attempt). Thus bys+ te any node

pj ∈ Ĝr
i have handled the statepi changed to and if that is HEAD,i ∈ headsj

again. Furthermore, by arguments similar to the proof of Lemma 4.4, after time

s+te+r(π+1)λ = s+Tcool, no potential(i,VETO, ·, ·) is left in sendsetj for

any nodepj ∈ Ĝr
i . Therefore, a new escape attempt bypi afters+Tcool would

not be affected by remnants of the escape attempt started at time s. Moreover,

there is at leastTcool pulses between two escape attempts (see line 34). As we

assume a legal execution from times − Tcool, we know that no remnants from

earlier escape attempts or from old invalid data in data-structures will interfere

with the escape attempt started at times. In the other end, before the escape

attempt,pi adds(i,HEAD, r, π) to sendseti in Γi
x−1 that can not happen after

s − 1. By Lemma 4.2 the last possible pulseΓj
y such thatpj ∈ Ĝr

i receive

of (i,HEAD, ·) in γj
y−1 (before this escape attempt) is, ats − r(π − 1)λ − 1.

The first pulse in which HEAD is cleared fromsmemj is Γj
y+κ which cannot

happen before times + κ− r(π − 1)λ− 1 = s + th.

Now, instead, assume that all nodespj ∈ Gr
i have|Cj | > k at s + th and

no nodepℓ ∈ G2r
i , wherepℓ 6= pi, initiates an escape attempt in any pulse in

[s− te + th, s+ ts− th]. In Γi
x, nodepi haveestatei set to INIT andstatei set

to ESCAPING. We saw above that as long aspi does not receive an infotuple

4.4. CORRECTNESS 161

(i,VETO, ·) in pulsesΓi
x+1–Γi

x+Tflood−1
, line 11 setsestatei to FLOOD in

each of those pulses.

Consider the pulseΓj
y of a nodepj ∈ Ĝr

i that is the first pulse afters in

which pj handles ESCAPING. By Corollary 4.1 there do exist a pulseΓj
z at

a time s0 = s + r(2π + 1)λ2 + r(π + 1)λ − 1 + t0 for a t0 ∈ [0, 2λ] in

which pj handles ESCAPING forpi. But Γj
z might not be the first one, so

y ≤ z. Whenpj handles ESCAPING forpi in Γj
y, the condition at line 42

does not hold and consequently the condition at line 45 will be checked. It

holds asΓj
y is the first in which ESCAPING are handled –i ∈ headsj as

HEAD must have been handled inΓi
y−1. Furthermore, the condition at line 46

will not hold, as according to the assumptions that all nodespj ∈ Gr
i have

|Cj | > k and thereby|headsj | > k, as no other nodepℓ ∈ Ĝ2r
i have any

interfering remnants of escape attempts left in the system as then cannot start

afters− te + th or starts escape attempts early enough (befores + ts − th) to

interfere with this escape attempt bypi. Only nodes inĜ2r
i have the potential to

interfere with an escape attempt bypi as otherGr
i ∩Gr

m = ∅ for any nodepm /∈
Ĝ2r

i . Therefore,pj do not send any infotuple(i,VETO, ·) and i is removed

from headsj at line 49. This removal makes sure thatpj does not allow too

many nodes to escape, i.e., it ensures that|headsj | ≥ k. Line 50 will ensure

that i is added tonewheadsj . The execution then continues down to line 7

that ensures thati ∈ slavesj and i /∈ headsj . No (i, JOIN, r, π) is added

to sendset at line 27 inΓi
y. By the proof of Lemma 4.3, pulsesΓj

y+1, Γj
y+2,

etc. will all handle ESCAPING. In these pulses the conditionin line 45 does

not hold asi is already not inheadsj . Thus pulseΓj
y−1 is the last pulse (in

the time interval of this escape attempt) in which(i, JOIN, r, π) is added to

sendsetj . By the arguments in the proof of Lemma 4.4, as long aspj continues

to not send any JOIN:s, there will be no(i, JOIN, ·) originating frompj in

smemi after times2 = s1 + r(π + 1)λ + (κ − 1)λ, wheres1 = s0 − λ ≤=

s + r(2π + 1)λ2 + r(π + 1)λ + λ − 1 is the latest possibleΓj
y−1. Thus,

s2 ≤ s + r(2π + 1)λ2 + r(π + 1)λ + λ − 1 + r(π + 1)λ + (κ − 1)λ =

s+r(2π+1)λ2+r(2π+2)λ+κλ−1 < s+⌈r(4π+2)λ2+r(2π+2)λ⌉−1 =

s + Tflood − 1. Now pulseΓi
x+Tflood−1

can not happen befores + Tflood − 1.

162 CHAPTER 4.

Thus at pulseΓi
x+Tflood

in which pi setsestatei to SLEEP and the condition

at line 15 therefore holds, it does not handle any JOIN forpj . As this holds for

anypj ∈ Ĝr
i , the condition does not hold at line 16 andstatei is set to SLAVE

in line 17, proving that part of the lemma.

Now, we will instead assume that there will be a nodepj that handles

ESCAPING forpj while havingi ∈ headsj and|headsj | ≤ k. Consider the

first pulse,Γj
y, (afters) in which pj handles ESCAPING. Havingi ∈ headsj ,

the condition at line 45 holds inΓi
y and execution continues to line 46 in which

the condition will also hold according to our assumptions onpj . An infotu-

ple (i,VETO, r, π) is added tosendsetj , and, more importantlyj is added to

newheadsj so thati ∈ headsj will continue to hold after line 7 inΓi
y and there-

fore whenpj handles ESCAPING forpj in future pulses. There cannot be a

case in whichpi setsstatei to SLAVE without any node handling ESCAPING

for pi, aspi can only changestatei either by setting it to HEAD or chang-

ing it to SLAVE after havingstatei = ESCAPING forTflood pulses in which

Lemma 4.5 guarantee that all nodes inĜr
i handles ESCAPING forpi. We have

already seen in Lemma 4.8 that as long as a nodepj ∈ Ĝr
i continues to send

(i, JOIN, ·) in every pulse, thenpi will never setstatei to SLAVE. Therefore,

pi will not setstatei to SLAVE as long as|headsj | ≤ k continues to hold. The

(i,VETO, ·) infotuple that will reachpj is therefore not needed for the algo-

rithm to work, but whenpi receives it will setstatei to HEAD and abort the

escape attempt earlier to lessen the probability of different escape attempts to

interfere with each other by havingpi possibly stop sending out ESCAPING

earlier and thus having other nodespj put backi into |headsj | earlier and thus

potentially allow for other nodes to escape.

Now we still need to address the claim that|headsi| will not suddenly dip

belowk. We assume that we have a legal execution from times− Tcool, so any

remnants of bad values or old escape attempts have been cleared. Furthermore,

we saw above that a nodepℓ that wants to escape from being a cluster head

must get clearance from all nodes inGr
ℓ . Thuspi would turn down the escape

attempt by a nodepℓ such thatℓ ∈ headsi. Therefore,headsi will not go from

4.4. CORRECTNESS 163

|headsi| ≥ k to |headsi| < k. This holds for any node inGr
ℓ (not merely a

nodepi that are in the middle of an escape attempt).

Theorem 4.1 shows that, within timeTcool + (5rπ + 4)λ ∈ O(Tfloodλ) =

O(rπλ3) from an arbitrary configuration, all nodespi have at leastki cluster

heads withinr hops and that the set of cluster heads in the network can only

stay the same or shrink from that point on. From Corollary 4.1we get the factor

O(λ2) time for a node to know that it has reached out. This theorem introduces

another factor ofO(λ) because a node needs to be sure that another node has

finished something as discussed previously.

Theorem 4.1 Assume that we have a legal system execution from times. Then

any nodepj will havekj cluster heads from times + Tcool + (3rπ + 2)λ and

onward. Moreover, a node that is not inHt for a timet ≥ s+Tcool+(5rπ+4)λ

can not be inHt′ for a t′ ≥ t and consequently|Ht′ | ≤ |Ht| for anys+Tcool +

(5rπ + 4)λ ≤ t ≤ t′.

Proof: From Lemma 4.6 we have seen that as long as the escape mechanism

does not allow nodes to change its state to SLAVE after being acluster head, any

nodepj will havekj cluster heads withinr hops in any pulses or pulse intervals

after time(3rπ + 2)λ. From Lemma 4.9 we get that after times + Tcool no

nodepi that is a cluster head can changestatei to SLAVE if that would leave a

nodepj ∈ Gr
i with |headsj |. Therefore, any nodepj will havekj cluster heads

from times + Tcool + (3rπ + 2)λ.

Furthermore, by Lemma 4.2 any such nodepj will know it by receiving

(i,HEAD, ·) or (i,HEAD, ·) beforeŝ = s + Tcool + (3rπ + 2)λ + r(π + 1)λ.

Thus no node is trying to elect new cluster heads after timeŝ and by similar

arguments as the proof of Lemma 4.4 no nodepℓ that is not already a cluster

head will receive(ℓ, JOIN, ·) after ŝ + r(π + 1)λ. So with all nodespj having

|headsj | ≥ kj buy ŝ and all JOIN:s received bŷs + r(π + 1)λ the condition in

line 21 can only hold inΓj
y after ŝ if |slavesj | = 0 and therefore no additional

node can be elected. Thus, a node that is not in the set of cluster heads in the

entire network at a timet ≥ s + Tcool + (5rπ + 4)λ, Ht, can never be inHt′

164 CHAPTER 4.

for a t′ ≥ t. Therefore,|Ht′ | ≤ |Ht| for anyt′ ≥ t ≥ s+Tcool + (5rπ+ 4)λ ∈
s + O(rπλ3).

4.4.3 Convergence to a Local Minimum

Lemma 4.9 shows that a cluster head node that is not needed canescape the

cluster head responsibility if it does not interfere with escape attempts by other

nodes. This section shows that the set of cluster heads converges to a local

minimum. We first show that an unneeded cluster head node can escape, with

high probability (Lemma 4.10) inO(Tλ) = O(grπλ4) time. The extraλ is due

to the usual reason andT ∈ O(grπλ3). The factorg is a bound on the number

of nodes that could interfere with a given escape attempt. Itis part ofT to give

a node a constant probability of escaping in its one try in a period of T time

(given that it is not needed as a cluster head).

Lemma 4.10 Assume that we have a legal system execution from times and

consider a nodepi that is a cluster head. Assume that|Cr
j | > k holds for all

nodespj ∈ Ĝr
i from times + Tcool + (5rπ + 4)λ and as long aspi remains a

cluster head. Then, nodepi will havestatei = SLAVE after times + Tcool +

(5rπ + 4)λ + (β + 1)Tλ with at least probability1 − 2−β .

Proof: As long as nodepi remain a cluster head it will in each pulse enter the

branch in line 10 and callupdateestate in line 11. From Theorem 4.1 we know

that from times0 = s+ Tcool + (5rπ + 4)λ a node can only stay slave or to go

from being a cluster head to being a slave. Assume thatpi starts a periodin Γi
x

at timeŝ, i.e.,timeri = 0 at line 34 inΓi
x and that it is the first pulse, for which

ŝ ≥ s0, that starts a period. By the system settings and the fact that pi starts a

new period everyT pulses, we get that̂s ≤ s + Tcool + (5rπ + 4)λ + Tλ.

In Γi
x, estarti is set randomly, from a uniform distribution, to an integer

in [0, Tes − 1]. Thereby,pi is scheduled to initiate an escape attempt in pulse

Γi
w, for w = x + estarti at times′. With our assumptions, Lemma 4.9 gives

that if no other nodepj ∈ Ĝ2r
i initiates any escape attempt in the time span

[s′− te + th, s
′+ ts− th], thenpi will set statei = SLAVE in Γi

w+Tflood
. If no

4.4. CORRECTNESS 165

such escape attempts are done by any such nodepj we say that nodepi initiates

anuninterfered escape attemptin Γi
w.

The maximum number escape attempts by a nodepj ∈ Ĝ2r
i that can inter-

fere with the escape attempt initiated bypi in Γi
w is two (as the time between

the first and last of three escape attempts is larger thanT which is larger than

required time span for Lemma 4.9. Thus, the maximum number orinterfering

escape attempts that can interfere with the escape attempt that is initiated bypi
in Γi

w is 2(g − 1). The probability that a nodepj initiates an escape attempt in

a time interval[t0, t1] is always less than(t1 − t0 + 1)/Tes. Thus the probabil-

ity that a specific escape attempt will interfere with the escape attempt initiated

by pi in Γi
w cannot, with the help of Lemma 4.9, be more thanρ = t̂/Tes for

t̂ = ts + te − 2th + 1. By making the extremelypessimisticassumption (i.e.,

that gives us a higher probability for interference than what is really the case)

that we not only have2(g − 1) potentially interfering escape attempts, but that

they are all independent as well. Escape attempts made by thesame nodepj
is not really independent, but by assuming they are we increase the probability

of interference. LetAi
w be the event that the escape attempt initiated inΓi

w is

uninterfered. Then we get

P[Ai
w] ≥ (1 − ρ)

2(g−1)
=

[
ρ′ :=

1

ρ

]
=

((
1 − 1

ρ′

)ρ′−1
)(2(g−1))/(ρ′−1)

>

(
1

e

)(2(g−1))/(ρ′−1)

= exp

(
−2(g − 1)

ρ′ − 1

)
(4.1)

= exp

(
−2(g − 1)

1/ρ− 1

)
. (4.2)

From this it is straightforward to show that:

Tes = ⌈ 2g

ln 2
(ts + te − 2th + 1)⌉ ⇒ P[Ai

w] ≥ 1

2
. (4.3)

The random choices in different executions of the line 34 by the same node

or by different nodes are all mutually independent. However, what happens

in different periods are not mutually independent. If a nodepj setsstatej =

SLAVE not initiating any more escape attempts. This only increases the proba-

bility for Ai
w′ for a later escape attempt inΓi

w′ if the one initiated inΓi
w was not

166 CHAPTER 4.

uninterfered. Therefore, by assuming total independence between all escape

attempts and continue to assume that there are always2(g − 1) potentially in-

terfering escape attempts for an escape attempt by nodepi, the calculated lower

bound on the probability of an undisturbed escape attempt gets worse.

Consider theβ periods that starts inΓi
x, Γi

x+T , . . ., Γi
x+(β−1)T , and letwa

be the value such thatΓi
wa

is the pulse in the period starting inΓi
x+a·T in which

the escape attempt starts. Furthermore, letAi =
⋃β−1

t=0 Ai
wa

. Thus with the

assumption of period independence that gives us a worse bound we get

P [Ai] =P

[
β−1⋃

a=0

Ai
wa

]
= 1 − P

[
β−1⋂

a=0

¯Ai
wa

]
= 1 −

β−1∏

a=0

P [Ai]

>1 −
β−1∏

a=0

1

2
= 1 − 2−β . (4.4)

With ŝ ≤ s+Tcool +(5rπ+4)λ+Tλ, we get that, with probability at least

1− 2−β , statei = SLAVE after times+Tcool + (5rπ+ 4)λ+ (β + 1)Tλ.

Theorem 4.2, shows that with high probability the entire network reaches a

local minimum withinO(rπλ4g log n) time.

From Theorem 4.1 we got that all nodespi have at leastki cluster heads

within r hops inTcool + (3rπ + 2)λ time after an arbitrary configuration.

Theorem 4.2 shows that with at least probability1 − 2−α the set of cluster

heads in the network stabilizes to a local minimum withins + Tcool + (5rπ +

4)λ + (α + log n + 1)Tλ time. The factorO(log n) is multiplied by the result

from Lemma 4.10 because we go from probabilistic guarantee that one specific

node gets an uninterrupted escape attempt to that all cluster heads get such an

attempt. And the number of cluster heads is bounded by the number,n, of nodes

in the network.

Theorem 4.2 Assume that we have a legal system execution from times. With

at least probability1 − 2−α, by timeŝ = s + Tcool + (5rπ + 4)λ + (α +

log n + 1)Tλ there will be no cluster head nodepi in the network for which

minpj∈Gi
(|Cr

j |) > k holds, andHŝ+t = Hŝ holds for any positivet.

4.5. DISCUSSION 167

Proof: In this proof we use the same notations and the concepts as in the proof

of Lemma 4.10. Herewa is replaced bywi
a to indicate that the escape attempt

in thea:th period ofpi afters + Tcool + (5rπ + 4)λ is initiated inΓi
wi

a
.

Letβ = α+log n, wheren = |P| is the size of the entire network. LetA be

the event all nodes in the network get at least one uninterfered escape attempt

in [s + Tcool + (5rπ + 4)λ, ŝ]. We get that

P [A] =1 − P [Ā] = 1 − P [
⋃

pi∈P

Āi] ≥ [Boole’s inequality]

≥1 −
∑

pi∈P

P [Āi] ≥ [Lemma 4.10] ≥ 1 −
∑

pi∈P

2−β

=1 − n2−β = 1 − 2logn−β = 1 − 2−α. (4.5)

Thus by the proof of Lemma 4.10 all nodes in the network gets anuninterfered

escape attempt with at least probability1− 2−α in [s+ Tcool + (5rπ + 4)λ, ŝ].

Together with Lemma 4.10, this concludes that with at least probability1−2−α

all nodespi for which |Cr
i | > k holds at their uninterfered escape attempt will

have setstatei to SLAVE before timês. From this follows that there is no node

for which minpj∈Gi
(|Cr

j |) > k holds. Hence, by Lemma 4.9, no nodepi that

is cluster head at timês can ever setstatei to SLAVE after ŝ and therefore

Hŝ+t = Hŝ holds for any positivet. Moreover,̂s ∈ s + O(rπλ4g log n).

4.5 Discussion

To experimentally test performance, we did simulations of the algorithm for

various settings ofk andr. We placed40 nodes with a communication radius

of 1 uniformly at random in a 5 by 5 rectangular area. From our experiments

we concluded that using ag that gives us 95% guarantees of being an upper

bound on every|G2r
j | for any givenpj , is not required to get good performance.

The calculated bounds are not tight. In the experiments we have therefore used

a tenth of that value forg instead.

In addition, we performed experiments on recovery from small changes to

the topology from a converged system state. The convergencetimes from a

168 CHAPTER 4.

 0

 1000

 2000

 3000

 4000

 5000

 6000

(1,1) (1,2) (1,3) (2,1) (2,2) (2,3) (3,2) (3,3) (4,3)

A
v
er

a
ge

 c
o
n

v
er

ge
n

ce
 t

im
e

Setting for (k,r)

Start Add Remove Move

 0

 1000

 2000

 3000

 4000

 5000

 6000

(1,1) (1,2) (1,3) (2,1) (2,2) (2,3) (3,2) (3,3) (4,3)

A
v
er

a
ge

 c
o
n

v
er

ge
n

ce
 t

im
e

Setting for (k,r)

Start Add Remove

Figure 4.4: Convergence times from a fresh start, after 10% node additions, after 10%

node removes and after 10% node moves.

newly started network (“Start”) is compared in Figure 4.4 with the conver-

gence times after a change to a initially converged network.We investigate

10% added nodes (“Add”),10% removed nodes (“Remove”) or10% moved

nodes (“Move”).

We can see that the least obtrusive change to the topology is removed nodes.

The chance is good that a removed node is not a cluster head andthus do not

upset the balance. An add is more expensive than a remove. Nodes might end

up in an area where there is not so many cluster heads and therefore have to

start elect new nodes. A move is like both a remove and an add. Therefore, it is

anticipated that this case converges slower than the ones with only adds or only

removes.

The flooding of messages makes sure that if there exist multiple paths of

at most lengthr between a nodepi and a nodepj then joins and state updates

will traverse all possible paths. This can give us higher fault tolerance if there

are communication disturbances on some links (i.e., between some immediate

neighbors) and also higher availability for nodes to reach their cluster heads.

4.5. DISCUSSION 169

The multiple paths can also give applications higher security if some nodes

in the network can be compromised. If there is at least one path of at mostr hops

between a nodepi and a nodepj that is not passing through any compromised

nodes then the flooding makes sure that nodepi andpj gets to know about each

other. Moreover, ifpj wantspi to be cluster head then the compromised nodes

cannot stop that. If nodes add information to the messages about the paths they

have taken during message forwarding then the nodes get to know about the

multiple paths. With this knowledge they can in an application layer use as

diverse paths as possible to communicate with their clusterheads. Thus even if

a compromised node is on the path to one cluster head and dropsmessages or

do other malicious behavior there can be other cluster headsfor where there is

no compromised nodes on the chosen paths.

Consider a compromised nodepc that can lie and not follow protocol. First

assume thatpc cannot introduce node id:s that does not exist (Sybil attacks,

[15]) or node id:s for nodes that are not withinGr
c (wormhole attacks, [16])

and thatpc cannot do denial of service attacks. Thenpc can make any or all

nodes withinGr
c become and stay cluster heads by sending joins to them or

having them repeatedly go on and off cluster head duty over time by alternating

between sending joins and letting the node escape. Considera nodepi that is

a cluster head and has a path to a nodepj of length≤ r hops that does not

pass throughpc. In this situationpc can not give the false impression thatpi

is not a cluster head as HEAD takes precedence over ESCAPING that takes

precedence over SLAVE at message receipt. Ifpc on the other hand is in a

bottleneck between nodes without any other paths between them then it can lie

about a nodepℓ being a cluster heads and refuse to forward any joins topℓ. Now

if we assume thatpc is not restricted in what id:s it can include in false messages

it can convince a nodepℓ that nodes not inGr
ℓ are cluster heads. In the worst

case it can eventually makepℓ rely exclusively on non-existent cluster heads

with paths that all go throughpc. In any case the influence by a compromised

nodepc is contained withinG2r
c as the maximumttl of a message isr and is

enforced at message receipt.

170 CHAPTER 4.

4.6 Conclusions

We have presented a self-stabilizing(k, r)-clustering algorithm for ad-hoc net-

works that can deal with a bounded amount of message loss, andthat merely

requires a bound on the rate differences between pulses of different nodes in the

network. The algorithm makes sure that, withinO(rπλ3) time, all nodes have

at leastk cluster heads (when possible) and it stabilizes withinO(rπλ4g log n)

time with high probability. We have also discussed how the algorithm can help

us with fault tolerance and security.

Bibliography

[1] S. Dolev,Self-Stabilization, MIT Press, 2000.

[2] Y. P. Chen, A. L. Liestman, and J. Liu,Clustering Algorithms for Ad Hoc Wireless

Networks, vol. 2, chapter 7, pp. 154–164, Nova Science Publishers, 2004.

[3] A. A. Abbasi and M. Younis, “A survey on clustering algorithms forwireless

sensor networks,”Comput. Commun., vol. 30, no. 14-15, pp. 2826–2841, 2007.

[4] R. Karp, “Reducibility among combinatorial problems,” inComplexity of Com-

puter Computations, R. Miller and J. Thatcher, Eds., pp. 85–103. Plenum Press,

1972.

[5] C. Johnen and L. H. Nguyen, “Robust self-stabilizing weight-based clustering

algorithm,” Theor. Comput. Sci., vol. 410, no. 6-7, pp. 581–594, 2009.

[6] S. Dolev and N. Tzachar, “Empire of colonies: Self-stabilizing and self-organizing

distributed algorithm,”Theor. Comput. Sci., vol. 410, no. 6-7, pp. 514–532, 2009.

[7] E. Caron, A. K. Datta, B. Depardon, and L. L. Larmore, “A self-stabilizing k-

clustering algorithm using an arbitrary metric,” inEuro-Par, 2009, pp. 602–614.

[8] Y. Afek and G. Brown, “Self-stabilization over unreliable communication media,”

Distributed Computing, vol. 7, pp. 27–34, 1993.

[9] V. Ravelomanana, “Distributed k-clustering algorithms for random wireless mul-

tihop networks,” inICN 2005, pp. 109–116. Springer, 2005.

[10] Y. Fu, X. Wang, and S. Li, “Construction k-dominating set with multiplerelaying

technique in wireless mobile ad hoc networks,” inCMC ’09, Washington, DC,

USA, 2009, pp. 42–46, IEEE Computer Society.

BIBLIOGRAPHY 171

[11] M. A. Spohn and J. J. Garcia-Luna-Aceves, “Bounded-distance multi-clusterhead

formation in wireless ad hoc networks,”Ad Hoc Netw., vol. 5, no. 4, pp. 504–530,

2007.

[12] Y. Wu and Y. Li, “Construction algorithms for k-connected m-dominating sets in

wireless sensor networks,” inMobiHoc ’08, New York, NY, USA, 2008, pp. 83–90,

ACM.

[13] K. Sun, P. Peng, P. Ning, and C. Wang, “Secure distributed cluster formation in

wireless sensor networks,” inACSAC ’06, Washington, DC, USA, 2006, pp. 131–

140, IEEE Computer Society.

[14] A. Larsson and P. Tsigas, “A self-stabilizing (k,r)-clustering algorithm with multi-

ple paths for wireless ad-hoc networks,” inICDCS 2011, Minneapolis, MN, USA,

2011.

[15] J. Newsome, E. Shi, D. Song, and A. Perrig, “The sybil attack in sensor networks:

analysis & defenses,” inIPSN ’04, New York, NY, USA, 2004, pp. 259–268, ACM.

[16] Y. Hu, A. Perrig, and D. B. Johnson, “Wormhole detection in wireless ad hoc

networks,” Tech. Rep., Rice University, Department of Computer Science, 2002.

172 CHAPTER 4.

5
Future Work

Wireless sensor networks is an upcoming area that holds great promise for the

future. When the sensor nodes become smaller and smaller and cheaper and

cheaper the possibilities opens up for a vast number of different applications.

However, as with many areas in its infancy, there are a numberdifferent prob-

lems that arises when taking these applications from ideas to deployed systems

with interaction from the environment and from attacks thatcannot always been

foreseen.

Attacks from within the network from nodes taken over by an adversary is

a serious threat in a network where the nodes are physically accessible. There-

fore, there is a great need for algorithms that can function even in situations

where nodes inside the network attacks the network from within. Collusion

between several malicious nodes makes the situation even worse. In addition,

algorithms can not rely on having an undisturbed deploymentand setup of the

network before having to care about attacks. Otherwise, if malicious nodes al-

ready have been deployed in the area, they can become inside nodes just by

following protocol during the setup.

In addition to malicious attacks, problems arises from the general environ-

ment. Sensor nodes are often placed in hostile environmentsthat can disturb

their functionality, make them faulty and outright destroythem. It is therefore

173

174 CHAPTER 5.

important to be able to handle loss of nodes, faulty behaviorof nodes and other

faults in the system. Algorithm are needed that take both security and fault

tolerance into account.

In research, there is always a need for proper models. In the area of secu-

rity in sensor networks, two important modelling aspects are the model of the

adversary and the model of the network and the communication. What are the

powers of the adversary. What can be expected in terms of computing power,

what techniques are feasible on the hardware level, how manymalicious node

can we expect the adversary to have command over and what are the limita-

tions of them, etc. For the communication, what kind of assumptions can be

made about connectivity between nodes? How reliable is the communication

medium, can we rely upon bidirectional communication, are the communica-

tion links stable over time, are nodes moving around, etc.?

Models, although essential, are just models. An important characteristic of

an algorithm is what happens if the assumptions of a model is broken and what

happens after temporary deviations from assumptions. Depending on in which

way the assumptions are broken, functionality can be unaffected, degraded or

reduced to nothing. Fault tolerance in general tries to foresee problems that can

arise and take those into account within the model. However,at some point

those assumptions can be broken as well. In the situation of alarge sensor

network, trying to recover manually after a break down can beunfeasible or

too costly. This is why self-stabilization is a useful technique for sensor net-

work. Regardless of what state the network has ended up in dueto deviations

from assumptions, if the assumptions once again hold, the network can recover.

Self-stabilization most often comes with a price in terms ofoverhead and not

being able to ever stop, but the fault tolerance properties gained by it are pow-

erful. When implementing a sensor network application, thistradeoff needs to

be considered. More research is needed to find self-stabilizing algorithms that

are suitable for sensor networks and that are as resource efficient as possible.

Many number of services are needed when building a sensor network ap-

plication. The technique of layering services on top of eachother, building

functionality on top of functionality and at the same time separate them into

175

manageable units is powerful. In sensor networks where battery power is of

high concern and message transmissions are the most expensive operations, the

separation between services can pose a problem. If many different algorithms,

implementing the needed services, transmit partly the sameinformation, battery

power is wasted. In resource constrained sensor networks, the need is great for

algorithms that play well together in an efficient manner.

In a society where sensor networks exist in abundance, privacy is of utmost

importance. When we have sensor networks in public spaces, inthe offices,

inside the body for medical applications, in the electricity networks, etc., a lot

of information, possibly highly sensitive, is handled by these networks. Here

research is needed to establish methods to handle privacy inan efficient manner.

The privacy needs is for knowing users of the networks, such as when sensors

collects medical information from a patient, as well as for general monitoring

of environments that results in peoples personal information being handled by

the sensor network.

To conclude, research needs to be done to further develop secure and fault

tolerant algorithms with good models of the environment that can be combined

in an resource efficient manner.

