Self-stabilizing (k,r)-clustering in Clock Rate-limited Systems

Andreas Larsson
Computer Science and Engineering
Chalmers University of Technology

Email: larandr@chalmers.se

Abstract—Wireless Ad-hoc networks are dis-
tributed systems that often reside in error-prone en-
vironments. Self-stabilization lets the system recover
autonomously from an arbitrary system state, mak-
ing the system recover from errors and temporarily
broken assumptions. Clustering nodes within ad-hoc
networks can help forming backbones, facilitating
routing, improving scaling, aggregating information,
saving power and much more. We present a self-
stabilizing distributed (k,r)-clustering algorithm. A
(k,r)-clustering assigns k cluster heads within r
communication hops for all nodes in the network
while trying to minimize the total number of cluster
heads. The algorithm assumes a bound on clock
frequency differences and a limited guarantee on
message delivery. It uses multiple paths to different
cluster heads for improved security, availability and
fault tolerance. The algorithm assigns, when possible,
at leastk cluster heads to each node withirO(rz)?)
time from an arbitrary system configuration, where
m is a limit on message loss and is a limit on pulse
rate differences. The set of cluster heads stabilizes,
with high probability, to a local minimum within
O(rmA*glogn) time, where n is the size of the
network and ¢ is an upper bound on the number
of nodes within 2 hops.

I. INTRODUCTION

Philippas Tsigas
Computer Science and Engineering
Chalmers University of Technology

Email: tsigas@chalmers.se

be invalid. Memory content could be changed by

radiation or other elements of harsh environments.
Battery powered nodes could run out of batteries
and new ones could be added to the network. It is
often not feasible to manually configure large ad-

hoc networks to recover from events like this. Self-

stabilization is therefore often a desirable property
of algorithms for ad-hoc networks. However, the

trade off is that self-stabilization often comes with

increased costs. A self-stabilizing algorithm can

never stop because it is not known in advance
when temporary faults occur. Nevertheless, as long
as all assumptions hold, it can converge to stable
result, or, after convergence, stay within a set
of acceptable states. Moreover, there are often
overheads in the algorithm tied to the need to
recover from arbitrary system states. They can be
additional computations, larger messages, larger
data structures or longer required times to achieve
certain goals.

An algorithm for clustering nodes together in
an ad-hoc network serves an important role. Back
bones for efficient communication can be formed
using cluster heads. Clusters can be used for rout-

Starting from an arbitrary system state, selfing messages. Cluster heads can be responsible
stabilizing algorithms let a system stabilize to, andfor aggregating data into reports to decrease the
stay in, a consistent system state [1]. There arewumber of individual messages that needs to be
many reasons why a system could end up in arrouted through the network, e.g., aggregating sen-
inconsistent system state of some kind. Assump-ssor readings in a wireless sensor network. Hierar-
tions that algorithms rely on could temporarily chies of clusters on different levels can be used for

improved scaling of a large network. Nodes in a stabilizing (1,r)-clustering algorithm. Caron, Datta,
cluster could take turns doing energy-costly tasksDepardon and Larmore present a self-stabilizing
to reduce overall power consumption. (1,r-clustering in [7] that takes weighted graphs
Clustering is a well studied problem. Due to into account. Self-stabilization in systems with
space constraints, for references to the area in gertnreliable communications was introduced in [8].
eral, we point to the survey of the area with regard!n [9] a self-stabilizing (k,1)-clustering algorithm,
to wireless ad-hoc networks by Chen, Liestam andthat can cope with message loss, is presented.
Liu in [2] and the survey by Abbasi and Younis in ~ There is a number of papers that do not have
[3] for wireless sensor networks. In this paper we self-stabilization in their Settings. Fu, Wang and Li
focus on self-stabilization, redundancy and securityconsider the (k,1)-clustering problem in [10]. In
aspects. One way of clustering nodes in a netword11] the full (k,r)-clustering problem is considered
is for nodes to associate themselves with one 0|and both a centralized and a distributed algorithm
more cluster heads. In the (k,r)-clustering problemfor solving this problem are presented. Wu and Li
each node in the network should have at Igast also consider the full (k,r)-clustering in [12].
cluster heads within® communication hops away. ~ Other algorithms do not take the cluster head
This might not be possible for all nodes if the approach. In [13], sets of nodes that all can com-
number of nodes within hop from them is smaller municate directly with each other are grouped
than k. In such cases a best effort approach cartogether without assigning any cluster heads. In
be taken for getting as close to cluster heads this paper malicious nodes that try to disturb the
as possible for those nodes. The clustering shouldrotocol are also considered, but self-stabilization
be achieved with as few cluster heads as possiblds not considered.
To find the global minimum number of cluster
heads is in general computationally hard, and algoA- Our Contribution

rithms usually provide approximations. The (1,r)- We have constructed a self-stabilizir@, r)-
clustering problem, a subset of the (k,r)-clusteringcjustering algorithm for ad-hoc networks that can
problem, can be formulated as a classical set covegieal with message loss, as long as at least one
problem. This was shown to be NP complete in [4]. out of 7 consecutive broadcasts are successful,
Assuming that the network allows cluster heads and that uses unsynchronized pulses, for which
for each node, the set of cluster heads forms a totajhe ratios between pulse rates are limited by a
(k,r)-dominating set in the network. Intatal (k,r)- factor . The algorithm makes sure that, within
dominating set the nodes in the set also need tQ)(r7A3) time, all nodes have at least cluster
havek nodes in the set withim hops, in contrast heads (or all nodes within hops if a node has less
to an ordinary (k,r)-dominating set in which this is than i nodes withinr hops) using a deterministic
only required for nodes not in the set. scheme. A randomized scheme complements the
There is a multitude of existing clustering al- deterministic scheme and lets the set of cluster
gorithms for ad-hoc networks of which a number heads stabilize to a local minimum. It stabilizes
is self-stabilizing. Johnen and Nguyen present awithin O(rmA*glogn) time with high probability,
self-stabilizing (1,1)-clustering algorithm that con- whereg is a bound on the number of nodes within
verges fast in [5]. Dolev and Tzachar tackle a lot of 2r hops, andr is the size of the network.
organizational problems in a self-stabilizing man- We presented the first distributed self-stabilizing
ner in [6]. As part of this work they present a self- (k,r)-clustering in [14]. There, the system settings

assumed perfect message transfers and lock stef] = G7 \ {p;}. Let g > max; |G3"| be a bound,
synchronization of the nodes. The current articleknown by the nodes, on the number of nodes within
is a further development of that work and the 2r hops from any node.

main idea of the algorithm is the same. The un- Nodes are driven by a pulse going off every
reliable communication media, the unsynchronizedtime unit (with respect to its local clock). Pulses
nodes and the introduction of a veto mechanism toare not synchronized between nodes. The pulse
speed up convergence, all have made the currerftequency, in real time, of a node is denotedp;.
algorithm quite different, yet clearly related to the For any pair of nodes; andp, the ratiop; /p; < A,

one in [14]. We present correctness proofs fora value is a known to the nodes. Without loss of
quick selection of enough cluster headsc{uster generality we assume that the frequency of the
heads withinr hops when possible) and that the slowest clock in the system isand thus the clock
set of cluster heads converges towards a locafrequency of any node; is in [1, \].

minimum and stays at that local minimum. This Among 7 successive messages sent from one
includes an upper bound on the time it takes, withnode there is at least one message, such that all
high probability, for that convergence to happen.immediate neighborg; € N; receive that particu-
Furthermore, we also present experimental result$ar message. Such a message is callsdaessful

on the convergence of the algorithm and how itbroadcast The nodes know the value af Apart
copes with changes to the topology. from that assumption, messages from a npdean

B. Document Structure be lost, be re_ceived by a subset/gf, or received
by all nodes inN;.

The rest of the paper is organized as follows.
In section Il we introduce the System Settings. I1l. SELE-STABILIZING ALGORITHM EOR
Section IIl describes the algorithm. Section IV (k,7)-CLUSTERING
gives the overview of the proofs of the algorithm.

We discuss experimental results, security and re- The goal of the algorithm is, using as few cluster

dundancy in Section V. heads as possible, for each nggén the netvv_orl_<
to have a set of at least cluster heads within
Il. SYSTEM SETTINGS its 7-hop neighborhood>?. This is not possible if

We assume a static network. Changes in thea nodep; has|G}| < k. Therefore, we require
topology are seen as transient faults. We denotg¢hat |C7| < k;, where C7 C G7 is the set
the set of all nodes in the netwofk and the size of cluster heads in the neighborhood pf and
of the networkn = |P|. We impose no restrictions k; = min(k, |G} |) is the closest number of cluster
on the network topology other than that an upperheads tok that nodep; can achieve. We do not
bound, g, on the number of nodes withizr hops strive for a global minimum. That is too costly.
of any node is known (see below). We achieve a local minimum, i.e., a set of cluster

The set of neighborsy;, of a nodep; is all the heads in which no cluster head can be removed
nodes that can communicate directly with ngge without violating the(k,r) goal.

In other words, a nodg; € N; is one hop from The basic idea of the algorithm is for cluster
node p;. We assume a bidirectional connection heads to constantly broadcast the fact that they
graph, i.e., thatp, € N; iff p; € N;. The are cluster heads and for all nodes to constantly
neighborhood,G] of a nodep; is all the nodes broadcast which nodes they consider to be cluster
(including itself) at most- hops away fronp; and heads. The set of considered cluster heads consists

1

© ® N O A ®N

WWNNNNNNNNNRLNERERR B B BB B R
PO ©®®NoO 0N WONPOO©O®~NO® O S ®N R O

32
33

38

on pulse
timer < (timer +1) mod T
if estate= SLEEPA 3t st. (,JOIN, t) € smem then state<— HEAD
if state= HEAD then (newheads, newslaves) + ({i}, 0)
else (newheads, newslaves) < (0, {i})
for each je {k |k # i A3 ki # JOIN{ st. (kkit) € smenp do handlestatéj)
(heads, slaves) < (newheads, newslaves)

[* Escaping */
if state € {HEAD, ESCAPING}
estate«— updateestate()
if estate = INIT A state = HEAD A |heads| > k
state < ESCAPING
< heads slaves> < < heads\ {i}, slavesu {i}>
if state= ESCAPING A estate= SLEEP
if 3t st. (¢,JOIN, t) € smem then state<— HEAD
elsestate<+— SLAVE
if state= SLAVE then < estateestart> <+ < SLEEP;1>

/* Add heads */

if |heads$ < k
heads« headsU {smallest(k -|heads, slaveg}
slaves«— slaves\ heads

/* Join and send state */
for each je€ heads
if j # i then sendsek— pruneset(sendsety {< j, JOIN,r, 7> })
elsestate+— HEAD
smem<— stepmem(smem)
< sendsetlata> < stepset(pruneset(sendsetU {< i, state r, 7> }))
LBcast(< i,data>)

function updateestate
if timer = O then estart«+— uniformlyrandong{0, 1, ..., T-T¢s01-1})
if estarte [0,T-Teoor-1]
if timer € [estart estart] then return INIT
else iftimer € [estart-1, estart-T's;,04-1] then return FLOOD
return SLEEP

Figure 2. Pseudocode for the self-stabilizing clusteritypr@thm (1/2).

both of nodes that are known to be cluster headsThe choice of which nodes that are picked when
and, additionally, nodes that are elected to becomelecting cluster heads is based on node ID:s in
cluster heads. The content of the broadcasts arerder to limit the number of unneeded cluster
forwardedr hops, but in an aggregated form to heads that are elected when new cluster heads are
keep the size of messages down. The electiomeeded.
process might establish too many cluster heads. One could imagine an algorithm that in a first
Therefore, there is a mechanism for cluster heads t@hase adds cluster heads and thereafter in a second
drop their cluster head roles, &scapeEventually phase removes cluster heads that are not needed. To
a local minimum of cluster heads forms a total achieve self-stabilization however, we cannot rely
(k,r)-dominating set (or, if not possible given the on starting in a predefined system state. Recovery
topology, it fulfills [C]| > k; for any nodep;). from an inconsistent system state might start at
any time. Therefore, in our algorithm there are no

40
41
42

51
52
53

58
59

67
68

~

0

76
7
78
79

86
87

function handlestatéj):
js < prioritystate(j,smen)
if js = HEAD
newheads— newheadsJ {j}
sendsek— pruneset(sendsetJ { < j, JOIN,r, 7> })
else ifjs = ESCAPING A j € heads
if |heads$ < k
newheads— newheadsJ {j}
sendsek— pruneset(sendsetU { < j, VETO, r, 7> })
elseheads«+ heads\ {j}
newslaves— (newslavesJ {j}) \ newheads

function prioritystate(j,memn):
if 3tst (j, HEAD, t) € mem
return HEAD
if 3tst. (j, ESCAPING,t) € mem
return ESCAPING
return SLAVE

function stepmertmeny):
newmemnk—
for each< j,js,ttk> in mem
ttk <— min(ttk,<)-1
if ttk >0
newmemnk— prunemem(
newmenu { < j,js,ttk> })
return newmem

function stepsetse?):
< newsetnewdata> <« < 0, 0>
for each < jjittlttf> in set
< ttl, ttf> <« < min(ttl,r), min(ttf,r)-1>
if ttf > 0 Attl > 0 then
newset«— pruneset(newsetU { < jji,ttlttf> })
if ttff > 0 Attl > 0 then
newdata<— newdataU { < jji,tt/> }
return < newsetnewdata>

on LBrecv(< k, infoset>):
for each< j,ji,ttl> € infoset
ttl «— min(ttl,r))
if jj = VETO
if j =1 A state= ESCAPING
state <— HEAD
else if (j 1 Aji #JOIN) vV (j =i Aji = JOIN)
smem«— prunemem(smemu { < j,ji,x> })
ifj£inAtl>1
sendsek— pruneset(sendsety { < jjittl-1,7> })

Figure 3. Pseudocode for the self-stabilizing clusteritgprthm (2/2).

phases and the mechanism for adding cluster headsgorithm) and forwards the states of others. A
runs in parallel with the mechanism for removing cluster head node normally has the state HEAD and
cluster heads and none of them ever stops. a non cluster head node always has state SLAVE.

At each pulse a node sends out its state (thdf @ nodep; in any pulse finds out that it has less
algorithmic state, i.e., which role it takes in the thank cluster heads it selects a set of other nodes

Constants, and variables all nodes iné; will have had the opportunity to

i : Constantid of executing processor f
T, Teoots Tfiood, & : Constants derived from k, A and 7. See Definitigﬁ'.[o the escape attempt' If none of them ObJeCted’

state€ {HEAD, ESCAPING, SLAVE} : The state of the node at that pointp; will get no joins and can set its
timer : Integer. Timer for escape attempts

estart: Integer The escape schedule state to SLAVE.

estatec {SLEEP, INIT, FLOOD} : State for escape attempts If an escape attempt by; does not overlap

heads slaves: Sets of Ics tracking what nodes have which role

smem sendsetdata : Infotuple sets for keeping and forwarding state dgt.% time with another escape attempt it will suc-

ceed if and only ifminy, cqr [CF] > k. If there
External functions and macros .
LBcast(m) : Broadcasts message m to direct neighbors are overlaps by other escape attempts, the escape

LBrecv(m) : Receives a message from direct neighbor attempt by p; might fail even in cases where
smallest(a,A) : Returns themin(]|A],a) smallest ids in A

pruneset(A): maxt<« {< jjitthttf> € A: ttl = max, {7: < j,ji,r,nfgliE%ﬁG? |C7T‘ > k. The random escape attempt
return {< jji.ttlttf> € maxt: ttf = max, {6 : < jji.tt¢oscleaule therefore aims to minimize the risk of
prunemem(A): return {< jji.£> € A: € = max, {z: <]jix> € &)érlapping attempts.

The pseudocode for the algorithm is described
in Figures 2 and 3 with accompanying constants,
variables, external functions and macros in Fig-
ure 1. At each pulse of a node the lines 1-31 are
that it decides to elect as cluster heads. Npge executed resulting in a message that is broadcast
then elects established cluster head nodes and arfff S0Me time before the next pulse of that node.
newly elected nodes by sendingain message to hen a message is being received, the lines 78-87
them. Any node that is not a cluster head become&r€ executed.

a cluster head if it receives a join addressed to it.
We take a randomized approach for letting nodes IV. CORRECTNESS

try to drop their cluster head responsibility. Time |5 Section IV-A we show some basic results that
is divided into periods of” pulses. A cluster head e use further on. In Section IV-B we will show
nodep; picks uniformly at random one pulse out of that within O(rwA?) time we will have|C?| > k;
theT'—T¢, first pulses in the period as a possible for any nodep;. First we show that this holds while
starting pulse¢start;, for an escape attempt. #f temporarily disregarding the escaping mechanism,
has more thaw cluster heads in pulsestart;, then gnd then that it holds for the general case in
it will start an escape attempt. When starting anTheorem 1. In Section IV-C we will show that a
escape attempt a node sets it state to ESCAPING|yster head nodg; can become slave if it is not
and keeps it that way for a number of pulses toneeded and if it tries to escape undisturbed by other
make sure that all the nodes & will eventually nodes inG2”. We continue to show that the set of
know that it tries to escape. A node; € Gi nodes converges, with high probability, to a local

that would get fewer thark cluster heads ifp; minimum in O(rmA%glog n) time in Theorem 2.
would stop being a cluster head can veto against

the escape attempt. This is done by continuing toDefinition 1. When all system assumptions hold

regardp; to be a cluster head and send a VETO from a points in time and forward, we say that “we

back top;. If p;, on the other hand, has more than have a legal system execution frain\We denote a
k cluster heads it would not need to veto. Thus, by gal sy

accepting the state qf; as ESCAPINGp; will pulse ofp; with ', for some integer:. Consecutive
not send any join tg;. After a number of pulses pulses ofp; have consecutive indices, e.g:.,

Figure 1. Constants, variables, external functions and esacr
for the algorithm in Figures 2 and 3.

Ii.,, I, etc. We denote the time betwekh
and T, with ~%.

Definition 2. We define the set oftates as
{SLAVEHEAD, ESCAPING. An infotuple is a
tuple (j, js, ttx) or (j,js,ttl ttf), wherejs is a
either a state or one of VETQ, JOIN} and is said
to befor nodep; regardless ifp; is the original
sender or final receiver of the infotuple. Ther
field can either be &tl, the number of hops the
info is to be forwarded, or &tk, the number of

Definition 4. We definex = [(2rm + 1)A],
Ttiooa = [r(dm + 2)A% + r(2m + 2)A], t; =
r2r + DA+ r(m+ DA+ A =1, te = (Tfi00d —
DA+r(m+1)A+EN tp, =k—r(r—1)A—1, and
Teool = [te + r(m + 1)A]. Furthermore, we define
T = Tos+Tuoot, WhereTo = [2% (ts+te —2t), +

1)].

Lemma 1. Assume that we have a legal system
execution from time — (7= — 1)\ and consider a
nodep; that has a pulsé&™ at times. Now, assume

pulses for which the infotuple should be kept inthatp; has(k, o, 7,7), withT > 0, in sendset; just

smem before being discarded. & field denotes

before executing line 30 iR, and consider a node

the number of resends that is left to be done forp; € N; and a time intervall = [s — (7 — 1)\, s+

that particular tuple.

We say that a state earlier in the list [HEAD,

(m+ 1A
First, there exist a pulsé’, € I so that(k, o, 7’)

ESCAPING, SLAVE] has priority over a state that is received inﬁfl, forar > .

is later in that list.

We say that an infotupléj, o, 7) is memorable;
if and only if eitherj # i and o is a state, or if
j =14 and o = JOIN and that it isrelevant; if
and only if either it ismemorable; or if i = j and
o =VETO.

Definition 3. A nodep; is said tohandlea statec
for a nodep; in a pulsel’, when thehandlestate
function is called with parametef at line 6 and
the subsequent call to theioritystate with j as
a parameter returng, settingjs; = o at line 41.

A. Basic properties

Second, if (k,0,7") is memorable;, then
(k,o,k) € smem; in T just before executing
line 2.

Third, if k£ # j, regardless of what is, and if
T > 1, then there exist a puIsE% € I (possibly
equal tol}) in which (k, 0,0, 7) € sendset; with
anf > 1 — 1, just before executing line 30.

This lemma shows that the algorithm forwards
information frpm any nodg; such that it reaches
all nodes inG7 within time O(rmA). The three
factors are due to forwarding hops, only one in

7 messages are guaranteed to arrive and the clock
skew can allows for pulses to be upXdime apart.

This section builds up a base on how the al- Lemma 2. Assume that we have a legal system
gorithm works together with the system settings.execution from times — (7w — 1)\ and consider
First up is the definition of various constants whose,y nodep; that has a pulsel at time s. Now,

value is the result of later lemmas. assume thatp; has (k,o,r,7) in sendset; just

before executing line 30 iT¢ and consider a that we have a legal system execution from time
nodep; € GI, p; # p; and a time interval and consider a nodg; that has a puls&™, at time
I=[s—r(x—D\s+r(m+1)A. s and that has(k, o, r,) in sendset; just before

First, if (k,0,7’) is relevant;, there exist a executing line 30 inC:. Assume thatk, o,) is
pulseTy € I so that(k, o, 7') is received iy _,, memorable;. Then, there exists a puldg, € I =
forar’ > 1. [s+r(m+1)A=1,s+r(r+1)A+ A —1] in which

Second, if (k,o,7') is memorable;, then 3§ >0 such that(k,,§) € smem;.
(k,0,k) € smem; in T just before executing Second, now consider only the case whes i
line 2. and o is a state and consider a state# 0. As-
suming thatp; do not have(i, &, r,m) € sendset;
just before executing line 2 in any pulse in the time
interval (s—r(2r+1)A%, s+r(r+1)A+A—1). In
this Lemma we denote this &% holding for I'Z.
Then,#¢’ such that(i, 5, ¢') € smem, just before
executing line 2 i/,
Lemma 4. Assume that we have a legal System ex- . it & holds for allo* that have a higher
ecution from times and consider a nodg; that has . . :

))] priority than o, thenp; handleso for p; in ', (see
a pulsel at times and that hag(i, o, r, 7), where _
Definition 2).

o is a state, insendset; just before executing

line 30 inT":. Assume thap; do not add(i, o, r,) The corollary shows that the mechanisms that
keeps data for a certain time, guarantees that even-
tually nodes irG; will see the correct state of node
forana > s+ r(m+ DA+ (x — 1)A. In other , itit stays in that state long enough. Compared to
words,p; does not execute line 30 withiate; = ¢ Lemma 2 this introduces another facto(\) time.

in any pu]ses or between any pu|ses in the t|meTh|S is because if a node wants to make sure that
O(rmA) time has passed it needs to codnt-m\)

. o pulses, buD(rr)) pulses can také(rm\?) time.
Under these assumptions, the last pulggin the pgyjiding Lemmas on top of each other, this is the
time intervalI for p; € G such thatp; receives mechanism that adds additional factors Jofthe

(i,0,7) for any 7 in 4%_,, can not be later than further we go in the proof chain.
s+r(m+1)A. Furthermore, for any pulse gf; in
the time interval(s + (7 +)A+ (k — 1)\, s +a),
and between those puls€g, o,&) ¢ smem; for
any €.

Lemma 3. Assume that we have a legal system
execution from time — (7 — 1)\ and consider a
nodep; that has a pulsd™ at times. If p; € G,
theni € slave; U head; from times + r(m + 1)\
and forward.

to sendset; in the time intervall = (s, s + a),

interval I. Consider any node; in the network.

Corollary 1. Assume that we have a legal system
execution from time — A and consider a nodg;
that has a pulsd™ at times. Lety = [r(27 +
1A% 4r(m+1)A+2X]. Now assume that a nogl,
Lemma 5. Let § = s — r(27 + 1)A* and assume in each of the pulseB,-T",, _,, adds(i,o,7) to

x

sendset; and does not addi,o’, 7) to sendset; p; will have k; cluster heads within- hops from
for any o # ¢’. Then, for any node; € GI, p, times+ (3rm + 2)X and forward.

has a pulsel} at a times = s + (27 + 1)A* + Now we consider the full escape mechanisms
r(m+1)A -1+t forat € [0,2)], in whichp; and show that a node that receive joins remains or

handleso for p;. Furthermore, happens between Pecomes a cluster head.

the execution of the pulsé§, andT%_, Lemma 7. Assume that we have a legal system
execution from times — A and consider a node

p; that has a pulsel: at time s. If p; has

This section builds up a case showing that the(i JOIN,¢) € smems, for someé > 0 before
algorithm will elect enough cluster heads. We show " ’ ' "

how cluster heads are elected in Lemmas 6, 7 an§*€cuting line 2, th?'pi is a cluster just before
8. In Lemma 9 we take a look at how the escapeexecuting line 4 inl;, and will stay cluster head
mechanism works. Finally, in Theorem 31, we put throughout the rest ofl, and throughout~..

it all together and show that withi@ (rr ") time Furthermore, if node; is a cluster head just before

from starting a legal execution, each nggen the _ . . o
network will getk; cluster heads withim hops. ~ €Xecuting line 2 inl;, then it is a cluster head
throughout the entird™,.

B. Getting Enough Cluster Heads

Definition 5. For a nodep; to be acluster heads .
In the following Lemma we show that a node

equivalent tostate; € {HEAD,ESCAPING. For yhat s continuously wanted as a cluster head even-
a nodep; to be a slave is equivalent tetate; = tually becomes one.

SLAVE. For a node;, we defineC? as the set of
@) J Lemma 8. Assume that we have a legal system

cluster heads irG”.. Furthermore, we definél,, to . .
J
. ____execution from time. Assume that a node; # p;
be the set of cluster heads in the network at time
wants a nodep; € G’ to be cluster head as soon

as it knows about it and is never willing to let
We now look how .the gddmon_of cluster hequ it escape. In other words, (1) if € slaves; and
work while temporarily disregarding the escaping
mechanism. In this setting we will show that within 4
a finite time we will have‘c’lq > k; for any node that the condition in line 21 holds |ﬁ¥/ and that
pi. Later on we will lift this restriction and show i is added toheads; at the execution of line 22,

that |C7| > k; will still hold even when regarding anq (2) the condition in line 46 would hold when
the more general case.

x.

i ¢ heads; after line 7 in a pulsel/, we assume

handlestate is called withi as a parameter in any
Lemma 6. Assume that we have a legal systempulse ofp;.

execution from time. Assume that, for all nodes in ~ Under these assumptions, there exists a plilse
the network, theirstate can never be ESCAPING, such thatstate; # SLAVE after executing line 3 in
their estate is always SLEEP and lines 10-18 are I'}, and such thatstate; # SLAVE in anyl',
never executed. Under these assumptions, any node ~¢, for anyz’ > .

We continue to take a look at how the escapeTheorem 1. Assume that we have a legal system

mechanism operates to know in what ways it couldeyecution from time. Then any node; will have

interfere with electing enough cluster heads. k; cluster heads from time + Ty + (377 +2)A

Definition 6. A nodep; initiates an escape attempt and onward. Moreover, a node that is not
in a pulsel'’ if the condition holds in line 12 and for a timet > s + Teo0 + (577 + 4)A can not be
lines 13—-14 are executed irY,. in Hy for at > ¢ and consequentlyH, | < |H;|

/
Lemma 9 shows that the escape mechanisnio" @ s+ Leoo + (Brm +4)r <t <t'.

works, that a cluster head that is not needed can. Convergence to a Local Minimum

escape that responsibility. .
P P Y Lemma 9 shows that a cluster head node that is

Lemma 9. Assume that we have a legal systemnOt needed can escape the cluster head responsi-

bility if it does not interfere with escape attempts

: by other nodes. This section shows that the set

p; that initiates an escape attempt in a puls& of cluster heads converges to a local minimum.

at timess. We first show that an unneeded cluster head node
If all nodesp; € G7 have|C;| > k at times-+t, can escape, with hig_h probability (Lemma 10) in

N O(T)\) = O(grmA*) time. The extra) is due to
and no nodep, € G}, initiates an escape attempt |\ «/1o1 reason andl € O(grmA%). The factor
in any pulse in[s —t. +ts,s +ts — t5] then node 4 is a bound on the number of nodes that could

p; Will set state; to SLAVE in pulsé™ and interfere with a given escape attempt. It is part of

Z+Tf100d . - .
havestate; = SLAVE throughout any, or Fiurl T t.o give a nogie a cor)stant prpbablll'Fy of escaping
in its one try in a period ofl" time (given that it

/
for anyz’ > & + Tfiood- is not needed as a cluster head).

execution from time — T,,; and consider a node

If, on the other hand, there exists a nagec G}
that is havinglheads;| < k with k € heads; when
p; is first handling ESCAPING fop;, thenp; will
not setstate; to SLAVE in this escape attempt.

Lemma 10. Assume that we have a legal system
execution from time and consider a nodg; that is
a cluster head. Assume thigt?| > & holds for all
nodesp; € GI from times+T .0+ (5rm+4)A and

Theorem 1 shows that, within tim@c,; + as long asp; remains a cluster head. Then, node

(5rm + X € O(Tfi00aX) = O(rmA3) from an _ _
arbitrary configuration, all nodes; have at least Pi Will have state; = SLAVE after times + Teo01 +

k; cluster heads within hops and that the set of (577 + 4)A + (8 + 1)T'\ with at least probability
cluster heads in the network can only stay the samg _ 95

or shrink from that point on. From Corollary 1 we o N

get the factorO(\2) time for a node to know that T_heorem 2, shows that with high _prpbabﬂny_ the
it has reached out. This theorem introduces anothefntire 4network reaches a local minimum within
factor of O(\) because a node needs to be sure thaf ("7A"g logn) time.

another node has finished something as discussed From Theorem 1 we got that all nodgs have
previously. at leastk; cluster heads withim hops inT,,,; +

(3rm 4+ 2) A time after an arbitrary configuration.

C— Start C—= Add == Remove M \Move

Theorem 2 shows that with at least probability
1—27“ the set of cluster heads in the network sta-
bilizes to a local minimum withis+7 ..+ (5r7+
4)A+(a+log n+1)T A time. The factoO(log n) is -
multiplied by the result from Lemma 10 because oo
we go from probabilistic guarantee that one spe- 2000 -
cific node gets an uninterrupted escape attempt to 1000 | % I
that all cluster heads get such an attempt. And the o I MU g
number of cluster heads is bounded by the number, A A
n, of nodes in the network.

-6000

-5000 [

Average-convergence-time

Figure 4. Convergence times from a fresh start, after 10%
Theorem 2. Assume that we have a legal systeMnode additions, after 10% node removes and after 10% node

execution from time. With at least probabilityl — moves.
27% by times = s+ Teoor + (Brm + A + (v +

logn +1)TA there will be no cluster head node that a removed node is not a cluster head and

pi in the network for whichnin,cq; (IC]) > % thus do not upset the balance. An add is more

holds, andH;,; = H; holds for any positive. expensive than a remove. Nodes might end up in an
area where there is not so many cluster heads and
V. DISCUSSION therefore have to start elect new nodes. A move

is like both a remove and an add. Therefore, it is
ulations of the algorithm for various settings kf anticipated that this case converges slower than the

andr. We placecd0 nodes with a communication ©nes with only adds or only removes.
radius of 1 uniformly at random in a 5 by 5 rect- The flooding of messages makes sure that if
angular area. From our experiments we concludedhere exist multiple paths of at most length
that using ag that gives us 95% guarantees of between a nodep; and a nodep; then joins
being an upper bound on evqu?q for any given and state updates will traverse all possible paths.
pj, is not required to get good performance. TheThis can give us higher fault tolerance if there
calculated bounds are not tight. In the experimentsaré communication disturbances on some links
we have therefore used a tenth of that valuegor (i-e., between some immediate neighbors) and also
instead. higher availability for nodes to reach their cluster
In addition, we performed experiments on recov- heads.
ery from small changes to the topology from a con- The multiple paths can also give applications
verged system state. The convergence times fronmigher security if some nodes in the network can
a newly started network (“Start”) is compared in be compromised. If there is at least one path of at
Figure 4 with the convergence times after a changemostr hops between a noge and a nodg; that is
to a initially converged network. We investigate not passing through any compromised nodes then
10% added nodes (“Add”),10% removed nodes the flooding makes sure that noge and p; gets
(“Remove”) or10% moved nodes (“Move”). to know about each other. Moreover,jif wants
We can see that the least obtrusive change to the; to be cluster head then the compromised nodes
topology is removed nodes. The chance is goodcannot stop that. If nodes add information to the

To experimentally test performance, we did sim-

messages about the paths they have taken during VI. CONCLUSIONS
message forwarding then the nodes get to know
about the multiple paths. With this knowledge they

can in an application layer use as diverse paths a% .
bp y P eal with a bounded amount of message loss, and

possible to communicate with their cluster heads.th ; | . bound on the rate diff
Thus even if a compromised node is on the path to at merely requires a bound on the rate diflerences
tween pulses of different nodes in the network.

one cluster head and drops messages or do oth he aloorith K that. withiBl(rm\3
malicious behavior there can be other cluster headg ¢ 2'90MtM Makes sure that, wi (rmA%)
fime, all nodes have at leaktcluster heads (when

for where there is no compromised nodes on the . : - .
P ossible) and it stabilizes withi®(rrA*glogn)

h ths. P
chosen paths time with high probability. We have also discussed

how the algorithm can help us with fault tolerance
and security.

We have presented a self-stabilizing:, r)-
lustering algorithm for ad-hoc networks that can

Consider a compromised noggthat can lie and
not follow protocol. First assume that cannot in-
troduce node id:s that does not exist (Sybil attacks,
[15]) or node id:s for nodes that are not within The research leading to these results has received
G", (wormhole attacks, [16]) and that cannot do funding from the European Union Seventh Frame-
denial of service attacks. Then can make any or work Programme (FP7/2007-2013) under grant
all nodes withinGl, become and stay cluster heads agreement no 257007.
by sending joins to them or having them repeatedly This work, in a shortened form, appeared in
go on and off cluster head duty over time by Andreas Larsson and Philippas Tsigas. “Self-
alternating between sending joins and letting thestabilizing (k,r)-clustering in clock rate-limited
node escape. Consider a nogethat is a cluster systems.” In Proceedings of the 19th Inter-
head and has a path to a nogg of length < r national Colloquium on Structural Information
hops that does not pass through In this situation ~and Communication Complexity (SIROCCO 2012)
pe can not give the false impression thatis not Springer, 2012.

a cluster head as HEAD takes precedence over

ESCAPING that takes precedence over SLAVE at REFERENCES

message receipt. If. on the other hand is in a

bottleneck between nodes without any other paths[1] s. Dolev, Self-Stabilization MIT Press, 2000.
between them then it can lie about a ngdebeing

a cluster heads and refuse to forward any joins to
pe. Now if we assume thap,. is not restricted in
what id:s it can include in false messages it can
convince a node, that nodes not irfy; are cluster
heads. In the worst case it can eventually make
pe rely exclusively on non-existent cluster heads
with paths that all go througp,. In any case the [3] A. A. Abbasi and M. Younis, ‘A survey on
influence by a compromised noge is contained clustering algorithms for wireless sensor networks,”
within G?" as the maximunit/ of a message is Comput. Communyol. 30, no. 14-15, pp. 2826—
and is enforced at message receipt. 2841, 2007.

VIl. ACKNOWLEDGMENTS

[2] Y. P. Chen, A. L. Liestman, and J. LilGlustering
Algorithms for Ad Hoc Wireless Networkeol. 2,
chapter 7, pp. 154-164, Nova Science Publishers,
2004.

(4]

(5]

(6]

(7]

(8]

R. Karp, “Reducibility among combinatorial prob-
lems,” in Complexity of Computer Computatigns
R. Miller and J. Thatcher, Eds., pp. 85-103. Plenum
Press, 1972.

C. Johnen and L. H. Nguyen,
stabilizing weight-based clustering algorithm,”
Theor. Comput. Sgivol. 410, no. 6-7, pp. 581—
594, 2009.

S. Dolev and N. Tzachar, “Empire of colonies:
Self-stabilizing and self-organizing distributed al-
gorithm,” Theor. Comput. Scivol. 410, no. 6-7,
pp. 514-532, 2009.

(15]

E. Caron, A. K. Datta, B. Depardon, and L. L.
Larmore, “A self-stabilizing k-clustering algorithm
using an arbitrary metric,” ireuro-Par, 2009, pp.
602—-614.

(16]

Y. Afek and G. Brown, “Self-stabilization over
unreliable communication media,” Distributed
Computing vol. 7, pp. 27-34, 1993.

[9] V. Ravelomanana, “Distributed k-clustering algo-

(10]

(11]

rithms for random wireless multihop networks,” in
ICN 2005 pp. 109-116. Springer, 2005.

Y. Fu, X. Wang, and S. Li, “Construction k-
dominating set with multiple relaying technique
in wireless mobile ad hoc networks,” iEMC
'09, Washington, DC, USA, 2009, pp. 42-46, IEEE
Computer Society.

M. A. Spohn and J. J. Garcia-Luna-Aceves,
“Bounded-distance multi-clusterhead formation in
wireless ad hoc networks, Ad Hoc Netw. vol. 5,
no. 4, pp. 504-530, 2007.

[12] Y. Wu and Y. Li,

“Robust self- (13]

[14

“Construction algorithms for
k-connected m-dominating sets in wireless sensor
networks,” inMobiHoc '08 New York, NY, USA,
2008, pp. 83-90, ACM.

K. Sun, P. Peng, P. Ning, and C. Wang, “Secure
distributed cluster formation in wireless sensor
networks,” inACSAC '06 Washington, DC, USA,
2006, pp. 131-140, IEEE Computer Society.

A. Larsson and P. Tsigas, “A self-stabilizing
(k,r)-clustering algorithm with multiple paths for
wireless ad-hoc networks,” itCDCS 2011 Min-
neapolis, MN, USA, 2011.

J. Newsome, E. Shi, D. Song, and A. Perrig,
“The sybil attack in sensor networks: analysis &
defenses,” iNPSN '04 New York, NY, USA, 2004,
pp. 259-268, ACM.

Y. Hu, A. Perrig, and D. B. Johnson, “Wormhole
detection in wireless ad hoc networks,” Tech. Rep.,
Rice University, Department of Computer Science,
2002.

